SlideShare ist ein Scribd-Unternehmen logo
1 von 34
Downloaden Sie, um offline zu lesen
CHAPTER 2 :Real Number System
The real number system evolved over time by expanding the notion of what we mean
by the word “number.” At first, “number” meant something you could count, like how many
sheep a farmer owns. These are called the natural numbers, or sometimes the counting
numbers.
2.1 Real Number
Counting Number / Natural Number
N = { 1 , 2 , 3 , 4 , … }
• The use of three dots at the end of the list is a common mathematical notation to
indicate that the list keeps going forever.
Whole Numbers
• Natural Numbers together with “zero”
W = { }0 , 1 , 2 , 3 , 4 , ...
Integer Number (I)
• Whole numbers plus negatives
{ }I ..., 3 , 2 , 1 , 0 , 1 , 2 , 3 ,...= − − −
{ }I 0 , 1 , 2 , 3 ,...= ± ± ±
Rational Number (Q)
a
Q = x x = ; a I , b I and b 0
b
 
∈ ∈ ≠ 
 
• All numbers of the form a
b
, where a and b are integers (but b cannot be zero)
• Rational numbers include what we usually call fractions
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 2
• Notice that the word “rational” contains the word “ratio,” which should remind you
of fractions.
• The bottom of the fraction is called the denominator. Think of it as the
denomination—it tells you what size fraction we are talking about: fourths, fifths, etc.
• The top of the fraction is called the numerator. It tells you how many fourths, fifths,
or whatever.
• RESTRICTION: The denominator cannot be zero! (But the numerator can)
• Fractions can be numbers smaller than 1, like 1/2 or 3/4 (called proper fractions : In
the numerator is smaller than the denominator)
• Fractions can be numbers bigger than 1, like one-and-a-quarter, which we could also
write as 5/4 (called improper fractions : the numerator is bigger than the denominator)
• One way of expressing the improper fraction 5/4 is as the mixed number 1
1
4
,
which is read as “one and one-fourth.”
• The step for write Mixed Number to Improper Fraction ;
1. Multiply the integer part with the bottom of the fraction part.
2. Add the result to the top of the fraction.
• The step for write Improper Fraction to Mixed Number
1. Do the division to get the integer part
2. Put the remainder over the old denominator to get the fractional part
•••• Equivalent Fractions
Equivalent fractions are fractions that have the same value, for example
1 2 3 4
2 4 6 8
= = = etc.
• All integers can also be thought of as rational numbers, with a denominator of 1:
for example 3
3
1
= , 5
5
1
−
− =
• This means that all the previous sets of numbers (natural numbers, whole numbers,
and integers) are subsets of the rational numbers.
Now it might seem as though the set of rational numbers would cover every possible
case, but that is not so. There are numbers that cannot be expressed as a fraction, and these
numbers are called irrational because they are not rational.
• Integer 2 , 5, 0 , 3 , 7− −
• Fraction 2 11
,
3 17
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 3
• Periodic Decimal 0.2 , 0.3 , 0.47&
Irrational Number (Q′ )
• Cannot be expressed as a ratio of integers.
• As decimals they never repeat or terminate (rationals always do one or the other)
Examples:
Rational (terminates)
2
= 0.66666
3
& Rational (repeats)
5
= 0.45454545
11
& & Rational (repeats)
5
= 0.714285714285
7
& & Rational (repeats)
Irrational (never repeats or terminates)
Irrational (never repeats or terminates)
The Real Numbers(R)
•••• Rationals + Irrationals
•••• All points on the number line
• Or all possible distances on the number line
When we put the irrational numbers together with the rational numbers, we finally have
the complete set of real numbers. Any number that represents an amount of something, such as
a weight, a volume, or the distance between two points, will always be a real number. The
following diagram illustrates the relationships of the sets that make up the real numbers.
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 4
Imaginary Number
a+bi ; a,b R and b 0∈ ≠
2+3i , 4 5i− , 1 3i− , 2i
Union of Real Number and Imaginary Number called Complex Number.
Properties for real number system
1) Reflexive Property ;
• If a R∈ then a = a
• Example ; 3 = 3 , 2 = 2π π , 2x = 2x , 1+2x = 1+2x etc.
2) Symetric Property ;
• If a = b then b = a
• Example ; If 5 2x= then 2x = 5
If 12 4 3x= − then 4 3x = 12−
If 5 2 + 3= then 2 + 3 = 5 etc.
3) Transitive Property ;
• If a = b and b = c then a = c
• Example ; If 2x + 1 = 10 + 12 and 10 + 12 = 22 then 2x + 1 = 22
If 2x 5 = x + 1− and x + 1 = 7 then 2x 1 = 7− etc.
4) Addition by the equal number ;
• If a = b then a + c = b + c
• Example ; If a = 5 then a + 3 = 5 + 3
If ( ) ( ) ( )2x + 5 = 10 then 2x + 5 + 5 = 10 + 5− − etc.
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 5
5) Multiplication by the equal number ;
• If a = b then ac = bc
• Example ; If a = 3 then a 2 = 3 2× ×
If ( ) ( )2x = 8 then 3 2x = 3 8 etc.
6) If a + c = b + c then a = b
7) If ac = bc and c 0≠ then a = b
Addition Property for real number system
1) Closure Property
• If Ra∈ , Rb∈ then Rba ∈+
2) Commutative Property
• If Ra∈ , Rb∈ then abba +=+
3) Associative Property
• If RcandRb,Ra ∈∈∈ then ( ) ( )cbacba ++=++
• Example ; 1. consider ( )532 ++ and ( ) 532 ++
Hence ( ) 1082532 =+=++
and ( ) 1055532 =+=++
so ( )532 ++ = ( ) 532 ++ etc.
4) Identity (0)
• There is R0∈ for all Ra∈ such that a0aa0 =+=+
• Example ; 0 + 2 = 2 + 0 = 2
20220 =+=+ etc.
5) Inverse ( a− )
• For all Ra∈ there exists Ra ∈− such that ( ) ( ) 0aaaa =+−=−+
• Example ; 1. Consider addition inverse of 2
Hence ( ) ( ) 02222 =+−=−+ so addition inverse of 2 is 2−
2. Consider addition inverse of 5−
Hence ( ) ( )( ) ( )( ) ( ) 05555 =−+−−=−−+−
so addition inverse of 5− is ( )5−− , and ( ) 55 =−− etc.
Cancallation Property ( ก ก)
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 6
Multiplication Property for real number system
1) Closure Property
• If Ra∈ , Rb∈ then Rab∈
2) Commutative Property
• If Ra∈ , Rb∈ then baab =
3) Associative Property
• If RcandRb,Ra ∈∈∈ then ( ) ( )bcacab =
4) Identity (1)
• There is R1∈ for all Ra∈ such that ( ) ( ) a1aa1 ==
• Example ; ( ) ( ) 21221 ==
( ) ( )( ) 21221 == etc.
5) Inverse ( 1
a−
)
• For all Ra∈ and 0a ≠ there exists Ra 1
∈−
such that ( ) ( ) 1aaaa 11
== −−
• multiplication inverse of a is 1
a−
and
a
1
a 1
=−
hence ( ) ( ) 1a
a
1
a
1
a =





=





so multiplication inverse of a is
a
1
• Example ; 1. Consider multiplication inverse of 2
hence ( ) ( ) 12
2
1
2
1
2 =





=





so multiplication inverse of 2 is
2
1
2. Consider addition inverse of
5
1
Hence ( ) ( ) 1
5
1
55
5
1
=





=





so multiplication inverse of
5
1
is 5
6) Distributive Property
• If RcandRb,Ra ∈∈∈ then ( ) bcabcba +=+ and ( ) bcaccba +=+
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 7
Example : Given a and b are real number a b = a + b 5⊕ − Find
1) Identity
2) Inverse of 10
Find Identity
Let x is identity
x a⊕ = a
x + a 5− = a
x = 5
Find Inverse of 10
Let y is Inverse of 10
y 10⊕ = 5
y + 10 − 5 = 5
y = 0
Example : Change the number to fraction
1. 0.252525...
Let x = 0.252525...  (1)
(1) × 100 ; 100x = 25.252525...  (2)
(2) – (1) ; 99x = 25
x = 25
99
Therefore0.252525... = 25
99
2. 0.45326& &
Let x = 0.45326326326  (1)
(1)×100 ; 100x = 45.326326326  (2)
(1)×100,000 ; 100,000x = 45326.326326326...  (3)
(3) – (2) ; 99900x = 45326 45−
99900x = 45281
x = 45281
99900
Therefore0.45326326326... = 45281
99900
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 8
3. 2.354&
Let x = 2.35444...  (1)
(1)×100 ; 100x = 235.444...  (2)
(1)×1,000 ; 1,000x = 2354.444...  (3)
(3) – (2) ; 900x = 2119
x = 2119
900
Therefore 2.354& = 2119
900
Example : Given a * b = a + b + 4 where a , b ∈ R. Find the property of operation *
And find inverse of 5
1. Closure Property
If a ∈ R and b ∈ R then a * b = a + b + 4 ∈ R
5 ∈ R and 7 ∈ R , 5 7∗ = 5 7 4+ + = 16 ∈ R
2. Commutative Property
a * b = a + b + 4
= b + a + 4
= b * a
3. Associative Property
(a * b) * c = (a + b + 4) * c a * (b * c) = a * (b + c + 4)
= (a + b + 4) + c + 4 = a + (b + c + 4) +4
= a + b + 4 + c + 4 = a + b + c + 4 + 4
= a + b + c + 8 = a + b + c + 8
(a * b) * c = a * (b * c)
4. Identity
Let x is identity
x * a = a
x + a + 4 = a
x = 4−
Therefore identity is 4−
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 9
5. Inverse
Let y is inverse of 5
y * 5 = 4− ( identity)
y + 5 + 4 = 4−
y = 13−
Therefore inverse of 5 is 13−
2.2 Fundamental Theorem For Real Number System
Theorem 2.2.1 ; cancallation property for addition (กLMNOPQQกRSLTMOUกLMUVก)
Given a , b , c ∈ R
(1) if a + c = b + c then a = b
( 2) If a + b = a + c then b = c
Theorem 2.2.2 ; cancallation property for multiplication (กLMNOPQQกRSLTMOUกLMWXY)
Given a , b , c ∈ R
(1) if ac = bc and c ≠ 0 then a = b
( 2) If ab = ac and a ≠ 0 then b = c
Theorem 2.2.3 ; multiplied by 0 (กLMWXYPZV[ 0)
If a ∈ R then ( ) ( )= =a 0 0 a 0
Theorem 2.2.4 ; multiplied by −1 (กLMWXYPZV[ − 1)
If a ∈ R then a(−1) = (−1)a = −a
Theorem 2.2.5 ; 89:;<=>?@กBC 0
Given a , b∈R , If ab = 0 then a = 0 or b = 0
Theorem 2.2.6 ;
Given a ∈R , If a ≠ 0 then 1
a−
≠ 0
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 10
Theorem 2.2.7 ; ( inverse of the inverse )
(1) If a ∈R then ( ) aa =−−
(2) If a ∈R and a ≠ 0 then ( ) aa
11
=
−−
Theorem 2.2.8 ;
Given a , b ∈R , where a ≠ 0 and b ≠ 0 then
( ) 11111
baabab −−−−−
==
Theorem 2.2.9 ;
Given a , b ∈R then ;
(1) ( )ba− = ab−
(2) ( )ba − = ab−
(3) ( )( )ba −− = ab
Subtraction And Division For Real Number
Subtraction for real number
Definetion ;
Given a , b ∈ R then ( )− −a b = a + b
Theorem 2.2.10 ; distributive property for subtraction (กLM]ก]^RSLTMOUกLM_U)
Given a , b , c ∈R then ;
(1) ( )−a b c = −ab ac
(2) ( )−a b c = −ac bc
(3) ( )( )− −a b c = −ab + ac
Theorem 2.2.11 ; cancallation property for subtraction (กLMNOPQQกRSLTMOUกLM_U)
Given a , b , c ∈ R
(1) if − −a b = a c then b = c
(2) If − −a b = c b then a = c
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 11
Devision for real number
Definetion ;
Given a , b ∈ R , where b ≠ 0 then ( )−1a
= a b
b
Theorem 2.2.12 ;
Given a , b , c ∈R , where b ≠ 0 and c ≠ 0 then
( ) − − − −−
= =1 1 1 11
ab b a a b
Theorem 2.2.13 ;
Given a , b , c ∈R , where b ≠ 0 and then ( )a ca
c =
b b
Theorem 2.2.14 ;
Given a , b ∈R , where b ≠ 0 then
−
−
−
a a a
= =
b b b
Theorem 2.2.15 ;
Given a , b , c ∈R , where b ≠ 0 and c ≠ 0 then
( )a
ab =
c bc
Theorem 2.2.16 ;
Given a , b , c , d ∈ R , where b ≠ 0 and d ≠ 0 then
+
a c ad + bc
=
b d bd
Theorem 2.2.17 ;
Given a , b , c , d ∈R , where b ≠ 0 and d ≠ 0 then
−
−
a c ad bc
=
b d bd
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 12
Theorem 2.2.18 ;
Given a , b , c , d ∈R , where b ≠ 0 and d ≠ 0 then
( )( )a c ac
=
b d bd
Theorem 2.2.19 ;
Given a , b ∈R , where a ≠ 0 and b ≠ 0 then
( )
−1
a b
=
b a
Theorem 2.2.20 ;
Given a , b , c , d ∈R , where b ≠ 0 , c ≠ 0 and d ≠ 0 then
( )
( )
a
adb =
c bc
d
Theorem 2.2.21 ;
Given a , b , c ∈ R , where b ≠ 0 then
(1) If
a
= c
b
then a = bc
(2) If a = bc then
a
= c
b
Theorem 2.2.22 ;
Given a , b , c ∈ R , where b ≠ 0 then
a
= c
b
if and only if a = bc
Theorem 2.2.23 ;
Given a , b , c ∈R , where b ≠ 0 and c ≠ 0 then
( )
a ac
=
b b
c
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 13
2.3 Solving polynomial equations of one variable
polynomial equations of one variable is an equation of the form
−
−+ + + + =n n 1
n n 1 1 0a x a x ... a x a 0 , where na , −n 1a , … , 1a , 0a are
real numbers , which are constants , x is variable and n is an integer or zero.
Solving equations by factorization(ก@GHกIJKก@GLMNก@GHNกOBPQGRกSC)
Example 1 : Find the solution set of equation − − + =3 2
4x 3x 64x 48 0
Solution Since − − +3 2
4x 3x 64x 48 = 0
( ) ( )− − −3 2
4x 3x 64x 48 = 0
( ) ( )− − −2
x 4x 3 16 4x 3 = 0
( )( )− −2
x 16 4x 3 = 0
( )( )( )+ − −x 4 x 4 4x 3 = 0
So −x 4 = 0 or +x 4 = 0 or −4x 3 = 0
So x = 4 or x = −4 or x =
3
4
The solution set is { }−
3
4 , , 4
4
Solving equations by remainder theorem (ก@GHกIJKก@GLMN>TUVWC>=XU=Y9ZS)
P(x) is polynomial −
−+ + + + =n n 1
n n 1 1 0a x a x ... a x a 0 , which n is a positive
integer , na , −n 1a , … , 1a , 0a are real numbers , which na ≠ 0 . If division p(x) by
−x c , which c is real number then remainder is equal to p(c)
Example 2 : Find the remainder when division + −3
9x 4x 1 by −
1
x
2
Solution Given p(x) = + −3
9x 4x 1
By remainder theorem ; when division p(x) by −
1
x
2
then the remainder
is p( )1
2
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 14
p( )1
2
= ( ) ( )+ −
3
1 1
9 4 1
2 2
=
17
8
Therefore the remainder is
17
8
Factor Theorem (>TUVWC>OBPQGRกSC)
P(x) is polynomial −
−+ + + + =n n 1
n n 1 1 0a x a x ... a x a 0 , which n is
a positive integer , na , −n 1a , … , 1a , 0a are real numbers , which na ≠ 0 .
−x c is factor of p(x) if and only if p(c) = 0
RM`abOcdNQdกLM[กNOVaMeกQUbQ^fT`dLg p(x) hP[ijZklmnoUkpqmpT_rQidกMYodoc kSLPO^doc
1. TLNOVaMeกQU c bQ^ 0a koskSLiTZ p(c) = 0
2. dSL cx − taTLMfT`dLg p(x) u_TLM]epavdfT`dLgPoกMoNsSLกVwLPoกMobQ^ p(x) Q[Xw 1
3. xZLu_TLMidbZQ 2 [O^goPoกMoRX^กVwLRQ^_eRLgLMx[กNOVaMeกQUNwQtatPZQoกกy[ก
NOVaMeกQUNLgbOcdNQdidbZQ 1 _e 2 NwxZLu_TLMgoPoกMoRQ^]eijZVz{o[กNOVaMeกQU
NLgkospMo[dgL_ZV
Example 3 : Show that −x 2 is factor of − + +3 2
x 5x 2x 8
Solution Given p(x) = − + +3 2
x 5x 2x 8
p(2) = − + +3 2
2 5(2) 2(2) 8
= 8 20 4 8− + +
= 0
So −x 2 is factor of − + +3 2
x 5x 2x 8
From the example , −x 2 is factor of − + +3 2
x 5x 2x 8.
When divide − + +3 2
x 5x 2x 8 by −x 2 ,
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 15
2
3 2
3 2
2
2
x 3x 4
x 2 x 5x 2x 8
x 2x
3x 2x
3x 6x
4x 8
4x 8
− −
− − + +
−
− +
− +
− +
− +
So − + +3 2
x 5x 2x 8 = ( )( )2
x 2 x 3x 4− − −
And 2
x 3x 4− − = ( )( )x 1 x 4+ −
Therefore − + +3 2
x 5x 2x 8= ( )( )( )x 2 x 1 x 4− + −
Rational Factor Theorem (>TUVWC>OBPQGRกSCOGGกNR)
P(x) is polynomial −
−+ + + + =n n 1
n n 1 1 0a x a x ... a x a 0 , where n is
a positive integer , na , −n 1a , … , 1a , 0a are integer , where na ≠ 0 .
If
m
k
x − is factor of p(x), where m and n are integer , where m ≠ 0 and gcd. of
m and k is 1 then na divided by m perfect and 0a divided by k perfect .
Note : gcd = greatest common divisor ( T.M.g. = TLMMwVggLก)
RM`abOcdNQdกLM[กNOVaMeกQUbQ^fT`dLg p(x) PO^doc
1. TL
m
k
hP[fz]LMYL m _e k ]LกNOVaMeกQUbQ^ na _e 0a NLg_SLPOU _e
T.M.g. bQ^ m _e k pkwLกOU 1
2. kPRQUVwL p(
m
k
) pkwLกOU 0 TMrQtgw xZL p(
m
k
) = 0 ]etPZ
m
k
x − pavdNOVaMeกQU
bQ^ p(x) idกMYokostgwgo
m
k
koskSLiTZ p(
m
k
) = 0 RP^VwL fT`dLg p(x) tgwgo
NOVaMeกQUkospavdfT`dLgPoกMoTd|s^idMXa
m
k
x −
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 16
3. dSL
m
k
x − }|s^pavdNOVaMeกQUbQ^fT`dLg p(x) taTLMfT`dLg p(x) u_TLM]epavd
fT`dLgPoกMoNsSLกVwLPoกMobQ^ p(x)
4. xZLu_TLMidbZQ 3 [O^goPoกMoRX^กVwLRQ^_eRLgLMx[กNOVaMeกQUNwQtatPZQoก กy[กNOV
aMeกQUNLgbOcdNQdidbZQ 1 , 2 _e 3 NwxZLu_TLMgoPoกMoRQ^]eijZVz{o[กNOVaMeกQU
NLgkospMo[dgL_ZV
Example 4 : Factorise of 35x16x12x 23
−−+
Solution Given p(x) = 35x16x12x 23
−−+
Since integers which divide 3− perfect are 1± , 3± (]SLdVdkosTLM 3− _^NOV)
And integers which divide 12 perfect are 1± , 2± , 3± , 4± , 6± , 12±
(]SLdVdkosTLM 12 _^NOV)
So
k
m
which p(
m
k
) = 0 is the number of the following numbers
1± , 3± ,
1
2
± ,
3
2
± ,
1
3
± ,
1
4
± ,
3
4
± ,
1
6
± ,
1
12
±
( ]SLdVdpT_wLdoc NOVpqm WrQ]SLdVdkospavdNOVaMeกQUbQ^ 3− _eNOVRwVd WrQ ]SLdVd
kospavdNOVaMeกQUbQ^ 12 hP[kos T.M.g. bQ^NOVpqm_eNOVRwVd WrQ 1)
Consider p(
1
2
) = 3 21 1 1
12( ) 16( ) 5( ) 3
2 2 2
+ − −
=
12 16 5
3
8 4 2
+ − −
= 0
So
1
x
2
− is a factor of p(x)
Devide 35x16x12x 23
−−+ by
1
x
2
− then quotient is 2
12x 22x 6+ +
So 35x16x12x 23
−−+ = 21
(x )(12x 22x 6)
2
− + +
= 21
(x )(2)(6x 11x 3)
2
− + +
= 2
(2x 1)(6x 11x 3)− + +
= (2x 1)(3x 1)(2x 3)− + +
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 17
Example 5 : Solve the equation 35x16x12x 23
−−+
Solution Given p(x) = 35x16x12x 23
−−+
From example 4 ; 35x16x12x 23
−−+ = (2x 1)(3x 1)(2x 3)− + +
Since 35x16x12x 23
−−+ = 0
(2x 1)(3x 1)(2x 3)− + + = 0
So 2x 1− = 0 or 3x 1+ = 0 or 2x 3+ = 0
x =
1
2
or x =
1
3
− or x =
3
2
−
Example 6 : If 2 is real number .Prove that 2 is irrational number.
Prove 2 is the solution of equation x = 2
So 2 is the solution of equation 2
x = 2
or
2
x 2 = 0−  (1)
From Rational Factor Theorem ; the solution of equation (1) is in set { 1± , 2± }
but 2 ∉ { 1± , 2± }. So 2 is not rational number.
And since 2 is real number so 2 is irrational number.
Example 7 : If 2 5+ is real number .Prove that 2 5+ is irrational number.
Prove 2 5+ is the solution of x = 2 5+
So 2 5+ is the solution of x 2 = 5−
Or
2
x 2 2 x 2 = 5− + ([กกSL_O^RQ^kOc^RQ^bZL^)
2
x 3 = 2 2x−
4 2 2
x 6x 9 = 8x− + ([กกSL_O^RQ^kOc^RQ^bZL^)
4 2
x 14x 9 = 0− +  (1)
From Rational Factor Theorem ; the solution of equation (1) is in set { 1± , 3± , 9± }
but 2 5+ ∉ { 1± , 3± , 9± }. So 2 5+ is not rational number.
Since 2 5+ is real number so 2 5+ is irrational number.
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 18
2.4 Inequality
Definition ;
1) a > b if and only if −a b > 0
2) a < b if and only if −a b < 0
3) ≥a b means a > b or a = b
4) a b≤ means a < b or a = b
5) a < b < c means a < b and b < c
6) ≤ ≤a b c means ≤a b and ≤b c
7) < ≤a b c means <a b and ≤b c
8) ≤a b < c means ≤a b and b < c
9) ≠a b if and only if ( )− 2
a b > 0
Properties of inequality
I1 : Trichotomy Property (RgUONztNMVz€LW)
If a and b are real numbers then a = b , a < b and a > b , it is actually
only one.
I2 : Transitive Property (RgUONzกLMxwL[kQP)
Given a , b and c are real numbers.
(1) a < b and b < c then a < c
(2) ≤a b and ≤b c then ≤a c
(3) a > b and b > c then a > c
(4) ≥a b and ≥b c then ≥a c
I3 : property of number when compared with 0 (RgUONzbQ^]SLdVdpgrsQpaMo[Upko[UกOU 0)
Given a is real number.
(1) a is positive number if and only if a > 0.
(2) a is negative number if and only if a < 0.
(3) a is not positive number if and only if ≤a 0.
(4) a is not negative number if and only if ≥a 0.
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 19
I4 : RgUONzกMtgwpavd]SLdVd_U_eกLMpavd]SLdVdUVก
(1) If a is real number then ≥2
a 0
(2) If a is real number and a ≠ 0 then >2
a 0
I5 : Addition by the equal number (RgUONzกLMUVกPZV[]SLdVdpkwLกOd)
Given a , b and c are real numbers.
(1) If a < b then a + c < b + c
(2) If ≤a b then ≤a + c b + c
(3) If a > b then a + c > b + c
(4) If ≥a b then ≥a + c b + c
I6 : cancallation property for addition (กLMNOPQQกRSLTMOUกLMUVก)
Given a , b and c are real numbers.
(1) If a + c < b + c then a < b
(2) If ≤a + c b + c then ≤a b
(3) If a + c > b + c then a > b
(4) If ≥a + c b + c then ≥a b
I7 : RgUONzกLMWXYPZV[]SLdVdpkwLกOdkospavd]SLdVdUVก
Given a , b and c are real numbers.
(1) If a < b and c > o then ac < bc
(2) If ≤a b c > o then ≤ac bc
(3) If a > b c > o then ac > bc
(4) If ≥a b c > o then ≥ac bc
I8 : RgUONzกLMWXYPZV[]SLdVdpkwLกOdkospavd]SLdVd_U
Given a , b and c are real numbers.
(1) If a < b and c < o then ac > bc
(2) If ≤a b c < o then ≥ac bc
(3) If a > b c < o then ac < bc
(4) If ≥a b c < o then ≤ac bc
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 20
I9 : RgUONzกLMNOPQQกbQ^]SLdVdUVกbQ^กLMWXY
Given a , b and c are real numbers.
(1) If ac < bc and c > o then a < b
(2) If ≤ac bc c > o then ≤a b
(3) If ac > bc c > o then a > b
(4) If ≥ac bc c > o then ≥a b
I10 : RgUONzกLMNOPQQกbQ^]SLdVd_UbQ^กLMWXY
Given a , b and c are real numbers.
(1) If ac < bc and c < o then a > b
(2) If ≤ac bc c < o then ≥a b
(3) If ac > bc c < o then a < b
(4) If ≥ac bc c < o then ≤a b
More Summaries
1) No Reflexive (tgwgoRgUONzกLMpkwLกOd)
2) No Symmetric (tgwgoRgUONzRggLNM)
3) If a b< and c d< then a c b d+ < +
4) If a b< and c d< then a d b c− < −
5) If 0 a b< < and 0 c d< < then ac bd<
6) 0a b< < and 0c d< < then ac bd>
7) If 0 a b< < and 0 c d< < then a b
d c
<
8) If 0a b< < and 0c d< < then a b
d c
>
9) If 0 a b< < then 2 2
a b<
10) If 0a b< < then 2 2
a b>
11) If 0 a b< < then 1 1
a b
>
12) If 0a b< < then 1 1
a b
>
13) If 0ab > and a b< then 1 1
a b
>
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 21
2.5 Interval
Given a R∈ , b R∈ and a b<
1) ( ),a b = { }x a x b< <
2) [ ],a b = { }x a x b≤ ≤
3) ( ],a b = { }x a x b< ≤
4) [ ),a b = { }a x<bx ≤
5) ( ),a ∞ = { }x x a>
6) [ ),a ∞ = { }x x a≥
7) ( ),a−∞ = { }x x a<
8) ( ],a−∞ = { }x x a≤
9) ( ),−∞ ∞ = R
Example 1 : Given A = ( )1,7 , B = [ ]3,4− , C = [ )0,6
1) A B∪ = [ )3,7− 2) B C∪ = [ )3,6−
3) A B C∪ ∪ = [ )3,7− 4) A B∩ = ( ]1,4
5) B C∩ = [ ]0,4 6) A B C∩ ∩ = ( ]1,4
7) ( )A B C∪ ∩ = [ )0,6 8) ( )A B C∩ ∪ = ( )1,6
9) A B− = ( )4,7 10) B C− [ )3,0−
11) ( )A B C− − = [ )6,7 12) ( )A B C∪ − j [ ) [ )3,0 6,7− ∪
0
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 22
Example 2 : Given 1
,2nA n
n
 
= − 
 
; n I∈ . Find ( )1 2 3A A A∪ −
( ]1 = 1,2A −
2
1
= ,4
2
A
 
− 
 
3
1
= ,6
3
A
 
− 
 
Therefore ( )1 2 3
1
= 1,
3
A A A
 
∪ − − − 
 
.
Example 3 : Given 2
,3nA n
n
 
= − 
 
; n I∈ . Find ( )3 5 2A A A∩ −
( ]1 = 1,6A −
2
2
= ,9
3
A
 
− 
 
3
2
= ,15
5
A
 
− 
 
Therefore ( ) [ ]3 5 2 = 6,9A A A∩ − .
Example 4 : Given 5 10 and 3 8x y< < ≤ ≤
1) 8 < < 18x y+
2) 3 < < 7x y− −
3) 15 < < 80x y⋅
4) 5 10
< <
8 3
x
y
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 23
Example 5 : Given 5 2 and -3 1x y− < < − ≤ ≤ −
1) 8 < < -3x y− +
2) 4 < < 1x y− −
3) 2 < < 15x y⋅
4) 2
< < 5
3
x
y
Example 6 : Given 3 1 and 1 3x y− < < < <
1) -2 < < 4x y+
2) 6 < < 0x y− −
3) 9 < < 3x y− ⋅
4) 3 < < 1
x
y
−
5) 2 2
0 < 9 ; 1 < < 9x y≤
6) 2 2
9 < < 8x y− −
Inequality solving
Example 7 : Solve inequality 5 7 2 11x≤ − ≤ .
SOLUTION 5 7 2 11x≤ − ≤
7 5 2 11 7x− + ≤ − ≤ −
2 2 4x− ≤ − ≤
( ) ( )
1 1
2 4
2 8
x
   
− − ≤ ≤ −   
   
-2 1x≤ ≤
Therefore solution set is { }2 1x x− ≤ ≤ or [ ]2,1− .
Example 8 : Solve inequality 9 2 < 4 3 6x x x− − ≤ + .
SOLUTION 9 2 < 4 3x x− − and 4 3 6x x− ≤ +
4 2 < 3 9x x− − − − 4 6 3x x− ≤ +
6 < 12x− − 3 9x ≤
( ) ( )
1 1
6 > 12
6 6
x
   
− − − −   
   
( )
1 1
3 9
3 3
x
   
≤   
   
> 2x 3x ≤
32
Therefore solution set is { }2 3x x< ≤ or ( ]2,3 .
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 24
Example 9 : Solve inequality 2
4 3 > 0x x− + .
SOLUTION 2
4 3 > 0x x− +
( )( )1 3 > 0x x− −
CASE 1 1 > 0x − and 3 > 0x − CASE 2 1 < 0x − and 3 < 0x −
> 1x and > 3x < 1x and < 0x
> 3x < 1x
Therefore solution set is { }1 or 3x x x< > or ( ) ( ),1 3,−∞ ∪ ∞ .
Example 10 : Solve inequality 2
2 5 3 0x x+ − ≤ .
SOLUTION 2
2 5 3 0x x+ − ≤
( )( )2 1 3 0x x− + ≤
CASE 1 2 1 0x − ≥ and 3 0x + ≤ CASE 2 2 1 0x − ≤ and 3 0x + ≥
1
2
x ≥ and 3x ≤ −
1
2
x ≤ and 3x ≥ −
No solution 1
3
2
x− ≤ ≤
Therefore solution set is 1
3
2
x x
 
− ≤ ≤ 
 
or 1
3,
2
 
− 
 
.
Example 11 : Solve inequality 2
2 5 > 0x x+ + .
SOLUTION 2
2 5 > 0x x+ +
( )2
2 1 +4 > 0x x+ +
( )
2
1 +4 > 0x + ; x R∈
Therefore solution set is R .
Example 12 : Solve inequality 2
6 5 < 0x x+ − .
SOLUTION 2
6 5 < 0x x+ −
( )2
6 9 14 < 0x x+ + −
( ) ( )
22
3 14 < 0x + −
( )( )3 14 3 14 < 0x x+ − + +
Therefore solution set is ( )3 14 , 3 14− − − + .
-+ +
-3+ 14-3- 14
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 25
Example 13 : Solve inequality 2
8 10 0x x− + ≥ .
SOLUTION 2
8 10 0x x− + ≥
( )2
8 16 6 0x x− + − ≥
( ) ( )
22
4 6 0x − − ≥
( )( )4 6 4 6 0x x− − − + ≥
Therefore solution set is ( ), 4 16 4 6 , −∞ − ∪ + ∞  .
Example 14 : Solve inequality 2
10 25 > 0x x+ + .
SOLUTION 2
10 25 > 0x x+ +
( )
2
5 > 0x +
and 5x R x∈ ≠ −
Therefore solution set is { }5x x ≠ − or { }5R − − .
Example 15 : Solve inequality 2
4 4 0x x− + ≤ .
SOLUTION 2
4 4 0x x− + ≤
( )
2
2 0x − ≤
2x =
Therefore solutionset is { }= 2x x or { }2 .
Example 16 : Solve inequality 2
10 25 < 0x x− + .
SOLUTION 2
10 25 < 0x x− +
( )
2
5 < 0x −
Therefore no solution .
Example 17 : solve the following inequality
1) ( )( )( )2 3 1 < 0x x x− − +
SOLUTION ( )( )( )2 3 1 < 0x x x− − +
( )( )( )2 3 1 < 0x x x− − +
-
2-1
-+ +
3
Solution set is ( ) ( ), 1 2,3−∞ − ∪ .
-+ +
4+ 64- 6
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 26
2) ( )( ) ( )
2
1 2 3 0x x x− − − ≥
SOLUTION ( )( ) ( )
2
1 2 3 0x x x− − − ≥
( )( ) ( )
2
1 2 3 0x x x− − − ≥
Times
( )
2
1
2x −
; ( )( )1 3 0x x− − ≥
2-1
-+ +
3
Solution set is ( ] { } [ ),1 2 3,−∞ ∪ ∪ ∞ .
3) ( ) ( ) ( )
( ) ( )
2 3 4
5 6
2 3 4
0
5 6
x x x
x x
− − −
≤
− −
SOLUTION ( ) ( ) ( )
( ) ( )
2 3 4
5 6
2 3 4
0
5 6
x x x
x x
− − −
≤
− −
Times ( ) ( )
( ) ( ) ( )
5 6
2 3 4
5 6
2 3 4
x x
x x x
− −
− − −
; ( )( )3 5 0x x− − ≤
542
-+ +
3
Solution set is { } [ )2 3,5∪ .
4) 2 1 2
3 4
x
x x
−
<
+ −
SOLUTION 2 1 2
< 0
3 4
x
x x
−
−
+ −
( )( ) ( )( )
( )( )
4 2 1 3 2
< 0
3 4
x x x
x x
− − − +
+ −
( )( )
2
2 9 4 2 6
< 0
3 4
x x x
x x
− + − −
+ −
( )( )
2
2 11 2
< 0
3 4
x x
x x
− −
+ −
( )( )
2 11
1
2 < 0
3 4
x x
x x
− −
+ −
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 27
( )( )
2 11 121 137
2 16 16
< 0
3 4
x x
x x
 
− + − 
 
+ −
( )( )
22
11 137
4 4
< 0
3 4
x
x x
  
− −  
   
+ −
( )( )
11 137 11 137
4 4 4 4
< 0
3 4
x x
x x
  
− + − −  
  
+ −
Solution set is 11 137 11 137
3, 4,
4 4
   − +
− ∪      
   
.
5) 5 2
3 2x x
≥
+ −
SOLUTION 5 2
0
3 2x x
− ≥
+ −
( ) ( )
( )( )
5 2 2 3
0
3 2
x x
x x
− − +
≥
+ −
( )( )
5 10 2 6
0
3 2
x x
x x
− − −
≥
+ −
( )( )
3 16
0
3 2
x
x x
−
≥
+ −
( )( )( )3 16 3 2 0x x x− + − ≥
Solution set is [ ]
16
3,2 ,
3
 
− ∪ ∞ 
 
.
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 28
2.6 Absolute Value
When we want to talk about how “large” a number is without regard as to whether it is
positive or negative, we use the absolute value function. The absolute value of a number is the
distance from that number to the origin (zero) on the number line. That distance is always
given as a non-negative number.
• If a number is positive (or zero), the absolute value function does nothing to it:
• If a number is negative, the absolute value function makes it positive:
Definition ;
; 0
= 0 ; 0
; 0
x x
x x
x x
>

=
− <
3 = 3
5 = 5−
,
( )
5 = 5
4 = 4 = 4− − −
, 0 = 0
; 0
=
; 0
x x
x
x x
≥

− <
Absolute Value Property ;
1) =x x−
2) =x y y x− −
3) =xy x y
4) = ; 0
xx
y
y y
≠
5) 2 2
=x x
6) = 0 if and only if 0x x =
7) = ; 0 if and only if orx a a x a x a> = = −
8) 2 2
= if and only ifx y x y=
9) 2 2
< if and only ifx y x y<
10) x y x y+ ≤ +
11) = if and only if 0x y x y xy+ + ≥
12) < if and only if 0x y x y xy+ + <
13) x y x y− ≥ −
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 29
14) = if and only if 0x y x y xy− − ≥
15) > if and only if 0x y x y xy− − <
16) < ; 0 if and only ifx a a a x a> − < <
17) ; 0 if and only ifx a a a x a≤ > − ≤ ≤
18) > ; 0 if and only if orx a a x a x a> < − >
19) ; 0 if and only if orx a a x a x a≥ > ≤ − ≥
20)
1 ; 0
=
1 ; 0
xx
xx
>

− <
Example 1 : Solve the following equations
1) 2
6 = 0x x− −
SOLUTION 2
6 = 0x x− −
( )( )3 2 = 0x x− +
= 3 , 2x −
Solution set is { }3, 2− .
2) 2 3 = 15x −
SOLUTION 2 3 = 15x −
2 3 = 15 , 15x − −
2 = 18 , 12x −
= 9 , 6x −
Solution set is { }9, 6− .
3) 2 1 = 3x x− +
SOLUTION ( ) ( )
2 2
2 1 = 3x x− +
2 2
4 4 1 = 6 9x x x x− + + +
2
3 10 8 = 0x x− −
( )( )3 2 4 = 0x x+ −
2
= , 4
3
x −
Solution set is 2
,4
3
 
− 
 
.
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 30
4) 2 1 = 2x x− +
SOLUTION ( ) ( )
2 2
2 1 = 2x x− +
2 2
4 4 1 = 4 4x x x x− + + +
2
3 8 3 = 0x x− −
( )( )3 1 3 = 0x x+ −
1
= , 3
3
x −
Solution set is 1
,3
3
 
− 
 
.
Example 2 : Solve the following equations
1) 2 2
2 15 = 2 15x x x x− − − −
SOLUTION 2
2 15 0x x− − ≥
( )( )5 3 0x x− + ≥
Solution set is ( ) [ ), 3 5,−∞ − ∪ ∞ .
2) 2 2
6 = 6x x x x− − + −
SOLUTION ( )2 2
6 = 6x x x x− − − − −
2
6 0x x− − ≤
( )( )3 2 0x x− + ≤
Solution set is [ ]2,3− .
3) = 1x x −
SOLUTION If 0 then 1x x x≥ = −
No solution
If 0 then - 1x x x< = −
1
= (F)
2
x
Solution set is φ .
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 31
4) = 1x x +
SOLUTION If 0 then 1x x x≥ = +
No solution
If 0 then - 1x x x< = +
1
= (T)
2
x −
Solution set is 1
2
 
− 
 
.
5) 2 = 3x x− +
SOLUTION If 2 0 then 2 3x x x− ≥ − = +
No solution
If 2 0 then 2 3x x x− < − + = +
1
= (T)
2
x −
Solution set is 1
2
 
− 
 
.
6) 2 1 = 3x x+ −
SOLUTION If 2 1 0 then 2 1 3x x x+ ≥ + = −
= 4 (F)x −
If 2 1 0 then 2 1 3x x x+ < − − = −
2
= (F)
3
x
Solution set is φ .
7) 1 + 2 = 10x x+ −
SOLUTION ( ) ( )If 1 0 and 2 0 then 1 2 10x x x x+ ≥ − ≥ + + − =
11
2 and (T)
2
x x≥ =
( ) ( )If 1 0 and 2 0 then 1 2 10x x x x+ ≥ − < + − − =
No solution
( ) ( )If 1 0 and 2 0 then - 1 2 10x x x x+ < − ≥ + + − =
No solution
( ) ( )If 1 0 and 2 0 then 1 2 10x x x x+ < − < − + − − =
9
< 1 and (T)
2
x x− = −
Solution set is 11 9
,
2 2
 
− 
 
.
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 32
2.7 Absolute Value Inequality
Example 1 : Solve the following inequality.
1) 2 1 3x x− ≤ +
SOLUTION 2 1 3x x− ≤ +
( ) ( )
2 2
2 1 3x x− ≤ +
2 2
4 4 1 6 9x x x x− + ≤ + +
2
3 10 8 0x x− − ≤
( )( )3 2 4 0x x+ − ≤
Solution set is 2
,4
3
 
− 
 
.
2) 3 2 < 2 3x x− +
SOLUTION If 3 2 0 then 3 2 2 3x x x− ≥ − < +
2
and 5
3
x x≥ <
2
< 5
3
x≤  (1)
If 3 2 0 then 3 2 2 3x x x− < − + < +
2 1
< and
3 5
x x > −
1 2
< <
5 3
x−  (2)
Solution set is 1 2 2 1
, ,5 = ,5
5 3 3 5
     
− ∪ −    
     
.
3) 2 1 + 3 > 10x x− +
SOLUTION ( ) ( )If 2 1 0 and 3 0 then 2 1 3 10x x x x− ≥ + ≥ − + + >
1
and 3
2
x x≥ ≥ −
8
3
x >
8
>
3
x  (1)
( ) ( )If 2 1 0 and 3 0 then 2 1 3 10x x x x− ≥ + < − − + >
1
and 3
2
x x≥ < − Oppose
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 33
( ) ( )If 2 1 0 and 3 0 then 2 1 3 10x x x x− < + ≥ − − + + >
1
< and 3
2
x x ≥ − 6x < −
No solution
( ) ( )If 2 1 0 and 3 0 then 2 1 3 10x x x x− < + < − − − + >
1
< and 3
2
x x < − 4x < −
< 4x −  (2)
Solution set is ( )
8
, 4 ,
5
 
−∞ − ∪ ∞ 
 
.
4) 2 3 13x − ≤
SOLUTION 13 2 3 13x− ≤ − ≤
10 2 16x− ≤ ≤
5 8x− ≤ ≤
Solution set is [ ]5,8− .
5) 3 1 > 11x −
SOLUTION 3 1 11x − < − or 3 1 11x − >
3 < 10x − 3 > 12x
10
<
3
x − > 4x
Solution set is ( )
10
, 4,
3
 
−∞ − ∪ ∞ 
 
.
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 34
English vocabulary for Mathematic
Addition Property = RgUONzกLMUVก Associative Property = RgUONzกLMpa_os[dTgXw
Cancallation Property = ก ก Closure Property for addition = RgUONza•PกLMUVก
Complex Numbers = ]SLdVdpjz^}ZQd Commutative Property = RgUONzกLMR_OUkos
Counting Numbers = ]SLdVddOU Decimal = kqdz[g
Distributive Property = RgUONzกLM]ก]^ Fraction = pqmRwVd
Identity = pQก_OกmY‚ Imaginary Number = ]SLdVd]zdN€Lf
Integer numbers = ]SLdVdpNyg Inverse = NOVuกuOd
Irrational Numbers = ]SLdVdNMMก[e multiplication = กLMWXY
Multiplication Property = RgUONzกLMWXY Natural Numbers = ]SLdVddOU
Periodic Decimal = kqdz[g}cSL Rational Numbers =]SLdVdNMMก[e
Reflexive Property = RgUONzกLMRekZQd Subtraction = กLM_U
Square = MXaRospT_os[g]ON`MOR Struction = hWM^RMZL^
Symetric Property = RgUONzกLMpkwLกOd therefore = PO^dOcd
Transitive Property = RgUONzกLMxwL[kQP Whole Number = ]SLdVdkOc^TgP

Weitere ähnliche Inhalte

Was ist angesagt?

Properties of logarithms
Properties of logarithmsProperties of logarithms
Properties of logarithmsJessica Garcia
 
Rational irrational and_real_number_practice
Rational irrational and_real_number_practiceRational irrational and_real_number_practice
Rational irrational and_real_number_practiceeixarc
 
Distributive property ppt
Distributive property pptDistributive property ppt
Distributive property pptnglaze10
 
The real Number system
The real Number systemThe real Number system
The real Number systemRawabi Alz
 
Factoring quadratic trinomial
Factoring quadratic trinomialFactoring quadratic trinomial
Factoring quadratic trinomialMartinGeraldine
 
Matlab practical and lab session
Matlab practical and lab sessionMatlab practical and lab session
Matlab practical and lab sessionDr. Krishna Mohbey
 
Factoring the Difference of Two Squares
Factoring the Difference of Two SquaresFactoring the Difference of Two Squares
Factoring the Difference of Two SquaresNara Cocarelli
 
Matlab Tutorial for Beginners - I
Matlab Tutorial for Beginners - IMatlab Tutorial for Beginners - I
Matlab Tutorial for Beginners - IVijay Kumar Gupta
 
Addition and subtraction in polynomials
Addition and subtraction in polynomialsAddition and subtraction in polynomials
Addition and subtraction in polynomialssaidyein
 
Intro to Discrete Mathematics
Intro to Discrete MathematicsIntro to Discrete Mathematics
Intro to Discrete Mathematicsasad faraz
 
Natural and Whole Numbers
Natural and Whole NumbersNatural and Whole Numbers
Natural and Whole NumbersNeha Verma
 
NUMBER PATTERNS.pptx
NUMBER PATTERNS.pptxNUMBER PATTERNS.pptx
NUMBER PATTERNS.pptxVukile Xhego
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlabSantosh V
 
Inequalities
InequalitiesInequalities
Inequalitiessusoigto
 

Was ist angesagt? (20)

Properties of logarithms
Properties of logarithmsProperties of logarithms
Properties of logarithms
 
Rational irrational and_real_number_practice
Rational irrational and_real_number_practiceRational irrational and_real_number_practice
Rational irrational and_real_number_practice
 
Distributive property ppt
Distributive property pptDistributive property ppt
Distributive property ppt
 
The real Number system
The real Number systemThe real Number system
The real Number system
 
Factoring quadratic trinomial
Factoring quadratic trinomialFactoring quadratic trinomial
Factoring quadratic trinomial
 
Matlab practical and lab session
Matlab practical and lab sessionMatlab practical and lab session
Matlab practical and lab session
 
Factoring the Difference of Two Squares
Factoring the Difference of Two SquaresFactoring the Difference of Two Squares
Factoring the Difference of Two Squares
 
Matlab Tutorial for Beginners - I
Matlab Tutorial for Beginners - IMatlab Tutorial for Beginners - I
Matlab Tutorial for Beginners - I
 
Addition and subtraction in polynomials
Addition and subtraction in polynomialsAddition and subtraction in polynomials
Addition and subtraction in polynomials
 
algebra and its concepts
algebra and its conceptsalgebra and its concepts
algebra and its concepts
 
Solving absolute values
Solving absolute valuesSolving absolute values
Solving absolute values
 
Number Theory
Number TheoryNumber Theory
Number Theory
 
factorization
factorizationfactorization
factorization
 
Intro to Discrete Mathematics
Intro to Discrete MathematicsIntro to Discrete Mathematics
Intro to Discrete Mathematics
 
Natural and Whole Numbers
Natural and Whole NumbersNatural and Whole Numbers
Natural and Whole Numbers
 
NUMBER PATTERNS.pptx
NUMBER PATTERNS.pptxNUMBER PATTERNS.pptx
NUMBER PATTERNS.pptx
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlab
 
Inequalities
InequalitiesInequalities
Inequalities
 
Learn Matlab
Learn MatlabLearn Matlab
Learn Matlab
 
Ppt on real numbers
Ppt on real numbersPpt on real numbers
Ppt on real numbers
 

Andere mochten auch

สาระและมาตรฐานการเรียนรู้ ม.ปลาย
สาระและมาตรฐานการเรียนรู้ ม.ปลายสาระและมาตรฐานการเรียนรู้ ม.ปลาย
สาระและมาตรฐานการเรียนรู้ ม.ปลายAon Narinchoti
 
จุดมุ่งหมาย ม.ปลาย
จุดมุ่งหมาย ม.ปลายจุดมุ่งหมาย ม.ปลาย
จุดมุ่งหมาย ม.ปลายAon Narinchoti
 
Exponential and logarithm function
Exponential and logarithm functionExponential and logarithm function
Exponential and logarithm functionAon Narinchoti
 
รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์
รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์
รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์Aon Narinchoti
 
โครงงานวิทยาศาสตร์ กระติบข้าวเก็บความร้อน 17 ก.ย 57
โครงงานวิทยาศาสตร์ กระติบข้าวเก็บความร้อน 17 ก.ย  57โครงงานวิทยาศาสตร์ กระติบข้าวเก็บความร้อน 17 ก.ย  57
โครงงานวิทยาศาสตร์ กระติบข้าวเก็บความร้อน 17 ก.ย 57Chok Ke
 
ตัวชี้วัดและสาระการเรียนรู้แกนกลาง ม.ปลาย
ตัวชี้วัดและสาระการเรียนรู้แกนกลาง ม.ปลายตัวชี้วัดและสาระการเรียนรู้แกนกลาง ม.ปลาย
ตัวชี้วัดและสาระการเรียนรู้แกนกลาง ม.ปลายAon Narinchoti
 
Dlit socialmedia
Dlit socialmediaDlit socialmedia
Dlit socialmediatayval
 

Andere mochten auch (11)

Metrix[1]
Metrix[1]Metrix[1]
Metrix[1]
 
Graph
GraphGraph
Graph
 
สาระและมาตรฐานการเรียนรู้ ม.ปลาย
สาระและมาตรฐานการเรียนรู้ ม.ปลายสาระและมาตรฐานการเรียนรู้ ม.ปลาย
สาระและมาตรฐานการเรียนรู้ ม.ปลาย
 
จุดมุ่งหมาย ม.ปลาย
จุดมุ่งหมาย ม.ปลายจุดมุ่งหมาย ม.ปลาย
จุดมุ่งหมาย ม.ปลาย
 
Exponential and logarithm function
Exponential and logarithm functionExponential and logarithm function
Exponential and logarithm function
 
Present
PresentPresent
Present
 
รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์
รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์
รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์
 
โครงงานวิทยาศาสตร์ กระติบข้าวเก็บความร้อน 17 ก.ย 57
โครงงานวิทยาศาสตร์ กระติบข้าวเก็บความร้อน 17 ก.ย  57โครงงานวิทยาศาสตร์ กระติบข้าวเก็บความร้อน 17 ก.ย  57
โครงงานวิทยาศาสตร์ กระติบข้าวเก็บความร้อน 17 ก.ย 57
 
ตัวชี้วัดและสาระการเรียนรู้แกนกลาง ม.ปลาย
ตัวชี้วัดและสาระการเรียนรู้แกนกลาง ม.ปลายตัวชี้วัดและสาระการเรียนรู้แกนกลาง ม.ปลาย
ตัวชี้วัดและสาระการเรียนรู้แกนกลาง ม.ปลาย
 
Dlit socialmedia
Dlit socialmediaDlit socialmedia
Dlit socialmedia
 
His brob
His brobHis brob
His brob
 

Ähnlich wie Real number system full

Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1jennytuazon01630
 
Lecture 01 reals number system
Lecture 01 reals number systemLecture 01 reals number system
Lecture 01 reals number systemHazel Joy Chong
 
Unit-1 Basic Concept of Algorithm.pptx
Unit-1 Basic Concept of Algorithm.pptxUnit-1 Basic Concept of Algorithm.pptx
Unit-1 Basic Concept of Algorithm.pptxssuser01e301
 
Lesson 1 1 properties of real numbers
Lesson 1 1 properties of real numbersLesson 1 1 properties of real numbers
Lesson 1 1 properties of real numbersTerry Gastauer
 
Number System2.pptx
Number System2.pptxNumber System2.pptx
Number System2.pptxAnshRattan
 
DS Unit-1.pptx very easy to understand..
DS Unit-1.pptx very easy to understand..DS Unit-1.pptx very easy to understand..
DS Unit-1.pptx very easy to understand..KarthikeyaLanka1
 
Introduction to MatLab programming
Introduction to MatLab programmingIntroduction to MatLab programming
Introduction to MatLab programmingDamian T. Gordon
 
Determinants, Properties and IMT
Determinants, Properties and IMTDeterminants, Properties and IMT
Determinants, Properties and IMTPrasanth George
 
101-maths short cut tips and tricks for apptitude
101-maths short cut tips and tricks for apptitude101-maths short cut tips and tricks for apptitude
101-maths short cut tips and tricks for apptitudePODILAPRAVALLIKA0576
 
101 math short cuts [www.onlinebcs.com]
101 math short cuts [www.onlinebcs.com]101 math short cuts [www.onlinebcs.com]
101 math short cuts [www.onlinebcs.com]Itmona
 

Ähnlich wie Real number system full (20)

Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1
 
2. Real numbers
2. Real numbers2. Real numbers
2. Real numbers
 
Lecture 01 reals number system
Lecture 01 reals number systemLecture 01 reals number system
Lecture 01 reals number system
 
Unit-1 Basic Concept of Algorithm.pptx
Unit-1 Basic Concept of Algorithm.pptxUnit-1 Basic Concept of Algorithm.pptx
Unit-1 Basic Concept of Algorithm.pptx
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 
Lesson 1 1 properties of real numbers
Lesson 1 1 properties of real numbersLesson 1 1 properties of real numbers
Lesson 1 1 properties of real numbers
 
Number system
Number systemNumber system
Number system
 
Chapter0
Chapter0Chapter0
Chapter0
 
Annie
AnnieAnnie
Annie
 
Em01 ba
Em01 baEm01 ba
Em01 ba
 
Real-Number-System.pptx
Real-Number-System.pptxReal-Number-System.pptx
Real-Number-System.pptx
 
PEA 305.pdf
PEA 305.pdfPEA 305.pdf
PEA 305.pdf
 
Number System2.pptx
Number System2.pptxNumber System2.pptx
Number System2.pptx
 
Appt and reasoning
Appt and reasoningAppt and reasoning
Appt and reasoning
 
DS Unit-1.pptx very easy to understand..
DS Unit-1.pptx very easy to understand..DS Unit-1.pptx very easy to understand..
DS Unit-1.pptx very easy to understand..
 
Introduction to MatLab programming
Introduction to MatLab programmingIntroduction to MatLab programming
Introduction to MatLab programming
 
Determinants, Properties and IMT
Determinants, Properties and IMTDeterminants, Properties and IMT
Determinants, Properties and IMT
 
TABREZ KHAN.ppt
TABREZ KHAN.pptTABREZ KHAN.ppt
TABREZ KHAN.ppt
 
101-maths short cut tips and tricks for apptitude
101-maths short cut tips and tricks for apptitude101-maths short cut tips and tricks for apptitude
101-maths short cut tips and tricks for apptitude
 
101 math short cuts [www.onlinebcs.com]
101 math short cuts [www.onlinebcs.com]101 math short cuts [www.onlinebcs.com]
101 math short cuts [www.onlinebcs.com]
 

Mehr von Aon Narinchoti

บทคัดย่อ
บทคัดย่อบทคัดย่อ
บทคัดย่อAon Narinchoti
 
ส่งตีพิมพ์ มสธ
ส่งตีพิมพ์ มสธส่งตีพิมพ์ มสธ
ส่งตีพิมพ์ มสธAon Narinchoti
 
Lxt6 sonvyqi20150807080936
Lxt6 sonvyqi20150807080936Lxt6 sonvyqi20150807080936
Lxt6 sonvyqi20150807080936Aon Narinchoti
 
ตารางฟังก์ชันตรีโกณมิติ
ตารางฟังก์ชันตรีโกณมิติตารางฟังก์ชันตรีโกณมิติ
ตารางฟังก์ชันตรีโกณมิติAon Narinchoti
 
การใช้หลักปรัชญาเศรษฐกิจพอเพียง
การใช้หลักปรัชญาเศรษฐกิจพอเพียงการใช้หลักปรัชญาเศรษฐกิจพอเพียง
การใช้หลักปรัชญาเศรษฐกิจพอเพียงAon Narinchoti
 
คำอธิบายรายวิชา
คำอธิบายรายวิชาคำอธิบายรายวิชา
คำอธิบายรายวิชาAon Narinchoti
 
อัตราส่วนคะแนน
อัตราส่วนคะแนนอัตราส่วนคะแนน
อัตราส่วนคะแนนAon Narinchoti
 
แนะนำวิชา
แนะนำวิชาแนะนำวิชา
แนะนำวิชาAon Narinchoti
 

Mehr von Aon Narinchoti (20)

บทคัดย่อ
บทคัดย่อบทคัดย่อ
บทคัดย่อ
 
Prob
ProbProb
Prob
 
Event
EventEvent
Event
 
Sample space
Sample spaceSample space
Sample space
 
Random experiment
Random experimentRandom experiment
Random experiment
 
Wordpress
WordpressWordpress
Wordpress
 
ส่งตีพิมพ์ มสธ
ส่งตีพิมพ์ มสธส่งตีพิมพ์ มสธ
ส่งตีพิมพ์ มสธ
 
Lxt6 sonvyqi20150807080936
Lxt6 sonvyqi20150807080936Lxt6 sonvyqi20150807080936
Lxt6 sonvyqi20150807080936
 
Know5
Know5Know5
Know5
 
ตารางฟังก์ชันตรีโกณมิติ
ตารางฟังก์ชันตรีโกณมิติตารางฟังก์ชันตรีโกณมิติ
ตารางฟังก์ชันตรีโกณมิติ
 
Know4
Know4Know4
Know4
 
Know3
Know3Know3
Know3
 
Know2
Know2Know2
Know2
 
Know1
Know1Know1
Know1
 
การใช้หลักปรัชญาเศรษฐกิจพอเพียง
การใช้หลักปรัชญาเศรษฐกิจพอเพียงการใช้หลักปรัชญาเศรษฐกิจพอเพียง
การใช้หลักปรัชญาเศรษฐกิจพอเพียง
 
Climometer
ClimometerClimometer
Climometer
 
คำอธิบายรายวิชา
คำอธิบายรายวิชาคำอธิบายรายวิชา
คำอธิบายรายวิชา
 
อัตราส่วนคะแนน
อัตราส่วนคะแนนอัตราส่วนคะแนน
อัตราส่วนคะแนน
 
History
HistoryHistory
History
 
แนะนำวิชา
แนะนำวิชาแนะนำวิชา
แนะนำวิชา
 

Kürzlich hochgeladen

Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesShubhangi Sonawane
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxnegromaestrong
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docxPoojaSen20
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxNikitaBankoti2
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 

Kürzlich hochgeladen (20)

Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 

Real number system full

  • 1. CHAPTER 2 :Real Number System The real number system evolved over time by expanding the notion of what we mean by the word “number.” At first, “number” meant something you could count, like how many sheep a farmer owns. These are called the natural numbers, or sometimes the counting numbers. 2.1 Real Number Counting Number / Natural Number N = { 1 , 2 , 3 , 4 , … } • The use of three dots at the end of the list is a common mathematical notation to indicate that the list keeps going forever. Whole Numbers • Natural Numbers together with “zero” W = { }0 , 1 , 2 , 3 , 4 , ... Integer Number (I) • Whole numbers plus negatives { }I ..., 3 , 2 , 1 , 0 , 1 , 2 , 3 ,...= − − − { }I 0 , 1 , 2 , 3 ,...= ± ± ± Rational Number (Q) a Q = x x = ; a I , b I and b 0 b   ∈ ∈ ≠    • All numbers of the form a b , where a and b are integers (but b cannot be zero) • Rational numbers include what we usually call fractions
  • 2. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 2 • Notice that the word “rational” contains the word “ratio,” which should remind you of fractions. • The bottom of the fraction is called the denominator. Think of it as the denomination—it tells you what size fraction we are talking about: fourths, fifths, etc. • The top of the fraction is called the numerator. It tells you how many fourths, fifths, or whatever. • RESTRICTION: The denominator cannot be zero! (But the numerator can) • Fractions can be numbers smaller than 1, like 1/2 or 3/4 (called proper fractions : In the numerator is smaller than the denominator) • Fractions can be numbers bigger than 1, like one-and-a-quarter, which we could also write as 5/4 (called improper fractions : the numerator is bigger than the denominator) • One way of expressing the improper fraction 5/4 is as the mixed number 1 1 4 , which is read as “one and one-fourth.” • The step for write Mixed Number to Improper Fraction ; 1. Multiply the integer part with the bottom of the fraction part. 2. Add the result to the top of the fraction. • The step for write Improper Fraction to Mixed Number 1. Do the division to get the integer part 2. Put the remainder over the old denominator to get the fractional part •••• Equivalent Fractions Equivalent fractions are fractions that have the same value, for example 1 2 3 4 2 4 6 8 = = = etc. • All integers can also be thought of as rational numbers, with a denominator of 1: for example 3 3 1 = , 5 5 1 − − = • This means that all the previous sets of numbers (natural numbers, whole numbers, and integers) are subsets of the rational numbers. Now it might seem as though the set of rational numbers would cover every possible case, but that is not so. There are numbers that cannot be expressed as a fraction, and these numbers are called irrational because they are not rational. • Integer 2 , 5, 0 , 3 , 7− − • Fraction 2 11 , 3 17
  • 3. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 3 • Periodic Decimal 0.2 , 0.3 , 0.47& Irrational Number (Q′ ) • Cannot be expressed as a ratio of integers. • As decimals they never repeat or terminate (rationals always do one or the other) Examples: Rational (terminates) 2 = 0.66666 3 & Rational (repeats) 5 = 0.45454545 11 & & Rational (repeats) 5 = 0.714285714285 7 & & Rational (repeats) Irrational (never repeats or terminates) Irrational (never repeats or terminates) The Real Numbers(R) •••• Rationals + Irrationals •••• All points on the number line • Or all possible distances on the number line When we put the irrational numbers together with the rational numbers, we finally have the complete set of real numbers. Any number that represents an amount of something, such as a weight, a volume, or the distance between two points, will always be a real number. The following diagram illustrates the relationships of the sets that make up the real numbers.
  • 4. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 4 Imaginary Number a+bi ; a,b R and b 0∈ ≠ 2+3i , 4 5i− , 1 3i− , 2i Union of Real Number and Imaginary Number called Complex Number. Properties for real number system 1) Reflexive Property ; • If a R∈ then a = a • Example ; 3 = 3 , 2 = 2π π , 2x = 2x , 1+2x = 1+2x etc. 2) Symetric Property ; • If a = b then b = a • Example ; If 5 2x= then 2x = 5 If 12 4 3x= − then 4 3x = 12− If 5 2 + 3= then 2 + 3 = 5 etc. 3) Transitive Property ; • If a = b and b = c then a = c • Example ; If 2x + 1 = 10 + 12 and 10 + 12 = 22 then 2x + 1 = 22 If 2x 5 = x + 1− and x + 1 = 7 then 2x 1 = 7− etc. 4) Addition by the equal number ; • If a = b then a + c = b + c • Example ; If a = 5 then a + 3 = 5 + 3 If ( ) ( ) ( )2x + 5 = 10 then 2x + 5 + 5 = 10 + 5− − etc.
  • 5. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 5 5) Multiplication by the equal number ; • If a = b then ac = bc • Example ; If a = 3 then a 2 = 3 2× × If ( ) ( )2x = 8 then 3 2x = 3 8 etc. 6) If a + c = b + c then a = b 7) If ac = bc and c 0≠ then a = b Addition Property for real number system 1) Closure Property • If Ra∈ , Rb∈ then Rba ∈+ 2) Commutative Property • If Ra∈ , Rb∈ then abba +=+ 3) Associative Property • If RcandRb,Ra ∈∈∈ then ( ) ( )cbacba ++=++ • Example ; 1. consider ( )532 ++ and ( ) 532 ++ Hence ( ) 1082532 =+=++ and ( ) 1055532 =+=++ so ( )532 ++ = ( ) 532 ++ etc. 4) Identity (0) • There is R0∈ for all Ra∈ such that a0aa0 =+=+ • Example ; 0 + 2 = 2 + 0 = 2 20220 =+=+ etc. 5) Inverse ( a− ) • For all Ra∈ there exists Ra ∈− such that ( ) ( ) 0aaaa =+−=−+ • Example ; 1. Consider addition inverse of 2 Hence ( ) ( ) 02222 =+−=−+ so addition inverse of 2 is 2− 2. Consider addition inverse of 5− Hence ( ) ( )( ) ( )( ) ( ) 05555 =−+−−=−−+− so addition inverse of 5− is ( )5−− , and ( ) 55 =−− etc. Cancallation Property ( ก ก)
  • 6. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 6 Multiplication Property for real number system 1) Closure Property • If Ra∈ , Rb∈ then Rab∈ 2) Commutative Property • If Ra∈ , Rb∈ then baab = 3) Associative Property • If RcandRb,Ra ∈∈∈ then ( ) ( )bcacab = 4) Identity (1) • There is R1∈ for all Ra∈ such that ( ) ( ) a1aa1 == • Example ; ( ) ( ) 21221 == ( ) ( )( ) 21221 == etc. 5) Inverse ( 1 a− ) • For all Ra∈ and 0a ≠ there exists Ra 1 ∈− such that ( ) ( ) 1aaaa 11 == −− • multiplication inverse of a is 1 a− and a 1 a 1 =− hence ( ) ( ) 1a a 1 a 1 a =      =      so multiplication inverse of a is a 1 • Example ; 1. Consider multiplication inverse of 2 hence ( ) ( ) 12 2 1 2 1 2 =      =      so multiplication inverse of 2 is 2 1 2. Consider addition inverse of 5 1 Hence ( ) ( ) 1 5 1 55 5 1 =      =      so multiplication inverse of 5 1 is 5 6) Distributive Property • If RcandRb,Ra ∈∈∈ then ( ) bcabcba +=+ and ( ) bcaccba +=+
  • 7. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 7 Example : Given a and b are real number a b = a + b 5⊕ − Find 1) Identity 2) Inverse of 10 Find Identity Let x is identity x a⊕ = a x + a 5− = a x = 5 Find Inverse of 10 Let y is Inverse of 10 y 10⊕ = 5 y + 10 − 5 = 5 y = 0 Example : Change the number to fraction 1. 0.252525... Let x = 0.252525...  (1) (1) × 100 ; 100x = 25.252525...  (2) (2) – (1) ; 99x = 25 x = 25 99 Therefore0.252525... = 25 99 2. 0.45326& & Let x = 0.45326326326  (1) (1)×100 ; 100x = 45.326326326  (2) (1)×100,000 ; 100,000x = 45326.326326326...  (3) (3) – (2) ; 99900x = 45326 45− 99900x = 45281 x = 45281 99900 Therefore0.45326326326... = 45281 99900
  • 8. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 8 3. 2.354& Let x = 2.35444...  (1) (1)×100 ; 100x = 235.444...  (2) (1)×1,000 ; 1,000x = 2354.444...  (3) (3) – (2) ; 900x = 2119 x = 2119 900 Therefore 2.354& = 2119 900 Example : Given a * b = a + b + 4 where a , b ∈ R. Find the property of operation * And find inverse of 5 1. Closure Property If a ∈ R and b ∈ R then a * b = a + b + 4 ∈ R 5 ∈ R and 7 ∈ R , 5 7∗ = 5 7 4+ + = 16 ∈ R 2. Commutative Property a * b = a + b + 4 = b + a + 4 = b * a 3. Associative Property (a * b) * c = (a + b + 4) * c a * (b * c) = a * (b + c + 4) = (a + b + 4) + c + 4 = a + (b + c + 4) +4 = a + b + 4 + c + 4 = a + b + c + 4 + 4 = a + b + c + 8 = a + b + c + 8 (a * b) * c = a * (b * c) 4. Identity Let x is identity x * a = a x + a + 4 = a x = 4− Therefore identity is 4−
  • 9. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 9 5. Inverse Let y is inverse of 5 y * 5 = 4− ( identity) y + 5 + 4 = 4− y = 13− Therefore inverse of 5 is 13− 2.2 Fundamental Theorem For Real Number System Theorem 2.2.1 ; cancallation property for addition (กLMNOPQQกRSLTMOUกLMUVก) Given a , b , c ∈ R (1) if a + c = b + c then a = b ( 2) If a + b = a + c then b = c Theorem 2.2.2 ; cancallation property for multiplication (กLMNOPQQกRSLTMOUกLMWXY) Given a , b , c ∈ R (1) if ac = bc and c ≠ 0 then a = b ( 2) If ab = ac and a ≠ 0 then b = c Theorem 2.2.3 ; multiplied by 0 (กLMWXYPZV[ 0) If a ∈ R then ( ) ( )= =a 0 0 a 0 Theorem 2.2.4 ; multiplied by −1 (กLMWXYPZV[ − 1) If a ∈ R then a(−1) = (−1)a = −a Theorem 2.2.5 ; 89:;<=>?@กBC 0 Given a , b∈R , If ab = 0 then a = 0 or b = 0 Theorem 2.2.6 ; Given a ∈R , If a ≠ 0 then 1 a− ≠ 0
  • 10. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 10 Theorem 2.2.7 ; ( inverse of the inverse ) (1) If a ∈R then ( ) aa =−− (2) If a ∈R and a ≠ 0 then ( ) aa 11 = −− Theorem 2.2.8 ; Given a , b ∈R , where a ≠ 0 and b ≠ 0 then ( ) 11111 baabab −−−−− == Theorem 2.2.9 ; Given a , b ∈R then ; (1) ( )ba− = ab− (2) ( )ba − = ab− (3) ( )( )ba −− = ab Subtraction And Division For Real Number Subtraction for real number Definetion ; Given a , b ∈ R then ( )− −a b = a + b Theorem 2.2.10 ; distributive property for subtraction (กLM]ก]^RSLTMOUกLM_U) Given a , b , c ∈R then ; (1) ( )−a b c = −ab ac (2) ( )−a b c = −ac bc (3) ( )( )− −a b c = −ab + ac Theorem 2.2.11 ; cancallation property for subtraction (กLMNOPQQกRSLTMOUกLM_U) Given a , b , c ∈ R (1) if − −a b = a c then b = c (2) If − −a b = c b then a = c
  • 11. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 11 Devision for real number Definetion ; Given a , b ∈ R , where b ≠ 0 then ( )−1a = a b b Theorem 2.2.12 ; Given a , b , c ∈R , where b ≠ 0 and c ≠ 0 then ( ) − − − −− = =1 1 1 11 ab b a a b Theorem 2.2.13 ; Given a , b , c ∈R , where b ≠ 0 and then ( )a ca c = b b Theorem 2.2.14 ; Given a , b ∈R , where b ≠ 0 then − − − a a a = = b b b Theorem 2.2.15 ; Given a , b , c ∈R , where b ≠ 0 and c ≠ 0 then ( )a ab = c bc Theorem 2.2.16 ; Given a , b , c , d ∈ R , where b ≠ 0 and d ≠ 0 then + a c ad + bc = b d bd Theorem 2.2.17 ; Given a , b , c , d ∈R , where b ≠ 0 and d ≠ 0 then − − a c ad bc = b d bd
  • 12. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 12 Theorem 2.2.18 ; Given a , b , c , d ∈R , where b ≠ 0 and d ≠ 0 then ( )( )a c ac = b d bd Theorem 2.2.19 ; Given a , b ∈R , where a ≠ 0 and b ≠ 0 then ( ) −1 a b = b a Theorem 2.2.20 ; Given a , b , c , d ∈R , where b ≠ 0 , c ≠ 0 and d ≠ 0 then ( ) ( ) a adb = c bc d Theorem 2.2.21 ; Given a , b , c ∈ R , where b ≠ 0 then (1) If a = c b then a = bc (2) If a = bc then a = c b Theorem 2.2.22 ; Given a , b , c ∈ R , where b ≠ 0 then a = c b if and only if a = bc Theorem 2.2.23 ; Given a , b , c ∈R , where b ≠ 0 and c ≠ 0 then ( ) a ac = b b c
  • 13. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 13 2.3 Solving polynomial equations of one variable polynomial equations of one variable is an equation of the form − −+ + + + =n n 1 n n 1 1 0a x a x ... a x a 0 , where na , −n 1a , … , 1a , 0a are real numbers , which are constants , x is variable and n is an integer or zero. Solving equations by factorization(ก@GHกIJKก@GLMNก@GHNกOBPQGRกSC) Example 1 : Find the solution set of equation − − + =3 2 4x 3x 64x 48 0 Solution Since − − +3 2 4x 3x 64x 48 = 0 ( ) ( )− − −3 2 4x 3x 64x 48 = 0 ( ) ( )− − −2 x 4x 3 16 4x 3 = 0 ( )( )− −2 x 16 4x 3 = 0 ( )( )( )+ − −x 4 x 4 4x 3 = 0 So −x 4 = 0 or +x 4 = 0 or −4x 3 = 0 So x = 4 or x = −4 or x = 3 4 The solution set is { }− 3 4 , , 4 4 Solving equations by remainder theorem (ก@GHกIJKก@GLMN>TUVWC>=XU=Y9ZS) P(x) is polynomial − −+ + + + =n n 1 n n 1 1 0a x a x ... a x a 0 , which n is a positive integer , na , −n 1a , … , 1a , 0a are real numbers , which na ≠ 0 . If division p(x) by −x c , which c is real number then remainder is equal to p(c) Example 2 : Find the remainder when division + −3 9x 4x 1 by − 1 x 2 Solution Given p(x) = + −3 9x 4x 1 By remainder theorem ; when division p(x) by − 1 x 2 then the remainder is p( )1 2
  • 14. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 14 p( )1 2 = ( ) ( )+ − 3 1 1 9 4 1 2 2 = 17 8 Therefore the remainder is 17 8 Factor Theorem (>TUVWC>OBPQGRกSC) P(x) is polynomial − −+ + + + =n n 1 n n 1 1 0a x a x ... a x a 0 , which n is a positive integer , na , −n 1a , … , 1a , 0a are real numbers , which na ≠ 0 . −x c is factor of p(x) if and only if p(c) = 0 RM`abOcdNQdกLM[กNOVaMeกQUbQ^fT`dLg p(x) hP[ijZklmnoUkpqmpT_rQidกMYodoc kSLPO^doc 1. TLNOVaMeกQU c bQ^ 0a koskSLiTZ p(c) = 0 2. dSL cx − taTLMfT`dLg p(x) u_TLM]epavdfT`dLgPoกMoNsSLกVwLPoกMobQ^ p(x) Q[Xw 1 3. xZLu_TLMidbZQ 2 [O^goPoกMoRX^กVwLRQ^_eRLgLMx[กNOVaMeกQUNwQtatPZQoกกy[ก NOVaMeกQUNLgbOcdNQdidbZQ 1 _e 2 NwxZLu_TLMgoPoกMoRQ^]eijZVz{o[กNOVaMeกQU NLgkospMo[dgL_ZV Example 3 : Show that −x 2 is factor of − + +3 2 x 5x 2x 8 Solution Given p(x) = − + +3 2 x 5x 2x 8 p(2) = − + +3 2 2 5(2) 2(2) 8 = 8 20 4 8− + + = 0 So −x 2 is factor of − + +3 2 x 5x 2x 8 From the example , −x 2 is factor of − + +3 2 x 5x 2x 8. When divide − + +3 2 x 5x 2x 8 by −x 2 ,
  • 15. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 15 2 3 2 3 2 2 2 x 3x 4 x 2 x 5x 2x 8 x 2x 3x 2x 3x 6x 4x 8 4x 8 − − − − + + − − + − + − + − + So − + +3 2 x 5x 2x 8 = ( )( )2 x 2 x 3x 4− − − And 2 x 3x 4− − = ( )( )x 1 x 4+ − Therefore − + +3 2 x 5x 2x 8= ( )( )( )x 2 x 1 x 4− + − Rational Factor Theorem (>TUVWC>OBPQGRกSCOGGกNR) P(x) is polynomial − −+ + + + =n n 1 n n 1 1 0a x a x ... a x a 0 , where n is a positive integer , na , −n 1a , … , 1a , 0a are integer , where na ≠ 0 . If m k x − is factor of p(x), where m and n are integer , where m ≠ 0 and gcd. of m and k is 1 then na divided by m perfect and 0a divided by k perfect . Note : gcd = greatest common divisor ( T.M.g. = TLMMwVggLก) RM`abOcdNQdกLM[กNOVaMeกQUbQ^fT`dLg p(x) PO^doc 1. TL m k hP[fz]LMYL m _e k ]LกNOVaMeกQUbQ^ na _e 0a NLg_SLPOU _e T.M.g. bQ^ m _e k pkwLกOU 1 2. kPRQUVwL p( m k ) pkwLกOU 0 TMrQtgw xZL p( m k ) = 0 ]etPZ m k x − pavdNOVaMeกQU bQ^ p(x) idกMYokostgwgo m k koskSLiTZ p( m k ) = 0 RP^VwL fT`dLg p(x) tgwgo NOVaMeกQUkospavdfT`dLgPoกMoTd|s^idMXa m k x −
  • 16. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 16 3. dSL m k x − }|s^pavdNOVaMeกQUbQ^fT`dLg p(x) taTLMfT`dLg p(x) u_TLM]epavd fT`dLgPoกMoNsSLกVwLPoกMobQ^ p(x) 4. xZLu_TLMidbZQ 3 [O^goPoกMoRX^กVwLRQ^_eRLgLMx[กNOVaMeกQUNwQtatPZQoก กy[กNOV aMeกQUNLgbOcdNQdidbZQ 1 , 2 _e 3 NwxZLu_TLMgoPoกMoRQ^]eijZVz{o[กNOVaMeกQU NLgkospMo[dgL_ZV Example 4 : Factorise of 35x16x12x 23 −−+ Solution Given p(x) = 35x16x12x 23 −−+ Since integers which divide 3− perfect are 1± , 3± (]SLdVdkosTLM 3− _^NOV) And integers which divide 12 perfect are 1± , 2± , 3± , 4± , 6± , 12± (]SLdVdkosTLM 12 _^NOV) So k m which p( m k ) = 0 is the number of the following numbers 1± , 3± , 1 2 ± , 3 2 ± , 1 3 ± , 1 4 ± , 3 4 ± , 1 6 ± , 1 12 ± ( ]SLdVdpT_wLdoc NOVpqm WrQ]SLdVdkospavdNOVaMeกQUbQ^ 3− _eNOVRwVd WrQ ]SLdVd kospavdNOVaMeกQUbQ^ 12 hP[kos T.M.g. bQ^NOVpqm_eNOVRwVd WrQ 1) Consider p( 1 2 ) = 3 21 1 1 12( ) 16( ) 5( ) 3 2 2 2 + − − = 12 16 5 3 8 4 2 + − − = 0 So 1 x 2 − is a factor of p(x) Devide 35x16x12x 23 −−+ by 1 x 2 − then quotient is 2 12x 22x 6+ + So 35x16x12x 23 −−+ = 21 (x )(12x 22x 6) 2 − + + = 21 (x )(2)(6x 11x 3) 2 − + + = 2 (2x 1)(6x 11x 3)− + + = (2x 1)(3x 1)(2x 3)− + +
  • 17. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 17 Example 5 : Solve the equation 35x16x12x 23 −−+ Solution Given p(x) = 35x16x12x 23 −−+ From example 4 ; 35x16x12x 23 −−+ = (2x 1)(3x 1)(2x 3)− + + Since 35x16x12x 23 −−+ = 0 (2x 1)(3x 1)(2x 3)− + + = 0 So 2x 1− = 0 or 3x 1+ = 0 or 2x 3+ = 0 x = 1 2 or x = 1 3 − or x = 3 2 − Example 6 : If 2 is real number .Prove that 2 is irrational number. Prove 2 is the solution of equation x = 2 So 2 is the solution of equation 2 x = 2 or 2 x 2 = 0−  (1) From Rational Factor Theorem ; the solution of equation (1) is in set { 1± , 2± } but 2 ∉ { 1± , 2± }. So 2 is not rational number. And since 2 is real number so 2 is irrational number. Example 7 : If 2 5+ is real number .Prove that 2 5+ is irrational number. Prove 2 5+ is the solution of x = 2 5+ So 2 5+ is the solution of x 2 = 5− Or 2 x 2 2 x 2 = 5− + ([กกSL_O^RQ^kOc^RQ^bZL^) 2 x 3 = 2 2x− 4 2 2 x 6x 9 = 8x− + ([กกSL_O^RQ^kOc^RQ^bZL^) 4 2 x 14x 9 = 0− +  (1) From Rational Factor Theorem ; the solution of equation (1) is in set { 1± , 3± , 9± } but 2 5+ ∉ { 1± , 3± , 9± }. So 2 5+ is not rational number. Since 2 5+ is real number so 2 5+ is irrational number.
  • 18. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 18 2.4 Inequality Definition ; 1) a > b if and only if −a b > 0 2) a < b if and only if −a b < 0 3) ≥a b means a > b or a = b 4) a b≤ means a < b or a = b 5) a < b < c means a < b and b < c 6) ≤ ≤a b c means ≤a b and ≤b c 7) < ≤a b c means <a b and ≤b c 8) ≤a b < c means ≤a b and b < c 9) ≠a b if and only if ( )− 2 a b > 0 Properties of inequality I1 : Trichotomy Property (RgUONztNMVz€LW) If a and b are real numbers then a = b , a < b and a > b , it is actually only one. I2 : Transitive Property (RgUONzกLMxwL[kQP) Given a , b and c are real numbers. (1) a < b and b < c then a < c (2) ≤a b and ≤b c then ≤a c (3) a > b and b > c then a > c (4) ≥a b and ≥b c then ≥a c I3 : property of number when compared with 0 (RgUONzbQ^]SLdVdpgrsQpaMo[Upko[UกOU 0) Given a is real number. (1) a is positive number if and only if a > 0. (2) a is negative number if and only if a < 0. (3) a is not positive number if and only if ≤a 0. (4) a is not negative number if and only if ≥a 0.
  • 19. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 19 I4 : RgUONzกMtgwpavd]SLdVd_U_eกLMpavd]SLdVdUVก (1) If a is real number then ≥2 a 0 (2) If a is real number and a ≠ 0 then >2 a 0 I5 : Addition by the equal number (RgUONzกLMUVกPZV[]SLdVdpkwLกOd) Given a , b and c are real numbers. (1) If a < b then a + c < b + c (2) If ≤a b then ≤a + c b + c (3) If a > b then a + c > b + c (4) If ≥a b then ≥a + c b + c I6 : cancallation property for addition (กLMNOPQQกRSLTMOUกLMUVก) Given a , b and c are real numbers. (1) If a + c < b + c then a < b (2) If ≤a + c b + c then ≤a b (3) If a + c > b + c then a > b (4) If ≥a + c b + c then ≥a b I7 : RgUONzกLMWXYPZV[]SLdVdpkwLกOdkospavd]SLdVdUVก Given a , b and c are real numbers. (1) If a < b and c > o then ac < bc (2) If ≤a b c > o then ≤ac bc (3) If a > b c > o then ac > bc (4) If ≥a b c > o then ≥ac bc I8 : RgUONzกLMWXYPZV[]SLdVdpkwLกOdkospavd]SLdVd_U Given a , b and c are real numbers. (1) If a < b and c < o then ac > bc (2) If ≤a b c < o then ≥ac bc (3) If a > b c < o then ac < bc (4) If ≥a b c < o then ≤ac bc
  • 20. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 20 I9 : RgUONzกLMNOPQQกbQ^]SLdVdUVกbQ^กLMWXY Given a , b and c are real numbers. (1) If ac < bc and c > o then a < b (2) If ≤ac bc c > o then ≤a b (3) If ac > bc c > o then a > b (4) If ≥ac bc c > o then ≥a b I10 : RgUONzกLMNOPQQกbQ^]SLdVd_UbQ^กLMWXY Given a , b and c are real numbers. (1) If ac < bc and c < o then a > b (2) If ≤ac bc c < o then ≥a b (3) If ac > bc c < o then a < b (4) If ≥ac bc c < o then ≤a b More Summaries 1) No Reflexive (tgwgoRgUONzกLMpkwLกOd) 2) No Symmetric (tgwgoRgUONzRggLNM) 3) If a b< and c d< then a c b d+ < + 4) If a b< and c d< then a d b c− < − 5) If 0 a b< < and 0 c d< < then ac bd< 6) 0a b< < and 0c d< < then ac bd> 7) If 0 a b< < and 0 c d< < then a b d c < 8) If 0a b< < and 0c d< < then a b d c > 9) If 0 a b< < then 2 2 a b< 10) If 0a b< < then 2 2 a b> 11) If 0 a b< < then 1 1 a b > 12) If 0a b< < then 1 1 a b > 13) If 0ab > and a b< then 1 1 a b >
  • 21. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 21 2.5 Interval Given a R∈ , b R∈ and a b< 1) ( ),a b = { }x a x b< < 2) [ ],a b = { }x a x b≤ ≤ 3) ( ],a b = { }x a x b< ≤ 4) [ ),a b = { }a x<bx ≤ 5) ( ),a ∞ = { }x x a> 6) [ ),a ∞ = { }x x a≥ 7) ( ),a−∞ = { }x x a< 8) ( ],a−∞ = { }x x a≤ 9) ( ),−∞ ∞ = R Example 1 : Given A = ( )1,7 , B = [ ]3,4− , C = [ )0,6 1) A B∪ = [ )3,7− 2) B C∪ = [ )3,6− 3) A B C∪ ∪ = [ )3,7− 4) A B∩ = ( ]1,4 5) B C∩ = [ ]0,4 6) A B C∩ ∩ = ( ]1,4 7) ( )A B C∪ ∩ = [ )0,6 8) ( )A B C∩ ∪ = ( )1,6 9) A B− = ( )4,7 10) B C− [ )3,0− 11) ( )A B C− − = [ )6,7 12) ( )A B C∪ − j [ ) [ )3,0 6,7− ∪ 0
  • 22. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 22 Example 2 : Given 1 ,2nA n n   = −    ; n I∈ . Find ( )1 2 3A A A∪ − ( ]1 = 1,2A − 2 1 = ,4 2 A   −    3 1 = ,6 3 A   −    Therefore ( )1 2 3 1 = 1, 3 A A A   ∪ − − −    . Example 3 : Given 2 ,3nA n n   = −    ; n I∈ . Find ( )3 5 2A A A∩ − ( ]1 = 1,6A − 2 2 = ,9 3 A   −    3 2 = ,15 5 A   −    Therefore ( ) [ ]3 5 2 = 6,9A A A∩ − . Example 4 : Given 5 10 and 3 8x y< < ≤ ≤ 1) 8 < < 18x y+ 2) 3 < < 7x y− − 3) 15 < < 80x y⋅ 4) 5 10 < < 8 3 x y
  • 23. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 23 Example 5 : Given 5 2 and -3 1x y− < < − ≤ ≤ − 1) 8 < < -3x y− + 2) 4 < < 1x y− − 3) 2 < < 15x y⋅ 4) 2 < < 5 3 x y Example 6 : Given 3 1 and 1 3x y− < < < < 1) -2 < < 4x y+ 2) 6 < < 0x y− − 3) 9 < < 3x y− ⋅ 4) 3 < < 1 x y − 5) 2 2 0 < 9 ; 1 < < 9x y≤ 6) 2 2 9 < < 8x y− − Inequality solving Example 7 : Solve inequality 5 7 2 11x≤ − ≤ . SOLUTION 5 7 2 11x≤ − ≤ 7 5 2 11 7x− + ≤ − ≤ − 2 2 4x− ≤ − ≤ ( ) ( ) 1 1 2 4 2 8 x     − − ≤ ≤ −        -2 1x≤ ≤ Therefore solution set is { }2 1x x− ≤ ≤ or [ ]2,1− . Example 8 : Solve inequality 9 2 < 4 3 6x x x− − ≤ + . SOLUTION 9 2 < 4 3x x− − and 4 3 6x x− ≤ + 4 2 < 3 9x x− − − − 4 6 3x x− ≤ + 6 < 12x− − 3 9x ≤ ( ) ( ) 1 1 6 > 12 6 6 x     − − − −        ( ) 1 1 3 9 3 3 x     ≤        > 2x 3x ≤ 32 Therefore solution set is { }2 3x x< ≤ or ( ]2,3 .
  • 24. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 24 Example 9 : Solve inequality 2 4 3 > 0x x− + . SOLUTION 2 4 3 > 0x x− + ( )( )1 3 > 0x x− − CASE 1 1 > 0x − and 3 > 0x − CASE 2 1 < 0x − and 3 < 0x − > 1x and > 3x < 1x and < 0x > 3x < 1x Therefore solution set is { }1 or 3x x x< > or ( ) ( ),1 3,−∞ ∪ ∞ . Example 10 : Solve inequality 2 2 5 3 0x x+ − ≤ . SOLUTION 2 2 5 3 0x x+ − ≤ ( )( )2 1 3 0x x− + ≤ CASE 1 2 1 0x − ≥ and 3 0x + ≤ CASE 2 2 1 0x − ≤ and 3 0x + ≥ 1 2 x ≥ and 3x ≤ − 1 2 x ≤ and 3x ≥ − No solution 1 3 2 x− ≤ ≤ Therefore solution set is 1 3 2 x x   − ≤ ≤    or 1 3, 2   −    . Example 11 : Solve inequality 2 2 5 > 0x x+ + . SOLUTION 2 2 5 > 0x x+ + ( )2 2 1 +4 > 0x x+ + ( ) 2 1 +4 > 0x + ; x R∈ Therefore solution set is R . Example 12 : Solve inequality 2 6 5 < 0x x+ − . SOLUTION 2 6 5 < 0x x+ − ( )2 6 9 14 < 0x x+ + − ( ) ( ) 22 3 14 < 0x + − ( )( )3 14 3 14 < 0x x+ − + + Therefore solution set is ( )3 14 , 3 14− − − + . -+ + -3+ 14-3- 14
  • 25. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 25 Example 13 : Solve inequality 2 8 10 0x x− + ≥ . SOLUTION 2 8 10 0x x− + ≥ ( )2 8 16 6 0x x− + − ≥ ( ) ( ) 22 4 6 0x − − ≥ ( )( )4 6 4 6 0x x− − − + ≥ Therefore solution set is ( ), 4 16 4 6 , −∞ − ∪ + ∞  . Example 14 : Solve inequality 2 10 25 > 0x x+ + . SOLUTION 2 10 25 > 0x x+ + ( ) 2 5 > 0x + and 5x R x∈ ≠ − Therefore solution set is { }5x x ≠ − or { }5R − − . Example 15 : Solve inequality 2 4 4 0x x− + ≤ . SOLUTION 2 4 4 0x x− + ≤ ( ) 2 2 0x − ≤ 2x = Therefore solutionset is { }= 2x x or { }2 . Example 16 : Solve inequality 2 10 25 < 0x x− + . SOLUTION 2 10 25 < 0x x− + ( ) 2 5 < 0x − Therefore no solution . Example 17 : solve the following inequality 1) ( )( )( )2 3 1 < 0x x x− − + SOLUTION ( )( )( )2 3 1 < 0x x x− − + ( )( )( )2 3 1 < 0x x x− − + - 2-1 -+ + 3 Solution set is ( ) ( ), 1 2,3−∞ − ∪ . -+ + 4+ 64- 6
  • 26. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 26 2) ( )( ) ( ) 2 1 2 3 0x x x− − − ≥ SOLUTION ( )( ) ( ) 2 1 2 3 0x x x− − − ≥ ( )( ) ( ) 2 1 2 3 0x x x− − − ≥ Times ( ) 2 1 2x − ; ( )( )1 3 0x x− − ≥ 2-1 -+ + 3 Solution set is ( ] { } [ ),1 2 3,−∞ ∪ ∪ ∞ . 3) ( ) ( ) ( ) ( ) ( ) 2 3 4 5 6 2 3 4 0 5 6 x x x x x − − − ≤ − − SOLUTION ( ) ( ) ( ) ( ) ( ) 2 3 4 5 6 2 3 4 0 5 6 x x x x x − − − ≤ − − Times ( ) ( ) ( ) ( ) ( ) 5 6 2 3 4 5 6 2 3 4 x x x x x − − − − − ; ( )( )3 5 0x x− − ≤ 542 -+ + 3 Solution set is { } [ )2 3,5∪ . 4) 2 1 2 3 4 x x x − < + − SOLUTION 2 1 2 < 0 3 4 x x x − − + − ( )( ) ( )( ) ( )( ) 4 2 1 3 2 < 0 3 4 x x x x x − − − + + − ( )( ) 2 2 9 4 2 6 < 0 3 4 x x x x x − + − − + − ( )( ) 2 2 11 2 < 0 3 4 x x x x − − + − ( )( ) 2 11 1 2 < 0 3 4 x x x x − − + −
  • 27. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 27 ( )( ) 2 11 121 137 2 16 16 < 0 3 4 x x x x   − + −    + − ( )( ) 22 11 137 4 4 < 0 3 4 x x x    − −       + − ( )( ) 11 137 11 137 4 4 4 4 < 0 3 4 x x x x    − + − −      + − Solution set is 11 137 11 137 3, 4, 4 4    − + − ∪           . 5) 5 2 3 2x x ≥ + − SOLUTION 5 2 0 3 2x x − ≥ + − ( ) ( ) ( )( ) 5 2 2 3 0 3 2 x x x x − − + ≥ + − ( )( ) 5 10 2 6 0 3 2 x x x x − − − ≥ + − ( )( ) 3 16 0 3 2 x x x − ≥ + − ( )( )( )3 16 3 2 0x x x− + − ≥ Solution set is [ ] 16 3,2 , 3   − ∪ ∞    .
  • 28. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 28 2.6 Absolute Value When we want to talk about how “large” a number is without regard as to whether it is positive or negative, we use the absolute value function. The absolute value of a number is the distance from that number to the origin (zero) on the number line. That distance is always given as a non-negative number. • If a number is positive (or zero), the absolute value function does nothing to it: • If a number is negative, the absolute value function makes it positive: Definition ; ; 0 = 0 ; 0 ; 0 x x x x x x >  = − < 3 = 3 5 = 5− , ( ) 5 = 5 4 = 4 = 4− − − , 0 = 0 ; 0 = ; 0 x x x x x ≥  − < Absolute Value Property ; 1) =x x− 2) =x y y x− − 3) =xy x y 4) = ; 0 xx y y y ≠ 5) 2 2 =x x 6) = 0 if and only if 0x x = 7) = ; 0 if and only if orx a a x a x a> = = − 8) 2 2 = if and only ifx y x y= 9) 2 2 < if and only ifx y x y< 10) x y x y+ ≤ + 11) = if and only if 0x y x y xy+ + ≥ 12) < if and only if 0x y x y xy+ + < 13) x y x y− ≥ −
  • 29. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 29 14) = if and only if 0x y x y xy− − ≥ 15) > if and only if 0x y x y xy− − < 16) < ; 0 if and only ifx a a a x a> − < < 17) ; 0 if and only ifx a a a x a≤ > − ≤ ≤ 18) > ; 0 if and only if orx a a x a x a> < − > 19) ; 0 if and only if orx a a x a x a≥ > ≤ − ≥ 20) 1 ; 0 = 1 ; 0 xx xx >  − < Example 1 : Solve the following equations 1) 2 6 = 0x x− − SOLUTION 2 6 = 0x x− − ( )( )3 2 = 0x x− + = 3 , 2x − Solution set is { }3, 2− . 2) 2 3 = 15x − SOLUTION 2 3 = 15x − 2 3 = 15 , 15x − − 2 = 18 , 12x − = 9 , 6x − Solution set is { }9, 6− . 3) 2 1 = 3x x− + SOLUTION ( ) ( ) 2 2 2 1 = 3x x− + 2 2 4 4 1 = 6 9x x x x− + + + 2 3 10 8 = 0x x− − ( )( )3 2 4 = 0x x+ − 2 = , 4 3 x − Solution set is 2 ,4 3   −    .
  • 30. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 30 4) 2 1 = 2x x− + SOLUTION ( ) ( ) 2 2 2 1 = 2x x− + 2 2 4 4 1 = 4 4x x x x− + + + 2 3 8 3 = 0x x− − ( )( )3 1 3 = 0x x+ − 1 = , 3 3 x − Solution set is 1 ,3 3   −    . Example 2 : Solve the following equations 1) 2 2 2 15 = 2 15x x x x− − − − SOLUTION 2 2 15 0x x− − ≥ ( )( )5 3 0x x− + ≥ Solution set is ( ) [ ), 3 5,−∞ − ∪ ∞ . 2) 2 2 6 = 6x x x x− − + − SOLUTION ( )2 2 6 = 6x x x x− − − − − 2 6 0x x− − ≤ ( )( )3 2 0x x− + ≤ Solution set is [ ]2,3− . 3) = 1x x − SOLUTION If 0 then 1x x x≥ = − No solution If 0 then - 1x x x< = − 1 = (F) 2 x Solution set is φ .
  • 31. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 31 4) = 1x x + SOLUTION If 0 then 1x x x≥ = + No solution If 0 then - 1x x x< = + 1 = (T) 2 x − Solution set is 1 2   −    . 5) 2 = 3x x− + SOLUTION If 2 0 then 2 3x x x− ≥ − = + No solution If 2 0 then 2 3x x x− < − + = + 1 = (T) 2 x − Solution set is 1 2   −    . 6) 2 1 = 3x x+ − SOLUTION If 2 1 0 then 2 1 3x x x+ ≥ + = − = 4 (F)x − If 2 1 0 then 2 1 3x x x+ < − − = − 2 = (F) 3 x Solution set is φ . 7) 1 + 2 = 10x x+ − SOLUTION ( ) ( )If 1 0 and 2 0 then 1 2 10x x x x+ ≥ − ≥ + + − = 11 2 and (T) 2 x x≥ = ( ) ( )If 1 0 and 2 0 then 1 2 10x x x x+ ≥ − < + − − = No solution ( ) ( )If 1 0 and 2 0 then - 1 2 10x x x x+ < − ≥ + + − = No solution ( ) ( )If 1 0 and 2 0 then 1 2 10x x x x+ < − < − + − − = 9 < 1 and (T) 2 x x− = − Solution set is 11 9 , 2 2   −    .
  • 32. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 32 2.7 Absolute Value Inequality Example 1 : Solve the following inequality. 1) 2 1 3x x− ≤ + SOLUTION 2 1 3x x− ≤ + ( ) ( ) 2 2 2 1 3x x− ≤ + 2 2 4 4 1 6 9x x x x− + ≤ + + 2 3 10 8 0x x− − ≤ ( )( )3 2 4 0x x+ − ≤ Solution set is 2 ,4 3   −    . 2) 3 2 < 2 3x x− + SOLUTION If 3 2 0 then 3 2 2 3x x x− ≥ − < + 2 and 5 3 x x≥ < 2 < 5 3 x≤  (1) If 3 2 0 then 3 2 2 3x x x− < − + < + 2 1 < and 3 5 x x > − 1 2 < < 5 3 x−  (2) Solution set is 1 2 2 1 , ,5 = ,5 5 3 3 5       − ∪ −           . 3) 2 1 + 3 > 10x x− + SOLUTION ( ) ( )If 2 1 0 and 3 0 then 2 1 3 10x x x x− ≥ + ≥ − + + > 1 and 3 2 x x≥ ≥ − 8 3 x > 8 > 3 x  (1) ( ) ( )If 2 1 0 and 3 0 then 2 1 3 10x x x x− ≥ + < − − + > 1 and 3 2 x x≥ < − Oppose
  • 33. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 33 ( ) ( )If 2 1 0 and 3 0 then 2 1 3 10x x x x− < + ≥ − − + + > 1 < and 3 2 x x ≥ − 6x < − No solution ( ) ( )If 2 1 0 and 3 0 then 2 1 3 10x x x x− < + < − − − + > 1 < and 3 2 x x < − 4x < − < 4x −  (2) Solution set is ( ) 8 , 4 , 5   −∞ − ∪ ∞    . 4) 2 3 13x − ≤ SOLUTION 13 2 3 13x− ≤ − ≤ 10 2 16x− ≤ ≤ 5 8x− ≤ ≤ Solution set is [ ]5,8− . 5) 3 1 > 11x − SOLUTION 3 1 11x − < − or 3 1 11x − > 3 < 10x − 3 > 12x 10 < 3 x − > 4x Solution set is ( ) 10 , 4, 3   −∞ − ∪ ∞    .
  • 34. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 34 English vocabulary for Mathematic Addition Property = RgUONzกLMUVก Associative Property = RgUONzกLMpa_os[dTgXw Cancallation Property = ก ก Closure Property for addition = RgUONza•PกLMUVก Complex Numbers = ]SLdVdpjz^}ZQd Commutative Property = RgUONzกLMR_OUkos Counting Numbers = ]SLdVddOU Decimal = kqdz[g Distributive Property = RgUONzกLM]ก]^ Fraction = pqmRwVd Identity = pQก_OกmY‚ Imaginary Number = ]SLdVd]zdN€Lf Integer numbers = ]SLdVdpNyg Inverse = NOVuกuOd Irrational Numbers = ]SLdVdNMMก[e multiplication = กLMWXY Multiplication Property = RgUONzกLMWXY Natural Numbers = ]SLdVddOU Periodic Decimal = kqdz[g}cSL Rational Numbers =]SLdVdNMMก[e Reflexive Property = RgUONzกLMRekZQd Subtraction = กLM_U Square = MXaRospT_os[g]ON`MOR Struction = hWM^RMZL^ Symetric Property = RgUONzกLMpkwLกOd therefore = PO^dOcd Transitive Property = RgUONzกLMxwL[kQP Whole Number = ]SLdVdkOc^TgP