SlideShare ist ein Scribd-Unternehmen logo
1 von 23
Data-Driven Prognostics of Lithium-
Ion Rechargeable Batteries Using
Bilinear Kernel Regression
Charlie Hubbard, John Bavlsik, Chinmay Hegde and Chao Hu
Iowa State University
Applications
• Electric/hybrid vehicles
• Mobile devices
• Medical devices
Image credit: http://uhaweb.hartford.edu/;
https://rahulmittal.files.wordpress.com;
http://www.carsdirect.com/
Health of an Li-Ion Battery
• Available signals
• Current
• Voltage
• Internal temperature
• Battery-health indicators
• State of Charge (SOC)
• State of Health (SOH)
• Remaining Useful Life (RUL)
Image credit: www.ionarchive.com
Remaining Useful Life Estimation
• Remaining Useful Life (RUL)
• End of Service limit determined by
application
• Measured in charge/discharge
cycles
0 100 200 300 400 500 600 700
Number of Cycles
0.75
0.8
0.85
0.9
0.95
1
NormalizedCapacity
Normalized Capacity vs Number of Cycles
Capacity Data
EOS Limit
Methods for SOH/RUL Estimation
• Model-based
• Assume knowledge of physical system
• Fit data to model of system
• Si, et. all 2013
• Gebraeel & Pan 2008
• Data-driven
• Assume no knowledge of physical system
• Machine learning/pattern recognition methods determine model
• Neural Networks – Liu, et. all 2010;
• Relevance Vector Machines – Hu, et. all 2015;
Data Deficiencies
• Types of deficiencies
• Missing data
• Noise
• Handling of deficiencies
• Remove spurious data points
• Allow model to ignore them
0 20 40 60 80 100 120 140
Charge/Discharge Cycles
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
NormalizedCapacity
Normalized Capacity vs Charge/Discharge Cycles
Our Approach
• Data-driven
• Least-squares regression based
• Add additional regression step to
find (and remove) noise in training
data
• Add kernel to transform data
• Add regularization to encourage
sparsity
Capacity feature
space
RUL state
space
Kernel regression
model
Least-squares Regression
• Feature vector: 𝑥
• Contains 𝑛 most recent capacity
readings
• Data matrix: 𝑋 =
𝑥11 ⋯ 𝑥1𝑛
⋮ ⋱ ⋮
𝑥 𝑚1 ⋯ 𝑥 𝑚𝑛
• Empirically determined RUL: 𝑦
• RUL vector: 𝑌 =
𝑦1
⋮
𝑦 𝑚
Least-squares Regression
• Given 𝑋 and 𝑌, solve:
min
𝑤
𝑌 − 𝑋𝑤 2
2
• Prediction vector: 𝑤
• Predicted RUL: 𝑦 = 𝑥, 𝑤
Kernel Least-Squares Regression
0 100 200 300 400 500 600 700
Number of Cycles
0.75
0.8
0.85
0.9
0.95
1
NormalizedCapacity
Normalized Capacity vs Number of Cycles
Capacity Data
EOS Limit
• Replace 𝑋 with kernel matrix, 𝐾
• Transform data to higher-
dimensional space
• Allows us to fit linear predictor, 𝑤
to non-linear data
• Kernel choice is flexible
• Dependent on data set
• Gaussian Kernel is a common
choice
Gaussian Kernel Matrix, 𝐾
• 𝑖 𝑡ℎ row of 𝐾 given by:
𝐾𝑖 = exp(−
𝑥 − 𝑥𝑖 2
2
𝑟2
)
• Add a vector of ones as the first column of 𝐾
• Allow of non-zero “y-intercept” for linear function
𝐾𝑖,1 =
1
⋮
1
𝐾𝑖,(𝑗≠1) =
exp(−
𝑥1 − 𝑥1 2
2
𝑟2 ) ⋯ exp(−
𝑥1 − 𝑥 𝑚+1 2
2
𝑟2 )
⋮ ⋱ ⋮
exp(−
𝑥 𝑚 − 𝑥1 2
2
𝑟2 ) ⋯ exp(−
𝑥 𝑚 − 𝑥 𝑚+1 2
2
𝑟2 )
Kernel Least-Squares Regression
• Given 𝑋 and 𝑌, obtain 𝑤 by solving:
min
𝑤
𝑌 − 𝐾𝑤 2
2
• Given feature vector 𝑥, compute: 𝑘 𝑥 𝑤ℎ𝑒𝑟𝑒 𝑘(𝑥)1 = 1,
𝑘(𝑥) 𝑗 = exp −
𝑥−𝑥 𝑗 2
2
𝑟2 , 𝑗 = {2, … . , 𝑚 + 1}
• Predicted RUL: 𝑦 = 𝑘 𝑥 , 𝑤
Kernel Regression and LASSO
Overfitting
• Kernel regression can over-fit to
training data
• Forcing 𝑤 to be sparse can
prevent over-fitting
• 𝑤 will be allowed to have only a
few non-zero entries
• Only the most representative
points will be used to calculate 𝑦
Enforcing Sparsity
• Least Absolute Shrinkage and
Selection Operator (LASSO)
• Rewrite regression problem as:
min
𝑤
𝑌 − 𝐾𝑤 2
2
+ λ 𝑤 1
Noise and Bilinear Regression
• Noise appears in almost every
data set
• Writing 𝐾 = 𝐾𝑡𝑟𝑢𝑒 + 𝐸 we look
to find and remove errors from
𝐾 to obtain more accurate
predictions
Bilinear Regression
• Kernel regression with LASSO (noiseless training data):
min
𝑤
𝑌 − 𝐾𝑡𝑟𝑢𝑒 𝑤 2
2
+ λ 𝑤 1
• With noise in training data: 𝐾 − 𝐸 = 𝐾𝑡𝑟𝑢𝑒
min
𝑤,𝐸
𝑌 − (𝐾 − 𝐸)𝑤 2
2
+ λ 𝑤 1
• Include a regularization term on E
min
𝑤,𝐸
𝑌 − (𝐾 − 𝐸)𝑤 2
2
+ λ 𝑤 1 + τ 𝐸 𝑝
𝑝
Algorithm – Bilinear Regression
Setup
• INPUTS: Training data {(xi, yi)},
i=1, 2, …, n.
• OUTPUTS: Estimated kernel
prediction vector 𝐰 .
• PARAMETERS: Optimization
parameters  and , kernel bandwidth
r, number of iterations T
Algorithm
Initialize: 𝐰0 ← 0, 𝐸0 ← 0, 𝑡 ← 0.
Compute: the kernel matrix K.
While t < T do:
𝑡 ← 𝑡 + 1
Set 𝐾 = 𝐾 − 𝐸𝑡. Solve:
𝐰𝑡+1 = arg min 𝜆‖𝐰‖1 + ‖𝐲 − 𝐾𝐰‖2
2
Set 𝐲 = 𝐲 − 𝐾 𝐰𝑡+1. Solve:
𝐸𝑡+1 = arg min 𝜏 𝑣𝑒𝑐 𝐸 𝑝
𝑝
+‖ 𝐲 + 𝐸 𝐰𝑡+1‖2
2
Record prediction error:
𝑃𝑟𝑒𝑑𝐸𝑟𝑟 𝑡 = 𝐲 − 𝐾 − 𝐸𝑡+1 𝐰𝑡+1 2
2
Find 𝑡∗
that minimizes 𝑃𝑟𝑒𝑑𝑒𝑟𝑟(𝑡).
Output: 𝐰 ← 𝐰 𝑡∗
Data Set
Test Cells
• 8 test cells
• Normalized capacity data from
700 charge/discharge cycles
• Cells were cycled from 2002-2012
• Weekly discharge rate
Noise Addition
• Imbued with Gaussian noise
• Zero mean
• std. dev. 𝜎 = {0, 0.005, 0.010,
0.015}
Experiment Setup
Cross Validations and Error Metric
• Leave-one-out cross validations
(CVs)
• Root mean squared error
(RMSE)
𝑅𝑀𝑆𝐸 =
1
𝑈 𝑙=1
8
𝑖∈𝐈 𝑙
𝑦 𝐗𝐗 𝑙
𝐱 𝑖 − 𝑦 𝐱 𝑖
2
Test Procedure
• Feature vectors: three most
recent capacity readings
• For each noise level 𝜎
• Perform two 8-fold CVs
Results
RMSE
Prediction Method
Noise in Training Data (std. dev of Gaussian noise)
Noise in Test and Training Data (std. dev of
Gaussian noise)
0 0.005 0.01 0.015 0.005 0.01 0.015
Lasso 31.24 33.052 34.72 50.42 42.33 61.53 83.67
Bi-Lasso 30.26 31.62 33.28 46.22 40.96 60.16 82.40
Bi-Tikhonov 29.57 30.92 32.80 48.88 40.57 60.58 83.52
RVM 30.91 32.67 36.16 47.67 41.50 60.22 82.58
Results
Noise-free test data
RMSE
0 0.005 0.01 0.015
Lasso 31.24 33.052 34.721 50.415
Bi-Lasso 30.259 31.615 33.282 46.222
Bi-Tikhonov 29.572 30.921 32.8 48.88
RVM 30.91 32.67 36.16 47.67
Error CDF’s
Testing with Noisy Data
0 100 200 300 400 500 600
Measured RUL (cycles)
0
100
200
300
400
500
600
PredictedRUL(cycles)
Predictions with Noisy Test Data
Training/Testing Noise = 0.000
Training/Testing Noise = 0.005
Training/Testing Noise = 0.010
Training/Testing Noise = 0.015
Perfect Prediction
Summary
• RUL predictions in batteries can be of
critical importance
• Capacity fade data is nonlinear and often
noisy
• Our model leverages:
• Error estimation (and removal)
• Data transformations
• Sparse predictions
• Key contribution: Provide accurate RUL
estimation in the presence of noisy data
References
• Hubbard, Bavlisk, Hu, Hegde (2016).
Data-Driven Prognostics of Lithium-Ion Rechargeable Batteries Using Bilinear Kernel Regression.
Annual Conference of the Prognostics and Health Management Society 2016.
• Liu, J., Saxena, A., Goebel, K., Saha, B., & Wang, W. (2010).
An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries.
National Aeronautics and Space Administration Moffett Field, CA Ames Research Center.
• Hu, C., Jain, G., Schmidt, C., Strief, C., & Sullivan, M. (2015).
• Online estimation of lithium-ion battery capacity using sparse Bayesian learning. Journal of Power
Sources, 289, 105-113.
• Si, X. S., Wang, W., Hu, C. H., Chen, M. Y., & Zhou, D. H. (2013).
A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life
estimation. Mechanical Systems and Signal Processing,35(1), 219-237.
• Gebraeel, N., & Pan, J. (2008).
Prognostic degradation models for computing and updating residual life distributions in a time-
varying environment. IEEE Transactions on Reliability, 57(4), 539-550

Weitere ähnliche Inhalte

Was ist angesagt?

Scan Segmentation Approach to Magnify Detection Sensitivity for Tiny Hardware...
Scan Segmentation Approach to Magnify Detection Sensitivity for Tiny Hardware...Scan Segmentation Approach to Magnify Detection Sensitivity for Tiny Hardware...
Scan Segmentation Approach to Magnify Detection Sensitivity for Tiny Hardware...奈良先端大 情報科学研究科
 
03 20256 ijict
03 20256 ijict03 20256 ijict
03 20256 ijictIAESIJEECS
 
Implementation of the fully adaptive radar framework: Practical limitations
Implementation of the fully adaptive radar framework: Practical limitationsImplementation of the fully adaptive radar framework: Practical limitations
Implementation of the fully adaptive radar framework: Practical limitationsLuis Úbeda Medina
 
Iaetsd position control of servo systems using pid
Iaetsd position control of servo systems using pidIaetsd position control of servo systems using pid
Iaetsd position control of servo systems using pidIaetsd Iaetsd
 
Control of Discrete-Time Piecewise Affine Probabilistic Systems using Reachab...
Control of Discrete-Time Piecewise Affine Probabilistic Systems using Reachab...Control of Discrete-Time Piecewise Affine Probabilistic Systems using Reachab...
Control of Discrete-Time Piecewise Affine Probabilistic Systems using Reachab...Leo Asselborn
 
Smart Systems for Urban Water Demand Management
Smart Systems for Urban Water Demand ManagementSmart Systems for Urban Water Demand Management
Smart Systems for Urban Water Demand ManagementPantelis Sopasakis
 
Multi-core GPU – Fast parallel SAR image generation
Multi-core GPU – Fast parallel SAR image generationMulti-core GPU – Fast parallel SAR image generation
Multi-core GPU – Fast parallel SAR image generationMahesh Khadatare
 
Vibration isolation progect lego(r)
Vibration isolation progect lego(r)Vibration isolation progect lego(r)
Vibration isolation progect lego(r)Open Adaptronik
 
RUCK 2017 김성환 R 패키지 메타주성분분석(MetaPCA)
RUCK 2017 김성환 R 패키지 메타주성분분석(MetaPCA)RUCK 2017 김성환 R 패키지 메타주성분분석(MetaPCA)
RUCK 2017 김성환 R 패키지 메타주성분분석(MetaPCA)r-kor
 
Acceleration of the Longwave Rapid Radiative Transfer Module using GPGPU
Acceleration of the Longwave Rapid Radiative Transfer Module using GPGPUAcceleration of the Longwave Rapid Radiative Transfer Module using GPGPU
Acceleration of the Longwave Rapid Radiative Transfer Module using GPGPUMahesh Khadatare
 
Unsupervised selection of mother wavelets and parameter optimization
Unsupervised selection of mother wavelets and parameter optimizationUnsupervised selection of mother wavelets and parameter optimization
Unsupervised selection of mother wavelets and parameter optimizationMd Kafiul Islam
 
Data science certification course
Data science certification courseData science certification course
Data science certification courseTejaspathiLV
 

Was ist angesagt? (19)

Scan Segmentation Approach to Magnify Detection Sensitivity for Tiny Hardware...
Scan Segmentation Approach to Magnify Detection Sensitivity for Tiny Hardware...Scan Segmentation Approach to Magnify Detection Sensitivity for Tiny Hardware...
Scan Segmentation Approach to Magnify Detection Sensitivity for Tiny Hardware...
 
22 mitchell lee_am_and_pwat_spectral_correction
22 mitchell lee_am_and_pwat_spectral_correction22 mitchell lee_am_and_pwat_spectral_correction
22 mitchell lee_am_and_pwat_spectral_correction
 
03 20256 ijict
03 20256 ijict03 20256 ijict
03 20256 ijict
 
spie_poster_v4
spie_poster_v4spie_poster_v4
spie_poster_v4
 
Implementation of the fully adaptive radar framework: Practical limitations
Implementation of the fully adaptive radar framework: Practical limitationsImplementation of the fully adaptive radar framework: Practical limitations
Implementation of the fully adaptive radar framework: Practical limitations
 
TU FINAL THE MEASURING DEVICE
TU FINAL THE MEASURING DEVICETU FINAL THE MEASURING DEVICE
TU FINAL THE MEASURING DEVICE
 
Iaetsd position control of servo systems using pid
Iaetsd position control of servo systems using pidIaetsd position control of servo systems using pid
Iaetsd position control of servo systems using pid
 
TU FINAL THE MEASURING DEVICE 1
TU FINAL THE MEASURING DEVICE 1TU FINAL THE MEASURING DEVICE 1
TU FINAL THE MEASURING DEVICE 1
 
Control of Discrete-Time Piecewise Affine Probabilistic Systems using Reachab...
Control of Discrete-Time Piecewise Affine Probabilistic Systems using Reachab...Control of Discrete-Time Piecewise Affine Probabilistic Systems using Reachab...
Control of Discrete-Time Piecewise Affine Probabilistic Systems using Reachab...
 
Smart Systems for Urban Water Demand Management
Smart Systems for Urban Water Demand ManagementSmart Systems for Urban Water Demand Management
Smart Systems for Urban Water Demand Management
 
Multi-core GPU – Fast parallel SAR image generation
Multi-core GPU – Fast parallel SAR image generationMulti-core GPU – Fast parallel SAR image generation
Multi-core GPU – Fast parallel SAR image generation
 
Vibration isolation progect lego(r)
Vibration isolation progect lego(r)Vibration isolation progect lego(r)
Vibration isolation progect lego(r)
 
presentation_VIT_final
presentation_VIT_finalpresentation_VIT_final
presentation_VIT_final
 
Final Thesis
Final ThesisFinal Thesis
Final Thesis
 
RUCK 2017 김성환 R 패키지 메타주성분분석(MetaPCA)
RUCK 2017 김성환 R 패키지 메타주성분분석(MetaPCA)RUCK 2017 김성환 R 패키지 메타주성분분석(MetaPCA)
RUCK 2017 김성환 R 패키지 메타주성분분석(MetaPCA)
 
Acceleration of the Longwave Rapid Radiative Transfer Module using GPGPU
Acceleration of the Longwave Rapid Radiative Transfer Module using GPGPUAcceleration of the Longwave Rapid Radiative Transfer Module using GPGPU
Acceleration of the Longwave Rapid Radiative Transfer Module using GPGPU
 
Analytics with Spark
Analytics with SparkAnalytics with Spark
Analytics with Spark
 
Unsupervised selection of mother wavelets and parameter optimization
Unsupervised selection of mother wavelets and parameter optimizationUnsupervised selection of mother wavelets and parameter optimization
Unsupervised selection of mother wavelets and parameter optimization
 
Data science certification course
Data science certification courseData science certification course
Data science certification course
 

Andere mochten auch

DigitalClone® Wind Turbine Validations
DigitalClone® Wind Turbine ValidationsDigitalClone® Wind Turbine Validations
DigitalClone® Wind Turbine ValidationsSentient Science
 
Take Control of Repowering – Be the One to Choose What’s Inside of Your Machine
Take Control of Repowering – Be the One to Choose What’s Inside of Your MachineTake Control of Repowering – Be the One to Choose What’s Inside of Your Machine
Take Control of Repowering – Be the One to Choose What’s Inside of Your MachineSentient Science
 
Comparing Replacement Components to Extend the Life of Gearboxes
Comparing Replacement Components to Extend the Life of GearboxesComparing Replacement Components to Extend the Life of Gearboxes
Comparing Replacement Components to Extend the Life of GearboxesSentient Science
 
A Step By Step Approach to Predict Fatigue, Wear Failure and Remaining Useful...
A Step By Step Approach to Predict Fatigue, Wear Failure and Remaining Useful...A Step By Step Approach to Predict Fatigue, Wear Failure and Remaining Useful...
A Step By Step Approach to Predict Fatigue, Wear Failure and Remaining Useful...Sentient Science
 
Condition Monitoring Of Unsteadily Operating Equipment
Condition Monitoring Of Unsteadily Operating EquipmentCondition Monitoring Of Unsteadily Operating Equipment
Condition Monitoring Of Unsteadily Operating EquipmentJordan McBain
 
Modeling Tribological Contacts in Wind Turbine Gearboxes
Modeling Tribological Contacts in Wind Turbine GearboxesModeling Tribological Contacts in Wind Turbine Gearboxes
Modeling Tribological Contacts in Wind Turbine GearboxesSentient Science
 
Assessing the Impact of Surface Treatment Solutions to Extend Asset Life
Assessing the Impact of Surface Treatment Solutions to Extend Asset LifeAssessing the Impact of Surface Treatment Solutions to Extend Asset Life
Assessing the Impact of Surface Treatment Solutions to Extend Asset LifeSentient Science
 

Andere mochten auch (7)

DigitalClone® Wind Turbine Validations
DigitalClone® Wind Turbine ValidationsDigitalClone® Wind Turbine Validations
DigitalClone® Wind Turbine Validations
 
Take Control of Repowering – Be the One to Choose What’s Inside of Your Machine
Take Control of Repowering – Be the One to Choose What’s Inside of Your MachineTake Control of Repowering – Be the One to Choose What’s Inside of Your Machine
Take Control of Repowering – Be the One to Choose What’s Inside of Your Machine
 
Comparing Replacement Components to Extend the Life of Gearboxes
Comparing Replacement Components to Extend the Life of GearboxesComparing Replacement Components to Extend the Life of Gearboxes
Comparing Replacement Components to Extend the Life of Gearboxes
 
A Step By Step Approach to Predict Fatigue, Wear Failure and Remaining Useful...
A Step By Step Approach to Predict Fatigue, Wear Failure and Remaining Useful...A Step By Step Approach to Predict Fatigue, Wear Failure and Remaining Useful...
A Step By Step Approach to Predict Fatigue, Wear Failure and Remaining Useful...
 
Condition Monitoring Of Unsteadily Operating Equipment
Condition Monitoring Of Unsteadily Operating EquipmentCondition Monitoring Of Unsteadily Operating Equipment
Condition Monitoring Of Unsteadily Operating Equipment
 
Modeling Tribological Contacts in Wind Turbine Gearboxes
Modeling Tribological Contacts in Wind Turbine GearboxesModeling Tribological Contacts in Wind Turbine Gearboxes
Modeling Tribological Contacts in Wind Turbine Gearboxes
 
Assessing the Impact of Surface Treatment Solutions to Extend Asset Life
Assessing the Impact of Surface Treatment Solutions to Extend Asset LifeAssessing the Impact of Surface Treatment Solutions to Extend Asset Life
Assessing the Impact of Surface Treatment Solutions to Extend Asset Life
 

Ähnlich wie PHM2106-Presentation-Hubbard

ES_SAA_OG_PF_ECCTD_Pos
ES_SAA_OG_PF_ECCTD_PosES_SAA_OG_PF_ECCTD_Pos
ES_SAA_OG_PF_ECCTD_PosSyed Asad Alam
 
Evolving Fuzzy System Applied to Battery Charge Capacity Prediction for Faul...
 Evolving Fuzzy System Applied to Battery Charge Capacity Prediction for Faul... Evolving Fuzzy System Applied to Battery Charge Capacity Prediction for Faul...
Evolving Fuzzy System Applied to Battery Charge Capacity Prediction for Faul...Murilo Camargos
 
Virus, Vaccines, Genes and Quantum - 2020-06-18
Virus, Vaccines, Genes and Quantum - 2020-06-18Virus, Vaccines, Genes and Quantum - 2020-06-18
Virus, Vaccines, Genes and Quantum - 2020-06-18Aritra Sarkar
 
Vedran Peric's PhD Defense Presentation: Non-intrusive Methods for Mode Estim...
Vedran Peric's PhD Defense Presentation: Non-intrusive Methods for Mode Estim...Vedran Peric's PhD Defense Presentation: Non-intrusive Methods for Mode Estim...
Vedran Peric's PhD Defense Presentation: Non-intrusive Methods for Mode Estim...Luigi Vanfretti
 
MS_thesis_presentation
MS_thesis_presentationMS_thesis_presentation
MS_thesis_presentationDeepak Agarwal
 
Efficient anomaly detection via matrix sketching
Efficient anomaly detection via matrix sketchingEfficient anomaly detection via matrix sketching
Efficient anomaly detection via matrix sketchingHsing-chuan Hsieh
 
Presentació renovables
Presentació renovablesPresentació renovables
Presentació renovablesJordi Cusido
 
A Hybrid Method of CART and Artificial Neural Network for Short Term Load For...
A Hybrid Method of CART and Artificial Neural Network for Short Term Load For...A Hybrid Method of CART and Artificial Neural Network for Short Term Load For...
A Hybrid Method of CART and Artificial Neural Network for Short Term Load For...Salford Systems
 
Efficient Implementation of Self-Organizing Map for Sparse Input Data
Efficient Implementation of Self-Organizing Map for Sparse Input DataEfficient Implementation of Self-Organizing Map for Sparse Input Data
Efficient Implementation of Self-Organizing Map for Sparse Input Dataymelka
 
ACC_2014_Yasha_Parvini
ACC_2014_Yasha_ParviniACC_2014_Yasha_Parvini
ACC_2014_Yasha_ParviniYasha Parvini
 
Histograms in 12c era
Histograms in 12c eraHistograms in 12c era
Histograms in 12c eraMauro Pagano
 
Machine Learning Essentials Demystified part2 | Big Data Demystified
Machine Learning Essentials Demystified part2 | Big Data DemystifiedMachine Learning Essentials Demystified part2 | Big Data Demystified
Machine Learning Essentials Demystified part2 | Big Data DemystifiedOmid Vahdaty
 
Inter-Electrode Correlation
Inter-Electrode CorrelationInter-Electrode Correlation
Inter-Electrode CorrelationRyanClement
 
Hairong Qi V Swaminathan
Hairong Qi V SwaminathanHairong Qi V Swaminathan
Hairong Qi V SwaminathanFNian
 
QX Simulator and quantum programming - 2020-04-28
QX Simulator and quantum programming - 2020-04-28QX Simulator and quantum programming - 2020-04-28
QX Simulator and quantum programming - 2020-04-28Aritra Sarkar
 
Sparse coding Super-Resolution を用いた核医学画像処理
Sparse coding Super-Resolution を用いた核医学画像処理Sparse coding Super-Resolution を用いた核医学画像処理
Sparse coding Super-Resolution を用いた核医学画像処理Yutaka KATAYAMA
 

Ähnlich wie PHM2106-Presentation-Hubbard (20)

02-11-2005.ppt
02-11-2005.ppt02-11-2005.ppt
02-11-2005.ppt
 
ES_SAA_OG_PF_ECCTD_Pos
ES_SAA_OG_PF_ECCTD_PosES_SAA_OG_PF_ECCTD_Pos
ES_SAA_OG_PF_ECCTD_Pos
 
Evolving Fuzzy System Applied to Battery Charge Capacity Prediction for Faul...
 Evolving Fuzzy System Applied to Battery Charge Capacity Prediction for Faul... Evolving Fuzzy System Applied to Battery Charge Capacity Prediction for Faul...
Evolving Fuzzy System Applied to Battery Charge Capacity Prediction for Faul...
 
Virus, Vaccines, Genes and Quantum - 2020-06-18
Virus, Vaccines, Genes and Quantum - 2020-06-18Virus, Vaccines, Genes and Quantum - 2020-06-18
Virus, Vaccines, Genes and Quantum - 2020-06-18
 
Vedran Peric's PhD Defense Presentation: Non-intrusive Methods for Mode Estim...
Vedran Peric's PhD Defense Presentation: Non-intrusive Methods for Mode Estim...Vedran Peric's PhD Defense Presentation: Non-intrusive Methods for Mode Estim...
Vedran Peric's PhD Defense Presentation: Non-intrusive Methods for Mode Estim...
 
MS_thesis_presentation
MS_thesis_presentationMS_thesis_presentation
MS_thesis_presentation
 
Efficient anomaly detection via matrix sketching
Efficient anomaly detection via matrix sketchingEfficient anomaly detection via matrix sketching
Efficient anomaly detection via matrix sketching
 
Presentació renovables
Presentació renovablesPresentació renovables
Presentació renovables
 
A Hybrid Method of CART and Artificial Neural Network for Short Term Load For...
A Hybrid Method of CART and Artificial Neural Network for Short Term Load For...A Hybrid Method of CART and Artificial Neural Network for Short Term Load For...
A Hybrid Method of CART and Artificial Neural Network for Short Term Load For...
 
Efficient Implementation of Self-Organizing Map for Sparse Input Data
Efficient Implementation of Self-Organizing Map for Sparse Input DataEfficient Implementation of Self-Organizing Map for Sparse Input Data
Efficient Implementation of Self-Organizing Map for Sparse Input Data
 
ACC_2014_Yasha_Parvini
ACC_2014_Yasha_ParviniACC_2014_Yasha_Parvini
ACC_2014_Yasha_Parvini
 
Histograms in 12c era
Histograms in 12c eraHistograms in 12c era
Histograms in 12c era
 
Gupta Roy MS Thesis Defense
Gupta Roy MS Thesis DefenseGupta Roy MS Thesis Defense
Gupta Roy MS Thesis Defense
 
Machine Learning Essentials Demystified part2 | Big Data Demystified
Machine Learning Essentials Demystified part2 | Big Data DemystifiedMachine Learning Essentials Demystified part2 | Big Data Demystified
Machine Learning Essentials Demystified part2 | Big Data Demystified
 
FallThesisFinal
FallThesisFinalFallThesisFinal
FallThesisFinal
 
Inter-Electrode Correlation
Inter-Electrode CorrelationInter-Electrode Correlation
Inter-Electrode Correlation
 
3920 Assn_1
3920 Assn_13920 Assn_1
3920 Assn_1
 
Hairong Qi V Swaminathan
Hairong Qi V SwaminathanHairong Qi V Swaminathan
Hairong Qi V Swaminathan
 
QX Simulator and quantum programming - 2020-04-28
QX Simulator and quantum programming - 2020-04-28QX Simulator and quantum programming - 2020-04-28
QX Simulator and quantum programming - 2020-04-28
 
Sparse coding Super-Resolution を用いた核医学画像処理
Sparse coding Super-Resolution を用いた核医学画像処理Sparse coding Super-Resolution を用いた核医学画像処理
Sparse coding Super-Resolution を用いた核医学画像処理
 

PHM2106-Presentation-Hubbard

  • 1. Data-Driven Prognostics of Lithium- Ion Rechargeable Batteries Using Bilinear Kernel Regression Charlie Hubbard, John Bavlsik, Chinmay Hegde and Chao Hu Iowa State University
  • 2. Applications • Electric/hybrid vehicles • Mobile devices • Medical devices Image credit: http://uhaweb.hartford.edu/; https://rahulmittal.files.wordpress.com; http://www.carsdirect.com/
  • 3. Health of an Li-Ion Battery • Available signals • Current • Voltage • Internal temperature • Battery-health indicators • State of Charge (SOC) • State of Health (SOH) • Remaining Useful Life (RUL) Image credit: www.ionarchive.com
  • 4. Remaining Useful Life Estimation • Remaining Useful Life (RUL) • End of Service limit determined by application • Measured in charge/discharge cycles 0 100 200 300 400 500 600 700 Number of Cycles 0.75 0.8 0.85 0.9 0.95 1 NormalizedCapacity Normalized Capacity vs Number of Cycles Capacity Data EOS Limit
  • 5. Methods for SOH/RUL Estimation • Model-based • Assume knowledge of physical system • Fit data to model of system • Si, et. all 2013 • Gebraeel & Pan 2008 • Data-driven • Assume no knowledge of physical system • Machine learning/pattern recognition methods determine model • Neural Networks – Liu, et. all 2010; • Relevance Vector Machines – Hu, et. all 2015;
  • 6. Data Deficiencies • Types of deficiencies • Missing data • Noise • Handling of deficiencies • Remove spurious data points • Allow model to ignore them 0 20 40 60 80 100 120 140 Charge/Discharge Cycles 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 NormalizedCapacity Normalized Capacity vs Charge/Discharge Cycles
  • 7. Our Approach • Data-driven • Least-squares regression based • Add additional regression step to find (and remove) noise in training data • Add kernel to transform data • Add regularization to encourage sparsity Capacity feature space RUL state space Kernel regression model
  • 8. Least-squares Regression • Feature vector: 𝑥 • Contains 𝑛 most recent capacity readings • Data matrix: 𝑋 = 𝑥11 ⋯ 𝑥1𝑛 ⋮ ⋱ ⋮ 𝑥 𝑚1 ⋯ 𝑥 𝑚𝑛 • Empirically determined RUL: 𝑦 • RUL vector: 𝑌 = 𝑦1 ⋮ 𝑦 𝑚
  • 9. Least-squares Regression • Given 𝑋 and 𝑌, solve: min 𝑤 𝑌 − 𝑋𝑤 2 2 • Prediction vector: 𝑤 • Predicted RUL: 𝑦 = 𝑥, 𝑤
  • 10. Kernel Least-Squares Regression 0 100 200 300 400 500 600 700 Number of Cycles 0.75 0.8 0.85 0.9 0.95 1 NormalizedCapacity Normalized Capacity vs Number of Cycles Capacity Data EOS Limit • Replace 𝑋 with kernel matrix, 𝐾 • Transform data to higher- dimensional space • Allows us to fit linear predictor, 𝑤 to non-linear data • Kernel choice is flexible • Dependent on data set • Gaussian Kernel is a common choice
  • 11. Gaussian Kernel Matrix, 𝐾 • 𝑖 𝑡ℎ row of 𝐾 given by: 𝐾𝑖 = exp(− 𝑥 − 𝑥𝑖 2 2 𝑟2 ) • Add a vector of ones as the first column of 𝐾 • Allow of non-zero “y-intercept” for linear function 𝐾𝑖,1 = 1 ⋮ 1 𝐾𝑖,(𝑗≠1) = exp(− 𝑥1 − 𝑥1 2 2 𝑟2 ) ⋯ exp(− 𝑥1 − 𝑥 𝑚+1 2 2 𝑟2 ) ⋮ ⋱ ⋮ exp(− 𝑥 𝑚 − 𝑥1 2 2 𝑟2 ) ⋯ exp(− 𝑥 𝑚 − 𝑥 𝑚+1 2 2 𝑟2 )
  • 12. Kernel Least-Squares Regression • Given 𝑋 and 𝑌, obtain 𝑤 by solving: min 𝑤 𝑌 − 𝐾𝑤 2 2 • Given feature vector 𝑥, compute: 𝑘 𝑥 𝑤ℎ𝑒𝑟𝑒 𝑘(𝑥)1 = 1, 𝑘(𝑥) 𝑗 = exp − 𝑥−𝑥 𝑗 2 2 𝑟2 , 𝑗 = {2, … . , 𝑚 + 1} • Predicted RUL: 𝑦 = 𝑘 𝑥 , 𝑤
  • 13. Kernel Regression and LASSO Overfitting • Kernel regression can over-fit to training data • Forcing 𝑤 to be sparse can prevent over-fitting • 𝑤 will be allowed to have only a few non-zero entries • Only the most representative points will be used to calculate 𝑦 Enforcing Sparsity • Least Absolute Shrinkage and Selection Operator (LASSO) • Rewrite regression problem as: min 𝑤 𝑌 − 𝐾𝑤 2 2 + λ 𝑤 1
  • 14. Noise and Bilinear Regression • Noise appears in almost every data set • Writing 𝐾 = 𝐾𝑡𝑟𝑢𝑒 + 𝐸 we look to find and remove errors from 𝐾 to obtain more accurate predictions
  • 15. Bilinear Regression • Kernel regression with LASSO (noiseless training data): min 𝑤 𝑌 − 𝐾𝑡𝑟𝑢𝑒 𝑤 2 2 + λ 𝑤 1 • With noise in training data: 𝐾 − 𝐸 = 𝐾𝑡𝑟𝑢𝑒 min 𝑤,𝐸 𝑌 − (𝐾 − 𝐸)𝑤 2 2 + λ 𝑤 1 • Include a regularization term on E min 𝑤,𝐸 𝑌 − (𝐾 − 𝐸)𝑤 2 2 + λ 𝑤 1 + τ 𝐸 𝑝 𝑝
  • 16. Algorithm – Bilinear Regression Setup • INPUTS: Training data {(xi, yi)}, i=1, 2, …, n. • OUTPUTS: Estimated kernel prediction vector 𝐰 . • PARAMETERS: Optimization parameters  and , kernel bandwidth r, number of iterations T Algorithm Initialize: 𝐰0 ← 0, 𝐸0 ← 0, 𝑡 ← 0. Compute: the kernel matrix K. While t < T do: 𝑡 ← 𝑡 + 1 Set 𝐾 = 𝐾 − 𝐸𝑡. Solve: 𝐰𝑡+1 = arg min 𝜆‖𝐰‖1 + ‖𝐲 − 𝐾𝐰‖2 2 Set 𝐲 = 𝐲 − 𝐾 𝐰𝑡+1. Solve: 𝐸𝑡+1 = arg min 𝜏 𝑣𝑒𝑐 𝐸 𝑝 𝑝 +‖ 𝐲 + 𝐸 𝐰𝑡+1‖2 2 Record prediction error: 𝑃𝑟𝑒𝑑𝐸𝑟𝑟 𝑡 = 𝐲 − 𝐾 − 𝐸𝑡+1 𝐰𝑡+1 2 2 Find 𝑡∗ that minimizes 𝑃𝑟𝑒𝑑𝑒𝑟𝑟(𝑡). Output: 𝐰 ← 𝐰 𝑡∗
  • 17. Data Set Test Cells • 8 test cells • Normalized capacity data from 700 charge/discharge cycles • Cells were cycled from 2002-2012 • Weekly discharge rate Noise Addition • Imbued with Gaussian noise • Zero mean • std. dev. 𝜎 = {0, 0.005, 0.010, 0.015}
  • 18. Experiment Setup Cross Validations and Error Metric • Leave-one-out cross validations (CVs) • Root mean squared error (RMSE) 𝑅𝑀𝑆𝐸 = 1 𝑈 𝑙=1 8 𝑖∈𝐈 𝑙 𝑦 𝐗𝐗 𝑙 𝐱 𝑖 − 𝑦 𝐱 𝑖 2 Test Procedure • Feature vectors: three most recent capacity readings • For each noise level 𝜎 • Perform two 8-fold CVs
  • 19. Results RMSE Prediction Method Noise in Training Data (std. dev of Gaussian noise) Noise in Test and Training Data (std. dev of Gaussian noise) 0 0.005 0.01 0.015 0.005 0.01 0.015 Lasso 31.24 33.052 34.72 50.42 42.33 61.53 83.67 Bi-Lasso 30.26 31.62 33.28 46.22 40.96 60.16 82.40 Bi-Tikhonov 29.57 30.92 32.80 48.88 40.57 60.58 83.52 RVM 30.91 32.67 36.16 47.67 41.50 60.22 82.58
  • 20. Results Noise-free test data RMSE 0 0.005 0.01 0.015 Lasso 31.24 33.052 34.721 50.415 Bi-Lasso 30.259 31.615 33.282 46.222 Bi-Tikhonov 29.572 30.921 32.8 48.88 RVM 30.91 32.67 36.16 47.67 Error CDF’s
  • 21. Testing with Noisy Data 0 100 200 300 400 500 600 Measured RUL (cycles) 0 100 200 300 400 500 600 PredictedRUL(cycles) Predictions with Noisy Test Data Training/Testing Noise = 0.000 Training/Testing Noise = 0.005 Training/Testing Noise = 0.010 Training/Testing Noise = 0.015 Perfect Prediction
  • 22. Summary • RUL predictions in batteries can be of critical importance • Capacity fade data is nonlinear and often noisy • Our model leverages: • Error estimation (and removal) • Data transformations • Sparse predictions • Key contribution: Provide accurate RUL estimation in the presence of noisy data
  • 23. References • Hubbard, Bavlisk, Hu, Hegde (2016). Data-Driven Prognostics of Lithium-Ion Rechargeable Batteries Using Bilinear Kernel Regression. Annual Conference of the Prognostics and Health Management Society 2016. • Liu, J., Saxena, A., Goebel, K., Saha, B., & Wang, W. (2010). An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries. National Aeronautics and Space Administration Moffett Field, CA Ames Research Center. • Hu, C., Jain, G., Schmidt, C., Strief, C., & Sullivan, M. (2015). • Online estimation of lithium-ion battery capacity using sparse Bayesian learning. Journal of Power Sources, 289, 105-113. • Si, X. S., Wang, W., Hu, C. H., Chen, M. Y., & Zhou, D. H. (2013). A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation. Mechanical Systems and Signal Processing,35(1), 219-237. • Gebraeel, N., & Pan, J. (2008). Prognostic degradation models for computing and updating residual life distributions in a time- varying environment. IEEE Transactions on Reliability, 57(4), 539-550