SlideShare ist ein Scribd-Unternehmen logo
1 von 15
Downloaden Sie, um offline zu lesen
School of Mathematics and Physics
1
1
Propagation of electron-acoustic (EA) excitations
in the presence of
suprathermal background electrons:
linear and nonlinear effects
Ashkbiz Danehkar
School of Mathematics & Physics, Queen’s University Belfast, Belfast BT7 1NN, UK
Supervisors: Dr. Nareshpal Singh Saini & Dr. Ioannis Kourakis
Centre for Plasma Physics, Department of Physics and Astronomy, Queen's University Belfast,
Belfast BT7 1NN, Northern Ireland, UK
Prof. Manfred Armin Hellberg
School of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
School of Mathematics and Physics
2
2
We investigate Electron-Acoustic Waves (EAWs) in a collisionless and
unmagnetized plasma which consists of three species, namely:
• “cool” inertial electrons (in temperature Tc),
• inertialess “hot” suprathermal electrons (in temperature Th >Tc),
• stationary/inertial ions (separate cases, in comparison)
3. Linear effects: Dispersion Relation (DR)
2. Strategic Workplan:
• Work on a Cold One-Fluid Model (Tc=0)
• Add the Cool Electron Thermal Pressure (“Warm” One-Fluid Model; Tc>0)
• Add the Ion-fluid to make a Two-Fluid Model
Layout
5. Conclusion
1. Motivation
4. Nonlinear Pseudopotential Method: Existence of Solitary Waves
School of Mathematics and Physics
3
3
The electron-acoustic waves occur in a plasma, where inertial cold electrons (Tc)
oscillate against inertialess hot electrons (Th).
The cold electrons provide the inertial effects maintaining the EAWs, while the
restoring force comes from the pressure of the hot electrons.
The EAWs is undamped for temperature ratio Tc/Th<0.1 and 0.2<nc/(nc+nh)<0.8.
The EAWs often occur in
• laboratory experiments
• space plasmas e.g. the Earth's bow shock
• the auroral magnetosphere
• Broadband Electrostatic Noise (BEN)
observed by satellites
1. Motivation
1/2
,0 3
2
( ) 1
h h
n n
κ
φ
φ
κ
− +
⎛ ⎞
= −
⎜ ⎟
−
⎝ ⎠
• low values of κ>3/2 are associated with
suprathermal
• For κ→∞, a Maxwellian is recovered
• Some space and laboratory plasmas
behaviors are extremely different from a
Maxwellian distribution. We describe this
suprathermal population by a κ-distribution
School of Mathematics and Physics
4
4
2. Strategic Workplan
( )
0,
n nu
t x
∂ ∂
+ =
∂ ∂
u u
u
t x t
φ
∂ ∂ ∂
+ =
∂ ∂ ∂
0,
P P u
u P
t x x
γ
∂ ∂ ∂
+ + =
∂ ∂ ∂
( )
0,
n nu
t x
∂ ∂
+ =
∂ ∂
,
e
i
m
u u
u
t x m t
φ
∂ ∂ ∂
+ = −
∂ ∂ ∂
2
2
x
φ
∂
=
∂
n
+
Cold Electron-fluid
Thermal Pressure
1/ 2
0
3
0 2
1
h
c
n
n
κ
φ
κ
− +
⎛ ⎞
+ −
⎜ ⎟
−
⎝ ⎠
n
−
Cool Electron-fluid
Ion-fluid
1
,
c
h
T P
T n x
∂
−
∂
Hot Suprathermal Electrons
2
, 1 3,
f f
f
γ γ
= + = → =
Poisson's Equation
Blue: Model 1 (cold 1-fluid, static ions);
Blue + red: Model 2 (warm 1-fluid, static ions);
Green: Model 3 (ion inertia included)
School of Mathematics and Physics
5
5
3. Linear effects: Dispersion Relation (DR)
Thermal Pressure
Ion-fluid
Hot Suprathermal Electrons
Poisson's Equation
Cool Electron-fluid
Linear method:
(0) (1) (0) 0
0
( , , , , , ), , 1,0,1 ,0,1,0 ,
h
c
n
S n u n u P S S S S
n
φ
⎛ ⎞
= = + = +
⎜ ⎟
⎝ ⎠
(1) (1)
,
k
n u
ω
= (1)
(1) (1)
,
c
h
k T
P
T
u φ
ω
⎛ ⎞
= − ⎜ ⎟
⎝ ⎠
−
(1) (1)
3 ,
P n
=
(1) (1)
,
k
n u
ω
=
(1) (1)
,
e
i
m k
u
m
φ
ω
=
2 (1)
k φ
− = (1)
n
+
1
(1)
0 2
3
0 2
1
h
c
n
n
κ
φ
κ
⎛ ⎞
−
+ +
⎜ ⎟
−
⎝ ⎠
(1)
0
0
h
c
n
n
n
− −
School of Mathematics and Physics
6
3. Linear effects: Dispersion Relation (DR)
0
0
,
h
c
n
n
β =
2
2
2 2
D
k
k k
ω =
+
1/2
1
0 2
3
0 2
,
h
D
c
n
k
n
κ
κ
⎛ ⎞
−
= ⎜ ⎟
−
⎝ ⎠
6
2
3 k
σ
+
,
c
h
T
T
σ =
Thermal Effects
( ) ( )
2 2 2
2
2
3
1
,
D D
k
k k k k
σ
μ
+
⎡ ⎤
+ +
⎣ ⎦
+
,
e
i
m
m
μ = Inertial Ion Effects
Hot Suprathermal Effect
Frequency vs.
wavenumber k
ω
Result:
growing suprathermal distribution,
hot electron number density (nh/nc),
and decreasing cool electron
temperature (Tc/Th)
increases the linear EAW.
School of Mathematics and Physics
7
7
4. Nonlinear Method: Existence of Solitary Waves
n
+
Thermal Pressure
1/ 2
0
3
0 2
1
h
c
n
n
κ
φ
κ
− +
⎛ ⎞
+ −
⎜ ⎟
−
⎝ ⎠
n
−
Ion-fluid
Hot Suprathermal Electrons
Poisson's Equation
Cool Electron-fluid
Pseudopotential Method:
,
x Mt
ξ = −
A traveling coordinate M is the Mach number
1
1 ,
u M
n
⎛ ⎞
= −
⎜ ⎟
⎝ ⎠
2 2
2 3 3
u M M n
φ σ σ
−
− + +
=
3
,
P n
=
1
1 ,
u M
n
β
+
⎛ ⎞
= −
⎜ ⎟
⎝ ⎠
2
2
u M M μφ
= − −
2
2
φ
ξ
∂
=
∂
School of Mathematics and Physics
8
4. Nonlinear Method: Existence of Solitary Waves
1
0,
2
d
d
φ
ξ
⎛ ⎞
+ Ψ =
⎜ ⎟
⎝ ⎠
1/ 2
2
3 2
3/2
2
1
( 1
2
) 1 1
1 M
M
κ
φ
φ
β φ β
κ
− +
⎛ ⎞
⎛ ⎞
⎜
⎛ ⎞
⎛ ⎞
+ − +
⎜ ⎟
⎜ ⎟
⎟
+
Ψ = + − −
⎜ ⎟
⎜ ⎟
−
⎝ ⎠
⎝ ⎠
⎜ ⎟
⎝ ⎠
⎝ ⎠
8
Hot Suprathermal Effect
Result:
As the density of the hot suprathermal
electrons is increased, the potential
amplitude increases.
School of Mathematics and Physics
9
4. Nonlinear Method: Existence of Solitary Waves
1
0,
2
d
d
φ
ξ
⎛ ⎞
+ Ψ =
⎜ ⎟
⎝ ⎠
Thermal Effects
( )
( ( )
( ) ( )
3/ 2
3
2
3 3
3/2 3/ 2
2 2
1 1
3 3
3 3
(1
1
6
2 2
)
3
M M
M M
κ
φ
β
κ
σ
σ
φ
φ
φ
β
σ
σ σ
− +
+ + ± −
⎞
⎡ ⎤ ⎡ ⎤
− + + + − ⎟
⎢
⎛ ⎞
⎛ ⎞
⎜ ⎟
+
⎥ ⎢ ⎥
⎣ ⎦
− −
⎜ ⎟
⎜
Ψ
⎟
−
⎣
⎠
⎦
⎝
⎝
= +
⎠
⎠
∓
9
Result:
As the temperature of the cool electrons is increased, the potential amplitude increases.
School of Mathematics and Physics
10
4. Nonlinear Method: Existence of Solitary Waves
3
M σ
<
Inertial Ion Effects
3
M σ
>
supersonic:
subsonic:
1
0
d
F
d φ
φ =
Ψ
= −
10
( )
( ( )
( ) ( )
3 3
3/ 2 3/ 2
2 2
3/ 2
3
/ 2
2
1
2
2
1 1
3 3
3
2
(1 ) 1 1
1
6
3
3
2 2
M M
M M
M
M
κ
φ
β
κ
σ σ
σ
σ
φ σ
φ
β μ
φ
μ
− +
⎛ ⎞
⎛ ⎞
⎜
+ + ± −
⎞
⎡ ⎤ ⎡ ⎤
− + + + − ⎟
⎢ ⎥ ⎢ ⎥
⎣
⎛ ⎞
⎛ ⎞
+ − −
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎟
+ − −
⎜ ⎟
Ψ
⎝ ⎠
⎦ ⎣ ⎦
⎝ ⎠ ⎜ ⎟
−
⎝ ⎠
⎝
=
⎠
⎠
∓
Result:
ion-fluid has a trivial role in modifying negative supersonic solitary waves, but it is
important to support the positive wave structures on the subsonic scale.
School of Mathematics and Physics
11
4. Nonlinear effects: Supersonic domain
1 1
0
0
d
F M
d φ
φ =
Ψ
= − > → ( )
2 2
0
m
F M
φ φ −
=
= Ψ > →
low limit upper limit
( )
3
M σ
>
11
Result:
The existence domain for the
negative soliton becomes narrower
with the increase in the suprathermal
distribution, nh/nc, and Tc/Th.
School of Mathematics and Physics
12
4. Nonlinear effects: Subsonic domain ( )
3
M σ
<
12
1 1
0
0
d
F M
d φ
φ =
Ψ
= − > → ( )
2 2
0
m
F M
φ
φ +
=
= Ψ > →
low limit upper limit
Result:
The existence domain for the positive soliton becomes wider with the increase in the
kappa, nh/nc, and Tc/Th.
School of Mathematics and Physics
13
13
A. Danehkar, N. S. Saini, M. A. Hellberg and I. Kourakis, “Propagation of electron-acoustic
excitations in the presence of suprathermal background electrons,” manuscript in preparation.
5. Conclusion
• Linear Analysis: growing suprathermal distribution, and hot electron
number density and temperature (increasing nh/nc and decreasing Tc/Th)
widen the linear EAW.
• Nonlinear Analysis: The existence domain for the negative soliton
becomes narrower with the increase in the suprathermal distribution,
nh/nc, and Tc/Th.
• Ion-fluid does not affect the negative soliton existence, but is necessary
to maintain the positive solitary wave structure.
• Ion-fluid has a trivial role in the supersonic (fast) scale, but it appear to be
very important in the subsonic (slow) scale.
• Positive acoustic-waves deeply depends on suprathermal hot electron
parameters.
• Two-fluid cold model (Tc=0) cannot predict positive solitons.
• Cold electron temperature (Tc/Th) affects both negative and positive
solitons.
School of Mathematics and Physics
14
Special thanks to:
• Dr. Nareshpal Singh Saini & Dr. Ioannis Kourakis (QUB, UK)
• Prof. Dr. Manfred Armin Hellberg (UKZN, Durban, S Africa)
• UK DEL funding via QUB (A.D.)
• UK EPSRC via QUB (N.S.S. & I.K.)
• S Africa NRF via UKZN (M.A.H.)
Acknowledgments:
School of Mathematics and Physics
15
15
Thank You!

Weitere ähnliche Inhalte

Was ist angesagt?

Lect22 handout
Lect22 handoutLect22 handout
Lect22 handout
nomio0703
 
Chapter 1 blackbody radiation
Chapter 1  blackbody radiationChapter 1  blackbody radiation
Chapter 1 blackbody radiation
Miza Kamaruzzaman
 
Quantum mechanics a brief
Quantum mechanics a briefQuantum mechanics a brief
Quantum mechanics a brief
Chaitanya Areti
 

Was ist angesagt? (20)

Lect22 handout
Lect22 handoutLect22 handout
Lect22 handout
 
Ppt qm
Ppt qmPpt qm
Ppt qm
 
Black Body Radiation
Black Body RadiationBlack Body Radiation
Black Body Radiation
 
Magnetic Moment of Muons and New Physics
Magnetic Moment of Muons and New PhysicsMagnetic Moment of Muons and New Physics
Magnetic Moment of Muons and New Physics
 
Radiation heat transfer
Radiation heat transferRadiation heat transfer
Radiation heat transfer
 
Laws of radiation
Laws of radiationLaws of radiation
Laws of radiation
 
Chapter 1 blackbody radiation
Chapter 1  blackbody radiationChapter 1  blackbody radiation
Chapter 1 blackbody radiation
 
Radiation.ppt
Radiation.pptRadiation.ppt
Radiation.ppt
 
Trm 7
Trm 7Trm 7
Trm 7
 
Black body radiation.
Black body radiation.Black body radiation.
Black body radiation.
 
CHAPTER 10 Molecules and Solids
CHAPTER 10 Molecules and SolidsCHAPTER 10 Molecules and Solids
CHAPTER 10 Molecules and Solids
 
Phy 310 chapter 1
Phy 310   chapter 1Phy 310   chapter 1
Phy 310 chapter 1
 
Quantum mechanics a brief
Quantum mechanics a briefQuantum mechanics a brief
Quantum mechanics a brief
 
บทที่ 2 ทฤษฎีสัมพัทธภาพเฉพาะ
บทที่ 2 ทฤษฎีสัมพัทธภาพเฉพาะบทที่ 2 ทฤษฎีสัมพัทธภาพเฉพาะ
บทที่ 2 ทฤษฎีสัมพัทธภาพเฉพาะ
 
Seminar on angular momentum 2017 18
Seminar on angular momentum 2017 18Seminar on angular momentum 2017 18
Seminar on angular momentum 2017 18
 
CHAPTER 4 Structure of the Atom
CHAPTER 4Structure of the AtomCHAPTER 4Structure of the Atom
CHAPTER 4 Structure of the Atom
 
Classical mechanics vs quantum mechanics
Classical mechanics vs quantum mechanicsClassical mechanics vs quantum mechanics
Classical mechanics vs quantum mechanics
 
Fermi dirac distribution
Fermi dirac distributionFermi dirac distribution
Fermi dirac distribution
 
Ph 101-7 WAVE PARTICLES
Ph 101-7 WAVE PARTICLES Ph 101-7 WAVE PARTICLES
Ph 101-7 WAVE PARTICLES
 
Unit 2
Unit 2Unit 2
Unit 2
 

Ähnlich wie Propagation of electron-acoustic excitations in the presence of suprathermal background electrons

Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear ele...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear ele...Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear ele...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear ele...
SOCIEDAD JULIO GARAVITO
 
Dublin- Talk 8.25.15 Final
Dublin- Talk 8.25.15 FinalDublin- Talk 8.25.15 Final
Dublin- Talk 8.25.15 Final
Andrew Dublin
 
NEET Boost ypur Chemistry- Atomic structure.pdf
NEET Boost ypur Chemistry- Atomic structure.pdfNEET Boost ypur Chemistry- Atomic structure.pdf
NEET Boost ypur Chemistry- Atomic structure.pdf
chaitaligiri2029
 

Ähnlich wie Propagation of electron-acoustic excitations in the presence of suprathermal background electrons (20)

Einestein model density of states
Einestein model density of statesEinestein model density of states
Einestein model density of states
 
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
 
lecture7
lecture7lecture7
lecture7
 
64-347-1-PB
64-347-1-PB64-347-1-PB
64-347-1-PB
 
Chapter_3.pptx .
Chapter_3.pptx                              .Chapter_3.pptx                              .
Chapter_3.pptx .
 
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear ele...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear ele...Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear ele...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear ele...
 
Introduction to Cosmology
Introduction to CosmologyIntroduction to Cosmology
Introduction to Cosmology
 
Neutron EDM and Dressed Spin
Neutron EDM and Dressed SpinNeutron EDM and Dressed Spin
Neutron EDM and Dressed Spin
 
Search for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole MomentSearch for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole Moment
 
Electron-phonon coupling a Yambo overview
Electron-phonon coupling  a Yambo overviewElectron-phonon coupling  a Yambo overview
Electron-phonon coupling a Yambo overview
 
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
 
Riconda_Catarina.pptx
Riconda_Catarina.pptxRiconda_Catarina.pptx
Riconda_Catarina.pptx
 
Statistica theromodynamics
Statistica theromodynamicsStatistica theromodynamics
Statistica theromodynamics
 
Ion-acoustic rogue waves in multi-ion plasmas
Ion-acoustic rogue waves in multi-ion plasmasIon-acoustic rogue waves in multi-ion plasmas
Ion-acoustic rogue waves in multi-ion plasmas
 
Dublin- Talk 8.25.15 Final
Dublin- Talk 8.25.15 FinalDublin- Talk 8.25.15 Final
Dublin- Talk 8.25.15 Final
 
NEET Boost ypur Chemistry- Atomic structure.pdf
NEET Boost ypur Chemistry- Atomic structure.pdfNEET Boost ypur Chemistry- Atomic structure.pdf
NEET Boost ypur Chemistry- Atomic structure.pdf
 
Radiavtive Heat Transfer assignment
Radiavtive Heat Transfer assignmentRadiavtive Heat Transfer assignment
Radiavtive Heat Transfer assignment
 
Pairing and Symmetries in Nuclear Matter
Pairing and Symmetries in Nuclear MatterPairing and Symmetries in Nuclear Matter
Pairing and Symmetries in Nuclear Matter
 
Lecture2&3.pdf
Lecture2&3.pdfLecture2&3.pdf
Lecture2&3.pdf
 
Electron diffraction experiment
Electron diffraction experimentElectron diffraction experiment
Electron diffraction experiment
 

Mehr von Ashkbiz Danehkar

Mehr von Ashkbiz Danehkar (20)

Time-dependent Numerical Modeling of Thermally Driven Stellar Winds
Time-dependent Numerical Modeling of Thermally Driven Stellar WindsTime-dependent Numerical Modeling of Thermally Driven Stellar Winds
Time-dependent Numerical Modeling of Thermally Driven Stellar Winds
 
Supermassive Black Hole Spins in Radio-quiet Type I AGN
Supermassive Black Hole Spins in Radio-quiet Type I AGNSupermassive Black Hole Spins in Radio-quiet Type I AGN
Supermassive Black Hole Spins in Radio-quiet Type I AGN
 
Conditions for Cool Superwinds in Massive Star-forming Regions
Conditions for Cool Superwinds in Massive Star-forming RegionsConditions for Cool Superwinds in Massive Star-forming Regions
Conditions for Cool Superwinds in Massive Star-forming Regions
 
Bayesian X-ray Spectral Analysis of Black Hole Spins in Seyfert I AGN
Bayesian X-ray Spectral Analysis of Black Hole Spins in Seyfert I AGNBayesian X-ray Spectral Analysis of Black Hole Spins in Seyfert I AGN
Bayesian X-ray Spectral Analysis of Black Hole Spins in Seyfert I AGN
 
Chemical Compositions of [WR] Planetary Nebulae based on IFU Observations
Chemical Compositions of [WR] Planetary Nebulae based on IFU ObservationsChemical Compositions of [WR] Planetary Nebulae based on IFU Observations
Chemical Compositions of [WR] Planetary Nebulae based on IFU Observations
 
Hydrodynamic Simulations and Time-dependent Photoionization Modeling of Starb...
Hydrodynamic Simulations and Time-dependent Photoionization Modeling of Starb...Hydrodynamic Simulations and Time-dependent Photoionization Modeling of Starb...
Hydrodynamic Simulations and Time-dependent Photoionization Modeling of Starb...
 
Morphologies of Wolf-Rayet Planetary Nebulae based on IFU Observations
Morphologies of Wolf-Rayet Planetary Nebulae based on IFU ObservationsMorphologies of Wolf-Rayet Planetary Nebulae based on IFU Observations
Morphologies of Wolf-Rayet Planetary Nebulae based on IFU Observations
 
Non-equilibrium Photoionization and Hydrodynamic Simulations of Starburst-dri...
Non-equilibrium Photoionization and Hydrodynamic Simulations of Starburst-dri...Non-equilibrium Photoionization and Hydrodynamic Simulations of Starburst-dri...
Non-equilibrium Photoionization and Hydrodynamic Simulations of Starburst-dri...
 
Bayesian X-ray Spectral Analysis of the Symbiotic Star RT Cru
Bayesian X-ray Spectral Analysis of the Symbiotic Star RT CruBayesian X-ray Spectral Analysis of the Symbiotic Star RT Cru
Bayesian X-ray Spectral Analysis of the Symbiotic Star RT Cru
 
Hydrodynamic Simulations of Starburst-driven Superwinds
Hydrodynamic Simulations of Starburst-driven SuperwindsHydrodynamic Simulations of Starburst-driven Superwinds
Hydrodynamic Simulations of Starburst-driven Superwinds
 
Hard X-ray Emitting Symbiotics: Candidates for Type Ia Supernova Progenitors
Hard X-ray Emitting Symbiotics: Candidates for Type Ia Supernova ProgenitorsHard X-ray Emitting Symbiotics: Candidates for Type Ia Supernova Progenitors
Hard X-ray Emitting Symbiotics: Candidates for Type Ia Supernova Progenitors
 
Emission Lines from Superwinds of Super Star Clusters
Emission Lines from Superwinds of Super Star ClustersEmission Lines from Superwinds of Super Star Clusters
Emission Lines from Superwinds of Super Star Clusters
 
Tendex and Vortex Lines around Spinning Supermassive Black Holes
Tendex and Vortex Lines around Spinning Supermassive Black HolesTendex and Vortex Lines around Spinning Supermassive Black Holes
Tendex and Vortex Lines around Spinning Supermassive Black Holes
 
Paths to a Unified AGN Outflow Model via Computational Relativity
Paths to a Unified AGN Outflow Model via Computational RelativityPaths to a Unified AGN Outflow Model via Computational Relativity
Paths to a Unified AGN Outflow Model via Computational Relativity
 
Suppressed Superwinds in Super Star Clusters via Hydrodynamic Simulations
Suppressed Superwinds in Super Star Clusters via Hydrodynamic SimulationsSuppressed Superwinds in Super Star Clusters via Hydrodynamic Simulations
Suppressed Superwinds in Super Star Clusters via Hydrodynamic Simulations
 
Simulations of Superwind Suppression in Super Star Clusters
Simulations of Superwind Suppression in Super Star ClustersSimulations of Superwind Suppression in Super Star Clusters
Simulations of Superwind Suppression in Super Star Clusters
 
Ultra-Fast Outflows in Seyfert I AGN
Ultra-Fast Outflows in Seyfert I AGNUltra-Fast Outflows in Seyfert I AGN
Ultra-Fast Outflows in Seyfert I AGN
 
Relativistic Compact Outflows in Radio-quiet AGN
Relativistic Compact Outflows in Radio-quiet AGNRelativistic Compact Outflows in Radio-quiet AGN
Relativistic Compact Outflows in Radio-quiet AGN
 
Active Galactic Nuclei: Laboratory for Gravitational Physics
Active Galactic Nuclei: Laboratory for Gravitational PhysicsActive Galactic Nuclei: Laboratory for Gravitational Physics
Active Galactic Nuclei: Laboratory for Gravitational Physics
 
Chandra Grating Spectroscopy of PG 1211+143: Evidence for an Ultra-fast Outflow
Chandra Grating Spectroscopy of PG 1211+143: Evidence for an Ultra-fast OutflowChandra Grating Spectroscopy of PG 1211+143: Evidence for an Ultra-fast Outflow
Chandra Grating Spectroscopy of PG 1211+143: Evidence for an Ultra-fast Outflow
 

Kürzlich hochgeladen

SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
RizalinePalanog2
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
PirithiRaju
 
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
Lokesh Kothari
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
gindu3009
 

Kürzlich hochgeladen (20)

module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
 
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdf
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
American Type Culture Collection (ATCC).pptx
American Type Culture Collection (ATCC).pptxAmerican Type Culture Collection (ATCC).pptx
American Type Culture Collection (ATCC).pptx
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Alandi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance Booking
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 

Propagation of electron-acoustic excitations in the presence of suprathermal background electrons

  • 1. School of Mathematics and Physics 1 1 Propagation of electron-acoustic (EA) excitations in the presence of suprathermal background electrons: linear and nonlinear effects Ashkbiz Danehkar School of Mathematics & Physics, Queen’s University Belfast, Belfast BT7 1NN, UK Supervisors: Dr. Nareshpal Singh Saini & Dr. Ioannis Kourakis Centre for Plasma Physics, Department of Physics and Astronomy, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, UK Prof. Manfred Armin Hellberg School of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
  • 2. School of Mathematics and Physics 2 2 We investigate Electron-Acoustic Waves (EAWs) in a collisionless and unmagnetized plasma which consists of three species, namely: • “cool” inertial electrons (in temperature Tc), • inertialess “hot” suprathermal electrons (in temperature Th >Tc), • stationary/inertial ions (separate cases, in comparison) 3. Linear effects: Dispersion Relation (DR) 2. Strategic Workplan: • Work on a Cold One-Fluid Model (Tc=0) • Add the Cool Electron Thermal Pressure (“Warm” One-Fluid Model; Tc>0) • Add the Ion-fluid to make a Two-Fluid Model Layout 5. Conclusion 1. Motivation 4. Nonlinear Pseudopotential Method: Existence of Solitary Waves
  • 3. School of Mathematics and Physics 3 3 The electron-acoustic waves occur in a plasma, where inertial cold electrons (Tc) oscillate against inertialess hot electrons (Th). The cold electrons provide the inertial effects maintaining the EAWs, while the restoring force comes from the pressure of the hot electrons. The EAWs is undamped for temperature ratio Tc/Th<0.1 and 0.2<nc/(nc+nh)<0.8. The EAWs often occur in • laboratory experiments • space plasmas e.g. the Earth's bow shock • the auroral magnetosphere • Broadband Electrostatic Noise (BEN) observed by satellites 1. Motivation 1/2 ,0 3 2 ( ) 1 h h n n κ φ φ κ − + ⎛ ⎞ = − ⎜ ⎟ − ⎝ ⎠ • low values of κ>3/2 are associated with suprathermal • For κ→∞, a Maxwellian is recovered • Some space and laboratory plasmas behaviors are extremely different from a Maxwellian distribution. We describe this suprathermal population by a κ-distribution
  • 4. School of Mathematics and Physics 4 4 2. Strategic Workplan ( ) 0, n nu t x ∂ ∂ + = ∂ ∂ u u u t x t φ ∂ ∂ ∂ + = ∂ ∂ ∂ 0, P P u u P t x x γ ∂ ∂ ∂ + + = ∂ ∂ ∂ ( ) 0, n nu t x ∂ ∂ + = ∂ ∂ , e i m u u u t x m t φ ∂ ∂ ∂ + = − ∂ ∂ ∂ 2 2 x φ ∂ = ∂ n + Cold Electron-fluid Thermal Pressure 1/ 2 0 3 0 2 1 h c n n κ φ κ − + ⎛ ⎞ + − ⎜ ⎟ − ⎝ ⎠ n − Cool Electron-fluid Ion-fluid 1 , c h T P T n x ∂ − ∂ Hot Suprathermal Electrons 2 , 1 3, f f f γ γ = + = → = Poisson's Equation Blue: Model 1 (cold 1-fluid, static ions); Blue + red: Model 2 (warm 1-fluid, static ions); Green: Model 3 (ion inertia included)
  • 5. School of Mathematics and Physics 5 5 3. Linear effects: Dispersion Relation (DR) Thermal Pressure Ion-fluid Hot Suprathermal Electrons Poisson's Equation Cool Electron-fluid Linear method: (0) (1) (0) 0 0 ( , , , , , ), , 1,0,1 ,0,1,0 , h c n S n u n u P S S S S n φ ⎛ ⎞ = = + = + ⎜ ⎟ ⎝ ⎠ (1) (1) , k n u ω = (1) (1) (1) , c h k T P T u φ ω ⎛ ⎞ = − ⎜ ⎟ ⎝ ⎠ − (1) (1) 3 , P n = (1) (1) , k n u ω = (1) (1) , e i m k u m φ ω = 2 (1) k φ − = (1) n + 1 (1) 0 2 3 0 2 1 h c n n κ φ κ ⎛ ⎞ − + + ⎜ ⎟ − ⎝ ⎠ (1) 0 0 h c n n n − −
  • 6. School of Mathematics and Physics 6 3. Linear effects: Dispersion Relation (DR) 0 0 , h c n n β = 2 2 2 2 D k k k ω = + 1/2 1 0 2 3 0 2 , h D c n k n κ κ ⎛ ⎞ − = ⎜ ⎟ − ⎝ ⎠ 6 2 3 k σ + , c h T T σ = Thermal Effects ( ) ( ) 2 2 2 2 2 3 1 , D D k k k k k σ μ + ⎡ ⎤ + + ⎣ ⎦ + , e i m m μ = Inertial Ion Effects Hot Suprathermal Effect Frequency vs. wavenumber k ω Result: growing suprathermal distribution, hot electron number density (nh/nc), and decreasing cool electron temperature (Tc/Th) increases the linear EAW.
  • 7. School of Mathematics and Physics 7 7 4. Nonlinear Method: Existence of Solitary Waves n + Thermal Pressure 1/ 2 0 3 0 2 1 h c n n κ φ κ − + ⎛ ⎞ + − ⎜ ⎟ − ⎝ ⎠ n − Ion-fluid Hot Suprathermal Electrons Poisson's Equation Cool Electron-fluid Pseudopotential Method: , x Mt ξ = − A traveling coordinate M is the Mach number 1 1 , u M n ⎛ ⎞ = − ⎜ ⎟ ⎝ ⎠ 2 2 2 3 3 u M M n φ σ σ − − + + = 3 , P n = 1 1 , u M n β + ⎛ ⎞ = − ⎜ ⎟ ⎝ ⎠ 2 2 u M M μφ = − − 2 2 φ ξ ∂ = ∂
  • 8. School of Mathematics and Physics 8 4. Nonlinear Method: Existence of Solitary Waves 1 0, 2 d d φ ξ ⎛ ⎞ + Ψ = ⎜ ⎟ ⎝ ⎠ 1/ 2 2 3 2 3/2 2 1 ( 1 2 ) 1 1 1 M M κ φ φ β φ β κ − + ⎛ ⎞ ⎛ ⎞ ⎜ ⎛ ⎞ ⎛ ⎞ + − + ⎜ ⎟ ⎜ ⎟ ⎟ + Ψ = + − − ⎜ ⎟ ⎜ ⎟ − ⎝ ⎠ ⎝ ⎠ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ 8 Hot Suprathermal Effect Result: As the density of the hot suprathermal electrons is increased, the potential amplitude increases.
  • 9. School of Mathematics and Physics 9 4. Nonlinear Method: Existence of Solitary Waves 1 0, 2 d d φ ξ ⎛ ⎞ + Ψ = ⎜ ⎟ ⎝ ⎠ Thermal Effects ( ) ( ( ) ( ) ( ) 3/ 2 3 2 3 3 3/2 3/ 2 2 2 1 1 3 3 3 3 (1 1 6 2 2 ) 3 M M M M κ φ β κ σ σ φ φ φ β σ σ σ − + + + ± − ⎞ ⎡ ⎤ ⎡ ⎤ − + + + − ⎟ ⎢ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ + ⎥ ⎢ ⎥ ⎣ ⎦ − − ⎜ ⎟ ⎜ Ψ ⎟ − ⎣ ⎠ ⎦ ⎝ ⎝ = + ⎠ ⎠ ∓ 9 Result: As the temperature of the cool electrons is increased, the potential amplitude increases.
  • 10. School of Mathematics and Physics 10 4. Nonlinear Method: Existence of Solitary Waves 3 M σ < Inertial Ion Effects 3 M σ > supersonic: subsonic: 1 0 d F d φ φ = Ψ = − 10 ( ) ( ( ) ( ) ( ) 3 3 3/ 2 3/ 2 2 2 3/ 2 3 / 2 2 1 2 2 1 1 3 3 3 2 (1 ) 1 1 1 6 3 3 2 2 M M M M M M κ φ β κ σ σ σ σ φ σ φ β μ φ μ − + ⎛ ⎞ ⎛ ⎞ ⎜ + + ± − ⎞ ⎡ ⎤ ⎡ ⎤ − + + + − ⎟ ⎢ ⎥ ⎢ ⎥ ⎣ ⎛ ⎞ ⎛ ⎞ + − − ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎟ + − − ⎜ ⎟ Ψ ⎝ ⎠ ⎦ ⎣ ⎦ ⎝ ⎠ ⎜ ⎟ − ⎝ ⎠ ⎝ = ⎠ ⎠ ∓ Result: ion-fluid has a trivial role in modifying negative supersonic solitary waves, but it is important to support the positive wave structures on the subsonic scale.
  • 11. School of Mathematics and Physics 11 4. Nonlinear effects: Supersonic domain 1 1 0 0 d F M d φ φ = Ψ = − > → ( ) 2 2 0 m F M φ φ − = = Ψ > → low limit upper limit ( ) 3 M σ > 11 Result: The existence domain for the negative soliton becomes narrower with the increase in the suprathermal distribution, nh/nc, and Tc/Th.
  • 12. School of Mathematics and Physics 12 4. Nonlinear effects: Subsonic domain ( ) 3 M σ < 12 1 1 0 0 d F M d φ φ = Ψ = − > → ( ) 2 2 0 m F M φ φ + = = Ψ > → low limit upper limit Result: The existence domain for the positive soliton becomes wider with the increase in the kappa, nh/nc, and Tc/Th.
  • 13. School of Mathematics and Physics 13 13 A. Danehkar, N. S. Saini, M. A. Hellberg and I. Kourakis, “Propagation of electron-acoustic excitations in the presence of suprathermal background electrons,” manuscript in preparation. 5. Conclusion • Linear Analysis: growing suprathermal distribution, and hot electron number density and temperature (increasing nh/nc and decreasing Tc/Th) widen the linear EAW. • Nonlinear Analysis: The existence domain for the negative soliton becomes narrower with the increase in the suprathermal distribution, nh/nc, and Tc/Th. • Ion-fluid does not affect the negative soliton existence, but is necessary to maintain the positive solitary wave structure. • Ion-fluid has a trivial role in the supersonic (fast) scale, but it appear to be very important in the subsonic (slow) scale. • Positive acoustic-waves deeply depends on suprathermal hot electron parameters. • Two-fluid cold model (Tc=0) cannot predict positive solitons. • Cold electron temperature (Tc/Th) affects both negative and positive solitons.
  • 14. School of Mathematics and Physics 14 Special thanks to: • Dr. Nareshpal Singh Saini & Dr. Ioannis Kourakis (QUB, UK) • Prof. Dr. Manfred Armin Hellberg (UKZN, Durban, S Africa) • UK DEL funding via QUB (A.D.) • UK EPSRC via QUB (N.S.S. & I.K.) • S Africa NRF via UKZN (M.A.H.) Acknowledgments:
  • 15. School of Mathematics and Physics 15 15 Thank You!