SlideShare ist ein Scribd-Unternehmen logo
1 von 26
Downloaden Sie, um offline zu lesen
LINEAR SYSTEMS
AND
MATRICES
Determinants
p.202 to p.211
p.216 Problems 1 to 20
3.6
 det ( A ) is a real number (can be negative also)
 det ( A ) is also written as
 Only a square n x n matrix has a determinant
 det ( AB ) = det ( A ) det ( B )
 A matrix A is not invertible (singular matrix) if
and only if det ( A ) = 0
 A matrix A is invertible (nonsingular matrix) if
and only if det ( A ) ≠ 0
3.6 Determinants : Definition
A
 1x1 matrix : A = [ a11 ], then det (A) = a11
 2x2 matrix :
det (A) = a11 a22 - a12 a21
11 12
21 22
a a
a a
 
 
  
A
3.6 Determinants : Examples
 3x3 matrix
det (A) = a11 a22 a33 + a12 a23 a31 + a13 a21 a32
-a11 a23 a32 - a12 a21 a33 -a13 a22 a31
11 12 13
21 22 23
31 32 33
a a a
a a a
a a a
 
 
 
 
 
A
Note: This cannot be extended to higher order matrices.
3.6 Determinants : Examples
 3x3 matrix
minus
det (A) =
11 12 13
21 22 23
31 32 33
a a a
a a a
a a a
 
 
 
 
 
A
3.6 Determinants : Examples
11 12 13
22 23 21 23 21 22
32 33 31 33 31 32
det det deta a a
a a a a a a
a a a a a a
     
      
          
11 12 13
21 22 23
31 32 33
a a a
a a a
a a a
 
 
 
 
 
11 12 13
21 22 23
31 32 33
a a a
a a a
a a a
 
 
 
 
 
11 12 13
21 22 23
31 32 33
a a a
a a a
a a a
 
 
 
 
 
3.6 Determinants : Examples
1 2 3
4 5 6
7 8 9
 
 
 
 
 
A det (A) = 0
1 2 3
0 0 0
7 2 5
 
 
 
 
 
B det (B) = 0
det (I) = 1
 3 3det 1
1 0 0
0 1 0
0 0 1
 
 
  
 
 

   

I I
 3 3det 0
0 0 0
0 0 0
0 0 0
 
 
 
 
 
0 0
Defn - Let A = [ aij ] be an n x n matrix.
Let Mpq be the (n – 1) x (n – 1) submatrix of A
obtained by deleting the pth row and qth column of
A. The determinant det(Mpq) is called the minor
of apq
Defn - Let A = [ aij ] be an n x n matrix.
The cofactor Apq of apq is defined as
Apq = (–1)p+q det(Mpq)
3.6 Determinants : Cofactor Expansion
1 2 3
4 5 6
7 8 9
 
 
 
 
 
A
   
   
   
2
11 11 11
3
12 12 12
4
31 31 31
5 6
1 det 3
8 9
4 6
1 det 6
7 9
2 3
1 det 3
5 6
A
A
A
 
 
 
 
 
 
 
 
 
    
   
    
M M
M M
M M
3.6 Determinants : Cofactor Expansion - Example
Comment
 Examine pattern of signs of term (–1) p+q
 
 
 
  
  
  
  
 
 
 
 
 
 
   
   
   
   
n = 3 n = 4
3.6 Determinants : Cofactor Expansion - Example
Theorem - Let A = [ aij ] be an n x n matrix. Then
det(A) = ai1Ai1+ ai2Ai2 + L + ain Ain
(expansion of det(A) with respect to row i )
det(A) = a1j A1j+ a2j A2j + L + anj Anj
(expansion of det(A) with respect to column j )
 det(A) can be calculated by expansion along the
row (or column) of our choice.
3.6 Determinants : Cofactor Expansion
Expand the determinant of a 3 x 3 matrix with
respect to first row 11 12 13
21 22 23
31 32 33
a a a
a a a
a a a
 
 
 
 
 
A
   
   
   
1 1 22 23
11 22 33 23 32
32 33
1 2 21 23
12 21 33 23 31
31 33
1 3 21 22
13 21 32 22 31
31 32
1
1
1
a a
A a a a a
a a
a a
A a a a a
a a
a a
A a a a a
a a



   
   
   
So det(A) = a11A11 + a12A12 + a13A13
3.6 Determinants : Cofactor Expansion
Expand the determinant of a 3 x 3 matrix with
respect to first column of A
   
   
   
1 1 22 23
11 22 33 23 32
32 33
2 1 12 13
21 13 32 12 33
32 33
3 1 12 13
31 12 23 13 22
22 23
1
1
1
a a
A a a a a
a a
a a
A a a a a
a a
a a
A a a a a
a a



   
   
   
So det(A) = a11A11 + a21A21 + a31A31
11 12 13
21 22 23
31 32 33
a a a
a a a
a a a
 
 
 
 
 
A
3.6 Determinants : Cofactor Expansion
 Evaluate
Pick row or column with large number of
zeros, such as column 2
 
1 2 3 4
4 2 1 3
det
3 0 0 3
2 0 2 3





A
3.6 Determinants : Cofactor Expansion - Example
Example (continued)
 
   
            
            
         
       
12 22 32 42
1 2 2 2
1 2 3 2
1 2 3 2
det 2 2 0 0
4 1 3 1 3 4
2 1 3 0 3 2 1 3 0 3
2 2 3 2 2 3
2 1 1 3 3 2 3 2 1 4 3 3 3
2 3 1 3 3 2 3 2 1 1 3 3 4
2 9 6 2 12 9 2 3 9 6 2 3 12
2 15 6 2 45 30 2 9 2 15 48
A A A A
 
 
 
   
 
     
 
            
           
          
          
A
3.6 Determinants : Cofactor Expansion - Example
3 0 0 0
0 4 0 0
0 0 8 0
0 0 0 5
 
 
 
 
  
3.6 Determinants: Triangular & Diagonal Matrices
9 0 0
0 0 0
0 0 2
 
 
 
  
0 0 0
0 0 0
0 0 0
 
 
 
  
1 0 0
0 1 0
0 0 1
 
 
 
  
8 0
0 3
 
 
 
2 0
0 0
 
 
 
0 0
0 1
 
 
 
0 0
0 0
 
 
 
3 10
0 1 5
0 0 2
e 
 
 
   4 0 0
0 9 0
3 2 1
 
 
 
  
3 0 0 0
4 0 0
7 8 0
5
e
e
e e


 
 
 
 
 
  
 Theorem - Let A be a square matrix.
Then det ( A ) = det ( AT )
 Since det ( A ) = det ( AT ), the properties of
determinants with respect to row manipulations are true
also for the corresponding column manipulations
 Theorem - If a row (column) of A consists entirely of
zeros, then det ( A ) = 0.
 Proof - Let the i th row of A be all zeros. Each term of
det ( A ) contains a factor from the i th row of A. So,
det ( A ) = 0.
3.6 Determinants : Properties
 Theorem – Interchange two rows (columns) of A
If matrix B is obtained from matrix A by interchanging
two rows (columns) of A,
then det (B) = - det (A)
 Theorem - If two rows (columns) of A are equal, then
det (A) = 0.
 Proof - Suppose rows r and s of A are equal.
Interchange rows r and s to obtain matrix B. Then
det (B) = - det (A). However, B = A so
det (B) = det (A). Thus det (A) = 0.
3.6 Determinants : Properties
 Theorem – Multiply row (column) i of A by c ≠ 0.
If B is obtained from A by multiplying a row (column) of
A by a real number c, then
det ( B ) = c det ( A ).
 Proof - Suppose the ith row of A is multiplied by c to
get B. Each term of det ( B ) contains a single factor
from the ith row of B. Thus, each term of det ( B )
consists of a single factor of c times the corresponding
term of det ( A ). So, det ( B ) = c det ( A ).
3.6 Determinants : Properties
 Theorem – Add c times row (column) r of A to row
(column) s of A, r ≠ s
If B = [ bij ] is obtained from A = [ aij ] by adding to each
element of rth row (column) of A, c times the
corresponding element of the sth row (column), r ≠ s, of
A, then
det(B) = det(A)
3.6 Determinants : Properties
 Theorem - Let A = [ aij ] be an upper (lower) triangular
matrix, then
det(A) = a11a22 … ann.
The determinant of a triangular matrix is the product of the
elements on the main diagonal.
3.6 Determinants : Properties
 Theorem - If A is an nxn matrix, then Ax = 0
has a nontrivial solution if and only if det(A) = 0.
 Proof - Ax = 0 has a nontrivial solution if and only if A
is singular. If A is singular, then det(A) = 0.
 Theorem - If A is an nxn matrix, then Ax = b
has a unique solution if and only if det(A) 0.
3.6 Determinants : Properties
≠
 Theorem - If A and B are n x n matrices, then
det(AB) = det(A) det(B)
 Proof - If A or B is singular, then AB is singular and the result
follows immediately. So, suppose that A and B are both
nonsingular. Then A and B can be expressed as the product of
elementary matrices.
A = E1E2 L Ep and B = F1F2 L Fq
det( A ) = det( E1 ) det( E2 ) L det( Ep )
det( B ) = det( F1 ) det( F2 ) L det( Fq )
det( AB ) = det( E1E2 L Ep F1F2 L Fq ) =
det( E1 ) det( E2 ) L det( Ep ) det( F1 ) det( F2 ) L det( Fq ) =
det( A ) det( B )
3.6 Determinants : Properties
 Theorem - If A is nonsingular, then
det(A–1) = 1/det(A)
 Proof - Let In be the nxn identity. Then AA–1 = In
and det(In) = 1.
By the preceding theorem, det(A) det(A–1) = 1,
so det(A–1) = 1/det(A)
3.6 Determinants : Properties
AB BA but det(AB) = det(BA)
1 2 1 2 1 1
0 2 1 1 1 0
2 1 1 2 1 1
   
   
   
   
   
 
   A B
2 2 0 0 3 0
0 1 1 1 4 2
7 0 1 4 5 4
   
   
   
   
   

    
 
AB BA
det(AB) = det(BA) = det(A) det(B) = -12
3.6 Determinants: Matrix Multiplication
Problems 3.6
p. 216
Problems : 1 to 20

Weitere ähnliche Inhalte

Was ist angesagt?

Direct Methods to Solve Linear Equations Systems
Direct Methods to Solve Linear Equations SystemsDirect Methods to Solve Linear Equations Systems
Direct Methods to Solve Linear Equations Systems
Lizeth Paola Barrero
 
systems of linear equations & matrices
systems of linear equations & matricessystems of linear equations & matrices
systems of linear equations & matrices
Student
 
Chapter 4: Linear Algebraic Equations
Chapter 4: Linear Algebraic EquationsChapter 4: Linear Algebraic Equations
Chapter 4: Linear Algebraic Equations
Maria Fernanda
 
Row space | Column Space | Null space | Rank | Nullity
Row space | Column Space | Null space | Rank | NullityRow space | Column Space | Null space | Rank | Nullity
Row space | Column Space | Null space | Rank | Nullity
Vishvesh Jasani
 
Linear Functions And Matrices
Linear Functions And MatricesLinear Functions And Matrices
Linear Functions And Matrices
andrewhickson
 

Was ist angesagt? (20)

Direct Methods to Solve Linear Equations Systems
Direct Methods to Solve Linear Equations SystemsDirect Methods to Solve Linear Equations Systems
Direct Methods to Solve Linear Equations Systems
 
Matrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIAMatrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIA
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinants
 
APM.pdf
APM.pdfAPM.pdf
APM.pdf
 
Rank of a matrix
Rank of a matrixRank of a matrix
Rank of a matrix
 
Matrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptMatrices and System of Linear Equations ppt
Matrices and System of Linear Equations ppt
 
system linear equations and matrices
 system linear equations and matrices system linear equations and matrices
system linear equations and matrices
 
systems of linear equations & matrices
systems of linear equations & matricessystems of linear equations & matrices
systems of linear equations & matrices
 
chp-1-matrices-determinants1 (2).ppt
chp-1-matrices-determinants1 (2).pptchp-1-matrices-determinants1 (2).ppt
chp-1-matrices-determinants1 (2).ppt
 
determinants.ppt
determinants.pptdeterminants.ppt
determinants.ppt
 
Solution of linear system of equations
Solution of linear system of equationsSolution of linear system of equations
Solution of linear system of equations
 
Chapter 4: Linear Algebraic Equations
Chapter 4: Linear Algebraic EquationsChapter 4: Linear Algebraic Equations
Chapter 4: Linear Algebraic Equations
 
Bba i-bm-u-2- matrix -
Bba i-bm-u-2- matrix -Bba i-bm-u-2- matrix -
Bba i-bm-u-2- matrix -
 
Row space | Column Space | Null space | Rank | Nullity
Row space | Column Space | Null space | Rank | NullityRow space | Column Space | Null space | Rank | Nullity
Row space | Column Space | Null space | Rank | Nullity
 
mws_gen_sle_ppt_eigenvalues.pptx
mws_gen_sle_ppt_eigenvalues.pptxmws_gen_sle_ppt_eigenvalues.pptx
mws_gen_sle_ppt_eigenvalues.pptx
 
Linear Functions And Matrices
Linear Functions And MatricesLinear Functions And Matrices
Linear Functions And Matrices
 
ppt of VCLA
ppt of VCLAppt of VCLA
ppt of VCLA
 
System of linear equations
System of linear equationsSystem of linear equations
System of linear equations
 
Presentation on matrix
Presentation on matrixPresentation on matrix
Presentation on matrix
 
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONS
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONSNUMERICAL METHODS MULTIPLE CHOICE QUESTIONS
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONS
 

Ähnlich wie Chapter 3: Linear Systems and Matrices - Part 3/Slides

Introduction To Matrix
Introduction To MatrixIntroduction To Matrix
Introduction To Matrix
Annie Koh
 

Ähnlich wie Chapter 3: Linear Systems and Matrices - Part 3/Slides (20)

Matrices
MatricesMatrices
Matrices
 
Mat 223_Ch3-Determinants.ppt
Mat 223_Ch3-Determinants.pptMat 223_Ch3-Determinants.ppt
Mat 223_Ch3-Determinants.ppt
 
Engg maths k notes(4)
Engg maths k notes(4)Engg maths k notes(4)
Engg maths k notes(4)
 
Matrices
MatricesMatrices
Matrices
 
Matrix and Determinants
Matrix and DeterminantsMatrix and Determinants
Matrix and Determinants
 
Determinants - Mathematics
Determinants - MathematicsDeterminants - Mathematics
Determinants - Mathematics
 
6.5 determinant x
6.5 determinant x6.5 determinant x
6.5 determinant x
 
TABREZ KHAN.ppt
TABREZ KHAN.pptTABREZ KHAN.ppt
TABREZ KHAN.ppt
 
Matrices & Determinants
Matrices & DeterminantsMatrices & Determinants
Matrices & Determinants
 
Calculus and matrix algebra notes
Calculus and matrix algebra notesCalculus and matrix algebra notes
Calculus and matrix algebra notes
 
Metrix[1]
Metrix[1]Metrix[1]
Metrix[1]
 
MODULE_05-Matrix Decomposition.pptx
MODULE_05-Matrix Decomposition.pptxMODULE_05-Matrix Decomposition.pptx
MODULE_05-Matrix Decomposition.pptx
 
Business mathametics and statistics b.com ii semester (2)
Business mathametics and statistics b.com ii semester (2)Business mathametics and statistics b.com ii semester (2)
Business mathametics and statistics b.com ii semester (2)
 
chp-1-matrices-determinants1.ppt
chp-1-matrices-determinants1.pptchp-1-matrices-determinants1.ppt
chp-1-matrices-determinants1.ppt
 
Appendix B Matrices And Determinants
Appendix B  Matrices And DeterminantsAppendix B  Matrices And Determinants
Appendix B Matrices And Determinants
 
Matrix and its operations
Matrix and its operationsMatrix and its operations
Matrix and its operations
 
Mat 223_Ch5-Eigenvalues.ppt
Mat 223_Ch5-Eigenvalues.pptMat 223_Ch5-Eigenvalues.ppt
Mat 223_Ch5-Eigenvalues.ppt
 
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANK
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANKMatrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANK
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANK
 
Introduction To Matrix
Introduction To MatrixIntroduction To Matrix
Introduction To Matrix
 
Introduction of determinant
Introduction of determinantIntroduction of determinant
Introduction of determinant
 

Mehr von Chaimae Baroudi

Mehr von Chaimae Baroudi (9)

Chapter 4: Vector Spaces - Part 5/Slides By Pearson
Chapter 4: Vector Spaces - Part 5/Slides By PearsonChapter 4: Vector Spaces - Part 5/Slides By Pearson
Chapter 4: Vector Spaces - Part 5/Slides By Pearson
 
Chapter 4: Vector Spaces - Part 3/Slides By Pearson
Chapter 4: Vector Spaces - Part 3/Slides By PearsonChapter 4: Vector Spaces - Part 3/Slides By Pearson
Chapter 4: Vector Spaces - Part 3/Slides By Pearson
 
Chapter 4: Vector Spaces - Part 2/Slides By Pearson
Chapter 4: Vector Spaces - Part 2/Slides By PearsonChapter 4: Vector Spaces - Part 2/Slides By Pearson
Chapter 4: Vector Spaces - Part 2/Slides By Pearson
 
Chapter 4: Vector Spaces - Part 1/Slides By Pearson
Chapter 4: Vector Spaces - Part 1/Slides By PearsonChapter 4: Vector Spaces - Part 1/Slides By Pearson
Chapter 4: Vector Spaces - Part 1/Slides By Pearson
 
Chapter 2: Mathematical Models & Numerical Models/Slides
Chapter 2: Mathematical Models & Numerical Models/SlidesChapter 2: Mathematical Models & Numerical Models/Slides
Chapter 2: Mathematical Models & Numerical Models/Slides
 
Chapter 1: First-Order Ordinary Differential Equations/Slides
Chapter 1: First-Order Ordinary Differential Equations/Slides Chapter 1: First-Order Ordinary Differential Equations/Slides
Chapter 1: First-Order Ordinary Differential Equations/Slides
 
Linear Algebra and Differential Equations by Pearson - Chapter 4
Linear Algebra and Differential Equations by Pearson - Chapter 4Linear Algebra and Differential Equations by Pearson - Chapter 4
Linear Algebra and Differential Equations by Pearson - Chapter 4
 
Linear Algebra and Differential Equations by Pearson - Chapter 3
Linear Algebra and Differential Equations by Pearson - Chapter 3Linear Algebra and Differential Equations by Pearson - Chapter 3
Linear Algebra and Differential Equations by Pearson - Chapter 3
 
Linear Algebra and Differential Equations by Pearson - Chapter 1
Linear Algebra and Differential Equations by Pearson - Chapter 1Linear Algebra and Differential Equations by Pearson - Chapter 1
Linear Algebra and Differential Equations by Pearson - Chapter 1
 

Kürzlich hochgeladen

Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 

Kürzlich hochgeladen (20)

SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 

Chapter 3: Linear Systems and Matrices - Part 3/Slides

  • 2. Determinants p.202 to p.211 p.216 Problems 1 to 20 3.6
  • 3.  det ( A ) is a real number (can be negative also)  det ( A ) is also written as  Only a square n x n matrix has a determinant  det ( AB ) = det ( A ) det ( B )  A matrix A is not invertible (singular matrix) if and only if det ( A ) = 0  A matrix A is invertible (nonsingular matrix) if and only if det ( A ) ≠ 0 3.6 Determinants : Definition A
  • 4.  1x1 matrix : A = [ a11 ], then det (A) = a11  2x2 matrix : det (A) = a11 a22 - a12 a21 11 12 21 22 a a a a        A 3.6 Determinants : Examples
  • 5.  3x3 matrix det (A) = a11 a22 a33 + a12 a23 a31 + a13 a21 a32 -a11 a23 a32 - a12 a21 a33 -a13 a22 a31 11 12 13 21 22 23 31 32 33 a a a a a a a a a           A Note: This cannot be extended to higher order matrices. 3.6 Determinants : Examples
  • 6.  3x3 matrix minus det (A) = 11 12 13 21 22 23 31 32 33 a a a a a a a a a           A 3.6 Determinants : Examples 11 12 13 22 23 21 23 21 22 32 33 31 33 31 32 det det deta a a a a a a a a a a a a a a                         11 12 13 21 22 23 31 32 33 a a a a a a a a a           11 12 13 21 22 23 31 32 33 a a a a a a a a a           11 12 13 21 22 23 31 32 33 a a a a a a a a a          
  • 7. 3.6 Determinants : Examples 1 2 3 4 5 6 7 8 9           A det (A) = 0 1 2 3 0 0 0 7 2 5           B det (B) = 0 det (I) = 1  3 3det 1 1 0 0 0 1 0 0 0 1                  I I  3 3det 0 0 0 0 0 0 0 0 0 0           0 0
  • 8. Defn - Let A = [ aij ] be an n x n matrix. Let Mpq be the (n – 1) x (n – 1) submatrix of A obtained by deleting the pth row and qth column of A. The determinant det(Mpq) is called the minor of apq Defn - Let A = [ aij ] be an n x n matrix. The cofactor Apq of apq is defined as Apq = (–1)p+q det(Mpq) 3.6 Determinants : Cofactor Expansion
  • 9. 1 2 3 4 5 6 7 8 9           A             2 11 11 11 3 12 12 12 4 31 31 31 5 6 1 det 3 8 9 4 6 1 det 6 7 9 2 3 1 det 3 5 6 A A A                                 M M M M M M 3.6 Determinants : Cofactor Expansion - Example
  • 10. Comment  Examine pattern of signs of term (–1) p+q                                               n = 3 n = 4 3.6 Determinants : Cofactor Expansion - Example
  • 11. Theorem - Let A = [ aij ] be an n x n matrix. Then det(A) = ai1Ai1+ ai2Ai2 + L + ain Ain (expansion of det(A) with respect to row i ) det(A) = a1j A1j+ a2j A2j + L + anj Anj (expansion of det(A) with respect to column j )  det(A) can be calculated by expansion along the row (or column) of our choice. 3.6 Determinants : Cofactor Expansion
  • 12. Expand the determinant of a 3 x 3 matrix with respect to first row 11 12 13 21 22 23 31 32 33 a a a a a a a a a           A             1 1 22 23 11 22 33 23 32 32 33 1 2 21 23 12 21 33 23 31 31 33 1 3 21 22 13 21 32 22 31 31 32 1 1 1 a a A a a a a a a a a A a a a a a a a a A a a a a a a                So det(A) = a11A11 + a12A12 + a13A13 3.6 Determinants : Cofactor Expansion
  • 13. Expand the determinant of a 3 x 3 matrix with respect to first column of A             1 1 22 23 11 22 33 23 32 32 33 2 1 12 13 21 13 32 12 33 32 33 3 1 12 13 31 12 23 13 22 22 23 1 1 1 a a A a a a a a a a a A a a a a a a a a A a a a a a a                So det(A) = a11A11 + a21A21 + a31A31 11 12 13 21 22 23 31 32 33 a a a a a a a a a           A 3.6 Determinants : Cofactor Expansion
  • 14.  Evaluate Pick row or column with large number of zeros, such as column 2   1 2 3 4 4 2 1 3 det 3 0 0 3 2 0 2 3      A 3.6 Determinants : Cofactor Expansion - Example
  • 15. Example (continued)                                                   12 22 32 42 1 2 2 2 1 2 3 2 1 2 3 2 det 2 2 0 0 4 1 3 1 3 4 2 1 3 0 3 2 1 3 0 3 2 2 3 2 2 3 2 1 1 3 3 2 3 2 1 4 3 3 3 2 3 1 3 3 2 3 2 1 1 3 3 4 2 9 6 2 12 9 2 3 9 6 2 3 12 2 15 6 2 45 30 2 9 2 15 48 A A A A                                                                    A 3.6 Determinants : Cofactor Expansion - Example
  • 16. 3 0 0 0 0 4 0 0 0 0 8 0 0 0 0 5            3.6 Determinants: Triangular & Diagonal Matrices 9 0 0 0 0 0 0 0 2          0 0 0 0 0 0 0 0 0          1 0 0 0 1 0 0 0 1          8 0 0 3       2 0 0 0       0 0 0 1       0 0 0 0       3 10 0 1 5 0 0 2 e         4 0 0 0 9 0 3 2 1          3 0 0 0 4 0 0 7 8 0 5 e e e e               
  • 17.  Theorem - Let A be a square matrix. Then det ( A ) = det ( AT )  Since det ( A ) = det ( AT ), the properties of determinants with respect to row manipulations are true also for the corresponding column manipulations  Theorem - If a row (column) of A consists entirely of zeros, then det ( A ) = 0.  Proof - Let the i th row of A be all zeros. Each term of det ( A ) contains a factor from the i th row of A. So, det ( A ) = 0. 3.6 Determinants : Properties
  • 18.  Theorem – Interchange two rows (columns) of A If matrix B is obtained from matrix A by interchanging two rows (columns) of A, then det (B) = - det (A)  Theorem - If two rows (columns) of A are equal, then det (A) = 0.  Proof - Suppose rows r and s of A are equal. Interchange rows r and s to obtain matrix B. Then det (B) = - det (A). However, B = A so det (B) = det (A). Thus det (A) = 0. 3.6 Determinants : Properties
  • 19.  Theorem – Multiply row (column) i of A by c ≠ 0. If B is obtained from A by multiplying a row (column) of A by a real number c, then det ( B ) = c det ( A ).  Proof - Suppose the ith row of A is multiplied by c to get B. Each term of det ( B ) contains a single factor from the ith row of B. Thus, each term of det ( B ) consists of a single factor of c times the corresponding term of det ( A ). So, det ( B ) = c det ( A ). 3.6 Determinants : Properties
  • 20.  Theorem – Add c times row (column) r of A to row (column) s of A, r ≠ s If B = [ bij ] is obtained from A = [ aij ] by adding to each element of rth row (column) of A, c times the corresponding element of the sth row (column), r ≠ s, of A, then det(B) = det(A) 3.6 Determinants : Properties
  • 21.  Theorem - Let A = [ aij ] be an upper (lower) triangular matrix, then det(A) = a11a22 … ann. The determinant of a triangular matrix is the product of the elements on the main diagonal. 3.6 Determinants : Properties
  • 22.  Theorem - If A is an nxn matrix, then Ax = 0 has a nontrivial solution if and only if det(A) = 0.  Proof - Ax = 0 has a nontrivial solution if and only if A is singular. If A is singular, then det(A) = 0.  Theorem - If A is an nxn matrix, then Ax = b has a unique solution if and only if det(A) 0. 3.6 Determinants : Properties ≠
  • 23.  Theorem - If A and B are n x n matrices, then det(AB) = det(A) det(B)  Proof - If A or B is singular, then AB is singular and the result follows immediately. So, suppose that A and B are both nonsingular. Then A and B can be expressed as the product of elementary matrices. A = E1E2 L Ep and B = F1F2 L Fq det( A ) = det( E1 ) det( E2 ) L det( Ep ) det( B ) = det( F1 ) det( F2 ) L det( Fq ) det( AB ) = det( E1E2 L Ep F1F2 L Fq ) = det( E1 ) det( E2 ) L det( Ep ) det( F1 ) det( F2 ) L det( Fq ) = det( A ) det( B ) 3.6 Determinants : Properties
  • 24.  Theorem - If A is nonsingular, then det(A–1) = 1/det(A)  Proof - Let In be the nxn identity. Then AA–1 = In and det(In) = 1. By the preceding theorem, det(A) det(A–1) = 1, so det(A–1) = 1/det(A) 3.6 Determinants : Properties
  • 25. AB BA but det(AB) = det(BA) 1 2 1 2 1 1 0 2 1 1 1 0 2 1 1 2 1 1                          A B 2 2 0 0 3 0 0 1 1 1 4 2 7 0 1 4 5 4                             AB BA det(AB) = det(BA) = det(A) det(B) = -12 3.6 Determinants: Matrix Multiplication