SlideShare ist ein Scribd-Unternehmen logo
1 von 36
Practical Aspects of Quantitation with
Triple-Quadrupole Mass
Spectrometers
Ben Moeller, PhD Candidate
University of California – Davis
K.L. Maddy Equine Analytical Chemistry Laboratory
1
Triple Quadrupole use in
Quantitation
Absolute Quantitation
of Analyte in Matrix
Testosterone 500 pg/ml

RT: 0.00 - 2.51 SM: 11G
NL: 1.20E5
m/z= 96.50-97.50 F: + c ESI sid=5.00
SRM ms2 289.234 [77.056-77.066,
79.097-79.107, 81.089-81.099,
97.043-97.053, 109.079-109.089] MS
ICIS C7_003

RT: 1.59
AA: 1222176

100
95
90
85
80

C7_003 #379-403 RT: 1.55-1.64 AV: 5 NL: 1.31E5
F: + c ESI sid=5.00 SRM ms2 289.234 [77.056-77.066, 79.097-79.107, 81.089-81.099, 97.043-97.053, 109.079-109.089]
97.05
100
109.08
95

75

90
85
80

60

70

Relative Abundance

65
60
55
50

20

45
79.10

40

18

35
30

77.06

25

16

81.09

20

55

15
10

Area Ratio

Relative Abundance

65

Testosterone
Y = 0.0222582+0.00197076*X R^2 = 0.9982 W: 1/X

75

70

5
0

50

77.06
m/z

79.10
m/z

81.09
m/z

97.05
m/z

109.08
m/z

45

14
12
10
8
6

40

4
2

35

0
0

2000

30

4000

6000
pg/ml

8000

10000

25
20
15
10
5
0
0.0

0.5

1.0

1.5
Time (min)

2.0

2.5

2
Quantitative Method
Development
1. Know what you are looking for and a rough idea

of the concentration range.
2. Obtain reference material (drug, protein, peptide,
etc)
3. Develop method.


Determine sample extraction/cleanup, and what
instrumentation to use
Ex) Immuno-depletion, SPE, tryptic digestion, LC-MS.

4. Validate method with real samples.
5. Run samples, calibrators and quality control
samples identically.


This includes sample clean up, extraction, LC-MS
analysis, peak integration, and quantitation.

3
Sample Analysis
•

An absolute quantitation method requires:
•
•

•

Unknown samples (what you trying to analyze)
•
Processed matrix + analytes
Known samples – containing known amounts of
targeted analytes in matrix
•
Calibration standards – generate calibration curve
•
Quality control samples (QCs) – evaluate method
performance
•
Standards spiked in solvent without matrix
Blanks – samples without the analytes
•
Matrix blanks – matrix without analytes
•
Solvent blanks – solvent without analytes
4
Quantitative Analysis –
Calibration Curves
 External Standard Method
 Construct calibration curve with increasing amounts of analyte.
 Match unknown samples instrument response to curve

 Method of Standard Addition
 Increasing amounts of analyte spiked into unknown sample.
 Response is measured before and after addition of analyte to give a

curve using linear regression. The x-intercept gives concentration
sample concentration

 Internal Standard (IS) Method
 A known, constant amount of internal standard is added to every

sample including calibrators
 Use the ratio of Analyte to IS to construct calibration curve and use
for determination of unknown sample concentration
 Preferred method because it corrects for sample losses in
5
processing and variations in instrument performance
Ideal MS Quantitative Method
Isotope Dilution Mass Spectrometry (IDMS) – use of a isotopically
labeled internal standard.
Sample

1. Take
aliquot

2. Add IS

Internal
standard
(IS)

3. Process
Sample

4. Analyze by
LC-MS/MS

Analyte

IS

5. Integrate and calculate
areas of IS and analyte
peaks – Quantitate using
analyte/IS area ratio

6
Internal Standard Selection
 SIS – Surrogate Internal Standard
 Stable isotope labeled version of analyte is

preferable – 13C, 2H, 15N
 Minimize isotopic overlap of SIS and analyte
 SIS co-elution with analyte preferable

 Small molecule – synthesize or purchase
 Proteomics
 Purchase heavy peptides from vendors
 Express protein in culture with heavy media

7
Analyte to SIS Area Count Ratio
 Calibrator 6
RT: 1.00 - 2.47 SM: 7G
RT: 1.63
AA: 606660

100
90

NL: 8.82E4
m/z= 96.50-97.50 F: + c ESI sid=5.00
SRM ms2 289.234 [77.056-77.066,
79.097-79.107, 81.089-81.099,
97.043-97.053, 109.079-109.089] MS
ICIS C6_001

 Analyte/SIS ratio = 1.07
 533 pg/ml based on

C6_001 #384-414 RT: 1.58-1.70 AV: 7 NL: 8.38E4
F: + c ESI sid=5.00 SRM ms2 289.234 [77.056-77.066, 79.097-79.107, 81.089-81.099, 97.043-97.053, 109.079-109.089]
97.05
100

80

95

109.08

90
85

70

calibration curve

80
75
70

60

65
60

Relative Abundance

50

 500 pg/ml nominal

55
50
45
40

40

35

79.10

30

Testosterone
Y = 0.0194483+0.00197195*X R^2 = 0.9982 W: 1/X

25

30

77.06

81.09

20
15

20
10

10

Testosterone
289.2 -> 97.1

0

5
0
77.06
m/z

79.10
m/z

81.09
m/z

97.05
m/z

109.08

20
NL: 8.45E4
18
m/z= 96.50-97.50 F: + c ESI sid=5.00
SRM ms2 292.260 [97.071-97.081]
MS ICIS C6_001 16

RT: 1.62
AA: 603473

100

m/z

C6_001 #384-404 RT: 1.58-1.65 AV: 4 NL: 6.06E4
F: + c ESI sid=5.00 SRM ms2 292.260 [97.071-97.081]

90

97.08

100
95

Area Ratio

85
80

70

75
70
65

Relative Abundance

60
50

60
55
50
45
40

40
30
20
10

14

90

2.0
1.8

10

1.6

8

35

SIS
D3-Testosterone
292.2 -> 97.1

Testosterone
Y = 0.0194483+0.00197195*X R^2 = 0.9982 W: 1/X
2.2

12

Area Ratio

80

30
25

6

20
15

1.4
1.2
1.0
0.8
0.6

10
5
0
97.072

97.074

97.076
m/z

97.078

97.080

4

0.4
0.2

2

0

200

400

600

800

1000

pg/ml

0
1.2

1.4

1.6

1.8
Time (min)

2.0

2.2

Extracted Ion Chromatogram

2.4

0
0

2000

4000

6000
pg/ml

8000

10000

8

Moeller et al (2009)
Types of MS scan in
Quantitation
 Four MS scan types used in quantitative

analysis
Full scan MS
Select ion monitoring (SIM)

Product ion MS/MS
Select reaction monitoring (SRM)

9
Quantitation using MS
 Types of MS commonly used in quantitation
Single Quad
Ion Traps (2D and 3D)
TOF, QqTOF

Orbitrap type MS
Magnetic Sectors
Triple Quadrupole – the “gold standard”

10
Why use Select Reaction
Monitoring (SRM)?
Also known as multiple reaction monitoring (MRM)
Fixed m/z

Q1



Fragment

Q2

Advantages





Targeted Analyte
Monitoring
High Duty Cycle
“Simultaneous”
Monitoring of Multiple
Transitions

Fixed m/z

Q3


Disadvantage


No “advanced”
structural information

11
Select Reaction Monitoring
 Quadrupole 1 (Q1) selects the ion of interest

(precursor ion) by its m/z ratio
 Quadrupole 2 (Q2) fragments precursor ion
by collision induced dissociation (CID)
Fixed m/z

Fragment

Q1

Q2

Fixed m/z

Q3

 Quadrupole 3 (Q3) selects specific

fragmentation ions (product ions) which are
counted in the detector

12
Why use MS/MS in
Quantitation?
 MS/MS provides additional specificity which

increases signal to baseline (S/B) and
sensitivity allowing for:
Less intense sample preparation.

Shorter chromatographic run times
Decreased Limits of Detection (LOD).

13
Determining SRM transitions
Progesterone #1-38 RT: 0.00-0.32 AV: 38 NL: 3.11E6
F: + c APCI Q1MS [170.000-400.000]
315.22

100
95

 Optimize precursor ion formation in Q1
 Source conditions, tube lens, etc
 Optimize several SRM transitions (5 if
possible) and run standards in matrix to
check for interferences

85
80
75

Precursor Ion
Optimization

70
65
60

Relative Abundance

Infusion of pure substance –
Preferably commercially obtained with
certificates of analysis (traceability).
 In Silico - predicted product ions from
software (Proteomics).
Optimization of SRM Transitions

90

55

Progesterone –APCI

50
45
40
35
30
25
20

356.25
15

211.13
225.12

10

181.11

214.11
193.11
202.13

5

313.21

297.20
245.17 255.20

271.19

311.21
279.18

326.22

338.33 353.28

370.62 3

0
180

200

220

240

260

280

300

320

340

m/z

SRM Optimization

14

360

3
Common SRM Settings
RT: 0.00 - 2.50 SM: 5G
100

NL:
TIC
289
79.0
97.0
MS

95

 Number of SRM Transitions

90
85
80
75
70

• 3 minimum per analyte, 5 recommended.
• 20% deviation in relative intensities allowed

65

Relative Abundance

60
55
50
45
40
35
30
25
20
15
10
5

0
SS_QC3_003 #384-403 RT: 1.59-1.65 AV: 4 NL: 2.59E5
0.0
F: + c ESI sid=5.00 SRM ms2 289.234 [77.056-77.066, 79.097-79.107, 81.089-81.099, 97.043-97.053, 109.079-109.089]
97.05
100

0.5

1.0

1.5
Time (min)

95

Testosterone SRM

109.08
90
85
80

Product
77.05
79.1
81.09
97.05
109.08

Relative Abundance

Precursor
289.2
289.2
289.2
289.2
289.2

Collision Relative
Energy Abundance
52
18
39
29
35
17
21
100
23
91

75
70
65
60
55
50
45
40
35
30

79.10

25
20

77.06

81.09

15
10

15

5

Moeller et al (2009)

0
77.06
m/z

79.10
m/z

81.09
m/z

97.05
m/z

109.08
m/z

2.0

2.5
Selectivity of SRM
Extracted Ion Chromatograms (EIC)
RT: 0.00 - 2.50 SM: 5G
100

NL: 4.81E4
m/z= 76.54-77.54 F: + c ESI sid=5.00 SRM ms2
287.213 [77.043-77.053, 91.061-91.071,
93.077-93.087, 121.060-121.070,
269.175-269.185] MS ICIS C7_003

80
60
40
20
0
100

NL: 5.03E4
m/z= 90.57-91.57 F: + c ESI sid=5.00 SRM ms2
287.213 [77.043-77.053, 91.061-91.071,
93.077-93.087, 121.060-121.070,
269.175-269.185] MS ICIS C7_003

80
60
40
20
0
100

NL: 2.09E4
m/z= 92.58-93.58 F: + c ESI sid=5.00 SRM ms2
287.213 [77.043-77.053, 91.061-91.071,
93.077-93.087, 121.060-121.070,
269.175-269.185] MS ICIS C7_003

80
60
40
20
0
100

EIC used for
quantitation

80
60
40
20

NL: 1.07E5
m/z= 120.50-121.50 F: + c ESI sid=5.00 SRM
ms2 287.213 [77.043-77.053, 91.061-91.071,
93.077-93.087, 121.060-121.070,
269.175-269.185] MS ICIS C7_003

C7_003 #269-291 RT: 1.13-1.19 AV: 4 NL: 1.10E5
F: + c ESI sid=5.00 SRM ms2 287.213 [77.043-77.053, 91.061-91.071, 93.077-93.087, 121.060-121.070, 269.175-269.185]
269.18

100
95
121.07

90
85
80
75

NL: 3.52E5
m/z= 268.50-269.50 F: + c ESI sid=5.00 SRM
ms2 287.213 [77.043-77.053, 91.061-91.071,
93.077-93.087, 121.060-121.070,
269.175-269.185] MS ICIS C7_003

80
60
40

70
65

Relative Abundance

0
100

60
55
50
45
77.05

91.07

40

20
0
0.0

•Choosing the right SRM
transition is key for quantitative
analysis
• Look at EIC to determine
optimal quantitation ion
• Use samples spiked in matrix
to evaluate interferences.

35
30

0.5

1.0

1.5
Time (min)

2.0

2.5

25
20

93.08

15
10

16

5
0
77.05
m/z

91.07
m/z

93.08

121.07
m/z

m/z

269.18
m/z
Common SRM Settings
 Scan Time/Dwell Time
• 0.01 – 0.2 seconds
• Need > 9 scans per peak
RT: 1.40 - 1.90 SM: 5G
100

RT: 1.40 - 1.90 SM: 5G
NL: 2.82E5
100
m/z= 96.50-97.50 F: + c ESI sid=5.00
SRM ms2 289.234 [77.056-77.066,
95
79.097-79.107, 81.089-81.099,

95

97.043-97.053, 109.079-109.089]
MS SS_QC3_003

90

•15 scans per peak
•50 msec dwell time
• 21 SRM transitions
monitored for 6 analytes

90
85

80

80

75

75

70

70

65

65

60

60

Relative Abundance

85

Relative Abundance

NL: 7.02E5
TIC F: + c ESI sid=5.00 SRM ms2
289.234 [77.056-77.066,
79.097-79.107, 81.089-81.099,
97.043-97.053, 109.079-109.089]
MS SS_QC3_003

55
50
45
40

55
50
45
40

35

35

30

30

25

25

20

20

15

15

10

10

5

5

0
1.4

1.5

1.6

1.7
Time (min)

1.8

0
1.4

17
1.5

1.6

1.7
Time (min)

1.8
SRM Method Setup
•Segments for
Multiple Analytes
•Scan Width
• 1 dalton

•Peak Width
• 0.7 daltons
• Enhanced
Resolution QqQ
0.1 – 0.2 daltons
35 analytes using
Thermo TSQ
Vantage using
Xcalibur software

18
Method Development and
Validation
 Limit of Detection

(LOD)
 Limit of Quantitation
(LOQ)
 Linearity of Calibration
 Calibration Range
 Precision
 Accuracy
 Selectivity
 Robustness and
Reproducibility

19
Limit of Detection
Signal

RT: 0.00 - 2.51 SM: 7G
100

RT: 2.28
MA: 17172

NL: 2.39E3
m/z= 80.50-81.50 F: + c
ESI SRM ms2 329.281
[81.066-81.076,
95.057-95.067,
121.042-121.052] MS
C25

95
90
85
80
75
70
65

Relative Abundance

60
55
50
1.84

45

1.95

Background

40
35
30

1.10
1.28

25

1.63

20
15

0.28
0.19

10

0.09

1.39

0.43 0.48
0.65

5
0
0.0

0.2

0.4

0.6

0.84

0.8

1.0

1.2
Time (min)

1.4

1.6

1.8

LOD of Stanozolol 25 pg/ml with S/B = 3:1

2.0

2.2

2.4

 Smallest response that is
able to differentiate

between background noise
and your analyte
 Usually defined as a signal
to background (S/B) = 3
 Determined by 1:1
dilutions from a
concentration with a S/B=
50:1
Boyd R, Basic C, Bethem R (2008) Trace 20
Quantitative Analysis by Mass Spectrometry.
Limits of Quantitation
 Lower and upper

concentrations that can be
accurately quantitated.
 Lower limit of
quantitation (LLOQ)
usually defined as a
signal to background
(S/B) = 10
 The upper limit of
quantitation (ULOQ) is
usually the highest
calibrator giving a linear
response

RT: 0.00 - 2.51 SM: 5G
RT: 2.27
MA: 51558

100

95

NL: 9.49E3
m/z= 80.50-81.50 F: + c
ESI SRM ms2 329.281
[81.066-81.076,
95.057-95.067,
121.042-121.052] MS
C1_001

S = 9,500 counts

90
85
80
75

LOQ of
Stanozolol150 pg/ml

70
65

Relative Abundance

60
55
50

1.47

45
40
35
30
25

0.58

20

1.95

15

B=665 counts

0.37

10

5

0.21

0
0.0

0.2

0.30

1.10
0.47

0.4

0.69 0.76

0.6

0.8

0.87

1.65

1.21

1.02

1.0

1.78

1.36

1.2
Time (min)

1.4

1.6

1.8

2.0

2.2

Boyd R, Basic C, Bethem R (2008) Trace
Quantitative Analysis by Mass Spectrometry.

2.4

21
Generation of Calibration
Curve
 Optimize for an expected concentration range (if

known)
 Develop method around that range
Rosiglitazone
Y = 0.0313243+0.00277886*X R^2 = 0.9949 W: Equal
3.0

Y = mx + b

2.5

Detector saturation

2.0
1.5
1.0

ULOQ

0.5
0.0
0

200

400

600
ng/mL

800

1000

22
Generation of Calibration Curve
and Quality Control Samples
Calibrators C1

Sample

C2

1 ng/ml
LOQ

C3

C4

C5

C6

C7

5 ng/ml

10 ng/ml

25 ng/ml

50 ng/ml

75 ng/ml

100 ng/ml
ULOQ

Quality Control Samples
QC2
QC1
QC3
3 ng/ml

15 ng/ml

60 ng/ml

n=6

n=6

Internal
Standard

n=6

23
Generation of Calibration
Curve
 6 to 9 calibrators prepared in
matrix blanks
 Must include LLOQ and
ULOQ
 Linear regression commonly

used – R2 ≥ 0.98
 Be aware of deviations from
linearity at higher conc.
 Avoid forcing through zero
 Internal Calibration
 Ratio of analyte area to SIS area

24
Quality Control (QC)
Samples
 QC samples:
 Blank matrix containing a known amount of analyte
 Run dispersed thorough out the assay
 At least 3 different levels (n=6)
 One near LLOQ
 One in the middle of linear range

 One at the high end of the linear range
 Determine accuracy and precision of method during validation and

monitor performance during sample runs
 Use QC’s for determination of both inter-assay (between runs) and intraassay (same run) precision and accuracy

25
Quality Control Samples –
Accuracy and Precision
 Accuracy: Trueness
 % expected = (Conc of Peak)/(Expected Conc)*100
 mean within 15% of nominal

 Precision: Reproducibility
 % Coefficient of Variation = (Standard Dev)/(Mean)*100

 % CV ≤ 15%
 Also expressed as relative standard deviation (RSD)

26
Accuracy and Precision
RT: 0.00 - 2.52 SM: 5G

Testosterone
Y = 0.010179+0.00178017*X R^2 = 0.9991 W: 1/X

RT: 1.62
MA: 37906

100

90
85
80
75

18

70

 210 injections over 19 hours

65
60

Relative Abundance

16

NL: 7.71E3
m/z= 96.50-97.50 F: + c ESI sid=5.00
SRM ms2 289.234 [77.056-77.066,
79.097-79.107, 81.089-81.099,
97.043-97.053, 109.079-109.089]
MS C1_002

LOQ –
25 pg/ml

95

2.03

55
50
45
40
35

14

30

1.89

25
0.98

1.10

20
1.19

0.92
15

12

1.29

0.77

0.55

2.22
1.45

10
0.22

5

0.41 0.47

2.35

2.47

0.63

0.10
0
0.0

10

0.2

0.4

0.6

0.8

1.0

1.2
Time (min)

1.4

1.6

1.8

2.0

2.2

2.4

RT: 0.00 - 2.50 SM: 5G
RT: 1.62
AA: 1018291

100

NL: 1.64E5
m/z= 96.50-97.50 F: + c ESI sid=5.00
SRM ms2 289.234 [77.056-77.066,
79.097-79.107, 81.089-81.099,
97.043-97.053, 109.079-109.089] MS
ICIS Inter_QC2_001

95
90

8

85
80
75
70

6

65

Relative Abundance

60

4

55

QC2 –
750 pg/ml

50
45
40
35

2

30
25
20
15

0

10

0

2000

Testosterone
(n=6 per level)

4000

6000
pg/ml

8000

10000

RT: 2.04
AA: 26482

5
0
0.0

0.2

0.4

0.6

0.8

1.0

1.2
Time (min)

1.4

1.6

1.8

2.0

2.2

2.4

Average

Standard
Deviation

%CV

% of expected

QC1 – 75 pg/ml

74.1

2.21

2.98

98.7

QC2 - 750 pg/ml

742.7

29.32

3.94

99.0

QC3 - 3000 pg/ml

2798.6

57.31

2.05

93.3
27
Moeller et al (2009)
Quantitation Software
 Peak Integration
 Determine settings in validation

and use throughout study
 Integration must be consistent for
Calibrators, QC’s, and samples
 Avoid manual integration

 Set up Calibrator and QC levels

Thermo Quan Browser

 Fail runs that fall outside expected

concentration and % CV
 Fail runs with calibration curves R2
<0.98
28
Review
 Quantitation Methodology – IDMS preferred

 MS used – Triple Quad is the “Gold

Standard”
 SRM collecting multiple transitions
 Internal standard selection is important
 Defined LOD, LLOQ, ULOQ
 Generation of calibration curve
 Accuracy and precision using QCs
 Integration software

29
Validated Quantitative
Multiple Analyte Method
Analyte
 Stanozolol
 Testosterone
 Boldenone
 Nandrolone
 Trenbolone

LOD (pg/mL)
25
20
50
150
150

LOQ (pg/mL)
150
150
250
250
250

RT: 0.00 - 2.51 SM: 7G

RT: 0.00 - 2.51 SM: 5G
NL: 2.39E3
m/z= 80.50-81.50 F: + c
ESI SRM ms2 329.281
[81.066-81.076,
95.057-95.067,
121.042-121.052] MS
NC_a_01

100
95
90

NC Serum

80

95

Stanozolol
25 pg/ml

90
85
80

75

75

70

70

65

65

2.04
60

Relative Abundance

55
2.27
50
2.12
1.87
1.82

40

2.38

1.11

NL: 9.49E3
m/z= 80.50-81.50 F: + c
ESI SRM ms2 329.281
[81.066-81.076,
95.057-95.067,
121.042-121.052] MS
C1_001

95

Stanozolol
150 pg/ml

90

80
75
70
65
60

55
50
1.84

45

1.95

55
50
1.47

45

40

35

RT: 2.27
MA: 51558

100

85

60

2.21

45

NL: 2.39E3
m/z= 80.50-81.50 F: + c
ESI SRM ms2 329.281
[81.066-81.076,
95.057-95.067,
121.042-121.052] MS
C25

Relative Abundance

85

RT: 0.00 - 2.51 SM: 5G

RT: 2.28
MA: 17172

100

40

35

35

1.56
1.52

30
0.61

25
20
0.19

1.10
1.28

25

0.56

0.34

0.67

0.11

15

0.85

10

0.09

0.4

0.6

0.8

1.0

1.2
Time (min)

1.4

1.6

1.8

2.0

2.2

2.4

0
0.0

0.2

0.4

0.37

10

5

0.2

1.95

1.39

0.43 0.48
0.65

5

0.58

20
15

0.28
0.19

10

0
0.0

25

1.63

20

0.22

15

30

30
1.69

1.36

0.91

0.6

0.84

0.8

5

1.0

1.2
Time (min)

1.4

LOD

1.6

1.8

2.0

2.2

2.4

0.21

0
0.0

0.2

1.78

0.30

1.10
0.47

0.4

0.69 0.76

0.6

0.8

0.87

1.02

1.0

1.65

1.21
1.36

1.2
Time (min)

1.4

1.6

LOQ

1.8

2.0

2.2

2.4

30
Calibration Curves
Testosterone
Y = -0.0183096+0.00114189*X R^2 = 0.9987 W: Equal

 Calibrator

12

 C1 - 150 pg/ml

Area Ratio

Concentrations

10
8
6
4

 C2 - 250 pg/ml

2

 C3 - 500 pg/ml

0
0

 C4 - 750 pg/ml

2000

4000

6000
pg/ml

8000

10000

Stanozolol
Y = 0.113603+0.00136788*X R^2 = 0.9976 W: Equal

 C5 – 1,000 pg/ml
 C6 – 2,500 pg/ml

14

 C7 – 5,000 pg/ml

10

Area Ratio

 C8 – 10,000 pg/ml

12

8
6
4
2
0
0

SIS used: D3-Testosterone

2000

4000

6000
pg/ml

8000

10000

31
Assay Precision
Inter assay (n=36)

Testosterone Stanozolol Nandrolone

Trenbolone

Boldenone

QC level 1

Average (pg/mL)

609.7

601.0

662.1

594.5

588.0

(600 pg/mL)

%CV

6.8

6.3

13.4

14.2

9.5

QC level 2

Average (pg/mL)

1176.2

1196.8

1170.2

1160.0

1179.3

(1200 pg/mL)

%CV

6.8

5.1

12.8

8.0

6.0

QC level 3

Average (pg/mL)

4184.7

4234.6

4417.7

3958.7

4185.1

(4000 pg/mL)

%CV

8.3

8.5

10.5

10.9

7.8

Trenbolone

Boldenone

Intra assay (n=12)

Testosterone Stanozolol Nandrolone

QC level 1

Average (pg/mL)

621.1

611.5

662.1

529.2

583.4

(600 pg/mL)

%CV

4.6

6.8

11.8

12.5

7.1

QC level 2

Average (pg/mL)

1251.0

1225.5

1086.6

1106.5

1219.9

(1200 pg/mL)

%CV

3.2

4.6

10.7

6.5

3.2

QC level 3

Average (pg/mL)

4472.1

4369.8

4250.1

3576.3

4332.8

(4000 pg/mL)

%CV

9.7

12.9

7.6

8.6

8.9
32
Assay Accuracy
Inter assay (n=36)

Testosterone Stanozolol Nandrolone

Trenbolone

Boldenone

QC level 1

Average (pg/mL)

609.7

601.0

622.7

594.5

588.0

(600 pg/mL)

%of nominal

101.6 %

100.2 %

103.8 %

99.1 %

98.0 %

QC level 2

Average (pg/mL)

1176.2

1196.8

1170.2

1160.0

1179.3

(1200 pg/mL)

%of nominal

98.0 %

99.7 %

97.5 %

96.7 %

98.3 %

QC level 3

Average (pg/mL)

4184.7

4234.6

4417.7

3958.7

4185.1

(4000 pg/mL)

%of nominal

104.6 %

105.9 %

110.4 %

99.0 %

104.6 %

Intra assay (n=12)

Testosterone Stanozolol Nandrolone Trenbolone

Boldenone

QC level 1

Average (pg/mL)

621.1

611.5

662.1

529.2

583.4

(600 pg/mL)

%of nominal

103.5 %

101.9 %

110.3%

88.2 %

97.2 %

QC level 2

Average (pg/mL)

1251.0

1225.5

1086.6

1106.5

1219.9

(1200 pg/mL)

%of nominal

104.3 %

102.1 %

90.5%

92.2 %

101.7 %

QC level 3

Average (pg/mL)

4472.1

4369.8

4250.1

3576.3

4332.8

(4000 pg/mL)

%of nominal

111.8 %

109.2 %

106.2%

89.4 %

108.3 %
33
Summary
 Validation is key
 Reproducibility
 Defined quantitation limits (LLOQ/ULOQ)
 Selectivity – Qualitative ID (3 or more SRM)

 Accuracy and Precision
 Need Quality Control samples
 Inter- and Intra-Day
Robustness
34
Acknowledgements
University of California, Davis
 Scott Stanley, PhD
 Heather Knych, DVM PhD
 EACL Staff

35
Questions?
References
1)

2)

3)
4)

5)

Lee JM et al. (2006) Fit-for-Purpose Method Development and
Validation for Successful Biomarker Measurement. Pharmaceutical
Research. 23(2) 312-328.
US Food and Drug Administration (2001) Guidance for Industry:
Bioanalytical Method Validation.
http://www.fda.gov/cder/guidance/index.htm
Boyd R, Basic C, Bethem R (2008) Trace Quantitative Analysis by Mass
Spectrometry. West Sussex: John Wiley & Sons.
Krull I, Kissinger PT, Swartz M (2008) Analytical Method Validation in
Proteomics and Peptidomics Studies. LCGC 26 (11)
Moeller BC, Stanley SD (2009) Quantitative Analysis of Testosterone,
Nandrolone, Boldenone and Stanozolol using Liquid Chromatography –
Tandem Mass Spectrometry by Highly Selective Reaction Monitoring.
36
Manuscript in preparation.

Weitere ähnliche Inhalte

Andere mochten auch

Proteomics analysis: Basics and Applications
Proteomics analysis: Basics and ApplicationsProteomics analysis: Basics and Applications
Proteomics analysis: Basics and ApplicationsCOST action BM1006
 
Harnessing The Proteome With Proteo Iq Quantitative Proteomics Software
Harnessing The Proteome With Proteo Iq Quantitative Proteomics SoftwareHarnessing The Proteome With Proteo Iq Quantitative Proteomics Software
Harnessing The Proteome With Proteo Iq Quantitative Proteomics Softwarejatwood3
 
Quantitative proteomics
Quantitative proteomicsQuantitative proteomics
Quantitative proteomicsutpaltatu
 
Data Integration, Mass Spectrometry Proteomics Software Development
Data Integration, Mass Spectrometry Proteomics Software DevelopmentData Integration, Mass Spectrometry Proteomics Software Development
Data Integration, Mass Spectrometry Proteomics Software DevelopmentNeil Swainston
 
Receptor-like proteins (RLPs) and kinases are major classes of resistance gen...
Receptor-like proteins (RLPs) and kinases are major classes of resistance gen...Receptor-like proteins (RLPs) and kinases are major classes of resistance gen...
Receptor-like proteins (RLPs) and kinases are major classes of resistance gen...ehsan sepahi
 
OpenMS: Quantitative proteomics at large scale
OpenMS: Quantitative proteomics at large scaleOpenMS: Quantitative proteomics at large scale
OpenMS: Quantitative proteomics at large scaleYasset Perez-Riverol
 
Techniques used for separation in proteomics
Techniques used for separation in proteomicsTechniques used for separation in proteomics
Techniques used for separation in proteomicsNilesh Chandra
 
Apat 2013 gc workshop 2
Apat 2013 gc workshop 2Apat 2013 gc workshop 2
Apat 2013 gc workshop 2Analysys
 
Proteomics course 1
Proteomics course 1Proteomics course 1
Proteomics course 1utpaltatu
 
Proteins – Basics you need to know for Proteomics
Proteins – Basics you need to know for ProteomicsProteins – Basics you need to know for Proteomics
Proteins – Basics you need to know for ProteomicsLionel Wolberger
 
proteomics, mass spectrometry, science, bioinformatics, electrophoresis, liqu...
proteomics, mass spectrometry, science, bioinformatics, electrophoresis, liqu...proteomics, mass spectrometry, science, bioinformatics, electrophoresis, liqu...
proteomics, mass spectrometry, science, bioinformatics, electrophoresis, liqu...Amit Yadav
 
Techniques in proteomics
Techniques in proteomicsTechniques in proteomics
Techniques in proteomicsN Poorin
 

Andere mochten auch (20)

Analysis of Mycotoxins by UPLC and Tandem Quadrupole Mass Spectrometry - Wate...
Analysis of Mycotoxins by UPLC and Tandem Quadrupole Mass Spectrometry - Wate...Analysis of Mycotoxins by UPLC and Tandem Quadrupole Mass Spectrometry - Wate...
Analysis of Mycotoxins by UPLC and Tandem Quadrupole Mass Spectrometry - Wate...
 
Interpreting MS\\MS Results
Interpreting  MS\\MS ResultsInterpreting  MS\\MS Results
Interpreting MS\\MS Results
 
Proteomics analysis: Basics and Applications
Proteomics analysis: Basics and ApplicationsProteomics analysis: Basics and Applications
Proteomics analysis: Basics and Applications
 
Chromatography: Trends and Developments in MAb Screening and Characterization
Chromatography: Trends and Developments in MAb Screening and CharacterizationChromatography: Trends and Developments in MAb Screening and Characterization
Chromatography: Trends and Developments in MAb Screening and Characterization
 
Bosc2011 isobar-fbp
Bosc2011 isobar-fbpBosc2011 isobar-fbp
Bosc2011 isobar-fbp
 
Harnessing The Proteome With Proteo Iq Quantitative Proteomics Software
Harnessing The Proteome With Proteo Iq Quantitative Proteomics SoftwareHarnessing The Proteome With Proteo Iq Quantitative Proteomics Software
Harnessing The Proteome With Proteo Iq Quantitative Proteomics Software
 
Quantitative proteomics
Quantitative proteomicsQuantitative proteomics
Quantitative proteomics
 
Data Integration, Mass Spectrometry Proteomics Software Development
Data Integration, Mass Spectrometry Proteomics Software DevelopmentData Integration, Mass Spectrometry Proteomics Software Development
Data Integration, Mass Spectrometry Proteomics Software Development
 
Receptor-like proteins (RLPs) and kinases are major classes of resistance gen...
Receptor-like proteins (RLPs) and kinases are major classes of resistance gen...Receptor-like proteins (RLPs) and kinases are major classes of resistance gen...
Receptor-like proteins (RLPs) and kinases are major classes of resistance gen...
 
OpenMS: Quantitative proteomics at large scale
OpenMS: Quantitative proteomics at large scaleOpenMS: Quantitative proteomics at large scale
OpenMS: Quantitative proteomics at large scale
 
Techniques used for separation in proteomics
Techniques used for separation in proteomicsTechniques used for separation in proteomics
Techniques used for separation in proteomics
 
Apat 2013 gc workshop 2
Apat 2013 gc workshop 2Apat 2013 gc workshop 2
Apat 2013 gc workshop 2
 
Waters protein therapeutics application proctocols
Waters protein therapeutics application proctocolsWaters protein therapeutics application proctocols
Waters protein therapeutics application proctocols
 
Proteomics course 1
Proteomics course 1Proteomics course 1
Proteomics course 1
 
Chromatography: Pesticide Residue Analysis Webinar Series: Part 3 of 4: Maxi...
Chromatography: Pesticide Residue Analysis Webinar Series:  Part 3 of 4: Maxi...Chromatography: Pesticide Residue Analysis Webinar Series:  Part 3 of 4: Maxi...
Chromatography: Pesticide Residue Analysis Webinar Series: Part 3 of 4: Maxi...
 
Proteins – Basics you need to know for Proteomics
Proteins – Basics you need to know for ProteomicsProteins – Basics you need to know for Proteomics
Proteins – Basics you need to know for Proteomics
 
proteomics, mass spectrometry, science, bioinformatics, electrophoresis, liqu...
proteomics, mass spectrometry, science, bioinformatics, electrophoresis, liqu...proteomics, mass spectrometry, science, bioinformatics, electrophoresis, liqu...
proteomics, mass spectrometry, science, bioinformatics, electrophoresis, liqu...
 
Peptides
PeptidesPeptides
Peptides
 
Proteomics ppt
Proteomics pptProteomics ppt
Proteomics ppt
 
Techniques in proteomics
Techniques in proteomicsTechniques in proteomics
Techniques in proteomics
 

Ähnlich wie Moeller proteomics course

Native and IM-MS characterization of ADCs
Native and IM-MS characterization of ADCsNative and IM-MS characterization of ADCs
Native and IM-MS characterization of ADCsWaters Corporation
 
Xevo TQ-XS Data: Quantifying Mid-size Proteins
Xevo TQ-XS Data: Quantifying Mid-size ProteinsXevo TQ-XS Data: Quantifying Mid-size Proteins
Xevo TQ-XS Data: Quantifying Mid-size ProteinsLarry Hines
 
3 Ways the New Thermo Scientific LC MS Triple Quads Improve Residue Analysis
3 Ways the New Thermo Scientific LC MS Triple Quads Improve Residue Analysis3 Ways the New Thermo Scientific LC MS Triple Quads Improve Residue Analysis
3 Ways the New Thermo Scientific LC MS Triple Quads Improve Residue AnalysisThermo Fisher Scientific
 
Improved Sensitivity and Dynamic Range Using the Clarus SQ 8 GC/MS System for...
Improved Sensitivity and Dynamic Range Using the Clarus SQ 8 GC/MS System for...Improved Sensitivity and Dynamic Range Using the Clarus SQ 8 GC/MS System for...
Improved Sensitivity and Dynamic Range Using the Clarus SQ 8 GC/MS System for...PerkinElmer, Inc.
 
Al6061 Nanoindentation results
Al6061 Nanoindentation resultsAl6061 Nanoindentation results
Al6061 Nanoindentation resultsalikhosravani
 
Design of experiment methodology
Design of experiment methodologyDesign of experiment methodology
Design of experiment methodologyCHUN-HAO KUNG
 
leaders_5y_presentation
leaders_5y_presentationleaders_5y_presentation
leaders_5y_presentationiveccc
 
Prof. Yosef Bernstein, Ariel-University
Prof. Yosef Bernstein, Ariel-UniversityProf. Yosef Bernstein, Ariel-University
Prof. Yosef Bernstein, Ariel-Universitychiportal
 
Fandamental Statistics and Data Science Stock_price_analysis_OESON_P1.pptx
Fandamental Statistics and Data Science Stock_price_analysis_OESON_P1.pptxFandamental Statistics and Data Science Stock_price_analysis_OESON_P1.pptx
Fandamental Statistics and Data Science Stock_price_analysis_OESON_P1.pptxyabotenoffice
 
Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...
Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...
Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...Shimadzu Scientific Instruments
 
Ni pure mg corrected data
Ni pure mg corrected dataNi pure mg corrected data
Ni pure mg corrected dataalikhosravani
 
6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)Bibhuti Prasad Nanda
 
Development and validation of rp hplc method for simultaneous
Development and validation of rp hplc method for simultaneousDevelopment and validation of rp hplc method for simultaneous
Development and validation of rp hplc method for simultaneouschandu chatla
 

Ähnlich wie Moeller proteomics course (20)

Native and IM-MS characterization of ADCs
Native and IM-MS characterization of ADCsNative and IM-MS characterization of ADCs
Native and IM-MS characterization of ADCs
 
Xevo TQ-XS Data: Quantifying Mid-size Proteins
Xevo TQ-XS Data: Quantifying Mid-size ProteinsXevo TQ-XS Data: Quantifying Mid-size Proteins
Xevo TQ-XS Data: Quantifying Mid-size Proteins
 
3 Ways the New Thermo Scientific LC MS Triple Quads Improve Residue Analysis
3 Ways the New Thermo Scientific LC MS Triple Quads Improve Residue Analysis3 Ways the New Thermo Scientific LC MS Triple Quads Improve Residue Analysis
3 Ways the New Thermo Scientific LC MS Triple Quads Improve Residue Analysis
 
Improved Sensitivity and Dynamic Range Using the Clarus SQ 8 GC/MS System for...
Improved Sensitivity and Dynamic Range Using the Clarus SQ 8 GC/MS System for...Improved Sensitivity and Dynamic Range Using the Clarus SQ 8 GC/MS System for...
Improved Sensitivity and Dynamic Range Using the Clarus SQ 8 GC/MS System for...
 
Al6061 Nanoindentation results
Al6061 Nanoindentation resultsAl6061 Nanoindentation results
Al6061 Nanoindentation results
 
Design of experiment methodology
Design of experiment methodologyDesign of experiment methodology
Design of experiment methodology
 
leaders_5y_presentation
leaders_5y_presentationleaders_5y_presentation
leaders_5y_presentation
 
Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...
Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...
Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...
 
Prof. Yosef Bernstein, Ariel-University
Prof. Yosef Bernstein, Ariel-UniversityProf. Yosef Bernstein, Ariel-University
Prof. Yosef Bernstein, Ariel-University
 
Fandamental Statistics and Data Science Stock_price_analysis_OESON_P1.pptx
Fandamental Statistics and Data Science Stock_price_analysis_OESON_P1.pptxFandamental Statistics and Data Science Stock_price_analysis_OESON_P1.pptx
Fandamental Statistics and Data Science Stock_price_analysis_OESON_P1.pptx
 
Advantage of HRAM
Advantage of HRAMAdvantage of HRAM
Advantage of HRAM
 
Ch15
Ch15Ch15
Ch15
 
Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...
Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...
Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...
 
Pres IF2
Pres IF2Pres IF2
Pres IF2
 
New Innovations in Ultra High Performance Liquid Chromatography and Liquid Ch...
New Innovations in Ultra High Performance Liquid Chromatography and Liquid Ch...New Innovations in Ultra High Performance Liquid Chromatography and Liquid Ch...
New Innovations in Ultra High Performance Liquid Chromatography and Liquid Ch...
 
Ni pure mg corrected data
Ni pure mg corrected dataNi pure mg corrected data
Ni pure mg corrected data
 
6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
 
Tools of the Trade
Tools of the TradeTools of the Trade
Tools of the Trade
 
Kaizen Event formalized post-molding
Kaizen Event formalized post-molding Kaizen Event formalized post-molding
Kaizen Event formalized post-molding
 
Development and validation of rp hplc method for simultaneous
Development and validation of rp hplc method for simultaneousDevelopment and validation of rp hplc method for simultaneous
Development and validation of rp hplc method for simultaneous
 

Mehr von UC Davis

Presentation phinney abrf 2019
Presentation phinney abrf 2019Presentation phinney abrf 2019
Presentation phinney abrf 2019UC Davis
 
Prosit google-cloud
Prosit google-cloudProsit google-cloud
Prosit google-cloudUC Davis
 
Phinney 2019 ASMS Proteome software Users group Talk
Phinney 2019 ASMS Proteome software Users group TalkPhinney 2019 ASMS Proteome software Users group Talk
Phinney 2019 ASMS Proteome software Users group TalkUC Davis
 
Genome web july 2019 presentation phinney
Genome web july 2019 presentation phinneyGenome web july 2019 presentation phinney
Genome web july 2019 presentation phinneyUC Davis
 
Some statistical concepts relevant to proteomics data analysis
Some statistical concepts relevant to proteomics data analysisSome statistical concepts relevant to proteomics data analysis
Some statistical concepts relevant to proteomics data analysisUC Davis
 
Gene Ontology Network Enrichment Analysis
Gene Ontology Network Enrichment AnalysisGene Ontology Network Enrichment Analysis
Gene Ontology Network Enrichment AnalysisUC Davis
 
Multivariate Analysis and Visualization of Proteomic Data
Multivariate Analysis and Visualization of Proteomic DataMultivariate Analysis and Visualization of Proteomic Data
Multivariate Analysis and Visualization of Proteomic DataUC Davis
 
Asms qc Will Thompson Duke
Asms qc Will Thompson DukeAsms qc Will Thompson Duke
Asms qc Will Thompson DukeUC Davis
 
Phinney varibility workshop
Phinney varibility workshopPhinney varibility workshop
Phinney varibility workshopUC Davis
 
Colangelo asms workshop_061714
Colangelo asms workshop_061714Colangelo asms workshop_061714
Colangelo asms workshop_061714UC Davis
 

Mehr von UC Davis (10)

Presentation phinney abrf 2019
Presentation phinney abrf 2019Presentation phinney abrf 2019
Presentation phinney abrf 2019
 
Prosit google-cloud
Prosit google-cloudProsit google-cloud
Prosit google-cloud
 
Phinney 2019 ASMS Proteome software Users group Talk
Phinney 2019 ASMS Proteome software Users group TalkPhinney 2019 ASMS Proteome software Users group Talk
Phinney 2019 ASMS Proteome software Users group Talk
 
Genome web july 2019 presentation phinney
Genome web july 2019 presentation phinneyGenome web july 2019 presentation phinney
Genome web july 2019 presentation phinney
 
Some statistical concepts relevant to proteomics data analysis
Some statistical concepts relevant to proteomics data analysisSome statistical concepts relevant to proteomics data analysis
Some statistical concepts relevant to proteomics data analysis
 
Gene Ontology Network Enrichment Analysis
Gene Ontology Network Enrichment AnalysisGene Ontology Network Enrichment Analysis
Gene Ontology Network Enrichment Analysis
 
Multivariate Analysis and Visualization of Proteomic Data
Multivariate Analysis and Visualization of Proteomic DataMultivariate Analysis and Visualization of Proteomic Data
Multivariate Analysis and Visualization of Proteomic Data
 
Asms qc Will Thompson Duke
Asms qc Will Thompson DukeAsms qc Will Thompson Duke
Asms qc Will Thompson Duke
 
Phinney varibility workshop
Phinney varibility workshopPhinney varibility workshop
Phinney varibility workshop
 
Colangelo asms workshop_061714
Colangelo asms workshop_061714Colangelo asms workshop_061714
Colangelo asms workshop_061714
 

Kürzlich hochgeladen

“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 

Kürzlich hochgeladen (20)

INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 

Moeller proteomics course

  • 1. Practical Aspects of Quantitation with Triple-Quadrupole Mass Spectrometers Ben Moeller, PhD Candidate University of California – Davis K.L. Maddy Equine Analytical Chemistry Laboratory 1
  • 2. Triple Quadrupole use in Quantitation Absolute Quantitation of Analyte in Matrix Testosterone 500 pg/ml RT: 0.00 - 2.51 SM: 11G NL: 1.20E5 m/z= 96.50-97.50 F: + c ESI sid=5.00 SRM ms2 289.234 [77.056-77.066, 79.097-79.107, 81.089-81.099, 97.043-97.053, 109.079-109.089] MS ICIS C7_003 RT: 1.59 AA: 1222176 100 95 90 85 80 C7_003 #379-403 RT: 1.55-1.64 AV: 5 NL: 1.31E5 F: + c ESI sid=5.00 SRM ms2 289.234 [77.056-77.066, 79.097-79.107, 81.089-81.099, 97.043-97.053, 109.079-109.089] 97.05 100 109.08 95 75 90 85 80 60 70 Relative Abundance 65 60 55 50 20 45 79.10 40 18 35 30 77.06 25 16 81.09 20 55 15 10 Area Ratio Relative Abundance 65 Testosterone Y = 0.0222582+0.00197076*X R^2 = 0.9982 W: 1/X 75 70 5 0 50 77.06 m/z 79.10 m/z 81.09 m/z 97.05 m/z 109.08 m/z 45 14 12 10 8 6 40 4 2 35 0 0 2000 30 4000 6000 pg/ml 8000 10000 25 20 15 10 5 0 0.0 0.5 1.0 1.5 Time (min) 2.0 2.5 2
  • 3. Quantitative Method Development 1. Know what you are looking for and a rough idea of the concentration range. 2. Obtain reference material (drug, protein, peptide, etc) 3. Develop method.  Determine sample extraction/cleanup, and what instrumentation to use Ex) Immuno-depletion, SPE, tryptic digestion, LC-MS. 4. Validate method with real samples. 5. Run samples, calibrators and quality control samples identically.  This includes sample clean up, extraction, LC-MS analysis, peak integration, and quantitation. 3
  • 4. Sample Analysis • An absolute quantitation method requires: • • • Unknown samples (what you trying to analyze) • Processed matrix + analytes Known samples – containing known amounts of targeted analytes in matrix • Calibration standards – generate calibration curve • Quality control samples (QCs) – evaluate method performance • Standards spiked in solvent without matrix Blanks – samples without the analytes • Matrix blanks – matrix without analytes • Solvent blanks – solvent without analytes 4
  • 5. Quantitative Analysis – Calibration Curves  External Standard Method  Construct calibration curve with increasing amounts of analyte.  Match unknown samples instrument response to curve  Method of Standard Addition  Increasing amounts of analyte spiked into unknown sample.  Response is measured before and after addition of analyte to give a curve using linear regression. The x-intercept gives concentration sample concentration  Internal Standard (IS) Method  A known, constant amount of internal standard is added to every sample including calibrators  Use the ratio of Analyte to IS to construct calibration curve and use for determination of unknown sample concentration  Preferred method because it corrects for sample losses in 5 processing and variations in instrument performance
  • 6. Ideal MS Quantitative Method Isotope Dilution Mass Spectrometry (IDMS) – use of a isotopically labeled internal standard. Sample 1. Take aliquot 2. Add IS Internal standard (IS) 3. Process Sample 4. Analyze by LC-MS/MS Analyte IS 5. Integrate and calculate areas of IS and analyte peaks – Quantitate using analyte/IS area ratio 6
  • 7. Internal Standard Selection  SIS – Surrogate Internal Standard  Stable isotope labeled version of analyte is preferable – 13C, 2H, 15N  Minimize isotopic overlap of SIS and analyte  SIS co-elution with analyte preferable  Small molecule – synthesize or purchase  Proteomics  Purchase heavy peptides from vendors  Express protein in culture with heavy media 7
  • 8. Analyte to SIS Area Count Ratio  Calibrator 6 RT: 1.00 - 2.47 SM: 7G RT: 1.63 AA: 606660 100 90 NL: 8.82E4 m/z= 96.50-97.50 F: + c ESI sid=5.00 SRM ms2 289.234 [77.056-77.066, 79.097-79.107, 81.089-81.099, 97.043-97.053, 109.079-109.089] MS ICIS C6_001  Analyte/SIS ratio = 1.07  533 pg/ml based on C6_001 #384-414 RT: 1.58-1.70 AV: 7 NL: 8.38E4 F: + c ESI sid=5.00 SRM ms2 289.234 [77.056-77.066, 79.097-79.107, 81.089-81.099, 97.043-97.053, 109.079-109.089] 97.05 100 80 95 109.08 90 85 70 calibration curve 80 75 70 60 65 60 Relative Abundance 50  500 pg/ml nominal 55 50 45 40 40 35 79.10 30 Testosterone Y = 0.0194483+0.00197195*X R^2 = 0.9982 W: 1/X 25 30 77.06 81.09 20 15 20 10 10 Testosterone 289.2 -> 97.1 0 5 0 77.06 m/z 79.10 m/z 81.09 m/z 97.05 m/z 109.08 20 NL: 8.45E4 18 m/z= 96.50-97.50 F: + c ESI sid=5.00 SRM ms2 292.260 [97.071-97.081] MS ICIS C6_001 16 RT: 1.62 AA: 603473 100 m/z C6_001 #384-404 RT: 1.58-1.65 AV: 4 NL: 6.06E4 F: + c ESI sid=5.00 SRM ms2 292.260 [97.071-97.081] 90 97.08 100 95 Area Ratio 85 80 70 75 70 65 Relative Abundance 60 50 60 55 50 45 40 40 30 20 10 14 90 2.0 1.8 10 1.6 8 35 SIS D3-Testosterone 292.2 -> 97.1 Testosterone Y = 0.0194483+0.00197195*X R^2 = 0.9982 W: 1/X 2.2 12 Area Ratio 80 30 25 6 20 15 1.4 1.2 1.0 0.8 0.6 10 5 0 97.072 97.074 97.076 m/z 97.078 97.080 4 0.4 0.2 2 0 200 400 600 800 1000 pg/ml 0 1.2 1.4 1.6 1.8 Time (min) 2.0 2.2 Extracted Ion Chromatogram 2.4 0 0 2000 4000 6000 pg/ml 8000 10000 8 Moeller et al (2009)
  • 9. Types of MS scan in Quantitation  Four MS scan types used in quantitative analysis Full scan MS Select ion monitoring (SIM) Product ion MS/MS Select reaction monitoring (SRM) 9
  • 10. Quantitation using MS  Types of MS commonly used in quantitation Single Quad Ion Traps (2D and 3D) TOF, QqTOF Orbitrap type MS Magnetic Sectors Triple Quadrupole – the “gold standard” 10
  • 11. Why use Select Reaction Monitoring (SRM)? Also known as multiple reaction monitoring (MRM) Fixed m/z Q1  Fragment Q2 Advantages    Targeted Analyte Monitoring High Duty Cycle “Simultaneous” Monitoring of Multiple Transitions Fixed m/z Q3  Disadvantage  No “advanced” structural information 11
  • 12. Select Reaction Monitoring  Quadrupole 1 (Q1) selects the ion of interest (precursor ion) by its m/z ratio  Quadrupole 2 (Q2) fragments precursor ion by collision induced dissociation (CID) Fixed m/z Fragment Q1 Q2 Fixed m/z Q3  Quadrupole 3 (Q3) selects specific fragmentation ions (product ions) which are counted in the detector 12
  • 13. Why use MS/MS in Quantitation?  MS/MS provides additional specificity which increases signal to baseline (S/B) and sensitivity allowing for: Less intense sample preparation. Shorter chromatographic run times Decreased Limits of Detection (LOD). 13
  • 14. Determining SRM transitions Progesterone #1-38 RT: 0.00-0.32 AV: 38 NL: 3.11E6 F: + c APCI Q1MS [170.000-400.000] 315.22 100 95  Optimize precursor ion formation in Q1  Source conditions, tube lens, etc  Optimize several SRM transitions (5 if possible) and run standards in matrix to check for interferences 85 80 75 Precursor Ion Optimization 70 65 60 Relative Abundance Infusion of pure substance – Preferably commercially obtained with certificates of analysis (traceability).  In Silico - predicted product ions from software (Proteomics). Optimization of SRM Transitions 90 55 Progesterone –APCI 50 45 40 35 30 25 20 356.25 15 211.13 225.12 10 181.11 214.11 193.11 202.13 5 313.21 297.20 245.17 255.20 271.19 311.21 279.18 326.22 338.33 353.28 370.62 3 0 180 200 220 240 260 280 300 320 340 m/z SRM Optimization 14 360 3
  • 15. Common SRM Settings RT: 0.00 - 2.50 SM: 5G 100 NL: TIC 289 79.0 97.0 MS 95  Number of SRM Transitions 90 85 80 75 70 • 3 minimum per analyte, 5 recommended. • 20% deviation in relative intensities allowed 65 Relative Abundance 60 55 50 45 40 35 30 25 20 15 10 5 0 SS_QC3_003 #384-403 RT: 1.59-1.65 AV: 4 NL: 2.59E5 0.0 F: + c ESI sid=5.00 SRM ms2 289.234 [77.056-77.066, 79.097-79.107, 81.089-81.099, 97.043-97.053, 109.079-109.089] 97.05 100 0.5 1.0 1.5 Time (min) 95 Testosterone SRM 109.08 90 85 80 Product 77.05 79.1 81.09 97.05 109.08 Relative Abundance Precursor 289.2 289.2 289.2 289.2 289.2 Collision Relative Energy Abundance 52 18 39 29 35 17 21 100 23 91 75 70 65 60 55 50 45 40 35 30 79.10 25 20 77.06 81.09 15 10 15 5 Moeller et al (2009) 0 77.06 m/z 79.10 m/z 81.09 m/z 97.05 m/z 109.08 m/z 2.0 2.5
  • 16. Selectivity of SRM Extracted Ion Chromatograms (EIC) RT: 0.00 - 2.50 SM: 5G 100 NL: 4.81E4 m/z= 76.54-77.54 F: + c ESI sid=5.00 SRM ms2 287.213 [77.043-77.053, 91.061-91.071, 93.077-93.087, 121.060-121.070, 269.175-269.185] MS ICIS C7_003 80 60 40 20 0 100 NL: 5.03E4 m/z= 90.57-91.57 F: + c ESI sid=5.00 SRM ms2 287.213 [77.043-77.053, 91.061-91.071, 93.077-93.087, 121.060-121.070, 269.175-269.185] MS ICIS C7_003 80 60 40 20 0 100 NL: 2.09E4 m/z= 92.58-93.58 F: + c ESI sid=5.00 SRM ms2 287.213 [77.043-77.053, 91.061-91.071, 93.077-93.087, 121.060-121.070, 269.175-269.185] MS ICIS C7_003 80 60 40 20 0 100 EIC used for quantitation 80 60 40 20 NL: 1.07E5 m/z= 120.50-121.50 F: + c ESI sid=5.00 SRM ms2 287.213 [77.043-77.053, 91.061-91.071, 93.077-93.087, 121.060-121.070, 269.175-269.185] MS ICIS C7_003 C7_003 #269-291 RT: 1.13-1.19 AV: 4 NL: 1.10E5 F: + c ESI sid=5.00 SRM ms2 287.213 [77.043-77.053, 91.061-91.071, 93.077-93.087, 121.060-121.070, 269.175-269.185] 269.18 100 95 121.07 90 85 80 75 NL: 3.52E5 m/z= 268.50-269.50 F: + c ESI sid=5.00 SRM ms2 287.213 [77.043-77.053, 91.061-91.071, 93.077-93.087, 121.060-121.070, 269.175-269.185] MS ICIS C7_003 80 60 40 70 65 Relative Abundance 0 100 60 55 50 45 77.05 91.07 40 20 0 0.0 •Choosing the right SRM transition is key for quantitative analysis • Look at EIC to determine optimal quantitation ion • Use samples spiked in matrix to evaluate interferences. 35 30 0.5 1.0 1.5 Time (min) 2.0 2.5 25 20 93.08 15 10 16 5 0 77.05 m/z 91.07 m/z 93.08 121.07 m/z m/z 269.18 m/z
  • 17. Common SRM Settings  Scan Time/Dwell Time • 0.01 – 0.2 seconds • Need > 9 scans per peak RT: 1.40 - 1.90 SM: 5G 100 RT: 1.40 - 1.90 SM: 5G NL: 2.82E5 100 m/z= 96.50-97.50 F: + c ESI sid=5.00 SRM ms2 289.234 [77.056-77.066, 95 79.097-79.107, 81.089-81.099, 95 97.043-97.053, 109.079-109.089] MS SS_QC3_003 90 •15 scans per peak •50 msec dwell time • 21 SRM transitions monitored for 6 analytes 90 85 80 80 75 75 70 70 65 65 60 60 Relative Abundance 85 Relative Abundance NL: 7.02E5 TIC F: + c ESI sid=5.00 SRM ms2 289.234 [77.056-77.066, 79.097-79.107, 81.089-81.099, 97.043-97.053, 109.079-109.089] MS SS_QC3_003 55 50 45 40 55 50 45 40 35 35 30 30 25 25 20 20 15 15 10 10 5 5 0 1.4 1.5 1.6 1.7 Time (min) 1.8 0 1.4 17 1.5 1.6 1.7 Time (min) 1.8
  • 18. SRM Method Setup •Segments for Multiple Analytes •Scan Width • 1 dalton •Peak Width • 0.7 daltons • Enhanced Resolution QqQ 0.1 – 0.2 daltons 35 analytes using Thermo TSQ Vantage using Xcalibur software 18
  • 19. Method Development and Validation  Limit of Detection (LOD)  Limit of Quantitation (LOQ)  Linearity of Calibration  Calibration Range  Precision  Accuracy  Selectivity  Robustness and Reproducibility 19
  • 20. Limit of Detection Signal RT: 0.00 - 2.51 SM: 7G 100 RT: 2.28 MA: 17172 NL: 2.39E3 m/z= 80.50-81.50 F: + c ESI SRM ms2 329.281 [81.066-81.076, 95.057-95.067, 121.042-121.052] MS C25 95 90 85 80 75 70 65 Relative Abundance 60 55 50 1.84 45 1.95 Background 40 35 30 1.10 1.28 25 1.63 20 15 0.28 0.19 10 0.09 1.39 0.43 0.48 0.65 5 0 0.0 0.2 0.4 0.6 0.84 0.8 1.0 1.2 Time (min) 1.4 1.6 1.8 LOD of Stanozolol 25 pg/ml with S/B = 3:1 2.0 2.2 2.4  Smallest response that is able to differentiate between background noise and your analyte  Usually defined as a signal to background (S/B) = 3  Determined by 1:1 dilutions from a concentration with a S/B= 50:1 Boyd R, Basic C, Bethem R (2008) Trace 20 Quantitative Analysis by Mass Spectrometry.
  • 21. Limits of Quantitation  Lower and upper concentrations that can be accurately quantitated.  Lower limit of quantitation (LLOQ) usually defined as a signal to background (S/B) = 10  The upper limit of quantitation (ULOQ) is usually the highest calibrator giving a linear response RT: 0.00 - 2.51 SM: 5G RT: 2.27 MA: 51558 100 95 NL: 9.49E3 m/z= 80.50-81.50 F: + c ESI SRM ms2 329.281 [81.066-81.076, 95.057-95.067, 121.042-121.052] MS C1_001 S = 9,500 counts 90 85 80 75 LOQ of Stanozolol150 pg/ml 70 65 Relative Abundance 60 55 50 1.47 45 40 35 30 25 0.58 20 1.95 15 B=665 counts 0.37 10 5 0.21 0 0.0 0.2 0.30 1.10 0.47 0.4 0.69 0.76 0.6 0.8 0.87 1.65 1.21 1.02 1.0 1.78 1.36 1.2 Time (min) 1.4 1.6 1.8 2.0 2.2 Boyd R, Basic C, Bethem R (2008) Trace Quantitative Analysis by Mass Spectrometry. 2.4 21
  • 22. Generation of Calibration Curve  Optimize for an expected concentration range (if known)  Develop method around that range Rosiglitazone Y = 0.0313243+0.00277886*X R^2 = 0.9949 W: Equal 3.0 Y = mx + b 2.5 Detector saturation 2.0 1.5 1.0 ULOQ 0.5 0.0 0 200 400 600 ng/mL 800 1000 22
  • 23. Generation of Calibration Curve and Quality Control Samples Calibrators C1 Sample C2 1 ng/ml LOQ C3 C4 C5 C6 C7 5 ng/ml 10 ng/ml 25 ng/ml 50 ng/ml 75 ng/ml 100 ng/ml ULOQ Quality Control Samples QC2 QC1 QC3 3 ng/ml 15 ng/ml 60 ng/ml n=6 n=6 Internal Standard n=6 23
  • 24. Generation of Calibration Curve  6 to 9 calibrators prepared in matrix blanks  Must include LLOQ and ULOQ  Linear regression commonly used – R2 ≥ 0.98  Be aware of deviations from linearity at higher conc.  Avoid forcing through zero  Internal Calibration  Ratio of analyte area to SIS area 24
  • 25. Quality Control (QC) Samples  QC samples:  Blank matrix containing a known amount of analyte  Run dispersed thorough out the assay  At least 3 different levels (n=6)  One near LLOQ  One in the middle of linear range  One at the high end of the linear range  Determine accuracy and precision of method during validation and monitor performance during sample runs  Use QC’s for determination of both inter-assay (between runs) and intraassay (same run) precision and accuracy 25
  • 26. Quality Control Samples – Accuracy and Precision  Accuracy: Trueness  % expected = (Conc of Peak)/(Expected Conc)*100  mean within 15% of nominal  Precision: Reproducibility  % Coefficient of Variation = (Standard Dev)/(Mean)*100  % CV ≤ 15%  Also expressed as relative standard deviation (RSD) 26
  • 27. Accuracy and Precision RT: 0.00 - 2.52 SM: 5G Testosterone Y = 0.010179+0.00178017*X R^2 = 0.9991 W: 1/X RT: 1.62 MA: 37906 100 90 85 80 75 18 70  210 injections over 19 hours 65 60 Relative Abundance 16 NL: 7.71E3 m/z= 96.50-97.50 F: + c ESI sid=5.00 SRM ms2 289.234 [77.056-77.066, 79.097-79.107, 81.089-81.099, 97.043-97.053, 109.079-109.089] MS C1_002 LOQ – 25 pg/ml 95 2.03 55 50 45 40 35 14 30 1.89 25 0.98 1.10 20 1.19 0.92 15 12 1.29 0.77 0.55 2.22 1.45 10 0.22 5 0.41 0.47 2.35 2.47 0.63 0.10 0 0.0 10 0.2 0.4 0.6 0.8 1.0 1.2 Time (min) 1.4 1.6 1.8 2.0 2.2 2.4 RT: 0.00 - 2.50 SM: 5G RT: 1.62 AA: 1018291 100 NL: 1.64E5 m/z= 96.50-97.50 F: + c ESI sid=5.00 SRM ms2 289.234 [77.056-77.066, 79.097-79.107, 81.089-81.099, 97.043-97.053, 109.079-109.089] MS ICIS Inter_QC2_001 95 90 8 85 80 75 70 6 65 Relative Abundance 60 4 55 QC2 – 750 pg/ml 50 45 40 35 2 30 25 20 15 0 10 0 2000 Testosterone (n=6 per level) 4000 6000 pg/ml 8000 10000 RT: 2.04 AA: 26482 5 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Time (min) 1.4 1.6 1.8 2.0 2.2 2.4 Average Standard Deviation %CV % of expected QC1 – 75 pg/ml 74.1 2.21 2.98 98.7 QC2 - 750 pg/ml 742.7 29.32 3.94 99.0 QC3 - 3000 pg/ml 2798.6 57.31 2.05 93.3 27 Moeller et al (2009)
  • 28. Quantitation Software  Peak Integration  Determine settings in validation and use throughout study  Integration must be consistent for Calibrators, QC’s, and samples  Avoid manual integration  Set up Calibrator and QC levels Thermo Quan Browser  Fail runs that fall outside expected concentration and % CV  Fail runs with calibration curves R2 <0.98 28
  • 29. Review  Quantitation Methodology – IDMS preferred  MS used – Triple Quad is the “Gold Standard”  SRM collecting multiple transitions  Internal standard selection is important  Defined LOD, LLOQ, ULOQ  Generation of calibration curve  Accuracy and precision using QCs  Integration software 29
  • 30. Validated Quantitative Multiple Analyte Method Analyte  Stanozolol  Testosterone  Boldenone  Nandrolone  Trenbolone LOD (pg/mL) 25 20 50 150 150 LOQ (pg/mL) 150 150 250 250 250 RT: 0.00 - 2.51 SM: 7G RT: 0.00 - 2.51 SM: 5G NL: 2.39E3 m/z= 80.50-81.50 F: + c ESI SRM ms2 329.281 [81.066-81.076, 95.057-95.067, 121.042-121.052] MS NC_a_01 100 95 90 NC Serum 80 95 Stanozolol 25 pg/ml 90 85 80 75 75 70 70 65 65 2.04 60 Relative Abundance 55 2.27 50 2.12 1.87 1.82 40 2.38 1.11 NL: 9.49E3 m/z= 80.50-81.50 F: + c ESI SRM ms2 329.281 [81.066-81.076, 95.057-95.067, 121.042-121.052] MS C1_001 95 Stanozolol 150 pg/ml 90 80 75 70 65 60 55 50 1.84 45 1.95 55 50 1.47 45 40 35 RT: 2.27 MA: 51558 100 85 60 2.21 45 NL: 2.39E3 m/z= 80.50-81.50 F: + c ESI SRM ms2 329.281 [81.066-81.076, 95.057-95.067, 121.042-121.052] MS C25 Relative Abundance 85 RT: 0.00 - 2.51 SM: 5G RT: 2.28 MA: 17172 100 40 35 35 1.56 1.52 30 0.61 25 20 0.19 1.10 1.28 25 0.56 0.34 0.67 0.11 15 0.85 10 0.09 0.4 0.6 0.8 1.0 1.2 Time (min) 1.4 1.6 1.8 2.0 2.2 2.4 0 0.0 0.2 0.4 0.37 10 5 0.2 1.95 1.39 0.43 0.48 0.65 5 0.58 20 15 0.28 0.19 10 0 0.0 25 1.63 20 0.22 15 30 30 1.69 1.36 0.91 0.6 0.84 0.8 5 1.0 1.2 Time (min) 1.4 LOD 1.6 1.8 2.0 2.2 2.4 0.21 0 0.0 0.2 1.78 0.30 1.10 0.47 0.4 0.69 0.76 0.6 0.8 0.87 1.02 1.0 1.65 1.21 1.36 1.2 Time (min) 1.4 1.6 LOQ 1.8 2.0 2.2 2.4 30
  • 31. Calibration Curves Testosterone Y = -0.0183096+0.00114189*X R^2 = 0.9987 W: Equal  Calibrator 12  C1 - 150 pg/ml Area Ratio Concentrations 10 8 6 4  C2 - 250 pg/ml 2  C3 - 500 pg/ml 0 0  C4 - 750 pg/ml 2000 4000 6000 pg/ml 8000 10000 Stanozolol Y = 0.113603+0.00136788*X R^2 = 0.9976 W: Equal  C5 – 1,000 pg/ml  C6 – 2,500 pg/ml 14  C7 – 5,000 pg/ml 10 Area Ratio  C8 – 10,000 pg/ml 12 8 6 4 2 0 0 SIS used: D3-Testosterone 2000 4000 6000 pg/ml 8000 10000 31
  • 32. Assay Precision Inter assay (n=36) Testosterone Stanozolol Nandrolone Trenbolone Boldenone QC level 1 Average (pg/mL) 609.7 601.0 662.1 594.5 588.0 (600 pg/mL) %CV 6.8 6.3 13.4 14.2 9.5 QC level 2 Average (pg/mL) 1176.2 1196.8 1170.2 1160.0 1179.3 (1200 pg/mL) %CV 6.8 5.1 12.8 8.0 6.0 QC level 3 Average (pg/mL) 4184.7 4234.6 4417.7 3958.7 4185.1 (4000 pg/mL) %CV 8.3 8.5 10.5 10.9 7.8 Trenbolone Boldenone Intra assay (n=12) Testosterone Stanozolol Nandrolone QC level 1 Average (pg/mL) 621.1 611.5 662.1 529.2 583.4 (600 pg/mL) %CV 4.6 6.8 11.8 12.5 7.1 QC level 2 Average (pg/mL) 1251.0 1225.5 1086.6 1106.5 1219.9 (1200 pg/mL) %CV 3.2 4.6 10.7 6.5 3.2 QC level 3 Average (pg/mL) 4472.1 4369.8 4250.1 3576.3 4332.8 (4000 pg/mL) %CV 9.7 12.9 7.6 8.6 8.9 32
  • 33. Assay Accuracy Inter assay (n=36) Testosterone Stanozolol Nandrolone Trenbolone Boldenone QC level 1 Average (pg/mL) 609.7 601.0 622.7 594.5 588.0 (600 pg/mL) %of nominal 101.6 % 100.2 % 103.8 % 99.1 % 98.0 % QC level 2 Average (pg/mL) 1176.2 1196.8 1170.2 1160.0 1179.3 (1200 pg/mL) %of nominal 98.0 % 99.7 % 97.5 % 96.7 % 98.3 % QC level 3 Average (pg/mL) 4184.7 4234.6 4417.7 3958.7 4185.1 (4000 pg/mL) %of nominal 104.6 % 105.9 % 110.4 % 99.0 % 104.6 % Intra assay (n=12) Testosterone Stanozolol Nandrolone Trenbolone Boldenone QC level 1 Average (pg/mL) 621.1 611.5 662.1 529.2 583.4 (600 pg/mL) %of nominal 103.5 % 101.9 % 110.3% 88.2 % 97.2 % QC level 2 Average (pg/mL) 1251.0 1225.5 1086.6 1106.5 1219.9 (1200 pg/mL) %of nominal 104.3 % 102.1 % 90.5% 92.2 % 101.7 % QC level 3 Average (pg/mL) 4472.1 4369.8 4250.1 3576.3 4332.8 (4000 pg/mL) %of nominal 111.8 % 109.2 % 106.2% 89.4 % 108.3 % 33
  • 34. Summary  Validation is key  Reproducibility  Defined quantitation limits (LLOQ/ULOQ)  Selectivity – Qualitative ID (3 or more SRM)  Accuracy and Precision  Need Quality Control samples  Inter- and Intra-Day Robustness 34
  • 35. Acknowledgements University of California, Davis  Scott Stanley, PhD  Heather Knych, DVM PhD  EACL Staff 35
  • 36. Questions? References 1) 2) 3) 4) 5) Lee JM et al. (2006) Fit-for-Purpose Method Development and Validation for Successful Biomarker Measurement. Pharmaceutical Research. 23(2) 312-328. US Food and Drug Administration (2001) Guidance for Industry: Bioanalytical Method Validation. http://www.fda.gov/cder/guidance/index.htm Boyd R, Basic C, Bethem R (2008) Trace Quantitative Analysis by Mass Spectrometry. West Sussex: John Wiley & Sons. Krull I, Kissinger PT, Swartz M (2008) Analytical Method Validation in Proteomics and Peptidomics Studies. LCGC 26 (11) Moeller BC, Stanley SD (2009) Quantitative Analysis of Testosterone, Nandrolone, Boldenone and Stanozolol using Liquid Chromatography – Tandem Mass Spectrometry by Highly Selective Reaction Monitoring. 36 Manuscript in preparation.