SlideShare ist ein Scribd-Unternehmen logo
1 von 21
Module 3 [PROFESSIONAL ETHICS]
1
Environment
It is the immediate space that we live in. It consists of biosphere, lithosphere,
hydrosphere, atmosphere etc.
The biophysical environment is the biotic and abiotic surrounding of an organism
or population, and includes the factors that have an influence in their survival,
development and evolution. The term environment can refer to different concepts,
but is often used as a short form for the biophysical environment. This practice is
common, for instance, among governments which entitle agencies dealing with the
biophysical environment with denominations such as Environment agency. Whereas
the expression "the environment" is often used to refer to the global environment,
usually in relation to humanity, the number of biophysical environments is
countless, given that it is always possible to consider an additional living organism
that has its own environment. The biophysical environment can vary in scale
from microscopic to global in extent. It can also be subdivided according to its
attributes. Examples include the marine environment, the atmospheric
environment and the terrestrial environment.
Environmental Ethics
Environmental ethics is the discipline in philosophy that studies the moral
relationship of human beings to, and also the value and moral status of, the
environment and its nonhuman contents.
Environmental ethics is the part of environmental philosophy which considers
extending the traditional boundaries of ethics from solely including humans to
including the non-human world. It exerts influence on a large range of disciplines
including environmental law, environmental sociology, ecotheology, ecological
economics, ecology and environmental geography.
There are many ethical decisions that human beings make with respect to the
environment. For example:
Should we continue to clear cut forests for the sake of human consumption?
Why should we continue to propagate our species, and life itself? [1]
Should we continue to make gasoline powered vehicles?
What environmental obligations do we need to keep for future generations?[2][3]
Is it right for humans to knowingly cause the extinction of a species for the
convenience of humanity?
How should we best use and conserve the space environment to secure and
expand life?
Module 3 [PROFESSIONAL ETHICS]
2
Environmental ethics believes in the ethical relationship between human beings and
the natural environment. Human beings are a part of the society and so are the
other living beings. When we talk about the philosophical principle that guides our
life, we often ignore the fact that even plants and animals are a part of our lives.
They are an integral part of the environment and hence have a right to be
considered a part of the human life. On these lines, it is clear that they should also
be associated with our guiding principles as well as our moral and ethical values.
What is Environmental Ethics?
We are cutting down forests for making our homes. We are continuing with an
excessive consumption of natural resources. Their excessive use is resulting in their
depletion, risking the life of our future generations. Is this ethical? This is the issue
that environmental ethics takes up. Scientists like Rachel Carson and the
environmentalists who led philosophers to consider the philosophical aspect of
environmental problems, pioneered in the development of environmental ethics as
a branch of environmental philosophy.
The Earth Day celebration of 1970 was also one of the factors, which led to the
development of environmental ethics as a separate field of study. This field received
impetus when it was first discussed in the academic journals in North America and
Canada. Around the same time, this field also emerged in Australia and Norway.
Today, environmental ethics is one of the major concerns of mankind.
When industrial processes lead to destruction of resources, is it not the industry's
responsibility to restore the depleted resources? Moreover, can a restored
environment make up for the originally natural one? Mining processes hamper the
ecology of certain areas; they may result in the disruption of plant and animal life
in those areas. Slash and burn techniques are used for clearing the land for
agriculture.
Most of the human activities lead to environmental pollution. The overly increasing
human population is increasing the human demand for resources like food and
shelter. As the population is exceeding the carrying capacity of our planet, natural
environments are being used for human inhabitation.
Module 3 [PROFESSIONAL ETHICS]
3
Thus human beings are disturbing the balance in the nature. The harm we, as
human beings, are causing to the nature, is coming back to us by resulting in a
polluted environment. The depletion of natural resources is endangering our future
generations. The imbalance in nature that we have caused is going to disrupt our
life as well. But environmental ethics brings about the fact that all the life forms on
Earth have a right to live. By destroying the nature, we are depriving these life
forms of their right to live. We are going against the true ethical and moral values
by disturbing the balance in nature. We are being unethical in treating the plant
and animal life forms, which coexist in society.
Human beings have certain duties towards their fellow beings. On similar lines, we
have a set of duties towards our environment. Environmental ethics says that we
should base our behavior on a set of ethical values that guide our approach towards
the other living beings in nature.
Environmental ethics is about including the rights of non-human animals in our
ethical and moral values. Even if the human race is considered the primary concern
of society, animals and plants are in no way less important. They have a right to
get their fair share of existence.
We, the human beings, along with the other forms of life make up our society. We
all are a part of the food chain and thus closely associated with each other. We,
together form our environment. The conservation of natural resources is not only
the need of the day but also our prime duty.
Major issues that concern environmental ethics today
Anthropocenterism or human centredness in development is one of the reasons
for several environmental issue
Conservation of biodiversity in biosphere
Energy conservation including nuclear energy
Global climate changes
Over population and destruction of forests or animal habitats
Exponential increase in depletion of natural resources
Impact of Genetic engineering, cloning, genetically modified crops
Water disposal and e-waste
Intensive farming and over use of pesticides
Ozone layer depletion
Module 3 [PROFESSIONAL ETHICS]
4
Anthropocentrism
Anthropocentrism simply places humans at the centre of the universe; the human
race must always be its own primary concern. It has become customary in the
Western tradition to consider only our species when considering the environmental
ethics of a situation. Therefore, everything else in existence should be evaluated in
terms of its utility for us, thus committing speciesism. All environmental studies
should include an assessment of the intrinsic value of non-human beings.[11]
In fact,
based on this very assumption, a philosophical article has explored recently the
possibility of humans' willing extinction as a gesture toward other beings. The
authors refer to the idea as a thought experiment that should not be understood as
a call for action.
What anthropocentric theories do not allow for is the fact that a system of ethics
formulated from a human perspective may not be entirely accurate; humans are
not necessarily the centre of reality. The philosopher Baruch Spinoza argued that
we tend to assess things wrongly in terms of their usefulness to us. Spinoza
reasoned that if we were to look at things objectively we would discover that
everything in the universe has a unique value. Likewise, it is possible that a human-
centred or anthropocentric/androcentric ethic is not an accurate depiction of reality,
and there is a bigger picture that we may or may not be able to understand from a
human perspective.
Anthropocenterism is human centeredness in development. This philosophy puts
human beings at the center of universe. Living and non living things have value
only to the extent that they are of use to the human beings. It doesn‘t recognize
the rights of animals and plants to live.
The philosophy that gives equal importance to all living forms and recognizes their
right is called biocentrism.
ENGINEER – FUNCTIONS AND RESPONSIBILITIES
Engineering is the professional art of applying, science to the optimum conversion
of the resources of nature to benefit man. The words engineer and ingenious are
derived from the same Latin root “ingenerare” meaning “to create”.
Associated with engineering is a great body of special knowledge; preparation for
professional practice involves extensive training in the application of that
knowledge. Engineering is an art requiring the judgment necessary to adapt
knowledge to practical purposes, the imagination to conceive original solutions to
problems, and the ability to predict performance and cost of new devices or
processes.
Module 3 [PROFESSIONAL ETHICS]
5
The function of the scientist is to know, while that of the engineer is to do. The
scientist adds to the store of verified, systematized knowledge of the physical
world; the engineer brings this knowledge to bear on practical problems.
Engineering is based principally on physics, chemistry & mathematics and their
extensions into materials science, solid and fluid mechanics, thermodynamics,
transfer and rate processes, system analysis, computer programming, electronics
and optronics.
Unlike the scientists, the engineer is not free to select the problem that interests
him; he must solve problems as they arise; his solution must satisfy conflicting
requirements. Usually efficiency costs money; safety adds to complexity; improved
performance increases weight. The engineering solution is the optimum solution,
the end result that, taking many factors into account, is most desirable. It may be
the cheapest for a specified level of performance, the most reliable within a given
weight limit, the simplest that will satisfy certain safety requirements, or the most
efficient for a given cost. In many engineering problems, the social costs are
significant.
Engineers employ two types of natural resources – materials and energy. Since
most resources are limited, the engineer must concern himself with the continual
development of new resources as well as the efficient utilization of existing ones.
The results of engineering activities contribute to the welfare of man by furnishing
food, shelter, and comfort; by making work, transportation and communication
easier and safer; and by making life pleasant and satisfying.
ENGINEERING FUNCTIONS:
The branches indicate what the engineer works with; the functions describe what
he does. In order of decreasing emphasis on science, the major functions of all
engineering branches are the following:
Research. The research engineer seeks new principles and processes by
employing mathematical and scientific concepts, experimental techniques,
and inductive reasoning.
Development. The development engineer applies the results of research to
useful purposes. Ingenious and creative application of new knowledge may
result in a working model of a new electronics circuit, a chemical process, an
industrial machine, or a gadget of optronics.
Design. In designing a structure or a product, the engineer selects methods,
specifies materials, and determines shapes to satisfy technical requirements
and to meet performance specification.
Construction. The construction engineer is responsible for preparing the
site, determining procedures that will economically and safely yield the
Module 3 [PROFESSIONAL ETHICS]
6
desired quality, directing the placement of materials, and organizing the
personnel and equipment.
Production. Plant layout and equipment selection, with consideration of
human and economic factors, is the responsibility of the production engineer.
He chooses processes and tools, integrates the flow of materials and
components, and provides for testing and inspection.
Operation. The operating engineer controls machines, plants, and
organizations providing power, transportation, and communication. He
determines procedures and supervises personnel to obtain reliable and
economic operation of complex equipment.
Management and other functions. In some countries (U.S.A.,Japan, etc)
and industries, engineers analyze customer requirements, recommend units
to satisfy needs economically, and resolve related problems. In some
industries, too, engineers decide how assets are to be used.
ENGINEERING RESPONSIBILITIES.
One activity common to all engineering work is problem solution. The problem may
involve quantitative or qualitative factors; it may be physical or economic; it may
require abstract mathematics or common sense. Of great importance is the process
of creative synthesis or design, putting ideas together to create a new and optimum
solution of the problem. Since the engineer functions at the socio-technological
―interface‖ (with science and technology on one side and individuals and
communities on the other), he bears a unique responsibility to decide on priorities,
establish performance criteria, select materials and processes, and specify
evaluation procedures.
Problem solution. Although engineering problems vary greatly in scope and
complexity, the same general approach is applicable. First comes an analysis of the
overall situation and a preliminary decision on a plan of attack. In line with this
plan, the usually broad and vague problem is reduced to a more categorical
question that can be clearly stated. The stated question is then answered by
deductive reasoning from known principles or by creative synthesis, as in a new
design. The answer or design is always checked for accuracy and adequacy. Finally,
the results for the simplified problem as stated are interpreted in terms of the
original problem and reported in an appropriate form.
In his search for solutions to problems, especially new problems, the engineer is in
conflict with a rather intractable environment and often in competition with
predecessors who tried and failed and with contemporary rivals who are trying to
solve the same problem. His success depends on ability to create a new idea, a new
device, a new process, or a new material.
Module 3 [PROFESSIONAL ETHICS]
7
Decision making. The engineer not only makes technological advances available
to man but also may be charged with the responsibility to see that such advances
do indeed enhance the welfare of man. By virtue of his knowledge, his skill, and his
unique role in society, the engineer must concern himself with the results of
technological progress such as its effect on the physical environment and its social
and economic impact. A successful engineer is prepared for decision making on
complex problems in broad areas. He is skilled in the use of sophisticated tools and
creative in the development of new techniques. He has the vision to conceive vast
projects, the talent to analyze them as integrated man-machine-environment
systems, and the ability to predict their technical performance and their human
impact.
Engineering as a people serving profession
Engineering is more than just employment. This profession is in public interest and
engineers are motivated by a genuine and principled concern for good. Engineer
gives importance to health, safety and welfare of public because of their moral
development.
Professional Morals
Even with shortcomings in Kohlberg‘s theory, it is a valid approach to evaluation of
moral character.
The stages in professional development according to this theory are
Pre Professional
Professional
Principled Professional
Pre Professional
Stage 1
Engineer is not concerned with social or professional responsibilities. Professional
conduct is dictated by gain of individual, with no thought of how such conduct
would affect the firm, client etc.
Stage 2
Engineers realize there is something to be gained as ‗being nice‘. Thuswhile
engineer is aware of the ideas of loyalty to the firm, client, confidenc and proper
professional conduct, ethical behavior depends on motive of self advancement.
Professional
Module 3 [PROFESSIONAL ETHICS]
8
Stage 3
Engineer puts loyalty to firm above any other consideration. Engineer concenterates
on technical matters, becomes a team player.
Stage 4
Individual retains loyalty to firm but recognizes that the firm is part of a larger
profession and loyalty to the profession enhances the reputation of the firm and
brings rewards to engineer
Principled Professional
Stage 5
Here service to human welfare is paramount. He realizes that sucha service will
also bring credit to the firm and the profession . Thus rules of society determine
professional conduct.
Stage 6
Professional conduct follows rule of universal justice, fairness and caring for fellow
human beings.
Engineers responsibility to environment
Central concepts in conventional ethics, such as rights & justice, do not work very
well when applied to animals, plants, places and natural objects.
Engineers unlike other professions are directly involved in environmental
conservation & preservation. No matter what project it is, it is they who will do it.
Hence we engineers have a special responsibility to environment and hence they
can make a difference.
Sustainable development
"Sustainable development is development that meets the needs of the present
without compromising the ability of future generations to meet their own needs. It
contains within it two key concepts:
the concept of needs, in particular the essential needs of the world's poor, to
which overriding priority should be given; and
the idea of limitations imposed by the state of technology and social
organization on the environment's ability to meet present and future needs."
Module 3 [PROFESSIONAL ETHICS]
9
All definitions of sustainable development require that we see the world as a
system—a system that connects space; and a system that connects time.
When you think of the world as a system over space, you grow to understand that
air pollution from North America affects air quality in Asia, and that pesticides
sprayed in Argentina could harm fish stocks off the coast of Australia.
And when you think of the world as a system over time, you start to realize that the
decisions our grandparents made about how to farm the land continue to affect
agricultural practice today; and the economic policies we endorse today will have
an impact on urban poverty when our children are adults.
We also understand that quality of life is a system, too. It's good to be physically
healthy, but what if you are poor and don't have access to education? It's good to
have a secure income, but what if the air in your part of the world is unclean? And
it's good to have freedom of religious expression, but what if you can't feed your
family?
The concept of sustainable development is rooted in this sort of systems thinking. It
helps us understand ourselves and our world. The problems we face are complex
and serious—and we can't address them in the same way we created them. But
we can address them
The concept of ―sustainable development,‖ as coined by the World Commission on
Environment and Development and with it, the term ―sustainability‖ itself, have
been gaining increasing recognition in recent years all around the world. Wide-
spread use, however, has been followed by growing ambiguity so that today both
terms are employed within a very broad spectrum of meaning often, to the point of
trivialization.
The set of five Sustainability Principles proposed below is offered in order to
advance and restore some rigor to the underlying ideas. Its development was
informed by a number of existing frameworks and was inspired, in particular, by the
work of R.Buckminster Fuller.
The principles are articulated in a general fashion but can receive a specific
operational meaning in relation to particular sectors of the economy, development
issues, business strategies, investment guidelines, or initiatives taken by
individuals.They are expressed in relation to five fundamental domains:
The Material Domain: Constitutes the basis for regulating the flow of materials
and energy that underlie existence.
Module 3 [PROFESSIONAL ETHICS]
10
The Economic Domain: Provides a guiding framework for creating and managing
wealth.
The Domain of Life: Provides the basis for appropriate behavior in the biosphere.
The Social Domain: Provides the basis for social interactions.
The Spiritual Domain: Identifies the necessary attitudinal orientation and
provides the basis for a universal code of ethics.
Sustainable Development is based on three pillars (economics, environment and
society) and the art is to find a balance between them.
Sustainable Development and Engineers
Because of the role of engineers in our society, there is a great importance of them
be concerned with
Sustainable Development. Engineers should not only inform the society about the
impact of the
technologies and make companies aware about Sustainable Development issues,
but also cooperate with
all kinds of stakeholders (e.g. Non-Governmental Organisations) to improve the
quality of our future.
Principles of Sustainability
The concept of sustainability is based on the premise that people and their
communities are made up of social, economic, and environmental systems that are
in constant interaction and that must be kept in harmony or balance if the
community is to continue to function to the benefit of its inhabitants— now and in
the future. Sustainability is an ideal toward which to strive and against which to
weigh proposed actions, plans, expenditures, and decisions. It is a way of looking at
a community or a society or a planet in the broadest possible context, in both time
and space.
There are six principles of sustainability that can help a community ensure that its
social, economic, and environmental systems are well integrated and will endure.
Module 3 [PROFESSIONAL ETHICS]
11
We should remember that, although the list of principles is useful, each of them has
the potential to overlap and inter-relate with some or all of the others. A
community or society that wants to pursue sustainability will try to:
1. Maintain and, if possible, enhance, its residents’ quality of life. Quality of
life—or ―livability‖—differs from community to community. It has many
components: income, education, health care, housing, employment, legal rights on
the one hand; exposure to crime, pollution, disease, disaster, and other risks on the
other. One town may be proud of its safe streets, high quality schools, and rural
atmosphere, while another thinks that job opportunities and its historical heritage
are what make it an attractive place to live. Each locality must define and plan for
the quality of life it wants and believes it can achieve, for now and for future
generations.
2. Enhance local economic vitality. A viable local economy is essential to
sustainability. This includes job opportunities, sufficient tax base and revenue to
support government and the provision of infrastructure and services, and a suitable
business climate. A sustainable economy is also diversified, so that it is not easily
disrupted by internal or external events or disasters, and such an economy does
not simply shift the costs of maintaining its good health onto other regions or onto
the oceans or atmosphere. Nor is a sustainable local economy reliant on unlimited
population growth, high consumption, or nonrenewable resources.
3. Promote social and intergenerational equity. A sustainable community‘s
resources and opportunities are available to everyone, regardless of ethnicity, age,
gender, cultural background, religion, or other characteristics. Further, a
sustainable community does not deplete its resources, destroy natural systems, or
pass along unnecessary hazards to its great-great-grandchildren.
4. Maintain and, if possible, enhance, the quality of the environment. A
sustainable community sees itself as existing within a physical environment and
natural ecosystem and tries to find ways to co-exist with that environment. It does
its part by avoiding unnecessary degradation of the air, oceans, fresh water, and
other natural systems. It tries to replace detrimental practices with those that allow
ecosystems to continuously renew themselves. In some cases, this means simply
protecting what is already there by finding ways to redirect human activities and
development into less sensitive areas. But a community may need to take action to
reclaim, restore, or rehabilitate an already-damaged ecosystem such as a nearby
wetland.
5. Incorporate disaster resilience and mitigation into its decisions and
actions. A community is resilient in the face of inevitable natural disasters like
tornadoes, hurricanes, earthquakes, floods, and drought if it takes steps to ensure
that such events cause as little damage as possible, that productivity is only
Module 3 [PROFESSIONAL ETHICS]
12
minimally interrupted, and that quality of life remains at (or quickly returns to) high
levels. A disaster-resilient community further takes responsibility for the risks it
faces and, to the extent possible, is self reliant. That is, it does not anticipate that
outside entities (such as federal or state government) can or will mitigate its
hazards or pay for its disasters.
6. Use a consensus-building, participatory process when making decisions.
Participatory processes are vital to community sustainability. Such a process
engages all the people who have a stake in the outcome of the decision being
contemplated. It encourages the identification of concerns and issues, promotes the
wide generation of ideas for dealing with those concerns, and helps those involved
find a way to reach agreement about solutions. It results in the production and
dissemination of important, relevant information, fosters a sense of community,
produces ideas that may not have been considered otherwise, and engenders a
sense of ownership on the part of the community for the final decision.
Environmental Sustainability
Environmental sustainability involves making decisions and taking action that are in
the interests of protecting the natural world, with particular emphasis on preserving
the capability of the environment to support human life. It is an important topic at
the present time, as people are realising the full impact that businesses and
individuals can have on the environment.
Environmental sustainability is about making responsible decisions that will reduce
your business' negative impact on the environment. It is not simply about reducing
the amount of waste you produce or using less energy, but is concerned with
developing processes that will lead to businesses becoming completely sustainable
in the future.
Currently, environmental sustainability is a topical issue that receives plenty of
attention from the media and from different governmental departments. This is a
result of the amount of research going into assessing the impact that human
activity can have on the environment. Although the long term implications of this
serious issue are not yet fully understood, it is generally agreed that the risk is high
enough to merit an immediate response. Businesses are expected to lead in the
area of environmental sustainability as they are considered to be the biggest
contributors and are also in a position where they can make a significant difference.
Businesses can potentially cause damage to all areas of the environment. Some of
the common environmental concerns include:
damaging rainforests and woodlands through logging and agricultural clearing
polluting and over-fishing of oceans, rivers and lakes
Module 3 [PROFESSIONAL ETHICS]
13
polluting the atmosphere through the burning of fossil fuels
damaging prime agricultural and cultivated land through the use of unsustainable
farming practices
For much of the past, most businesses have acted with little regard or concern for
the negative impact they have on the environment. Many large and small
organizations are guilty of significantly polluting the environment and engaging in
practices that are simply not sustainable. However, there are now an increasing
number of businesses that are committed to reducing their damaging impact and
even working towards having a positive influence on environmental sustainability.
Environmental sustainability forces businesses to look beyond making short term
gains and look at the long term impact they are having on the natural world. You
need to consider not only the immediate impact your actions have on the
environment, but the long term implications as well. For example, when
manufacturing a product, you need to look at the environmental impact of the
products entire lifecycle, from development to disposal before finalizing your
designs.
Achieving sustainability will enable the Earth to continue supporting human life.
In ecology, sustainability is how biological systems endure and remain diverse
and productive. Long-lived and healthy wetlands and forests are examples of
sustainable biological systems. For humans, sustainability is the potential for long-
term maintenance of well being, which has ecological, economic, political and
cultural dimensions. Sustainability requires the reconciliation of these
environmental, social equity and economic demands - also referred to as the "three
pillars" of sustainability or the 3 Es.
Healthy ecosystems and environments are necessary to the survival and flourishing
of humans and other organisms. There are a number of major ways of reducing
negative human impact. Among the first of these are environmentally-friendly
chemical engineering, environmental resources management and environmental
protection. This approach is based largely on information gained from green
chemistry, earth science, environmental science and conservation biology. The
second approach is management of humanconsumption of resources, which is
based largely on information gained fromeconomics. A third more recent approach
adds cultural and political concerns into the sustainability matrix.
Sustainability interfaces with economics through the social and environmental
consequences of economic activity. Sustainability economics involves ecological
economics where social aspects including cultural, health-related and
monetary/financial aspects are integrated. Moving towards sustainability is also a
social challenge that entails internationaland national law, urban
planning and transport, local and individual lifestyles and ethical consumerism.
Module 3 [PROFESSIONAL ETHICS]
14
Ways of living more sustainably can take many forms from reorganising living
conditions (e.g., ecovillages, eco-municipalities and sustainable cities), reappraising
economic sectors (permaculture, green building, sustainable agriculture), or work
practices (sustainable architecture), using science to develop new technologies
(green technologies, renewable energy and sustainable Fission and Fusion power),
to adjustments in individual lifestyles that conserve natural resources. Despite the
increased popularity of the use of the term "sustainability", the possibility that
human societies will achieve environmental sustainability has been, and continues
to be, questioned—in light of environmental degradation, climate
change,overconsumption, and societies' pursuit of indefinite economic growth in
a closed system.
The word sustainability is derived from the Latin sustinere (tenere, to hold; sus,
up). Sustain can mean ―maintain", "support", or "endure‖. Since the
1980s sustainability has been used more in the sense of human sustainability on
planet Earth and this has resulted in the most widely quoted definition of
sustainability as a part of the concept sustainable development, that of
the Brundtland Commission of the United Nations on March 20, 1987: ―sustainable
development is development that meets the needs of the present without
compromising the ability of future generations to meet their own needs
Venn diagram of sustainable development:
at the confluence of three constituent parts[8]
The simple definition "sustainability is improving the quality of human life while
living within the carrying capacity of supporting eco-systems",[22]
though vague,
conveys the idea of sustainability having quantifiable limits. But sustainability is
also a call to action, a task in progress or ―journey‖ and therefore a political
process, so some definitions set out common goals and values
Economic opportunity[edit]
Module 3 [PROFESSIONAL ETHICS]
15
Treating the environment as an externality may generate short-term profit at the
expense of sustainability.[154]
Sustainable business practices, on the other hand,
integrate ecological concerns with social and economic ones (i.e., the triple bottom
line).[155][156]
Growth that depletes ecosystem services is sometimes termed
"uneconomic growth" as it leads to a decline inquality of life.[157][158]
Minimising such
growth can provide opportunities for local businesses. For example, industrial waste
can be treated as an "economic resource in the wrong place". The benefits of waste
reduction include savings from disposal costs, fewer environmental penalties, and
reduced liability insurance. This may lead to increased market share due to an
improved public image.[159][160]
Energy efficiency can also increase profits by
reducing costs.
The idea of sustainability as a business opportunity has led to the formation of
organizations such as the Sustainability Consortium of the Society for
Organizational Learning, the Sustainable Business Institute, and the World Council
for Sustainable Development.[161]
Research focusing on progressive corporate
leaders who have embedded sustainability into commercial strategy has yielded a
leadership competency model for sustainability.[162][163]
The expansion of
sustainable business opportunities can contribute to job creation through the
introduction of green-collar workers.[164]
Social dimension[edit]
Sustainability issues are generally expressed in scientific and environmental terms,
as well as in ethical terms ofstewardship, but implementing change is a social
challenge that entails, among other things, international and national law,urban
planning and transport, local and individual lifestyles and ethical consumerism. "The
relationship between human rights and human development, corporate power and
environmental justice, global poverty and citizen action, suggest that responsible
global citizenship is an inescapable element of what may at first glance seem to be
simply matters of personal consumer and moral choice."[
Peace, security, social justice[edit]
Social disruptions like war, crime and corruption divert resources from areas of
greatest human need, damage the capacity of societies to plan for the future, and
generally threaten human well-being and the environment.[166]
Broad-based
strategies for more sustainable social systems include: improved education and the
political empowerment of women, especially in developing countries; greater regard
for social justice, notably equity between rich and poor both within and between
countries; and intergenerational equity.[57]
Depletion of natural resources including
fresh water[167]
increases the likelihood of ―resource wars‖.[168]
This aspect of
sustainability has been referred to as environmental security and creates a clear
need for global environmental agreements to manage resources such as aquifers
Module 3 [PROFESSIONAL ETHICS]
16
and rivers which span political boundaries, and to protect shared global systems
including oceans and the atmosphere
Sustainable agriculture is the act of farming using principles of ecology, the
study of relationships between organisms and their environment. The phrase was
reportedly coined by Australian agricultural scientist Gordon McClymont.[1]
It has
been defined as "an integrated system of plant and animal production practices
having a site-specific application that will last over the long term" For Example:
Satisfy human food and fibre needs
Enhance environmental quality and the natural resource base upon which the
agricultural economy depends
Make the most efficient use of non-renewable resources and on-farm resources
and integrate, where appropriate, natural biological cycles and controls
Sustain the economic viability of farm operations
Enhance the quality of life for farmers and society as a whole
Sustainable agriculture can be understood as an ecosystem approach to
agriculture.[3]
Practices that can cause long-term damage to soil include
excessive tillage (leading to erosion) and irrigation without adequate drainage
(leading tosalinization). Long-term experiments have provided some of the best
data on how various practices affect soil properties essential to sustainability. In the
United States a federal agency, USDA-Natural Resources Conservation Service,
specializes in providing technical and financial assistance for those interested in
pursuing natural resource conservation and production agriculture as compatible
goals.
The most important factors for an individual site are sun, air, soil, nutrients, and
water. Of the five, water and soil quality and quantity are most amenable to human
intervention through time and labor.
Although air and sunlight are available everywhere on Earth, crops also depend
on soil nutrients and the availability ofwater. When farmers grow
and harvest crops, they remove some of these nutrients from the soil. Without
replenishment, land suffers from nutrient depletion and becomes either unusable or
suffers from reduced yields. Sustainable agriculture depends on replenishing the
soil while minimizing the use or need of non-renewable resources, such as natural
gas (used in converting atmospheric nitrogen into synthetic fertilizer), or mineral
ores (e.g., phosphate). Possible sources of nitrogen that would, in principle, be
available indefinitely, include:
1. recycling crop waste and livestock or treated human manure
Module 3 [PROFESSIONAL ETHICS]
17
2. growing legume crops and forages such as peanuts or alfalfa that form
symbioses with nitrogen-fixing bacteria calledrhizobia
3. industrial production of nitrogen by the Haber Process uses hydrogen, which
is currently derived from natural gas, (but this hydrogen could instead be
made by electrolysis of water using electricity (perhaps from solar cells or
windmills)) or
4. genetically engineering (non-legume) crops to form nitrogen-fixing
symbioses or fix nitrogen without microbial symbionts.
Water
In some areas sufficient rainfall is available for crop growth, but many other areas
require irrigation. For irrigation systems to be sustainable, they require proper
management (to avoid salinization) and must not use more water from their source
than is naturally replenishable. Otherwise, the water source effectively becomes a
non-renewable resource. Improvements in water well drilling technology
and submersible pumps, combined with the development of drip irrigation and low
pressure pivots, have made it possible to regularly achieve high crop yields in areas
where reliance on rainfall alone had previously made successful agriculture
unpredictable. However, this progress has come at a price. In many areas, such as
theOgallala Aquifer, the water is being used faster than it can be recharged.
Several steps must be taken to develop drought-resistant farming systems even in
"normal" years with average rainfall. These measures include both policy and
management actions: 1) improving water conservation and storage measures, 2)
providing incentives for selection of drought-tolerant crop species, 3) using
reduced-volume irrigation systems, 4) managing crops to reduce water loss, or 5)
not planting crops at all.[6]
Indicators for sustainable water resource development are:
¤ Internal renewable water resources. This is the average annual flow of rivers
and groundwater generated from endogenous precipitation, after ensuring that
there is no double counting. It represents the maximum amount of water resource
produced within the boundaries of a country. This value, which is expressed as an
average on a yearly basis, is invariant in time (except in the case of proved climate
change). The indicator can be expressed in three different units: in absolute terms
(km3/yr), in mm/yr (it is a measure of the humidity of the country), and as a
function of population (m3/person per yr).
¤ Global renewable water resources. This is the sum of internal renewable
water resources and incoming flow originating outside the country. Unlike internal
resources, this value can vary with time if upstream development reduces water
availability at the border. Treaties ensuring a specific flow to be reserved from
Module 3 [PROFESSIONAL ETHICS]
18
upstream to downstream countries may be taken into account in the computation
of global water resources in both countries.
¤ Dependency ratio. This is the proportion of the global renewable water
resources originating outside the country, expressed in percentage. It is an
expression of the level to which the water resources of a country depend on
neighbouring countries.
¤ Water withdrawal. In view of the limitations described above, only gross water
withdrawal can be computed systematically on a country basis as a measure of
water use. Absolute or per-person value of yearly water withdrawal gives a
measure of the importance of water in the country's economy. When expressed in
percentage of water resources, it shows the degree of pressure on water resources.
A rough estimate shows that if water withdrawal exceeds a quarter of global
renewable water resources of a country, water can be considered a limiting factor
to development and, reciprocally, the pressure on water resources can have a direct
impact on all sectors, from agriculture to environment and fisheries
Soil
Soil erosion is fast becoming one of the worlds greatest problems. It is estimated
that "more than a thousand million tonnes of southern Africa's soil are eroded every
year. Experts predict that crop yields will be halved within thirty to fifty years if
erosion continues at present rates."[8]
Soil erosion is not unique to Africa but is
occurring worldwide. The phenomenon is being called Peak Soil as present large
scale factory farming techniques are jeopardizing humanity's ability to grow food in
the present and in the future.[9]
Without efforts to improve soil management
practices, the availability of arable soil will become increasingly problematic
Sustainable city
A sustainable city, or eco-city is a city designed with consideration
of environmental impact, inhabited by people dedicated to minimization of required
inputs of energy, water and food, and waste output of heat, air pollution -
CO2,methane, and water pollution. Richard Register first coined the term "ecocity"
in his 1987 book, Ecocity Berkeley: Building Cities for a Healthy Future.[1]
Other
leading figures who envisioned the sustainable city are architect Paul F Downton,
who later founded the company Ecopolis Pty Ltd, and authors Timothy
Beatley and Steffen Lehmann,[2]
who have written extensively on the subject. The
field of industrial ecology is sometimes used in planning these cities.
There remains no completely agreed upon definition for what a sustainable city
should be or completely agreed upon paradigm for what components should be
included. Generally, developmental experts agree that a sustainable city should
Module 3 [PROFESSIONAL ETHICS]
19
meet the needs of the present without sacrificing the ability of future generations to
meet their own needs. The ambiguity within this idea leads to a great deal of
variation in terms of how cities carry out their attempts to become
sustainable.[3]
However, a sustainable city should be able to feed itself with minimal
reliance on the surrounding countryside, and power itself with renewable sources of
energy. The crux of this is to create the smallest possible ecological footprint, and
to produce the lowest quantity of pollution possible, to efficiently use land; compost
used materials, recycle it or convert waste-to-energy, and thus the city's overall
contribution to climate change will be minimal, if such practices are adhered to.
It is estimated that over 50%[4]
of the world‘s population now lives in cities and
urban areas. These large communities provide both challenges and opportunities
for environmentally-conscious developers, and there are distinct advantages to
further defining and working towards the goals of sustainable cities. Humans are
social creatures and thrive in urban spaces that foster social connections. Because
of this, a shift to more dense, urban living would provide an outlet for social
interaction and conditions under which humans can prosper. Contrary to common
belief, urban systems can be more environmentally sustainable than rural or
suburban living. With people and resource located so close to one another it is
possible to save energy and resources things such as food transportation and mass
transit systems. Finally, cities benefit the economy by locating human capital in one
relatively small geographic area where ideas can be generated.
These ecological cities are achieved through various means, such as:
Different agricultural systems such as agricultural plots within the city
(suburbs or centre). This reduces the distance food has to travel from field to
fork. Practical work out of this may be done by either small scale/private
farming plots or through larger scale agriculture (e.g. farmscrapers).
Renewable energy sources, such as wind turbines, solar panels, or bio-
gas created from sewage. Cities provideeconomies of scale that make such
energy sources viable.
Various methods to reduce the need for air conditioning (a massive energy
demand), such as planting trees and lightening surface colors, natural
ventilation systems, an increase in water features, and green spaces equaling at
least 20% of the city's surface. These measures counter the "heat island effect"
caused by an abundance of tarmac and asphalt, which can make urban areas
several degrees warmer than surrounding rural areas—as much as six degrees
Celsius during the evening.
Improved public transport and an increase in pedestrianization to reduce car
emissions. This requires a radically different approach to city planning, with
integrated business, industrial, and residential zones. Roads may be designed to
make driving difficult.
Module 3 [PROFESSIONAL ETHICS]
20
Optimal building density to make public transport viable but avoid the creation
of urban heat islands.
Solutions to decrease urban sprawl, by seeking new ways of allowing people to live
closer to the workspace. Since the workplace tends to be in the city, downtown, or
urban center, they are seeking a way to increase density by changing the
antiquated attitudes many suburbanites have towards inner-city areas. One of the
new ways to achieve this is by solutions worked out by the Smart GrowthMovement
Urban farming
Urban farming is the process of growing and distributing food, as well as raising
animals, in and around a city or in urban area. There are many motivations behind
urban agriculture, but in the context of creating a sustainable city, this method of
food cultivation saves energy in food transportation and saves costs. In order for
urban farming to be a successful method of sustainable food growth, cities must
allot a common area for community gardens or farms, as well as a common area
for a farmers market in which the foodstuffs grown within the city can be sold to
the residents of the urban system.
Car free city
The concept of Car free cities or a city with large pedestrian areas is often part of
the design of a sustainable city. A large amount of the carbon footprint of a city is
generated from cars so it is often consider being an integral part of the design of a
sustainable city.
India
Auroville was founded in 1968 with the intention of realizing human unity, and is
now home to approximately 2,000 individuals from over 45 nations around the
world. Its focus is its vibrant community culture and its expertise in renewable
energy systems, habitat restoration, ecology skills, mindfulness practices, and
holistic education.
Some egs for sustainable urban development
BOGOTA: URBAN TRANSPORTATION
This city took the Urban Transportation award for its ultra-efficient bus and taxi
fleets. Bogota's Bus Rapid Transit system, launched in 2000, shuttles over 70% of
the city's 7.1 million person population. Future goals include replacing all of the
city's diesel fleet with hybrid and electric buses, electrifying the entire the taxi fleet,
and adding a new metro line.
MELBOURNE: ENERGY EFFICIENT BUILT ENVIRONMENT
Module 3 [PROFESSIONAL ETHICS]
21
Melbourne won in the Energy Efficient Built Environment category for a sustainable
buildings program that gives building managers and owners financing for energy
and water retrofits.
MUNICH: GREEN ENERGY
Munich received the Green Energy award for its initiative to power the city
completely using renewable sources by 2025. So far, the city is 37% of the way
there--in 2015, wind projects will cause that number to climb to 80%.
SINGAPORE: INTELLIGENT CITY INFRASTRUCTURE
Singapore is the Intelligent City Infrastructure recipient--an award given for its
Intelligent Transport System, which is made up of an amalgam of smart
transportation initiatives, like real-time traffic data from GPS-equipped taxis and
an electronic road toll collection system. The result: Singapore has lower congestion
rates than most cities.
Economic development generally refers to the sustained, concerted actions of
policy makers and communities that promote the standard of living andeconomic
health of a specific area. Economic development can also be referred to as the
quantitative and qualitative changes in the economy. Such actions can involve
multiple areas including development of human capital,critical infrastructure,
regional competitiveness, environmental, sustainability,social
inclusion, health, safety, literacy, and other initiatives. Economic development
differs from economic growth. Whereas economic development is a policy
intervention endeavor with aims of economic and social well-being of people,
economic growth is a phenomenon of market productivity and rise inGDP.
Consequently, as economist Amartya Sen points out: ―economic growth is one
aspect of the process of economic development

Weitere ähnliche Inhalte

Was ist angesagt?

Air Pollution Sampling and Analysis
Air Pollution Sampling and AnalysisAir Pollution Sampling and Analysis
Air Pollution Sampling and AnalysisRakshith Jain
 
Air pollution prevention & control
Air pollution   prevention & controlAir pollution   prevention & control
Air pollution prevention & controlMishqaat Hussain
 
Mobile Air Pollution
Mobile Air PollutionMobile Air Pollution
Mobile Air PollutionEd Stermer
 
ENVIRONMENTAL ETHICS
ENVIRONMENTAL ETHICSENVIRONMENTAL ETHICS
ENVIRONMENTAL ETHICSbhanu_
 
Professional Ethics in Engineering
Professional Ethics in EngineeringProfessional Ethics in Engineering
Professional Ethics in EngineeringNandakumar P
 
Indoor air pollution
Indoor air pollutionIndoor air pollution
Indoor air pollutionArpit Gupta
 
Environmental Pollution and prevention
Environmental Pollution and preventionEnvironmental Pollution and prevention
Environmental Pollution and preventionDr. Tanuja Nautiyal
 
Environmental pollution causes & effect
Environmental pollution causes & effectEnvironmental pollution causes & effect
Environmental pollution causes & effectVivek Deshmukh
 
Projections for future of solid waste mngmt
Projections for future of solid waste mngmtProjections for future of solid waste mngmt
Projections for future of solid waste mngmtAbhishek Rajput
 
Environmental pollution wwwwwwwwwwwwwwwwwwww
Environmental pollution wwwwwwwwwwwwwwwwwwwwEnvironmental pollution wwwwwwwwwwwwwwwwwwww
Environmental pollution wwwwwwwwwwwwwwwwwwwwsehrish shahid
 
Indoor Air Quality Management
Indoor Air Quality ManagementIndoor Air Quality Management
Indoor Air Quality ManagementChockalingam T
 
noice pollution
noice pollutionnoice pollution
noice pollutionYash Patel
 
Air pollution ppt
Air pollution pptAir pollution ppt
Air pollution pptAnup Kude
 

Was ist angesagt? (20)

Air Pollution Sampling and Analysis
Air Pollution Sampling and AnalysisAir Pollution Sampling and Analysis
Air Pollution Sampling and Analysis
 
Environmental ethics project
Environmental ethics projectEnvironmental ethics project
Environmental ethics project
 
Air pollution prevention & control
Air pollution   prevention & controlAir pollution   prevention & control
Air pollution prevention & control
 
Environmental ethics
Environmental ethicsEnvironmental ethics
Environmental ethics
 
Pollution Control
Pollution ControlPollution Control
Pollution Control
 
Mobile Air Pollution
Mobile Air PollutionMobile Air Pollution
Mobile Air Pollution
 
ENVIRONMENTAL ETHICS
ENVIRONMENTAL ETHICSENVIRONMENTAL ETHICS
ENVIRONMENTAL ETHICS
 
Professional Ethics in Engineering
Professional Ethics in EngineeringProfessional Ethics in Engineering
Professional Ethics in Engineering
 
air pollution
air pollutionair pollution
air pollution
 
Effect Of Air Pollution On Human Health
Effect Of Air Pollution On Human HealthEffect Of Air Pollution On Human Health
Effect Of Air Pollution On Human Health
 
Indoor air pollution
Indoor air pollutionIndoor air pollution
Indoor air pollution
 
Environmental Pollution and prevention
Environmental Pollution and preventionEnvironmental Pollution and prevention
Environmental Pollution and prevention
 
Land pollution .
Land pollution .Land pollution .
Land pollution .
 
Environmental pollution causes & effect
Environmental pollution causes & effectEnvironmental pollution causes & effect
Environmental pollution causes & effect
 
Projections for future of solid waste mngmt
Projections for future of solid waste mngmtProjections for future of solid waste mngmt
Projections for future of solid waste mngmt
 
Environmental pollution wwwwwwwwwwwwwwwwwwww
Environmental pollution wwwwwwwwwwwwwwwwwwwwEnvironmental pollution wwwwwwwwwwwwwwwwwwww
Environmental pollution wwwwwwwwwwwwwwwwwwww
 
Air pollution
Air pollutionAir pollution
Air pollution
 
Indoor Air Quality Management
Indoor Air Quality ManagementIndoor Air Quality Management
Indoor Air Quality Management
 
noice pollution
noice pollutionnoice pollution
noice pollution
 
Air pollution ppt
Air pollution pptAir pollution ppt
Air pollution ppt
 

Andere mochten auch

Andere mochten auch (8)

Models Of Urban Sustainability
Models Of Urban SustainabilityModels Of Urban Sustainability
Models Of Urban Sustainability
 
Professional ethics 2 mark & 16 mark question bank
Professional ethics  2 mark & 16 mark question bankProfessional ethics  2 mark & 16 mark question bank
Professional ethics 2 mark & 16 mark question bank
 
GE6075 PROFESSIONAL ETHICS IN ENGINEERING Unit 4
GE6075 PROFESSIONAL ETHICS IN ENGINEERINGUnit 4GE6075 PROFESSIONAL ETHICS IN ENGINEERINGUnit 4
GE6075 PROFESSIONAL ETHICS IN ENGINEERING Unit 4
 
GE6075 PROFESSIONAL ETHICS IN ENGINEERING Unit 3
GE6075 PROFESSIONAL ETHICS IN ENGINEERING Unit 3GE6075 PROFESSIONAL ETHICS IN ENGINEERING Unit 3
GE6075 PROFESSIONAL ETHICS IN ENGINEERING Unit 3
 
GE6075 PROFESSIONAL ETHICS IN ENGINEERING Unit 2
GE6075 PROFESSIONAL ETHICS IN ENGINEERING Unit 2GE6075 PROFESSIONAL ETHICS IN ENGINEERING Unit 2
GE6075 PROFESSIONAL ETHICS IN ENGINEERING Unit 2
 
Professional Ethics-Notes
Professional Ethics-NotesProfessional Ethics-Notes
Professional Ethics-Notes
 
Environmental Issues and Sustainability
Environmental Issues and SustainabilityEnvironmental Issues and Sustainability
Environmental Issues and Sustainability
 
GE6075 PROFESSIONAL ETHICS IN ENGINEERING Unit 1
GE6075 PROFESSIONAL ETHICS IN ENGINEERING Unit 1GE6075 PROFESSIONAL ETHICS IN ENGINEERING Unit 1
GE6075 PROFESSIONAL ETHICS IN ENGINEERING Unit 1
 

Ähnlich wie Module 3 Professional Ethics and Environmental Issues

1 Environmental Ethics
1 Environmental Ethics1 Environmental Ethics
1 Environmental EthicsLori Head
 
Man and his environment 2
Man and his environment 2Man and his environment 2
Man and his environment 2jovellconde1
 
environmental ethics approaches and theories.pptx
environmental ethics approaches and theories.pptxenvironmental ethics approaches and theories.pptx
environmental ethics approaches and theories.pptxSehrishSarfraz2
 
ENVIRONMENTAL ISSUES AND AWARENESS - Presentation
ENVIRONMENTAL ISSUES AND AWARENESS - PresentationENVIRONMENTAL ISSUES AND AWARENESS - Presentation
ENVIRONMENTAL ISSUES AND AWARENESS - PresentationTaruna Deshwal
 
292021 essay 4 self reflectionhttpscanvas.pasadena.e
292021 essay 4 self reflectionhttpscanvas.pasadena.e292021 essay 4 self reflectionhttpscanvas.pasadena.e
292021 essay 4 self reflectionhttpscanvas.pasadena.essusera34210
 
The human person in the environment
The human person in the environmentThe human person in the environment
The human person in the environmentjeromecastelo
 
Enviornmental Ethics
Enviornmental EthicsEnviornmental Ethics
Enviornmental EthicsAli Kamran
 
Philosophy and the Environment
Philosophy and the Environment Philosophy and the Environment
Philosophy and the Environment KokoStevan
 
Presentation environmental ethics_1502530007_266921
Presentation environmental ethics_1502530007_266921Presentation environmental ethics_1502530007_266921
Presentation environmental ethics_1502530007_266921YashRawat62
 
Environmental Philosophy.pptx
Environmental Philosophy.pptxEnvironmental Philosophy.pptx
Environmental Philosophy.pptxROMEILYNBUSTOS
 
Human ecology home work_society.18.3.2011
Human ecology home work_society.18.3.2011Human ecology home work_society.18.3.2011
Human ecology home work_society.18.3.2011Mauri Ahlberg
 
Human Person and the Environment
Human Person and the EnvironmentHuman Person and the Environment
Human Person and the EnvironmentJosephPayno2
 
Environmental ethics ,types, approaches and issues pptx
Environmental ethics ,types, approaches and issues pptxEnvironmental ethics ,types, approaches and issues pptx
Environmental ethics ,types, approaches and issues pptxkiranmohan42
 

Ähnlich wie Module 3 Professional Ethics and Environmental Issues (20)

Environmental Ethics And Pollution
Environmental Ethics And PollutionEnvironmental Ethics And Pollution
Environmental Ethics And Pollution
 
Environmental ethics
Environmental ethicsEnvironmental ethics
Environmental ethics
 
1 Environmental Ethics
1 Environmental Ethics1 Environmental Ethics
1 Environmental Ethics
 
Man and his environment 2
Man and his environment 2Man and his environment 2
Man and his environment 2
 
environmental ethics approaches and theories.pptx
environmental ethics approaches and theories.pptxenvironmental ethics approaches and theories.pptx
environmental ethics approaches and theories.pptx
 
Environmental ethics
Environmental ethicsEnvironmental ethics
Environmental ethics
 
ENVIRONMENTAL ISSUES AND AWARENESS - Presentation
ENVIRONMENTAL ISSUES AND AWARENESS - PresentationENVIRONMENTAL ISSUES AND AWARENESS - Presentation
ENVIRONMENTAL ISSUES AND AWARENESS - Presentation
 
292021 essay 4 self reflectionhttpscanvas.pasadena.e
292021 essay 4 self reflectionhttpscanvas.pasadena.e292021 essay 4 self reflectionhttpscanvas.pasadena.e
292021 essay 4 self reflectionhttpscanvas.pasadena.e
 
The human person in the environment
The human person in the environmentThe human person in the environment
The human person in the environment
 
Enviornmental Ethics
Enviornmental EthicsEnviornmental Ethics
Enviornmental Ethics
 
Philosophy and the Environment
Philosophy and the Environment Philosophy and the Environment
Philosophy and the Environment
 
Environmental Ethics
Environmental EthicsEnvironmental Ethics
Environmental Ethics
 
Lesson 4 the human person in the environment
Lesson 4 the human person in the environmentLesson 4 the human person in the environment
Lesson 4 the human person in the environment
 
Presentation environmental ethics_1502530007_266921
Presentation environmental ethics_1502530007_266921Presentation environmental ethics_1502530007_266921
Presentation environmental ethics_1502530007_266921
 
Environmental Philosophy.pptx
Environmental Philosophy.pptxEnvironmental Philosophy.pptx
Environmental Philosophy.pptx
 
Human ecology home work_society.18.3.2011
Human ecology home work_society.18.3.2011Human ecology home work_society.18.3.2011
Human ecology home work_society.18.3.2011
 
Human Person and the Environment
Human Person and the EnvironmentHuman Person and the Environment
Human Person and the Environment
 
Environmental-Science.pptx
Environmental-Science.pptxEnvironmental-Science.pptx
Environmental-Science.pptx
 
Notes mod 3
Notes mod 3Notes mod 3
Notes mod 3
 
Environmental ethics ,types, approaches and issues pptx
Environmental ethics ,types, approaches and issues pptxEnvironmental ethics ,types, approaches and issues pptx
Environmental ethics ,types, approaches and issues pptx
 

Mehr von Bella Meraki

How to create an awesome Resume ?
How to create an awesome Resume ?How to create an awesome Resume ?
How to create an awesome Resume ?Bella Meraki
 
9 Tips to Master The Art of Questioning
9 Tips to Master The Art of Questioning9 Tips to Master The Art of Questioning
9 Tips to Master The Art of QuestioningBella Meraki
 
Tips to create superb presentation
Tips to create superb presentationTips to create superb presentation
Tips to create superb presentationBella Meraki
 
Body language for Group discussion and Interview
Body language for Group discussion and InterviewBody language for Group discussion and Interview
Body language for Group discussion and InterviewBella Meraki
 
10 things You Should Never Do in Your LIFE
10 things You Should Never Do in Your LIFE10 things You Should Never Do in Your LIFE
10 things You Should Never Do in Your LIFEBella Meraki
 
Simple guide to Personal interview
Simple guide to Personal interviewSimple guide to Personal interview
Simple guide to Personal interviewBella Meraki
 
Group Discussion: Tips and Skills
Group Discussion: Tips and SkillsGroup Discussion: Tips and Skills
Group Discussion: Tips and SkillsBella Meraki
 
Master of Ceremony Script- Informal Style
Master of Ceremony Script- Informal StyleMaster of Ceremony Script- Informal Style
Master of Ceremony Script- Informal StyleBella Meraki
 
Emerging trends in E-tailing: A novel perspective
Emerging trends in E-tailing: A novel perspectiveEmerging trends in E-tailing: A novel perspective
Emerging trends in E-tailing: A novel perspectiveBella Meraki
 
Professional Ethics Module 4 Notes
Professional Ethics Module 4 NotesProfessional Ethics Module 4 Notes
Professional Ethics Module 4 NotesBella Meraki
 
Professional Ethics Module 5 Notes
Professional Ethics Module 5 NotesProfessional Ethics Module 5 Notes
Professional Ethics Module 5 NotesBella Meraki
 
Professional Ethics Module 2 Notes
Professional Ethics Module 2 NotesProfessional Ethics Module 2 Notes
Professional Ethics Module 2 NotesBella Meraki
 
Professional Ethics Module 1 Notes
Professional Ethics Module 1 NotesProfessional Ethics Module 1 Notes
Professional Ethics Module 1 NotesBella Meraki
 
Retail Management Module 1 notes
Retail Management Module 1 notesRetail Management Module 1 notes
Retail Management Module 1 notesBella Meraki
 
Brand Management Module 3 notes
Brand Management Module 3 notesBrand Management Module 3 notes
Brand Management Module 3 notesBella Meraki
 
Brand Management Module 2 notes
Brand Management Module 2 notesBrand Management Module 2 notes
Brand Management Module 2 notesBella Meraki
 
Brand Management - Module 1 Notes
Brand Management - Module 1 NotesBrand Management - Module 1 Notes
Brand Management - Module 1 NotesBella Meraki
 
Master of Ceremony Script
Master of Ceremony ScriptMaster of Ceremony Script
Master of Ceremony ScriptBella Meraki
 
Hiring trends in 2013
Hiring trends in 2013Hiring trends in 2013
Hiring trends in 2013Bella Meraki
 
Personal interview
Personal interviewPersonal interview
Personal interviewBella Meraki
 

Mehr von Bella Meraki (20)

How to create an awesome Resume ?
How to create an awesome Resume ?How to create an awesome Resume ?
How to create an awesome Resume ?
 
9 Tips to Master The Art of Questioning
9 Tips to Master The Art of Questioning9 Tips to Master The Art of Questioning
9 Tips to Master The Art of Questioning
 
Tips to create superb presentation
Tips to create superb presentationTips to create superb presentation
Tips to create superb presentation
 
Body language for Group discussion and Interview
Body language for Group discussion and InterviewBody language for Group discussion and Interview
Body language for Group discussion and Interview
 
10 things You Should Never Do in Your LIFE
10 things You Should Never Do in Your LIFE10 things You Should Never Do in Your LIFE
10 things You Should Never Do in Your LIFE
 
Simple guide to Personal interview
Simple guide to Personal interviewSimple guide to Personal interview
Simple guide to Personal interview
 
Group Discussion: Tips and Skills
Group Discussion: Tips and SkillsGroup Discussion: Tips and Skills
Group Discussion: Tips and Skills
 
Master of Ceremony Script- Informal Style
Master of Ceremony Script- Informal StyleMaster of Ceremony Script- Informal Style
Master of Ceremony Script- Informal Style
 
Emerging trends in E-tailing: A novel perspective
Emerging trends in E-tailing: A novel perspectiveEmerging trends in E-tailing: A novel perspective
Emerging trends in E-tailing: A novel perspective
 
Professional Ethics Module 4 Notes
Professional Ethics Module 4 NotesProfessional Ethics Module 4 Notes
Professional Ethics Module 4 Notes
 
Professional Ethics Module 5 Notes
Professional Ethics Module 5 NotesProfessional Ethics Module 5 Notes
Professional Ethics Module 5 Notes
 
Professional Ethics Module 2 Notes
Professional Ethics Module 2 NotesProfessional Ethics Module 2 Notes
Professional Ethics Module 2 Notes
 
Professional Ethics Module 1 Notes
Professional Ethics Module 1 NotesProfessional Ethics Module 1 Notes
Professional Ethics Module 1 Notes
 
Retail Management Module 1 notes
Retail Management Module 1 notesRetail Management Module 1 notes
Retail Management Module 1 notes
 
Brand Management Module 3 notes
Brand Management Module 3 notesBrand Management Module 3 notes
Brand Management Module 3 notes
 
Brand Management Module 2 notes
Brand Management Module 2 notesBrand Management Module 2 notes
Brand Management Module 2 notes
 
Brand Management - Module 1 Notes
Brand Management - Module 1 NotesBrand Management - Module 1 Notes
Brand Management - Module 1 Notes
 
Master of Ceremony Script
Master of Ceremony ScriptMaster of Ceremony Script
Master of Ceremony Script
 
Hiring trends in 2013
Hiring trends in 2013Hiring trends in 2013
Hiring trends in 2013
 
Personal interview
Personal interviewPersonal interview
Personal interview
 

Kürzlich hochgeladen

Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 

Kürzlich hochgeladen (20)

Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 

Module 3 Professional Ethics and Environmental Issues

  • 1. Module 3 [PROFESSIONAL ETHICS] 1 Environment It is the immediate space that we live in. It consists of biosphere, lithosphere, hydrosphere, atmosphere etc. The biophysical environment is the biotic and abiotic surrounding of an organism or population, and includes the factors that have an influence in their survival, development and evolution. The term environment can refer to different concepts, but is often used as a short form for the biophysical environment. This practice is common, for instance, among governments which entitle agencies dealing with the biophysical environment with denominations such as Environment agency. Whereas the expression "the environment" is often used to refer to the global environment, usually in relation to humanity, the number of biophysical environments is countless, given that it is always possible to consider an additional living organism that has its own environment. The biophysical environment can vary in scale from microscopic to global in extent. It can also be subdivided according to its attributes. Examples include the marine environment, the atmospheric environment and the terrestrial environment. Environmental Ethics Environmental ethics is the discipline in philosophy that studies the moral relationship of human beings to, and also the value and moral status of, the environment and its nonhuman contents. Environmental ethics is the part of environmental philosophy which considers extending the traditional boundaries of ethics from solely including humans to including the non-human world. It exerts influence on a large range of disciplines including environmental law, environmental sociology, ecotheology, ecological economics, ecology and environmental geography. There are many ethical decisions that human beings make with respect to the environment. For example: Should we continue to clear cut forests for the sake of human consumption? Why should we continue to propagate our species, and life itself? [1] Should we continue to make gasoline powered vehicles? What environmental obligations do we need to keep for future generations?[2][3] Is it right for humans to knowingly cause the extinction of a species for the convenience of humanity? How should we best use and conserve the space environment to secure and expand life?
  • 2. Module 3 [PROFESSIONAL ETHICS] 2 Environmental ethics believes in the ethical relationship between human beings and the natural environment. Human beings are a part of the society and so are the other living beings. When we talk about the philosophical principle that guides our life, we often ignore the fact that even plants and animals are a part of our lives. They are an integral part of the environment and hence have a right to be considered a part of the human life. On these lines, it is clear that they should also be associated with our guiding principles as well as our moral and ethical values. What is Environmental Ethics? We are cutting down forests for making our homes. We are continuing with an excessive consumption of natural resources. Their excessive use is resulting in their depletion, risking the life of our future generations. Is this ethical? This is the issue that environmental ethics takes up. Scientists like Rachel Carson and the environmentalists who led philosophers to consider the philosophical aspect of environmental problems, pioneered in the development of environmental ethics as a branch of environmental philosophy. The Earth Day celebration of 1970 was also one of the factors, which led to the development of environmental ethics as a separate field of study. This field received impetus when it was first discussed in the academic journals in North America and Canada. Around the same time, this field also emerged in Australia and Norway. Today, environmental ethics is one of the major concerns of mankind. When industrial processes lead to destruction of resources, is it not the industry's responsibility to restore the depleted resources? Moreover, can a restored environment make up for the originally natural one? Mining processes hamper the ecology of certain areas; they may result in the disruption of plant and animal life in those areas. Slash and burn techniques are used for clearing the land for agriculture. Most of the human activities lead to environmental pollution. The overly increasing human population is increasing the human demand for resources like food and shelter. As the population is exceeding the carrying capacity of our planet, natural environments are being used for human inhabitation.
  • 3. Module 3 [PROFESSIONAL ETHICS] 3 Thus human beings are disturbing the balance in the nature. The harm we, as human beings, are causing to the nature, is coming back to us by resulting in a polluted environment. The depletion of natural resources is endangering our future generations. The imbalance in nature that we have caused is going to disrupt our life as well. But environmental ethics brings about the fact that all the life forms on Earth have a right to live. By destroying the nature, we are depriving these life forms of their right to live. We are going against the true ethical and moral values by disturbing the balance in nature. We are being unethical in treating the plant and animal life forms, which coexist in society. Human beings have certain duties towards their fellow beings. On similar lines, we have a set of duties towards our environment. Environmental ethics says that we should base our behavior on a set of ethical values that guide our approach towards the other living beings in nature. Environmental ethics is about including the rights of non-human animals in our ethical and moral values. Even if the human race is considered the primary concern of society, animals and plants are in no way less important. They have a right to get their fair share of existence. We, the human beings, along with the other forms of life make up our society. We all are a part of the food chain and thus closely associated with each other. We, together form our environment. The conservation of natural resources is not only the need of the day but also our prime duty. Major issues that concern environmental ethics today Anthropocenterism or human centredness in development is one of the reasons for several environmental issue Conservation of biodiversity in biosphere Energy conservation including nuclear energy Global climate changes Over population and destruction of forests or animal habitats Exponential increase in depletion of natural resources Impact of Genetic engineering, cloning, genetically modified crops Water disposal and e-waste Intensive farming and over use of pesticides Ozone layer depletion
  • 4. Module 3 [PROFESSIONAL ETHICS] 4 Anthropocentrism Anthropocentrism simply places humans at the centre of the universe; the human race must always be its own primary concern. It has become customary in the Western tradition to consider only our species when considering the environmental ethics of a situation. Therefore, everything else in existence should be evaluated in terms of its utility for us, thus committing speciesism. All environmental studies should include an assessment of the intrinsic value of non-human beings.[11] In fact, based on this very assumption, a philosophical article has explored recently the possibility of humans' willing extinction as a gesture toward other beings. The authors refer to the idea as a thought experiment that should not be understood as a call for action. What anthropocentric theories do not allow for is the fact that a system of ethics formulated from a human perspective may not be entirely accurate; humans are not necessarily the centre of reality. The philosopher Baruch Spinoza argued that we tend to assess things wrongly in terms of their usefulness to us. Spinoza reasoned that if we were to look at things objectively we would discover that everything in the universe has a unique value. Likewise, it is possible that a human- centred or anthropocentric/androcentric ethic is not an accurate depiction of reality, and there is a bigger picture that we may or may not be able to understand from a human perspective. Anthropocenterism is human centeredness in development. This philosophy puts human beings at the center of universe. Living and non living things have value only to the extent that they are of use to the human beings. It doesn‘t recognize the rights of animals and plants to live. The philosophy that gives equal importance to all living forms and recognizes their right is called biocentrism. ENGINEER – FUNCTIONS AND RESPONSIBILITIES Engineering is the professional art of applying, science to the optimum conversion of the resources of nature to benefit man. The words engineer and ingenious are derived from the same Latin root “ingenerare” meaning “to create”. Associated with engineering is a great body of special knowledge; preparation for professional practice involves extensive training in the application of that knowledge. Engineering is an art requiring the judgment necessary to adapt knowledge to practical purposes, the imagination to conceive original solutions to problems, and the ability to predict performance and cost of new devices or processes.
  • 5. Module 3 [PROFESSIONAL ETHICS] 5 The function of the scientist is to know, while that of the engineer is to do. The scientist adds to the store of verified, systematized knowledge of the physical world; the engineer brings this knowledge to bear on practical problems. Engineering is based principally on physics, chemistry & mathematics and their extensions into materials science, solid and fluid mechanics, thermodynamics, transfer and rate processes, system analysis, computer programming, electronics and optronics. Unlike the scientists, the engineer is not free to select the problem that interests him; he must solve problems as they arise; his solution must satisfy conflicting requirements. Usually efficiency costs money; safety adds to complexity; improved performance increases weight. The engineering solution is the optimum solution, the end result that, taking many factors into account, is most desirable. It may be the cheapest for a specified level of performance, the most reliable within a given weight limit, the simplest that will satisfy certain safety requirements, or the most efficient for a given cost. In many engineering problems, the social costs are significant. Engineers employ two types of natural resources – materials and energy. Since most resources are limited, the engineer must concern himself with the continual development of new resources as well as the efficient utilization of existing ones. The results of engineering activities contribute to the welfare of man by furnishing food, shelter, and comfort; by making work, transportation and communication easier and safer; and by making life pleasant and satisfying. ENGINEERING FUNCTIONS: The branches indicate what the engineer works with; the functions describe what he does. In order of decreasing emphasis on science, the major functions of all engineering branches are the following: Research. The research engineer seeks new principles and processes by employing mathematical and scientific concepts, experimental techniques, and inductive reasoning. Development. The development engineer applies the results of research to useful purposes. Ingenious and creative application of new knowledge may result in a working model of a new electronics circuit, a chemical process, an industrial machine, or a gadget of optronics. Design. In designing a structure or a product, the engineer selects methods, specifies materials, and determines shapes to satisfy technical requirements and to meet performance specification. Construction. The construction engineer is responsible for preparing the site, determining procedures that will economically and safely yield the
  • 6. Module 3 [PROFESSIONAL ETHICS] 6 desired quality, directing the placement of materials, and organizing the personnel and equipment. Production. Plant layout and equipment selection, with consideration of human and economic factors, is the responsibility of the production engineer. He chooses processes and tools, integrates the flow of materials and components, and provides for testing and inspection. Operation. The operating engineer controls machines, plants, and organizations providing power, transportation, and communication. He determines procedures and supervises personnel to obtain reliable and economic operation of complex equipment. Management and other functions. In some countries (U.S.A.,Japan, etc) and industries, engineers analyze customer requirements, recommend units to satisfy needs economically, and resolve related problems. In some industries, too, engineers decide how assets are to be used. ENGINEERING RESPONSIBILITIES. One activity common to all engineering work is problem solution. The problem may involve quantitative or qualitative factors; it may be physical or economic; it may require abstract mathematics or common sense. Of great importance is the process of creative synthesis or design, putting ideas together to create a new and optimum solution of the problem. Since the engineer functions at the socio-technological ―interface‖ (with science and technology on one side and individuals and communities on the other), he bears a unique responsibility to decide on priorities, establish performance criteria, select materials and processes, and specify evaluation procedures. Problem solution. Although engineering problems vary greatly in scope and complexity, the same general approach is applicable. First comes an analysis of the overall situation and a preliminary decision on a plan of attack. In line with this plan, the usually broad and vague problem is reduced to a more categorical question that can be clearly stated. The stated question is then answered by deductive reasoning from known principles or by creative synthesis, as in a new design. The answer or design is always checked for accuracy and adequacy. Finally, the results for the simplified problem as stated are interpreted in terms of the original problem and reported in an appropriate form. In his search for solutions to problems, especially new problems, the engineer is in conflict with a rather intractable environment and often in competition with predecessors who tried and failed and with contemporary rivals who are trying to solve the same problem. His success depends on ability to create a new idea, a new device, a new process, or a new material.
  • 7. Module 3 [PROFESSIONAL ETHICS] 7 Decision making. The engineer not only makes technological advances available to man but also may be charged with the responsibility to see that such advances do indeed enhance the welfare of man. By virtue of his knowledge, his skill, and his unique role in society, the engineer must concern himself with the results of technological progress such as its effect on the physical environment and its social and economic impact. A successful engineer is prepared for decision making on complex problems in broad areas. He is skilled in the use of sophisticated tools and creative in the development of new techniques. He has the vision to conceive vast projects, the talent to analyze them as integrated man-machine-environment systems, and the ability to predict their technical performance and their human impact. Engineering as a people serving profession Engineering is more than just employment. This profession is in public interest and engineers are motivated by a genuine and principled concern for good. Engineer gives importance to health, safety and welfare of public because of their moral development. Professional Morals Even with shortcomings in Kohlberg‘s theory, it is a valid approach to evaluation of moral character. The stages in professional development according to this theory are Pre Professional Professional Principled Professional Pre Professional Stage 1 Engineer is not concerned with social or professional responsibilities. Professional conduct is dictated by gain of individual, with no thought of how such conduct would affect the firm, client etc. Stage 2 Engineers realize there is something to be gained as ‗being nice‘. Thuswhile engineer is aware of the ideas of loyalty to the firm, client, confidenc and proper professional conduct, ethical behavior depends on motive of self advancement. Professional
  • 8. Module 3 [PROFESSIONAL ETHICS] 8 Stage 3 Engineer puts loyalty to firm above any other consideration. Engineer concenterates on technical matters, becomes a team player. Stage 4 Individual retains loyalty to firm but recognizes that the firm is part of a larger profession and loyalty to the profession enhances the reputation of the firm and brings rewards to engineer Principled Professional Stage 5 Here service to human welfare is paramount. He realizes that sucha service will also bring credit to the firm and the profession . Thus rules of society determine professional conduct. Stage 6 Professional conduct follows rule of universal justice, fairness and caring for fellow human beings. Engineers responsibility to environment Central concepts in conventional ethics, such as rights & justice, do not work very well when applied to animals, plants, places and natural objects. Engineers unlike other professions are directly involved in environmental conservation & preservation. No matter what project it is, it is they who will do it. Hence we engineers have a special responsibility to environment and hence they can make a difference. Sustainable development "Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs. It contains within it two key concepts: the concept of needs, in particular the essential needs of the world's poor, to which overriding priority should be given; and the idea of limitations imposed by the state of technology and social organization on the environment's ability to meet present and future needs."
  • 9. Module 3 [PROFESSIONAL ETHICS] 9 All definitions of sustainable development require that we see the world as a system—a system that connects space; and a system that connects time. When you think of the world as a system over space, you grow to understand that air pollution from North America affects air quality in Asia, and that pesticides sprayed in Argentina could harm fish stocks off the coast of Australia. And when you think of the world as a system over time, you start to realize that the decisions our grandparents made about how to farm the land continue to affect agricultural practice today; and the economic policies we endorse today will have an impact on urban poverty when our children are adults. We also understand that quality of life is a system, too. It's good to be physically healthy, but what if you are poor and don't have access to education? It's good to have a secure income, but what if the air in your part of the world is unclean? And it's good to have freedom of religious expression, but what if you can't feed your family? The concept of sustainable development is rooted in this sort of systems thinking. It helps us understand ourselves and our world. The problems we face are complex and serious—and we can't address them in the same way we created them. But we can address them The concept of ―sustainable development,‖ as coined by the World Commission on Environment and Development and with it, the term ―sustainability‖ itself, have been gaining increasing recognition in recent years all around the world. Wide- spread use, however, has been followed by growing ambiguity so that today both terms are employed within a very broad spectrum of meaning often, to the point of trivialization. The set of five Sustainability Principles proposed below is offered in order to advance and restore some rigor to the underlying ideas. Its development was informed by a number of existing frameworks and was inspired, in particular, by the work of R.Buckminster Fuller. The principles are articulated in a general fashion but can receive a specific operational meaning in relation to particular sectors of the economy, development issues, business strategies, investment guidelines, or initiatives taken by individuals.They are expressed in relation to five fundamental domains: The Material Domain: Constitutes the basis for regulating the flow of materials and energy that underlie existence.
  • 10. Module 3 [PROFESSIONAL ETHICS] 10 The Economic Domain: Provides a guiding framework for creating and managing wealth. The Domain of Life: Provides the basis for appropriate behavior in the biosphere. The Social Domain: Provides the basis for social interactions. The Spiritual Domain: Identifies the necessary attitudinal orientation and provides the basis for a universal code of ethics. Sustainable Development is based on three pillars (economics, environment and society) and the art is to find a balance between them. Sustainable Development and Engineers Because of the role of engineers in our society, there is a great importance of them be concerned with Sustainable Development. Engineers should not only inform the society about the impact of the technologies and make companies aware about Sustainable Development issues, but also cooperate with all kinds of stakeholders (e.g. Non-Governmental Organisations) to improve the quality of our future. Principles of Sustainability The concept of sustainability is based on the premise that people and their communities are made up of social, economic, and environmental systems that are in constant interaction and that must be kept in harmony or balance if the community is to continue to function to the benefit of its inhabitants— now and in the future. Sustainability is an ideal toward which to strive and against which to weigh proposed actions, plans, expenditures, and decisions. It is a way of looking at a community or a society or a planet in the broadest possible context, in both time and space. There are six principles of sustainability that can help a community ensure that its social, economic, and environmental systems are well integrated and will endure.
  • 11. Module 3 [PROFESSIONAL ETHICS] 11 We should remember that, although the list of principles is useful, each of them has the potential to overlap and inter-relate with some or all of the others. A community or society that wants to pursue sustainability will try to: 1. Maintain and, if possible, enhance, its residents’ quality of life. Quality of life—or ―livability‖—differs from community to community. It has many components: income, education, health care, housing, employment, legal rights on the one hand; exposure to crime, pollution, disease, disaster, and other risks on the other. One town may be proud of its safe streets, high quality schools, and rural atmosphere, while another thinks that job opportunities and its historical heritage are what make it an attractive place to live. Each locality must define and plan for the quality of life it wants and believes it can achieve, for now and for future generations. 2. Enhance local economic vitality. A viable local economy is essential to sustainability. This includes job opportunities, sufficient tax base and revenue to support government and the provision of infrastructure and services, and a suitable business climate. A sustainable economy is also diversified, so that it is not easily disrupted by internal or external events or disasters, and such an economy does not simply shift the costs of maintaining its good health onto other regions or onto the oceans or atmosphere. Nor is a sustainable local economy reliant on unlimited population growth, high consumption, or nonrenewable resources. 3. Promote social and intergenerational equity. A sustainable community‘s resources and opportunities are available to everyone, regardless of ethnicity, age, gender, cultural background, religion, or other characteristics. Further, a sustainable community does not deplete its resources, destroy natural systems, or pass along unnecessary hazards to its great-great-grandchildren. 4. Maintain and, if possible, enhance, the quality of the environment. A sustainable community sees itself as existing within a physical environment and natural ecosystem and tries to find ways to co-exist with that environment. It does its part by avoiding unnecessary degradation of the air, oceans, fresh water, and other natural systems. It tries to replace detrimental practices with those that allow ecosystems to continuously renew themselves. In some cases, this means simply protecting what is already there by finding ways to redirect human activities and development into less sensitive areas. But a community may need to take action to reclaim, restore, or rehabilitate an already-damaged ecosystem such as a nearby wetland. 5. Incorporate disaster resilience and mitigation into its decisions and actions. A community is resilient in the face of inevitable natural disasters like tornadoes, hurricanes, earthquakes, floods, and drought if it takes steps to ensure that such events cause as little damage as possible, that productivity is only
  • 12. Module 3 [PROFESSIONAL ETHICS] 12 minimally interrupted, and that quality of life remains at (or quickly returns to) high levels. A disaster-resilient community further takes responsibility for the risks it faces and, to the extent possible, is self reliant. That is, it does not anticipate that outside entities (such as federal or state government) can or will mitigate its hazards or pay for its disasters. 6. Use a consensus-building, participatory process when making decisions. Participatory processes are vital to community sustainability. Such a process engages all the people who have a stake in the outcome of the decision being contemplated. It encourages the identification of concerns and issues, promotes the wide generation of ideas for dealing with those concerns, and helps those involved find a way to reach agreement about solutions. It results in the production and dissemination of important, relevant information, fosters a sense of community, produces ideas that may not have been considered otherwise, and engenders a sense of ownership on the part of the community for the final decision. Environmental Sustainability Environmental sustainability involves making decisions and taking action that are in the interests of protecting the natural world, with particular emphasis on preserving the capability of the environment to support human life. It is an important topic at the present time, as people are realising the full impact that businesses and individuals can have on the environment. Environmental sustainability is about making responsible decisions that will reduce your business' negative impact on the environment. It is not simply about reducing the amount of waste you produce or using less energy, but is concerned with developing processes that will lead to businesses becoming completely sustainable in the future. Currently, environmental sustainability is a topical issue that receives plenty of attention from the media and from different governmental departments. This is a result of the amount of research going into assessing the impact that human activity can have on the environment. Although the long term implications of this serious issue are not yet fully understood, it is generally agreed that the risk is high enough to merit an immediate response. Businesses are expected to lead in the area of environmental sustainability as they are considered to be the biggest contributors and are also in a position where they can make a significant difference. Businesses can potentially cause damage to all areas of the environment. Some of the common environmental concerns include: damaging rainforests and woodlands through logging and agricultural clearing polluting and over-fishing of oceans, rivers and lakes
  • 13. Module 3 [PROFESSIONAL ETHICS] 13 polluting the atmosphere through the burning of fossil fuels damaging prime agricultural and cultivated land through the use of unsustainable farming practices For much of the past, most businesses have acted with little regard or concern for the negative impact they have on the environment. Many large and small organizations are guilty of significantly polluting the environment and engaging in practices that are simply not sustainable. However, there are now an increasing number of businesses that are committed to reducing their damaging impact and even working towards having a positive influence on environmental sustainability. Environmental sustainability forces businesses to look beyond making short term gains and look at the long term impact they are having on the natural world. You need to consider not only the immediate impact your actions have on the environment, but the long term implications as well. For example, when manufacturing a product, you need to look at the environmental impact of the products entire lifecycle, from development to disposal before finalizing your designs. Achieving sustainability will enable the Earth to continue supporting human life. In ecology, sustainability is how biological systems endure and remain diverse and productive. Long-lived and healthy wetlands and forests are examples of sustainable biological systems. For humans, sustainability is the potential for long- term maintenance of well being, which has ecological, economic, political and cultural dimensions. Sustainability requires the reconciliation of these environmental, social equity and economic demands - also referred to as the "three pillars" of sustainability or the 3 Es. Healthy ecosystems and environments are necessary to the survival and flourishing of humans and other organisms. There are a number of major ways of reducing negative human impact. Among the first of these are environmentally-friendly chemical engineering, environmental resources management and environmental protection. This approach is based largely on information gained from green chemistry, earth science, environmental science and conservation biology. The second approach is management of humanconsumption of resources, which is based largely on information gained fromeconomics. A third more recent approach adds cultural and political concerns into the sustainability matrix. Sustainability interfaces with economics through the social and environmental consequences of economic activity. Sustainability economics involves ecological economics where social aspects including cultural, health-related and monetary/financial aspects are integrated. Moving towards sustainability is also a social challenge that entails internationaland national law, urban planning and transport, local and individual lifestyles and ethical consumerism.
  • 14. Module 3 [PROFESSIONAL ETHICS] 14 Ways of living more sustainably can take many forms from reorganising living conditions (e.g., ecovillages, eco-municipalities and sustainable cities), reappraising economic sectors (permaculture, green building, sustainable agriculture), or work practices (sustainable architecture), using science to develop new technologies (green technologies, renewable energy and sustainable Fission and Fusion power), to adjustments in individual lifestyles that conserve natural resources. Despite the increased popularity of the use of the term "sustainability", the possibility that human societies will achieve environmental sustainability has been, and continues to be, questioned—in light of environmental degradation, climate change,overconsumption, and societies' pursuit of indefinite economic growth in a closed system. The word sustainability is derived from the Latin sustinere (tenere, to hold; sus, up). Sustain can mean ―maintain", "support", or "endure‖. Since the 1980s sustainability has been used more in the sense of human sustainability on planet Earth and this has resulted in the most widely quoted definition of sustainability as a part of the concept sustainable development, that of the Brundtland Commission of the United Nations on March 20, 1987: ―sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs Venn diagram of sustainable development: at the confluence of three constituent parts[8] The simple definition "sustainability is improving the quality of human life while living within the carrying capacity of supporting eco-systems",[22] though vague, conveys the idea of sustainability having quantifiable limits. But sustainability is also a call to action, a task in progress or ―journey‖ and therefore a political process, so some definitions set out common goals and values Economic opportunity[edit]
  • 15. Module 3 [PROFESSIONAL ETHICS] 15 Treating the environment as an externality may generate short-term profit at the expense of sustainability.[154] Sustainable business practices, on the other hand, integrate ecological concerns with social and economic ones (i.e., the triple bottom line).[155][156] Growth that depletes ecosystem services is sometimes termed "uneconomic growth" as it leads to a decline inquality of life.[157][158] Minimising such growth can provide opportunities for local businesses. For example, industrial waste can be treated as an "economic resource in the wrong place". The benefits of waste reduction include savings from disposal costs, fewer environmental penalties, and reduced liability insurance. This may lead to increased market share due to an improved public image.[159][160] Energy efficiency can also increase profits by reducing costs. The idea of sustainability as a business opportunity has led to the formation of organizations such as the Sustainability Consortium of the Society for Organizational Learning, the Sustainable Business Institute, and the World Council for Sustainable Development.[161] Research focusing on progressive corporate leaders who have embedded sustainability into commercial strategy has yielded a leadership competency model for sustainability.[162][163] The expansion of sustainable business opportunities can contribute to job creation through the introduction of green-collar workers.[164] Social dimension[edit] Sustainability issues are generally expressed in scientific and environmental terms, as well as in ethical terms ofstewardship, but implementing change is a social challenge that entails, among other things, international and national law,urban planning and transport, local and individual lifestyles and ethical consumerism. "The relationship between human rights and human development, corporate power and environmental justice, global poverty and citizen action, suggest that responsible global citizenship is an inescapable element of what may at first glance seem to be simply matters of personal consumer and moral choice."[ Peace, security, social justice[edit] Social disruptions like war, crime and corruption divert resources from areas of greatest human need, damage the capacity of societies to plan for the future, and generally threaten human well-being and the environment.[166] Broad-based strategies for more sustainable social systems include: improved education and the political empowerment of women, especially in developing countries; greater regard for social justice, notably equity between rich and poor both within and between countries; and intergenerational equity.[57] Depletion of natural resources including fresh water[167] increases the likelihood of ―resource wars‖.[168] This aspect of sustainability has been referred to as environmental security and creates a clear need for global environmental agreements to manage resources such as aquifers
  • 16. Module 3 [PROFESSIONAL ETHICS] 16 and rivers which span political boundaries, and to protect shared global systems including oceans and the atmosphere Sustainable agriculture is the act of farming using principles of ecology, the study of relationships between organisms and their environment. The phrase was reportedly coined by Australian agricultural scientist Gordon McClymont.[1] It has been defined as "an integrated system of plant and animal production practices having a site-specific application that will last over the long term" For Example: Satisfy human food and fibre needs Enhance environmental quality and the natural resource base upon which the agricultural economy depends Make the most efficient use of non-renewable resources and on-farm resources and integrate, where appropriate, natural biological cycles and controls Sustain the economic viability of farm operations Enhance the quality of life for farmers and society as a whole Sustainable agriculture can be understood as an ecosystem approach to agriculture.[3] Practices that can cause long-term damage to soil include excessive tillage (leading to erosion) and irrigation without adequate drainage (leading tosalinization). Long-term experiments have provided some of the best data on how various practices affect soil properties essential to sustainability. In the United States a federal agency, USDA-Natural Resources Conservation Service, specializes in providing technical and financial assistance for those interested in pursuing natural resource conservation and production agriculture as compatible goals. The most important factors for an individual site are sun, air, soil, nutrients, and water. Of the five, water and soil quality and quantity are most amenable to human intervention through time and labor. Although air and sunlight are available everywhere on Earth, crops also depend on soil nutrients and the availability ofwater. When farmers grow and harvest crops, they remove some of these nutrients from the soil. Without replenishment, land suffers from nutrient depletion and becomes either unusable or suffers from reduced yields. Sustainable agriculture depends on replenishing the soil while minimizing the use or need of non-renewable resources, such as natural gas (used in converting atmospheric nitrogen into synthetic fertilizer), or mineral ores (e.g., phosphate). Possible sources of nitrogen that would, in principle, be available indefinitely, include: 1. recycling crop waste and livestock or treated human manure
  • 17. Module 3 [PROFESSIONAL ETHICS] 17 2. growing legume crops and forages such as peanuts or alfalfa that form symbioses with nitrogen-fixing bacteria calledrhizobia 3. industrial production of nitrogen by the Haber Process uses hydrogen, which is currently derived from natural gas, (but this hydrogen could instead be made by electrolysis of water using electricity (perhaps from solar cells or windmills)) or 4. genetically engineering (non-legume) crops to form nitrogen-fixing symbioses or fix nitrogen without microbial symbionts. Water In some areas sufficient rainfall is available for crop growth, but many other areas require irrigation. For irrigation systems to be sustainable, they require proper management (to avoid salinization) and must not use more water from their source than is naturally replenishable. Otherwise, the water source effectively becomes a non-renewable resource. Improvements in water well drilling technology and submersible pumps, combined with the development of drip irrigation and low pressure pivots, have made it possible to regularly achieve high crop yields in areas where reliance on rainfall alone had previously made successful agriculture unpredictable. However, this progress has come at a price. In many areas, such as theOgallala Aquifer, the water is being used faster than it can be recharged. Several steps must be taken to develop drought-resistant farming systems even in "normal" years with average rainfall. These measures include both policy and management actions: 1) improving water conservation and storage measures, 2) providing incentives for selection of drought-tolerant crop species, 3) using reduced-volume irrigation systems, 4) managing crops to reduce water loss, or 5) not planting crops at all.[6] Indicators for sustainable water resource development are: ¤ Internal renewable water resources. This is the average annual flow of rivers and groundwater generated from endogenous precipitation, after ensuring that there is no double counting. It represents the maximum amount of water resource produced within the boundaries of a country. This value, which is expressed as an average on a yearly basis, is invariant in time (except in the case of proved climate change). The indicator can be expressed in three different units: in absolute terms (km3/yr), in mm/yr (it is a measure of the humidity of the country), and as a function of population (m3/person per yr). ¤ Global renewable water resources. This is the sum of internal renewable water resources and incoming flow originating outside the country. Unlike internal resources, this value can vary with time if upstream development reduces water availability at the border. Treaties ensuring a specific flow to be reserved from
  • 18. Module 3 [PROFESSIONAL ETHICS] 18 upstream to downstream countries may be taken into account in the computation of global water resources in both countries. ¤ Dependency ratio. This is the proportion of the global renewable water resources originating outside the country, expressed in percentage. It is an expression of the level to which the water resources of a country depend on neighbouring countries. ¤ Water withdrawal. In view of the limitations described above, only gross water withdrawal can be computed systematically on a country basis as a measure of water use. Absolute or per-person value of yearly water withdrawal gives a measure of the importance of water in the country's economy. When expressed in percentage of water resources, it shows the degree of pressure on water resources. A rough estimate shows that if water withdrawal exceeds a quarter of global renewable water resources of a country, water can be considered a limiting factor to development and, reciprocally, the pressure on water resources can have a direct impact on all sectors, from agriculture to environment and fisheries Soil Soil erosion is fast becoming one of the worlds greatest problems. It is estimated that "more than a thousand million tonnes of southern Africa's soil are eroded every year. Experts predict that crop yields will be halved within thirty to fifty years if erosion continues at present rates."[8] Soil erosion is not unique to Africa but is occurring worldwide. The phenomenon is being called Peak Soil as present large scale factory farming techniques are jeopardizing humanity's ability to grow food in the present and in the future.[9] Without efforts to improve soil management practices, the availability of arable soil will become increasingly problematic Sustainable city A sustainable city, or eco-city is a city designed with consideration of environmental impact, inhabited by people dedicated to minimization of required inputs of energy, water and food, and waste output of heat, air pollution - CO2,methane, and water pollution. Richard Register first coined the term "ecocity" in his 1987 book, Ecocity Berkeley: Building Cities for a Healthy Future.[1] Other leading figures who envisioned the sustainable city are architect Paul F Downton, who later founded the company Ecopolis Pty Ltd, and authors Timothy Beatley and Steffen Lehmann,[2] who have written extensively on the subject. The field of industrial ecology is sometimes used in planning these cities. There remains no completely agreed upon definition for what a sustainable city should be or completely agreed upon paradigm for what components should be included. Generally, developmental experts agree that a sustainable city should
  • 19. Module 3 [PROFESSIONAL ETHICS] 19 meet the needs of the present without sacrificing the ability of future generations to meet their own needs. The ambiguity within this idea leads to a great deal of variation in terms of how cities carry out their attempts to become sustainable.[3] However, a sustainable city should be able to feed itself with minimal reliance on the surrounding countryside, and power itself with renewable sources of energy. The crux of this is to create the smallest possible ecological footprint, and to produce the lowest quantity of pollution possible, to efficiently use land; compost used materials, recycle it or convert waste-to-energy, and thus the city's overall contribution to climate change will be minimal, if such practices are adhered to. It is estimated that over 50%[4] of the world‘s population now lives in cities and urban areas. These large communities provide both challenges and opportunities for environmentally-conscious developers, and there are distinct advantages to further defining and working towards the goals of sustainable cities. Humans are social creatures and thrive in urban spaces that foster social connections. Because of this, a shift to more dense, urban living would provide an outlet for social interaction and conditions under which humans can prosper. Contrary to common belief, urban systems can be more environmentally sustainable than rural or suburban living. With people and resource located so close to one another it is possible to save energy and resources things such as food transportation and mass transit systems. Finally, cities benefit the economy by locating human capital in one relatively small geographic area where ideas can be generated. These ecological cities are achieved through various means, such as: Different agricultural systems such as agricultural plots within the city (suburbs or centre). This reduces the distance food has to travel from field to fork. Practical work out of this may be done by either small scale/private farming plots or through larger scale agriculture (e.g. farmscrapers). Renewable energy sources, such as wind turbines, solar panels, or bio- gas created from sewage. Cities provideeconomies of scale that make such energy sources viable. Various methods to reduce the need for air conditioning (a massive energy demand), such as planting trees and lightening surface colors, natural ventilation systems, an increase in water features, and green spaces equaling at least 20% of the city's surface. These measures counter the "heat island effect" caused by an abundance of tarmac and asphalt, which can make urban areas several degrees warmer than surrounding rural areas—as much as six degrees Celsius during the evening. Improved public transport and an increase in pedestrianization to reduce car emissions. This requires a radically different approach to city planning, with integrated business, industrial, and residential zones. Roads may be designed to make driving difficult.
  • 20. Module 3 [PROFESSIONAL ETHICS] 20 Optimal building density to make public transport viable but avoid the creation of urban heat islands. Solutions to decrease urban sprawl, by seeking new ways of allowing people to live closer to the workspace. Since the workplace tends to be in the city, downtown, or urban center, they are seeking a way to increase density by changing the antiquated attitudes many suburbanites have towards inner-city areas. One of the new ways to achieve this is by solutions worked out by the Smart GrowthMovement Urban farming Urban farming is the process of growing and distributing food, as well as raising animals, in and around a city or in urban area. There are many motivations behind urban agriculture, but in the context of creating a sustainable city, this method of food cultivation saves energy in food transportation and saves costs. In order for urban farming to be a successful method of sustainable food growth, cities must allot a common area for community gardens or farms, as well as a common area for a farmers market in which the foodstuffs grown within the city can be sold to the residents of the urban system. Car free city The concept of Car free cities or a city with large pedestrian areas is often part of the design of a sustainable city. A large amount of the carbon footprint of a city is generated from cars so it is often consider being an integral part of the design of a sustainable city. India Auroville was founded in 1968 with the intention of realizing human unity, and is now home to approximately 2,000 individuals from over 45 nations around the world. Its focus is its vibrant community culture and its expertise in renewable energy systems, habitat restoration, ecology skills, mindfulness practices, and holistic education. Some egs for sustainable urban development BOGOTA: URBAN TRANSPORTATION This city took the Urban Transportation award for its ultra-efficient bus and taxi fleets. Bogota's Bus Rapid Transit system, launched in 2000, shuttles over 70% of the city's 7.1 million person population. Future goals include replacing all of the city's diesel fleet with hybrid and electric buses, electrifying the entire the taxi fleet, and adding a new metro line. MELBOURNE: ENERGY EFFICIENT BUILT ENVIRONMENT
  • 21. Module 3 [PROFESSIONAL ETHICS] 21 Melbourne won in the Energy Efficient Built Environment category for a sustainable buildings program that gives building managers and owners financing for energy and water retrofits. MUNICH: GREEN ENERGY Munich received the Green Energy award for its initiative to power the city completely using renewable sources by 2025. So far, the city is 37% of the way there--in 2015, wind projects will cause that number to climb to 80%. SINGAPORE: INTELLIGENT CITY INFRASTRUCTURE Singapore is the Intelligent City Infrastructure recipient--an award given for its Intelligent Transport System, which is made up of an amalgam of smart transportation initiatives, like real-time traffic data from GPS-equipped taxis and an electronic road toll collection system. The result: Singapore has lower congestion rates than most cities. Economic development generally refers to the sustained, concerted actions of policy makers and communities that promote the standard of living andeconomic health of a specific area. Economic development can also be referred to as the quantitative and qualitative changes in the economy. Such actions can involve multiple areas including development of human capital,critical infrastructure, regional competitiveness, environmental, sustainability,social inclusion, health, safety, literacy, and other initiatives. Economic development differs from economic growth. Whereas economic development is a policy intervention endeavor with aims of economic and social well-being of people, economic growth is a phenomenon of market productivity and rise inGDP. Consequently, as economist Amartya Sen points out: ―economic growth is one aspect of the process of economic development