SlideShare ist ein Scribd-Unternehmen logo
1 von 246
COMPUTER NETWORKS
PC 602 CS [CREDITS - 3]
BE (CSE) VI SEM (AICTE MC) 2020-21
COURSE FACULTY: MANIZA HIJAB
CN Syllabus Composition + Evaluation
• Data Communications + Computer Networks
• Unit-1: Data Communication Part + OSI &TCP/IP Model
• Units 2-5: Layer 2 – 7 of OSI model with focus based on
General Layer functionality and
TCP/IP specific reference model under each layer
• Evaluation:
• CIE – 30 Marks - 10 (CIE-1) + 10 (CIE-2) + 5 (Assignment) + 5 (Quiz)
• SEE – 70 Marks - Mandatory to get 40% marks in end exam paper
4/8/2021
Computer Networks - SYLLABUS OVERIEW
Unit – 1
◦ Data Communication Components:
◦ Representation of Data Communication ,
◦ Flow of Networks,
◦ Layered Architecture,
◦ OSI and TCP/IP model,
◦ Transmission Media.
◦ Techniques for Bandwidth Utilization:
◦ Line configuration,
◦ Multiplexing – Frequency division, Time division and Wave division,
◦ Asynchronous and Synchronous Transmission,
◦ XDSL,
◦ Introduction to Wired and Wireless LAN
4/8/2021
Computer Networks - SYLLABUS OVERIEW
Unit – 2
◦ Data Link Layer and Medium Access Sub Layer:
◦ Error Correction and Error Detection:
◦ Fundamentals, Block coding,
◦ Hamming Distance, CRC
◦ Flow Control and Error Control Protocols:
◦ Stop and Wait,
◦ Go Back-N,
◦ ARQ, Selective Repeat ARQ,
◦ Sliding Window,
◦ Piggybacking
◦ Multiple Access Protocols:
◦ Pure ALOHA, Slotted ALOHA
◦ CSMA/CD, CSMA/CA
4/8/2021
Computer Networks - SYLLABUS OVERIEW
Unit – 3
◦ Network Layer:
◦ Switching Techniques : Circuit and Packet Concept
◦ Logical Addressing : IPv4 (Header), IPv6 (Header), NAT, Sub-netting concepts
◦ Inter-Networking:
◦ Tunneling,
◦ Fragmentation,
◦ Congestion Control - Leaky Bucket and Token Bucket Algorithm,
◦ Internet Control Protocols :
◦ ARP, RARP, BOOTP and DHCP
◦ Network Routing Algorithms:
◦ Delivery, Forwarding
◦ Unicast Routing Protocol,
◦ Gateway Protocols:
4/8/2021
Computer Networks - SYLLABUS OVERIEW
Unit – 4
◦ Transport Layer:
◦ Process to Process Communications,
◦ Elements of Transport Layer
◦ Internet Protocols:
◦ UDP – User Datagram Protocol
◦ TCP – Transmission Control Protocol
◦ Congestion and Quality of Service:
◦ QoS improving techniques
4/8/2021
Computer Networks - SYLLABUS OVERIEW
Unit – 5
◦ Application Layer:
◦ Domain Name System (DNS),
◦ EMAIL - Electronic Mail
◦ SNMP – Simple Network Management Protocol
◦ Bluetooth
◦ Basic Concepts of Cryptography:
◦ Network Security Attacks,
◦ Firewalls,
◦ Symmetric Encryption
◦ Data Encryption Standards,
◦ Public Key Encryption – RSA (Rivest, Shamir, Adleman)
◦ Hash Function,
◦ Message Authentication
◦ Digital Signature
4/8/2021
Computer Networks – Suggested Reading -
Books
1. Data Communication and Networking,
4th Edition, Behrouz A. Forouzan, McGrawHill
2. Data and Computer Communication,
8th Edition, William Stallings, Pearson Prentice Hall India
3. Unix Network Programming,
W. Richard Stevens, Prentice Hall / Pearson Education, 2009
4/8/2021
Computer Networks Lab
PC 632 CS [Credits – 1]
Evaluation: CIE – 25 Marks; SEE – 50 Marks
Experiments:
1. Running and using services/commands like:
◦ tcpdump, netstat, ifconfig, nslookup, ftp, telnet. - Execution at command prompt
◦ Capture ping and traceroute PDUs using a network protocol analyzer and examine
2. Configuration of router, switch. (using real devices or simulators)
3. Socket Programming using UDP and TCP ( E.g. Simple DNS, Date and time Client Server, Echo Client/Server, Iterative &
Concurrent Servers) - Application programs through C Language using Socket API
4. Network Packet Analysis using tools like Wireshark, tcpdump etc.
5. Network Simulation using tools like Cisco Packet Tracer, NetSim, OMNet++, NS2, NS3 etc.
6. Study of Network Simulator(NS) and Simulation of Congestion Control Algorithms using NS. Performance Evaluation of
Routing Protocols using Simulation Tools.
7. Programming using raw sockets.
8. Programming using RPC. - Application programs through C Language
Note: Instructor may add/delete/modify/tune experiments, wherever he/she feels in a justified manner.
4/8/2021
CN-U-1 - INTRODUCTION
Data refers to information presented in whatever form is agreed
upon by the parties creating and using the data.
Data Communications are the exchange of data between two
devices via some form of transmission medium such as a wire
cable
A network is a set of devices (often referred to as nodes)
connected by communication links. A node can be a computer,
printer, or any other device capable of sending and/or receiving
data generated by other nodes on the network.
4/8/2021
A Communication Model
• The fundamental purpose of a communications system is the
exchange of data between two parties.
The key elements of this model are:
• Source - generates data to be transmitted
• Transmitter - converts data into transmittable signals
• Transmission System - carries data from source to destination
• Receiver - converts received signal into data
• Destination - takes incoming data
11
Data Communication Model
"Data Communications”, deals with the most fundamental aspects of the
communications function, focusing on the transmission of signals in a reliable
and efficient manner.
Example: Electronic Mail: User A sending an email message m to user B.
Steps for this process:
1. User A keys in message m comprising bits g buffered in source PC memory
2. Input data is transferred to I/O device (transmitter) as sequence of bits g(t)
using voltage shifts
3. transmitter converts these into a signal s(t) suitable for transmission
media
being used
4. whilst transiting media signal may be impaired so received signal r(t) may
differ from s(t)
5. receiver decodes signal recovering g’(t) as estimate of original g(t)
which is buffered in destination PC memory as bits g’ being the received
message m’
12
Example Network
4/8/2021
The interaction between layers in the OSI model
4/8/2021
Communications Tasks
Transmission system utilization Addressing
Interfacing Routing
Signal generation Recovery
Synchronization Message formatting
Exchange management Security
Error detection and correction Network management
Flow control
15
Communications Tasks
• Key tasks that must be performed in a data communications system:
• transmission system utilization - need to make efficient use of transmission facilities typically
shared among a number of communicating devices
• a device must interface with the transmission system
• once an interface is established, signal generation is required for communication
• there must be synchronization between transmitter and receiver, to determine when a signal
begins to arrive and when it ends
• there is a variety of requirements for communication between two parties that might be collected
under the term exchange management
• Error detection and correction are required in circumstances where errors cannot be tolerated
16
Communications Tasks
• Flow control is required to assure that the source does not overwhelm the destination by sending data faster
than they can be processed and absorbed
• addressing and routing, so a source system can indicate the identity of the intended destination, and can
choose a specific route through this network
• Recovery allows an interrupted transaction to resume activity at the point of interruption or to condition prior
to the beginning of the exchange
• Message formatting has to do with an agreement between two parties as to the form of the data to be
exchanged or transmitted
• Frequently need to provide some measure of security in a data communications system
• Network management capabilities are needed to configure the system, monitor its status, react to failures
and overloads, and plan intelligently for future growth
17
Five Components of Data Communication
18
Data flow -Simplex, Half-duplex, and Full-duplex
19
Types of connections: Point-to-Point and Multipoint
20
Topology : Categories of topology
21
Fully connected Mesh topology
22
Star topology
23
Bus topology
24
Ring topology
25
A hybrid topology:
Star backbone with three bus
networks
26
An Isolated LAN
connecting 12 computers to a hub
27
WANs: a switched WAN and a point-to-point
WAN
28
A heterogeneous network made of four WANs and two
LANs
29
Hierarchical organization of the Internet
LAYERED ARCHITECTURE: NEED AND ADVANTAGES
31
NEED:
• Allows Complex problems are decomposed in to small manageable units.
• Implementation details of the layer are abstracted.
• Separation of implementation and specification.
• Layers work as one by sharing the services provided by each other.
•Layering allows reuse functionality i.e., lower layers implement common once.
•Provide framework to implement multiple specific protocols (rules) per layer
ADVANTAGES:
•Provides Modularity with Clear Interfaces.
• Has Implementation Simplicity, Maintainability, Flexibility and Scalability.
• Support for Portability.
• Provides for Robustness
ISO - OSI MODEL
• International Standards Organization (ISO) - is a multinational body
dedicated
to worldwide agreement on international standards.
• An ISO standard that covers all aspects of network communications is the
Open Systems Interconnection (OSI) model.
• It was first introduced in the late 1970s.
• OSI model has seven layers. ----->
LAYERED ARCHITECTURE: The interaction between layers in the OSI model
33
An Exchange / Communication of message using the OSI model
Physical layer
The physical layer is responsible for movements of individual bits from
one hop (node) to the next.
Data link layer
The data link layer is responsible for moving frames from one hop (node)
to the next.
Hop-to-hop delivery
Network layer
The network layer is responsible for the delivery of individual packets from
the source host to the destination host.
Source-to-destination delivery
Transport
layer
The transport layer is responsible for the delivery of a message
from one process to another
Reliable process-to-process delivery of a message
Session layer
The session layer is responsible for dialog control and synchronization.
Presentation layer
The presentation layer is responsible for translation, compression, and
encryption.
Application layer
The application layer is responsible for providing services to the
user.
Summary of Functionality of layers
TCP/IP REFERENCE MODEL /PROTOCOL
SUITE
The layers in the TCP/IP reference model is FOUR in comparison to the OSI
model.
The original TCP/IP protocol suite was defined as having four layers:
host-to-network, internet, transport, and application.
But when TCP/IP is compared to OSI, we can say that the TCP/IP protocol suite
is made of five layers:
physical, data link, network, transport, and application.
Comparison of TCP/IP and OSI model
Comparison of ISO-OSI model and TCP/IP
1. Layers: 7 in OSI ; 5 in TCP/IP
2. Model vs Implementation: In OSI first model was designed followed by
Implementation. In TCP/IP first implemented then design followed
3. In OSI : Clear definition of Services, Interface and Protocols. Not so in TCP/IP
4. In OSI Network layer is both Connection Oriented and Connectionless and
Transport Layer is only connection oriented. In TCP/IP network layer is
connectionless and Transport Layer is both connection oriented and
connectionless.
5. In TCP/IP Session and Presentation layers are missing, this functionality is done
by Application layer.
6. TCP/IP is the defacto protocol used in internet. OSI is mostly a theoretical
model.
48
9/27/2021
ADDRESSING
Four levels of addresses are used in an internet employing the TCP/IP protocols:
• Physical Addresses
• Logical Addresses
• Port Addresses
• Specific Addresses
49
9/27/2021
Relationship of layers and addresses in TCP/IP
50
9/27/2021
Physical Addresses
• Physical Address – It is of 6-bytes (12 hexadecimal digits).
• Also called MAC ADDRESS.
• Every byte (2 hexadecimal digits) is separated by a colon
• Example: 07:01:02:01:2C:4B
• Physical Addresses Change Hop by Hop
51
9/27/2021
Logical Addresses
•Network with two
routers connecting
three LANs.
•Each device (computer
or router) has a pair of
addresses (logical and
physical) for each
connection.
•Each device connected
to one link – 1 pair of
address. For router 3
pairs
• Also called IP
Addresses
52
9/27/2021
Port addresses
• Port Addresses are for
applications.
• Port and Logical
addresses remain same
for source to
destination
53
9/27/2021
Transmission Media
Overview
Transmission Media Introduction
• Transmission medium – It is the physical path between transmitter and receiver
• It is of two types / categories / classes –
• Guided media – Electromagnetic waves are guided along a solid medium
Eg: Copper Twisted Pair, Copper Coaxial Cable, and Optical fiber
• Unguided media – wireless transmission occurs through the atmosphere, space, water
• Characteristics and Quality of data transmission is determined by both characteristics of
Medium and Signal
• For guided media - Medium is more important for data transmission
• For Unguided media - Bandwidth of the signal produced by the transmitting antenna is more
important.
- One key property is directionality of the signal.
Signals at lower frequencies are omni-directional and at higher
frequencies can be focused into a directional beam
9/27/2021 55
Data Transmission System Design : Data rate & Distance are
the key factors
Design Factors Determining Data Rate and Distance
• higher bandwidth gives higher data rate
bandwidth
• impairments, such as attenuation, limits the distance - Twisted Pair -> Coaxial Cable -> Optical Fiber
transmission impairments
• overlapping frequency bands can distort or wipe out a signal – More in Unguided than Guided medium.
interference
• more receivers introduces more attenuation - in case of shared link with multiple attachments. Not in
point-point
number of receivers
9/27/2021 56
Electromagnetic Spectrum
9/27/2021 57
Transmission Characteristics of Guided
Media
Frequency Range Typical
Attenuation
Typical Delay Repeater
Spacing
Twisted pair (with
loading)
0 to 3.5 kHz 0.2 dB/km @ 1 kHz 50 µs/km 2 km
Twisted pairs
(multi-pair cables)
0 to 1 MHz 0.7 dB/km @ 1 kHz 5 µs/km 2 km
Coaxial cable 0 to 500 MHz 7 dB/km @ 10 MHz 4 µs/km 1 to 9 km
Optical fiber 186 to 370 THz 0.2 to 0.5 dB/km 5 µs/km 40 km
In Guided Media ,transmission capacity, in terms of either data rate or bandwidth, depends
critically on the distance and on whether the medium is point-to-point or multipoint.
9/27/2021 58
Guided Transmission Media – Twisted Pair
9/27/2021 59
Guided Transmission Media - Coaxial
Cable
9/27/2021 60
Guided Transmission Media - Optical
Fiber
9/27/2021 61
Twisted Pair
Twisted pair is the least expensive and most widely used guided transmission medium.
• consists of two insulated copper wires arranged in a regular spiral pattern
• a wire pair acts as a single communication link
• pairs are bundled together into a cable
• most commonly used in the telephone network and for communications
• within buildings
9/27/2021 62
Twisted Pair - Transmission Characteristics
analog
needs
amplifiers every
5km to 6km
digital
can use either
analog or digital
signals
needs a
repeater every
2km to 3km
limited:
distance
bandwidth
(1MHz)
data rate
(100MHz)
susceptible to
interference and noise
9/27/2021 63
Unshielded vs. Shielded Twisted Pair
Unshielded Twisted Pair (UTP)
• ordinary telephone wire
• cheapest
• easiest to install
• suffers from external electromagnetic interference
Shielded Twisted Pair (STP)
• has metal braid or sheathing that reduces interference
• provides better performance at higher data rates
• more expensive
• harder to handle (thick, heavy)
9/27/2021 64
Twisted Pair Categories and Classes
9/27/2021 65
Near End Crosstalk - occurs in Twisted Pair
• Coupling of signal from one pair of conductors to another
• Occurs when transmit signal entering the link couples back to the
receiving pair - (near transmitted signal is picked up by near
receiving pair)
9/27/2021 66
Coaxial Cable
Coaxial cable can be used over longer distances and support more stations on a shared line
than twisted pair.
• consists of a hollow outer cylindrical conductor that surrounds a single inner wire conductor
• is a versatile transmission medium used in a wide variety of applications
• used for TV distribution, long distance telephone transmission and LANs
9/27/2021 67
Coaxial Cable – Transmission
Characteristics
frequency
characteristics
superior to
twisted pair
performance
limited by
attenuation &
noise
analog signals
• amplifiers
needed every
few kilometers
- closer if
higher
frequency
• usable
spectrum
extends up to
500MHz
digital signals
• repeater every
1km - closer for
higher data
rates
9/27/2021 68
Optical Fiber
Optical fiber is a thin flexible medium capable of guiding an optical ray.
• various glasses and plastics can be used to make optical fibers
• has a cylindrical shape with three sections – core, cladding, jacket
• widely used in long distance telecommunications
• performance, price and advantages have made it popular to use
9/27/2021 69
Optical Fiber - Benefits
greater capacity
◦ data rates of hundreds of Gbps
smaller size and lighter weight
◦ considerably thinner than coaxial or twisted pair cable
◦ reduces structural support requirements
lower attenuation
electromagnetic isolation
◦ not vulnerable to interference, impulse noise, or crosstalk
◦ high degree of security from eavesdropping
greater repeater spacing
◦ lower cost and fewer sources of error
9/27/2021 70
Optical Fiber - Transmission
Characteristics
• uses total internal reflection to transmit light
• effectively acts as wave guide for 1014 to 1015 Hz (this covers portions of infrared &
visible spectra)
• Light sources used:
• Light Emitting Diode (LED)
• cheaper, operates over a greater temperature range, lasts longer
• Injection Laser Diode (ILD)
• more efficient, has greater data rates
• has a relationship among wavelength, type of transmission and achievable data rate
9/27/2021 71
Optical Fiber Transmission Modes
9/27/2021 72
Optical Fiber Transmission Modes
Light from a source enters the cylindrical glass or plastic core. Rays at shallow angles are
reflected and propagated along the fiber; other rays are absorbed by the surrounding
material. This form of propagation is called step-index multimode
Varying the index of refraction of the core, a third type of transmission, known as
graded-index multimode
Reducing the radius of the core to the order of a wavelength, only a single angle or mode
can pass: the axial ray. We have the single-mode propagation
9/27/2021 73
Frequency Utilization for Fiber Applications
WDM = wavelength division multiplexing
9/27/2021 74
Attenuation in Guided Media
9/27/2021 75
Wireless Transmission Frequencies
1GHz to
40GHz
• referred to as microwave frequencies
• highly directional beams are possible
• suitable for point to point transmissions
• also used for satellite
30MHz to
1GHz
• suitable for omnidirectional applications
• referred to as the radio range
3 x 1011 to 2
x 1014
• infrared portion of the spectrum
• useful to local point-to-point and multipoint applications within confined areas
9/27/2021 76
Antennas
electrical conductors used to
radiate or collect electromagnetic
energy
same antenna is often used for
both purposes
transmission
antenna
reception
antenna
electromagnetic
energy impinging on
antenna
converted to radio
frequency electrical
energy
fed to receiver
radio frequency
energy from
transmitter
converted to
electromagnetic
energy by antenna
radiated into
surrounding
environment
9/27/2021 77
Radiation Pattern
•power radiated in all directions
•does not perform equally well in all directions
• as seen in a radiation pattern diagram
•an isotropic antenna is a point in space that radiates power
• in all directions equally
• with a spherical radiation pattern
9/27/2021 78
Parabolic Reflective Antenna
9/27/2021 79
Antenna Gain
•measure of the directionality of an antenna
•power output in particular direction verses that produced by an
isotropic antenna
•measured in decibels (dB)
•results in loss in power in another direction
•effective area relates to physical size and shape
9/27/2021 80
Terrestrial Microwave
most common type is a parabolic
dish with an antenna focusing a
narrow beam onto a receiving
antenna
located at substantial heights above
ground to extend range and
transmit over obstacles
uses a series of microwave relay
towers with point-to-point
microwave links to achieve long
distance transmission
9/27/2021 81
Terrestrial Microwave Applications
• used for long haul telecommunications, short point-to-point links
between buildings and cellular systems
• used for both voice and TV transmission
• fewer repeaters but requires line of sight transmission
• 1-40GHz frequencies, with higher frequencies having higher data rates
• main source of loss is attenuation caused mostly by distance, rainfall
and interference
9/27/2021 82
Microwave Bandwidth and Data Rates
9/27/2021 83
Satellite Microwave
• a communication satellite is in effect a microwave relay station
• used to link two or more ground stations
• receives on one frequency, amplifies or repeats signal and transmits on
another frequency
• frequency bands are called transponder channels
• requires geo-stationary orbit
• rotation match occurs at a height of 35,863km at the equator
• need to be spaced at least 3° - 4° apart to avoid interfering with each other
• spacing limits the number of possible satellites
9/27/2021 84
Satellite Point-to-Point Link
9/27/2021 85
Satellite Broadcast Link
9/27/2021 86
Satellite Microwave Applications
uses:
private business networks
◦ satellite providers can divide capacity into channels to lease to individual business users
television distribution
◦ programs are transmitted to the satellite then broadcast down to a number of stations
which then distributes the programs to individual viewers
◦ Direct Broadcast Satellite (DBS) transmits video signals directly to the home user
global positioning
◦ Navstar Global Positioning System (GPS)
9/27/2021 87
Transmission Characteristics
• the optimum frequency range for satellite transmission is 1 to 10 GHz
• lower has significant noise from natural sources
• higher is attenuated by atmospheric absorption and precipitation
• satellites use a frequency bandwidth range of 5.925 to 6.425 GHz from earth
to satellite (uplink) and a range of 3.7 to 4.2 GHz from satellite to earth
(downlink)
• this is referred to as the 4/6-GHz band
• because of saturation the 12/14-GHz band has been developed (uplink: 14 - 14.5 GHz; downlink: 11.7 -
12.2 GH
9/27/2021 88
Broadcast Radio
radio is the term used to encompass frequencies in the range of 3kHz to 300GHz
broadcast radio (30MHz - 1GHz) covers
• FM radio
• UHF and VHF television
• data networking applications
omnidirectional
limited to line of sight
suffers from multipath interference
◦ reflections from land, water, man-made objects
9/27/2021 89
Infrared
• achieved using transceivers that modulate noncoherent infrared light
• transceivers must be within line of sight of each other directly or via
reflection
• does not penetrate walls
• no licenses required
• no frequency allocation issues
• typical uses:
• TV remote control
9/27/2021 90
Frequenc
y
Bands
9/27/2021 91
Wireless Propagation Ground Wave
• ground wave propagation follows the contour of the earth
and can propagate distances well over the visible horizon
• this effect is found in frequencies up to 2MHz
• the best known example of ground wave communication is AM radio
9/27/2021 92
Wireless Propagation Sky Wave
• sky wave propagation is used for amateur radio, CB radio, and international broadcasts
such as BBC and Voice of America
• a signal from an earth based antenna is reflected from the ionized layer of the upper
atmosphere back down to earth
• sky wave signals can travel through a number of hops, bouncing back and for the between the
ionosphere and the earth’s surface
9/27/2021 93
Wireless Propagation Line of Sight
• ground and sky wave propagation modes do not operate above 30
MHz - - communication must be by line of sight
9/27/2021 94
Refraction
velocity of electromagnetic wave is a function of the density of the medium
through which it travels
• ~3 x 108 m/s in vacuum, less in anything else
speed changes with movement between media
index of refraction (refractive index) is
◦ sine(incidence)/sine(refraction)
◦ varies with wavelength
gradual bending
◦ density of atmosphere decreases with height, resulting in bending of radio waves
towards earth
9/27/2021 95
Line of Sight Transmission
Free space loss
• loss of signal
with distance
Atmospheric
Absorption
• from water vapor
and oxygen
absorption
Multipath
• multiple
interfering
signals from
reflections
Refraction
• bending signal
away from
receiver
9/27/2021 96
Free Space Loss : which can be expressed in terms of the ratio of the
radiated power Pt to the power Pr received by the antenna or, in decibels, by taking 10
times the log of that ratio.
9/27/2021 97
Multipath Interference
9/27/2021 98
• Line configuration,
• Multiplexing – Frequency division, Time division and
Wave division,
9/27/2021 99
Techniques for Bandwidth Utilization:
Line Configuration - Topology
•Physical arrangement of stations on medium
• Point to Point - two stations
• such as between two routers / computers
• Multi point - multiple stations
• traditionally mainframe computer and terminals
• now typically a local area network (LAN)
Note: Two characteristics that distinguish various data link
configurations : Topology and Whether the link is half duplex or full
duplex [Data Flow].
9/27/2021 100
Line Configuration - Topology
• In point-to-point each
terminal has a separate I/O
Port and transmission link
9/27/2021 101
Line Configuration - Duplex
• classify data exchange as half or full duplex
• half duplex (two-way alternate)
• only one station may transmit at a time
• requires one data path
• full duplex (two-way simultaneous)
• simultaneous transmission and reception between two stations
• requires two data paths
• separate media or frequencies used for each direction
• or echo canceling ( can be used for transmitting using a single line)
9/27/2021 102
MULTIPLEXING
SHARING OF MEDIUM
??? WHY
AS DATA AND TELECOMMUNICATIONS USE
INCREASES, SO DOES TRAFFIC
Introduction
•Under the simplest conditions, a medium can carry only one signal at any moment in
time.
•For multiple signals to share one medium, the medium must somehow be divided,
giving each signal a portion of the total bandwidth.
•Whenever the bandwidth of a medium linking two devices is greater than the
bandwidth needs of the devices, the link can be shared.
•Efficiency can be achieved by multiplexing;
i.e., sharing of the bandwidth between multiple users.
•Transparent to the User
9/27/2021 104
Multiplexing
Definition:
-- It is the set of techniques that allows the (simultaneous) transmission of
multiple signals across a single data link.
-- Two or more simultaneous transmissions on a single circuit.
Figure: Dividing a link into channels
9/27/2021 105
Multiplexing Techniques/Categories
The current techniques include :
1. FDM: Frequency Division Multiplexing
- Analog
2. WDM: Wavelength Division Multiplexing
- Analog
3. TDM: Time Division Multiplexing - Digital
a. Synchronous b. Statistical
9/27/2021 106
Frequency Division Multiplexing
• It is an analog multiplexing technique that combines analog signals. Uses
the concept of modulation
• Assignment of non-overlapping frequency ranges to each “user” or signal
on a medium. Thus, all signals are transmitted at the same time, each
using different frequencies.
9/27/2021 107
Frequency Division Multiplexing
Useful bandwidth of medium exceeds required bandwidth of channel
9/27/2021 108
Frequency Division Multiplexing
• Analog signaling is used to transmit the signals due to which it is more
susceptible to noise.
• It is the oldest multiplexing technique.
• Examples of FDM:
Broadcast radio and television,
Cable television,
AMPS cellular phone systems
9/27/2021 109
FDM Process
--A multiplexor accepts inputs and
assigns frequencies to each
device.
--It is attached to a high-speed
communications line.
--A corresponding multiplexor, or
demultiplexor, is on the end of the
high-speed line and separates
the multiplexed signals.
9/27/2021 110
FDM Process
--Each signal is modulated to a different carrier frequency
--Carrier frequencies separated so signals do not overlap (guard bands)
e.g. broadcast radio.
--Channel allocated even if no data
9/27/2021 111
FDM Process
9/27/2021 112
Analog Carrier Systems and Hierarchy
AT & T (USA) Groups
9/27/2021 113
Wavelength Division Multiplexing
WDM is an analog multiplexing technique to combine optical signals.
Each message is given a different wavelength (frequency)
9/27/2021 114
Wavelength Division Multiplexing
• Easy to do with fiber optics and optical sources
• Prisms used in WDM
9/27/2021 115
Dense Wavelength Division Multiplexing
• DWDM which is often called WDM multiplexes multiple data streams onto
a single fiber optic line.
Data Transmission through a single fiber optic line
9/27/2021 116
Dense Wavelength Division Multiplexing (DWDM)
• Different wavelength lasers (called lambdas) transmit the multiple signals.
• Each signal carried at a different rate, combines(30, 40, more?) signals
onto one fiber.
9/27/2021 117
Wavelength Division Multiplexing
1997 Bell Labs
◦ 100 beams
◦ Each at 10 Gbps
◦ Giving 1 terabit per second (Tbps)
Commercial systems of 160 channels of 10 Gbps now available
Lab systems (Alcatel) 256 channels at 39.8 Gbps each
◦ 10.1 Tbps
◦ Over 100km
9/27/2021 118
Time Division Multiplexing (TDM)
•TDM is a digital multiplexing technique for combining several low-rate
digital channels into one high-rate one.
• Data rate of medium exceeds data rate of digital signal to be
transmitted
• Multiple digital signals interleaved in time
• May be at bit level of blocks
9/27/2021 119
Time Division Multiplexing (TDM)
Sharing of the signal is accomplished by dividing available transmission
time on a medium among users.
9/27/2021 120
Time Division Multiplexing
9/27/2021 121
Time slots
a. preassigned to sources and fixed,
b. allocated even if no data,
c. need not be evenly distributed amongst sources
TDM System
9/27/2021 122
TDM Types/Forms
•Time division multiplexing comes in two basic forms:
•1. Synchronous time division multiplexing
•2. Statistical, or Asynchronous time division multiplexing.
9/27/2021 123
Synchronous TDM
The original time division multiplexing.
The multiplexor accepts input from attached devices in a round-robin fashion
and transmit the data in a never ending pattern.
Examples of STDM: T-1, ISDN telephone lines,
SONET (Synchronous Optical NETwork)
9/27/2021 124
STDM
When one device generates data at a faster rate than other devices –
then the multiplexor must either sample the incoming data stream from
that device more often than it samples the other devices, or buffer the
faster incoming stream.
9/27/2021 125
STDM
•When a device has nothing to transmit, the multiplexor must still insert a piece of data
from that device into the multiplexed stream So that the receiver may stay
synchronized with the incoming data stream
•The transmitting multiplexor can insert alternating 1s and 0s into the data stream.
9/27/2021 126
Synchronous TDM
In synchronous TDM, the data rate of the link is n times faster,
and the unit duration is n times shorter.
9/27/2021 127
Interleaving
The process of taking a group of bits from each input line for multiplexing
is called interleaving.
We interleave bits (1 - n) from each input onto one output.
9/27/2021 128
TDM Link Control
• No headers and trailers
• Data link control protocols not needed
• Flow control
–Data rate of multiplexed line is fixed
–If one channel receiver can not receive data, the others must carry on
–The corresponding source must be quenched
–This leaves empty slots
• Error control
–Errors are detected and handled by individual channel systems
9/27/2021 129
Data Link Control in TDM
9/27/2021 130
Synchronization
•To ensure that the receiver correctly reads the incoming bits,
i.e., knows the incoming bit boundaries to interpret a “1” and a
“0”, a known bit pattern is used between the frames.
•The receiver looks for the anticipated bit and starts counting bits
till the end of the frame.
•Then it starts over again with the reception of another known
bit.
•These bits (or bit patterns) are called synchronization bit(s).
•They are part of the overhead of transmission.
9/27/2021 131
Synchronization by use of Framing bits
9/27/2021 132
Thus No flag or SYNC characters bracketing TDM frames
Data Rate Management
• Synchronizing data sources
• Not all input links maybe have the same data rate.
• Some links maybe slower. There maybe several different input link speeds
• Data rates from different sources not related by simple rational number
• Clocks in different sources drifting
• Three strategies that can be used to overcome the data rate mismatch:
• Multilevel, Multislot and Pulse Stuffing
9/27/2021 133
Data Rate Management
• Multilevel: used when the data rate of the input links are multiples of
each other.
9/27/2021 134
Data Rate Management
Multislot: used when there is a GCD between the data rates. The higher bit rate channels are allocated
more slots per frame, and the output frame rate is a multiple of each input link.
9/27/2021 135
Data Rate Management
• Pulse Stuffing: used when there is no GCD between the links. The
slowest speed link will be brought up to the speed of the other links by bit
insertion, this is called pulse stuffing.
–Outgoing data rate (excluding framing bits) higher than sum of
incoming rates
–Stuff extra dummy bits or pulses into each incoming signal until it
matches local clock
–Stuffed pulses inserted at fixed locations in frame and removed
at demultiplexer
9/27/2021 136
Inefficient use of Bandwidth
• Sometimes an input link may have no data to transmit then, one or more
slots on the output link will go unused.
• Thus wasting bandwidth
9/27/2021 137
Digital Hierarchy of TDM
9/27/2021 138
Statistical TDM or Asynchronous TDM
•In Synchronous TDM many slots are wasted
•Statistical TDM allocates time slots dynamically based on
demand
•Multiplexer scans input lines and collects data until frame
full
•Data rate on line lower than aggregate rates of input lines
9/27/2021 139
Difference between TDM and Statistical TDM
9/27/2021 140
Statistical TDM
• A statistical multiplexor transmits only the data from active
workstations (or why work when you don’t have to).
• If a workstation is not active, no space is wasted on the multiplexed
stream.
9/27/2021 141
Statistical TDM
9/27/2021 142
A statistical multiplexor accepts the incoming data streams and
creates a frame containing only the data to be transmitted.
Statistical TDM
To identify each piece of data,
an address is included.
If the data is of variable size,
a length is also included.
9/27/2021 143
Statistical TDM
•A statistical multiplexor does not require a line over as high a
speed line as synchronous time division multiplexing since STDM
does not assume all sources will transmit all of the time!
•Good for low bandwidth lines (used for LANs)
•Much more efficient use of bandwidth!
9/27/2021 144
• Asynchronous and Synchronous Transmission,
• XDSL – X Digital Subscriber Line
--------
A, S, H, V
Asymmetric, Symmetric, High Data Rate, Very High Data Rate
145
Techniques for Bandwidth Utilization:
9/27/2021
Transmission of Data between 2 devices
Types: Asynchronous and Synchronous
Transmission
•Transmission of a stream of bits from one device to another across a
transmission link involves cooperation and agreement between the two
sides.
•Timing problems require a mechanism to synchronize the transmitter
and
receiver
• receiver samples stream at bit intervals
• if clocks not aligned and drifting will sample at wrong time after
sufficient bits are sent
•Two solutions to synchronizing clocks
• Asynchronous transmission
• Synchronous transmission
146
9/27/2021
Asynchronous Transmission
• Here each character of data is treated independently.
• Timing problem is avoided by not sending long, uninterrupted
streams of bits. So data is sent character by character.
• Each character begins with a start bit that alerts the receiver that
a character is arriving. The receiver samples each bit in the
character and then looks for the beginning of the next character. [
does not work with long blocks of data as receiver clock may go out
of sync with the transmitter’s clock.
147
9/27/2021
Asynchronous Transmission
• When no character is being transmitted, the line between transmitter and receiver is in an idle state (binary 1
level).
• The beginning of a character is signaled by a start bit with a value of binary 0.
• This is followed by the 5 to 8 bits that actually make up the character.
• The bits of the character are transmitted beginning with the least significant bit.
• Then the data bits are usually followed by a parity bit, set by the transmitter such that the total number of
ones in the character, including the parity bit, is even (even parity) or odd (odd parity).
• The receiver uses this bit for error detection.
• The final element is a stop element, which is a binary 1.
• A minimum length for the stop element is specified, and this is usually 1, 1.5, or 2 times the duration of an
ordinary bit.
• No maximum value is specified since the stop element is the same as the idle state, so the transmitter will
continue to transmit the stop element until it is ready to send the next character.
148
9/27/2021
Asynchronous Transmission
• Example: Say the receiver is fast by
6%,.
• Thus, the receiver samples the
incoming character every 94 µs
(based on the transmitter's clock).
🡪
• Thus the last sample is erroneous.
Example: 🡪
149
9/27/2021
Asynchronous Transmission - Merits
•Simple & cheap
•Overhead of 2 or 3 bits per char (~20%)
•Example: For an 8-bit character with no parity bit, using a
1-bit-long stop element, two out of every ten bits convey
no information but are there merely for synchronization;
thus the overhead is 20%.
•Good for data with large gaps (keyboard)
150
9/27/2021
Synchronous Transmission
•Block of data transmitted sent as a frame
• [includes a starting and an ending flag, and is transmitted in a steady stream without start and stop codes. The
block may be many bits in length. ]
•Clocks must be synchronized [to avoid drift]
• can use separate clock line
• or embed clock signal in data
•Need to indicate start and end of block of data for the receiver to sync
• use preamble and postamble bits
• Data plus preamble, postamble, and control information are called a frame (exact frame format
depends of DLL procedure).
• More efficient (lower overhead) than Asynchronous (20% more overhead).
• Preamble, Postamble and control field would mostly less than 100 bits.
151
9/27/2021
xDSL- ADSL, HDSL, SDSL, VDSL
ASYMMETRIC DIGITAL SUBSCRIBER LINE
(ADSL)
What is DSL???
DSL BLOCK DIAGRAM
153
9/27/2021
154
Internet Access Technology:
Upstream and Downstream
• Internet access technology refers to a data communications system that
connects an Internet subscriber to an ISP
• such as a telephone company(DSL) or cable company
• Most Internet users follow an asymmetric pattern
• a subscriber receives more data from the Internet than sending
• a browser sends a URL that comprises a few bytes
• in response, a web server sends content
• Upstream to refer to data traveling from a subscriber to an ISP
• Downstream to refer to data traveling from an ISP in the Internet to a
subscriber
154
9/27/2021
155
Internet Access Technology:
Upstream and Downstream directions
155
9/27/2021
156
156
Narrowband and Broadband Access Technologies
• A variety of technologies are used for Internet access
• They can be divided into two broad categories based on the data rate they
provide
• Narrowband
• Broadband
• In networking terms, network bandwidth refers to data rate
• Thus, the terms narrowband and broadband reflect industry practice
9/27/2021
157
157
Narrowband Access Technologies
• Narrowband Technologies
• refers to technologies that deliver data at up to 128 Kbps
• For example, the maximum data rate for dialup noisy phone lines is 56 Kbps
and classified as a narrowband technology
• the main narrowband access technologies are given below
9/27/2021
158
158
Broadband Access Technologies
• Broadband Technologies
• generally refers to technologies that offer high data rates, but the exact boundary
between broadband and narrowband is blurry
• many suggest that broadband technologies deliver more than 1 Mbps
• but this is not always the case, and may mean any speed higher than dialup
• the main broadband access technologies are given below
9/27/2021
159
Narrowband vs Broadband
9/27/2021
160
Internet connection—narrow or broadband
9/27/2021
161
161
Digital Subscriber Line (DSL) Technologies
• DSL is one of the main technologies used to provide high-speed data communication services over a
local loop
• DSL variants are given below
• Because the names differ only in the first word, the set is collectively referred to by the acronym
xDSL
• Currently, ADSL is most popular
9/27/2021
162
162
The Local Loop
• Local loop describes the physical connection between a telephone company
Central Office (CO) and a subscriber
• consists of twisted pair and dialup call with 4 KHz of bandwidth
• It often has much higher bandwidth; a subscriber close to a CO may be able
to handle frequencies above 1 MHz
9/27/2021
163
ISP Hierarchy
customer Local loop or Last mile
9/27/2021
164
LOCAL LOOP Technologies
• Electric local loop(POTS lines): Voice, ISDN, DSL
• Optical local loop: Fiber Optics services such as FiOS
• Satellite local loop: communications satellite and cosmos Internet connections
of satellite televisions (DVB-S)
• Cable local loop: Cablemodem
• Wireless local loop (WLL): LMDS, WiMAX, GPRS, HSDPA, DECT
9/27/2021
165
Telephone Standards for Digital Circuits
165
9/27/2021
166
Highest Capacity Circuits - (STS Standards)
166
9/27/2021
Asymmetrical DSL (ADSL)
• ADSL is an asymmetric communication technology designed for
residential users; it is not suitable for businesses
• ADSL is an adaptive technology.
•Link between subscriber and network
–Local loop
•Uses currently installed twisted pair cable
–Can carry broader spectrum
–1 MHz or more
167
9/27/2021
Asymmetrical DSL (ADSL)
• ADSL divides up the available frequencies in a line on the assumption that
most Internet users look at, or download, much more information than
they send, or upload.
• The system uses a data rate based on the condition of the local loop line.
• Speed: Most existing local loops can handle bandwidths up to 1.1 MHz.
168
9/27/2021
ADSL Design
• Asymmetric
– Greater capacity downstream than upstream
• Frequency division multiplexing
– Lowest 25kHz for voice
• Plain old telephone service (POTS)
– Use echo cancellation or FDM to give two bands
– Use FDM within bands
– The region above 25kHz is used for data transmission
– Upstream: 64kbps to 640kbps
– Downstream: 1.536Mbps to 6.144Mbp
• Range 5.5km
169
9/27/2021
ADSL Channel Configuration
170
9/27/2021
ADSL Modem
171
9/27/2021
Two standards for ADSL
1. Discrete multitone (DMT)
2. Carrierless amplitude/phase (CAP)
172
9/27/2021
CAP - three distinct bands:
1. Voice channel - 0 to 4 KHz
2. Upstream channel - 25 and 160 KHz
3. Downstream channel - 1.5 MHz
• Advantage:
Minimizes the possibility of interference between the channels on
one line, or between the signals on different lines
173
9/27/2021
Discrete multitone (DMT)
Constantly shifts signals between different channels, searching for the
best channels for transmission and reception
174
9/27/2021
Discrete Multitone
• DMT
• Multiple carrier signals at different frequencies
• Some bits on each channel
• 4kHz subchannels
• Send test signal and use subchannels with better signal to noise ratio
• 256 downstream subchannels at 4kHz (60kbps)
– 15.36MHz
– Impairments bring this down to 1.5Mbps to 9Mbps
175
9/27/2021
DMT Transmitter
176
9/27/2021
Discrete multitone (DMT)
177
9/27/2021
ADSL Distance Limitations
•ADSL is a distance-sensitive technology
•The limit for ADSL service is 18,000 feet (5,460 meters)
•At the extremes of the distance limits, ADSL customers may
see speeds far below the promised maximums
•customers nearer the central office have faster connections
and may see extremely high speeds
178
9/27/2021
OTHER TYPES OF DSL:
• SDSL -- Symmetric DSL
Used mainly by small businesses & residential areas
Bit rate of downstream is higher than upstream
• HDSL -- High-bit-rate DSL
Used as alternative of T-1 line
Uses 2B1Q encoding
Less susceptible to attenuation at higher frequencies
Unlike T-1 line (AMI/1.544Mbps/1km), it can reach 2Mbps
@ 3.6Km
179
9/27/2021
OTHER TYPES OF DSL:
• VDSL -- Very high bit-rate DSL
Uses DMT modulation technique
Effective only for short distances(300-1800m)
Speed: downstream: 50 - 55 Mbps upstream: 1.5-2.5 Mbps
180
9/27/2021
Comparison of xDSL Alternatives
181
9/27/2021
Introduction
to
Wired and Wireless LAN
182
9/27/2021
IEEE
STANDARDS
•In 1985, the Computer Society of the IEEE started a
project, called Project 802.
•Purpose was to set standards to enable
intercommunication among equipment from a variety of
manufacturers.
•Project 802 is a way of specifying functions of the
physical layer and the data link layer of major LAN
protocols.
IEEE standard for LANs
HDLC frame compared with LLC and MAC frames
STANDARD
ETHERNET
• The original Ethernet was created in 1976 at Xerox’s Palo Alto Research
Center (PARC).
• Since then, it has gone through four generations.
802.3 MAC frame
Minimum and maximum lengths
Example of an Ethernet address in hexadecimal notation
Unicast and multicast addresses
The least significant bit of the first byte defines the type of address.
If the bit is 0, the address is unicast; otherwise, it is multicast.
The broadcast destination address is a special case of the multicast address in which all
bits are 1s.
Define the type of the following destination addresses:
a. 4A:30:10:21:10:1A b. 47:20:1B:2E:08:EE
c. FF:FF:FF:FF:FF:FF
Solution
To find the type of the address, we need to look at the second hexadecimal
digit from the left. If it is even, the address is unicast. If it is odd, the address is
multicast. If all digits are F’s, the address is broadcast. Therefore, we have the
following:
a. This is a unicast address because A in binary is 1010.
b. This is a multicast address because 7 in binary is 0111.
c. This is a broadcast address because all digits are F’s.
Example shows how the address 47:20:1B:2E:08:EE is sent out on
line.
Solution
The address is sent left-to-right, byte by byte; for each byte, it is sent right-to-
left, bit by bit, as shown below:
Categories of Standard Ethernet
Encoding in a Standard Ethernet implementation
10Base5 implementation
10Base2 implementation
10Base-T implementation
10Base-F implementation
Summary of Standard Ethernet implementations
13.200
CHANGES IN THE STANDARD
The 10-Mbps Standard Ethernet has gone through several changes before
moving to the higher data rates.
These changes actually opened the road to the evolution of the Ethernet
to become compatible with other high-data-rate LANs.
Bridged Ethernet
Switched Ethernet
Full-Duplex Ethernet
Sharing bandwidth
A network with and without a bridge
Collision domains in an unbridged network and a bridged network
Switched Ethernet
Full-duplex switched Ethernet
13.206
FAST ETHERNET
Fast Ethernet was designed to compete with LAN protocols such as FDDI
or Fiber Channel.
IEEE created Fast Ethernet under the name 802.3u.
Fast Ethernet is backward-compatible with Standard Ethernet, but it can
transmit data 10 times faster at a rate of 100 Mbps.
MAC Sublayer
Physical Layer
Fast Ethernet topology
Fast Ethernet implementations
Encoding for Fast Ethernet implementation
Summary of Fast Ethernet implementations
GIGABIT ETHERNET
• The need for an even higher data rate resulted in the design of the Gigabit
Ethernet protocol (1000 Mbps). The IEEE committee calls the standard
802.3z.
• In the full-duplex mode of Gigabit Ethernet, there is no collision;
• the maximum length of the cable is determined by the signal
attenuation
in the cable.
MAC Sublayer
Physical Layer
Ten-Gigabit Ethernet
Topologies of Gigabit Ethernet
Gigabit Ethernet implementations
Encoding in Gigabit Ethernet implementations
Summary of Gigabit Ethernet implementations
Summary of Ten-Gigabit Ethernet
implementations
IEEE 802.11 - Wireless LAN Standard
IEEE has defined the specifications for a wireless LAN, called IEEE
802.11, which covers the physical and data link layers.
Architecture
MAC Sublayer
Physical Layer
A BSS without an AP is called an ad hoc network;
a BSS with an AP is called an infrastructure network.
Basic service sets (BSSs)
Extended service sets (ESSs)
MAC layers in IEEE 802.11 standard
CSMA/CA flowchart
CSMA/CA and
NAV
Frame format
Subfields in FC field
Control frames
Values of subfields in control frames
Addresses
Addressing mechanisms
Hidden station problem
The CTS frame in CSMA/CA handshake can prevent collision from
a hidden station.
Use of handshaking to prevent hidden station problem
Exposed station problem
Use of handshaking in exposed station problem
Physical
layers
Industrial, scientific, and medical (ISM) band
Physical layer of IEEE 802.11 FHSS
Physical layer of IEEE 802.11 DSSS
Physical layer of IEEE 802.11 infrared
Physical layer of IEEE 802.11b
BLUETOOTH
Bluetooth is a wireless LAN technology designed to connect devices of
different functions such as telephones, notebooks, computers, cameras,
printers, coffee makers, and so on. A Bluetooth LAN is an ad hoc network,
which means that the network is formed spontaneously.
Architecture
Bluetooth Layers
Baseband Layer
L2CAP
Piconet
Scatternet
Bluetooth layers
Single-secondary communication
Multiple-secondary communication
Frame format types
L2CAP data packet format

Weitere ähnliche Inhalte

Ähnlich wie CN Unit-1 PPT.pptx

Protocol layer,OSI model & POP3
Protocol layer,OSI model & POP3Protocol layer,OSI model & POP3
Protocol layer,OSI model & POP3Zakirul Islam
 
Overview of an OSI reference Model
Overview of an OSI reference ModelOverview of an OSI reference Model
Overview of an OSI reference ModelDarshan Bhatt
 
Sargation university's open system interconnection
Sargation university's open system interconnectionSargation university's open system interconnection
Sargation university's open system interconnectionKingPinYT
 
unit-1fon (1).pptx
unit-1fon (1).pptxunit-1fon (1).pptx
unit-1fon (1).pptxDeepVala5
 
Computer Networks Notes Complete Syllabus
Computer Networks Notes Complete SyllabusComputer Networks Notes Complete Syllabus
Computer Networks Notes Complete SyllabusAnujashejwal
 
Lecture 1 Network Reference Models Final.pptx
Lecture 1 Network Reference Models Final.pptxLecture 1 Network Reference Models Final.pptx
Lecture 1 Network Reference Models Final.pptxRonoh Kennedy
 
3131471Scanned.ppt
3131471Scanned.ppt3131471Scanned.ppt
3131471Scanned.pptssuserf21d85
 
ITP-22 -COMPUTER NETWORK.pptx
ITP-22 -COMPUTER NETWORK.pptxITP-22 -COMPUTER NETWORK.pptx
ITP-22 -COMPUTER NETWORK.pptxMohammadAsim91
 

Ähnlich wie CN Unit-1 PPT.pptx (20)

Protocol layer,OSI model & POP3
Protocol layer,OSI model & POP3Protocol layer,OSI model & POP3
Protocol layer,OSI model & POP3
 
Overview of an OSI reference Model
Overview of an OSI reference ModelOverview of an OSI reference Model
Overview of an OSI reference Model
 
OSI Model.pdf
OSI Model.pdfOSI Model.pdf
OSI Model.pdf
 
Osi model 7 Layers
Osi model 7 LayersOsi model 7 Layers
Osi model 7 Layers
 
Sargation university's open system interconnection
Sargation university's open system interconnectionSargation university's open system interconnection
Sargation university's open system interconnection
 
unit-1fon (1).pptx
unit-1fon (1).pptxunit-1fon (1).pptx
unit-1fon (1).pptx
 
Ccna day1
Ccna day1Ccna day1
Ccna day1
 
Ccna day 1
Ccna day 1Ccna day 1
Ccna day 1
 
Ccna day1
Ccna day1Ccna day1
Ccna day1
 
Ccna day1
Ccna day1Ccna day1
Ccna day1
 
Ccna day1-130802165909-phpapp01
Ccna day1-130802165909-phpapp01Ccna day1-130802165909-phpapp01
Ccna day1-130802165909-phpapp01
 
Osi model
Osi modelOsi model
Osi model
 
Ccna introduction
Ccna introductionCcna introduction
Ccna introduction
 
Computer Networks Notes Complete Syllabus
Computer Networks Notes Complete SyllabusComputer Networks Notes Complete Syllabus
Computer Networks Notes Complete Syllabus
 
Ccna day1
Ccna day1Ccna day1
Ccna day1
 
Lecture 1 Network Reference Models Final.pptx
Lecture 1 Network Reference Models Final.pptxLecture 1 Network Reference Models Final.pptx
Lecture 1 Network Reference Models Final.pptx
 
3131471Scanned.ppt
3131471Scanned.ppt3131471Scanned.ppt
3131471Scanned.ppt
 
Computer networks chapter1.
Computer networks chapter1.Computer networks chapter1.
Computer networks chapter1.
 
computer network basics
computer network basicscomputer network basics
computer network basics
 
ITP-22 -COMPUTER NETWORK.pptx
ITP-22 -COMPUTER NETWORK.pptxITP-22 -COMPUTER NETWORK.pptx
ITP-22 -COMPUTER NETWORK.pptx
 

Kürzlich hochgeladen

UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...SUHANI PANDEY
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdfSuman Jyoti
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICSUNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICSrknatarajan
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01KreezheaRecto
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdfKamal Acharya
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 

Kürzlich hochgeladen (20)

(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICSUNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 

CN Unit-1 PPT.pptx

  • 1. COMPUTER NETWORKS PC 602 CS [CREDITS - 3] BE (CSE) VI SEM (AICTE MC) 2020-21 COURSE FACULTY: MANIZA HIJAB
  • 2. CN Syllabus Composition + Evaluation • Data Communications + Computer Networks • Unit-1: Data Communication Part + OSI &TCP/IP Model • Units 2-5: Layer 2 – 7 of OSI model with focus based on General Layer functionality and TCP/IP specific reference model under each layer • Evaluation: • CIE – 30 Marks - 10 (CIE-1) + 10 (CIE-2) + 5 (Assignment) + 5 (Quiz) • SEE – 70 Marks - Mandatory to get 40% marks in end exam paper 4/8/2021
  • 3. Computer Networks - SYLLABUS OVERIEW Unit – 1 ◦ Data Communication Components: ◦ Representation of Data Communication , ◦ Flow of Networks, ◦ Layered Architecture, ◦ OSI and TCP/IP model, ◦ Transmission Media. ◦ Techniques for Bandwidth Utilization: ◦ Line configuration, ◦ Multiplexing – Frequency division, Time division and Wave division, ◦ Asynchronous and Synchronous Transmission, ◦ XDSL, ◦ Introduction to Wired and Wireless LAN 4/8/2021
  • 4. Computer Networks - SYLLABUS OVERIEW Unit – 2 ◦ Data Link Layer and Medium Access Sub Layer: ◦ Error Correction and Error Detection: ◦ Fundamentals, Block coding, ◦ Hamming Distance, CRC ◦ Flow Control and Error Control Protocols: ◦ Stop and Wait, ◦ Go Back-N, ◦ ARQ, Selective Repeat ARQ, ◦ Sliding Window, ◦ Piggybacking ◦ Multiple Access Protocols: ◦ Pure ALOHA, Slotted ALOHA ◦ CSMA/CD, CSMA/CA 4/8/2021
  • 5. Computer Networks - SYLLABUS OVERIEW Unit – 3 ◦ Network Layer: ◦ Switching Techniques : Circuit and Packet Concept ◦ Logical Addressing : IPv4 (Header), IPv6 (Header), NAT, Sub-netting concepts ◦ Inter-Networking: ◦ Tunneling, ◦ Fragmentation, ◦ Congestion Control - Leaky Bucket and Token Bucket Algorithm, ◦ Internet Control Protocols : ◦ ARP, RARP, BOOTP and DHCP ◦ Network Routing Algorithms: ◦ Delivery, Forwarding ◦ Unicast Routing Protocol, ◦ Gateway Protocols: 4/8/2021
  • 6. Computer Networks - SYLLABUS OVERIEW Unit – 4 ◦ Transport Layer: ◦ Process to Process Communications, ◦ Elements of Transport Layer ◦ Internet Protocols: ◦ UDP – User Datagram Protocol ◦ TCP – Transmission Control Protocol ◦ Congestion and Quality of Service: ◦ QoS improving techniques 4/8/2021
  • 7. Computer Networks - SYLLABUS OVERIEW Unit – 5 ◦ Application Layer: ◦ Domain Name System (DNS), ◦ EMAIL - Electronic Mail ◦ SNMP – Simple Network Management Protocol ◦ Bluetooth ◦ Basic Concepts of Cryptography: ◦ Network Security Attacks, ◦ Firewalls, ◦ Symmetric Encryption ◦ Data Encryption Standards, ◦ Public Key Encryption – RSA (Rivest, Shamir, Adleman) ◦ Hash Function, ◦ Message Authentication ◦ Digital Signature 4/8/2021
  • 8. Computer Networks – Suggested Reading - Books 1. Data Communication and Networking, 4th Edition, Behrouz A. Forouzan, McGrawHill 2. Data and Computer Communication, 8th Edition, William Stallings, Pearson Prentice Hall India 3. Unix Network Programming, W. Richard Stevens, Prentice Hall / Pearson Education, 2009 4/8/2021
  • 9. Computer Networks Lab PC 632 CS [Credits – 1] Evaluation: CIE – 25 Marks; SEE – 50 Marks Experiments: 1. Running and using services/commands like: ◦ tcpdump, netstat, ifconfig, nslookup, ftp, telnet. - Execution at command prompt ◦ Capture ping and traceroute PDUs using a network protocol analyzer and examine 2. Configuration of router, switch. (using real devices or simulators) 3. Socket Programming using UDP and TCP ( E.g. Simple DNS, Date and time Client Server, Echo Client/Server, Iterative & Concurrent Servers) - Application programs through C Language using Socket API 4. Network Packet Analysis using tools like Wireshark, tcpdump etc. 5. Network Simulation using tools like Cisco Packet Tracer, NetSim, OMNet++, NS2, NS3 etc. 6. Study of Network Simulator(NS) and Simulation of Congestion Control Algorithms using NS. Performance Evaluation of Routing Protocols using Simulation Tools. 7. Programming using raw sockets. 8. Programming using RPC. - Application programs through C Language Note: Instructor may add/delete/modify/tune experiments, wherever he/she feels in a justified manner. 4/8/2021
  • 10. CN-U-1 - INTRODUCTION Data refers to information presented in whatever form is agreed upon by the parties creating and using the data. Data Communications are the exchange of data between two devices via some form of transmission medium such as a wire cable A network is a set of devices (often referred to as nodes) connected by communication links. A node can be a computer, printer, or any other device capable of sending and/or receiving data generated by other nodes on the network. 4/8/2021
  • 11. A Communication Model • The fundamental purpose of a communications system is the exchange of data between two parties. The key elements of this model are: • Source - generates data to be transmitted • Transmitter - converts data into transmittable signals • Transmission System - carries data from source to destination • Receiver - converts received signal into data • Destination - takes incoming data 11
  • 12. Data Communication Model "Data Communications”, deals with the most fundamental aspects of the communications function, focusing on the transmission of signals in a reliable and efficient manner. Example: Electronic Mail: User A sending an email message m to user B. Steps for this process: 1. User A keys in message m comprising bits g buffered in source PC memory 2. Input data is transferred to I/O device (transmitter) as sequence of bits g(t) using voltage shifts 3. transmitter converts these into a signal s(t) suitable for transmission media being used 4. whilst transiting media signal may be impaired so received signal r(t) may differ from s(t) 5. receiver decodes signal recovering g’(t) as estimate of original g(t) which is buffered in destination PC memory as bits g’ being the received message m’ 12
  • 14. The interaction between layers in the OSI model 4/8/2021
  • 15. Communications Tasks Transmission system utilization Addressing Interfacing Routing Signal generation Recovery Synchronization Message formatting Exchange management Security Error detection and correction Network management Flow control 15
  • 16. Communications Tasks • Key tasks that must be performed in a data communications system: • transmission system utilization - need to make efficient use of transmission facilities typically shared among a number of communicating devices • a device must interface with the transmission system • once an interface is established, signal generation is required for communication • there must be synchronization between transmitter and receiver, to determine when a signal begins to arrive and when it ends • there is a variety of requirements for communication between two parties that might be collected under the term exchange management • Error detection and correction are required in circumstances where errors cannot be tolerated 16
  • 17. Communications Tasks • Flow control is required to assure that the source does not overwhelm the destination by sending data faster than they can be processed and absorbed • addressing and routing, so a source system can indicate the identity of the intended destination, and can choose a specific route through this network • Recovery allows an interrupted transaction to resume activity at the point of interruption or to condition prior to the beginning of the exchange • Message formatting has to do with an agreement between two parties as to the form of the data to be exchanged or transmitted • Frequently need to provide some measure of security in a data communications system • Network management capabilities are needed to configure the system, monitor its status, react to failures and overloads, and plan intelligently for future growth 17
  • 18. Five Components of Data Communication 18
  • 19. Data flow -Simplex, Half-duplex, and Full-duplex 19
  • 20. Types of connections: Point-to-Point and Multipoint 20
  • 21. Topology : Categories of topology 21
  • 22. Fully connected Mesh topology 22
  • 26. A hybrid topology: Star backbone with three bus networks 26
  • 27. An Isolated LAN connecting 12 computers to a hub 27
  • 28. WANs: a switched WAN and a point-to-point WAN 28
  • 29. A heterogeneous network made of four WANs and two LANs 29
  • 31. LAYERED ARCHITECTURE: NEED AND ADVANTAGES 31 NEED: • Allows Complex problems are decomposed in to small manageable units. • Implementation details of the layer are abstracted. • Separation of implementation and specification. • Layers work as one by sharing the services provided by each other. •Layering allows reuse functionality i.e., lower layers implement common once. •Provide framework to implement multiple specific protocols (rules) per layer ADVANTAGES: •Provides Modularity with Clear Interfaces. • Has Implementation Simplicity, Maintainability, Flexibility and Scalability. • Support for Portability. • Provides for Robustness
  • 32. ISO - OSI MODEL • International Standards Organization (ISO) - is a multinational body dedicated to worldwide agreement on international standards. • An ISO standard that covers all aspects of network communications is the Open Systems Interconnection (OSI) model. • It was first introduced in the late 1970s. • OSI model has seven layers. ----->
  • 33. LAYERED ARCHITECTURE: The interaction between layers in the OSI model 33
  • 34. An Exchange / Communication of message using the OSI model
  • 35. Physical layer The physical layer is responsible for movements of individual bits from one hop (node) to the next.
  • 36. Data link layer The data link layer is responsible for moving frames from one hop (node) to the next.
  • 38. Network layer The network layer is responsible for the delivery of individual packets from the source host to the destination host.
  • 40. Transport layer The transport layer is responsible for the delivery of a message from one process to another
  • 42. Session layer The session layer is responsible for dialog control and synchronization.
  • 43. Presentation layer The presentation layer is responsible for translation, compression, and encryption.
  • 44. Application layer The application layer is responsible for providing services to the user.
  • 46. TCP/IP REFERENCE MODEL /PROTOCOL SUITE The layers in the TCP/IP reference model is FOUR in comparison to the OSI model. The original TCP/IP protocol suite was defined as having four layers: host-to-network, internet, transport, and application. But when TCP/IP is compared to OSI, we can say that the TCP/IP protocol suite is made of five layers: physical, data link, network, transport, and application.
  • 47. Comparison of TCP/IP and OSI model
  • 48. Comparison of ISO-OSI model and TCP/IP 1. Layers: 7 in OSI ; 5 in TCP/IP 2. Model vs Implementation: In OSI first model was designed followed by Implementation. In TCP/IP first implemented then design followed 3. In OSI : Clear definition of Services, Interface and Protocols. Not so in TCP/IP 4. In OSI Network layer is both Connection Oriented and Connectionless and Transport Layer is only connection oriented. In TCP/IP network layer is connectionless and Transport Layer is both connection oriented and connectionless. 5. In TCP/IP Session and Presentation layers are missing, this functionality is done by Application layer. 6. TCP/IP is the defacto protocol used in internet. OSI is mostly a theoretical model. 48 9/27/2021
  • 49. ADDRESSING Four levels of addresses are used in an internet employing the TCP/IP protocols: • Physical Addresses • Logical Addresses • Port Addresses • Specific Addresses 49 9/27/2021
  • 50. Relationship of layers and addresses in TCP/IP 50 9/27/2021
  • 51. Physical Addresses • Physical Address – It is of 6-bytes (12 hexadecimal digits). • Also called MAC ADDRESS. • Every byte (2 hexadecimal digits) is separated by a colon • Example: 07:01:02:01:2C:4B • Physical Addresses Change Hop by Hop 51 9/27/2021
  • 52. Logical Addresses •Network with two routers connecting three LANs. •Each device (computer or router) has a pair of addresses (logical and physical) for each connection. •Each device connected to one link – 1 pair of address. For router 3 pairs • Also called IP Addresses 52 9/27/2021
  • 53. Port addresses • Port Addresses are for applications. • Port and Logical addresses remain same for source to destination 53 9/27/2021
  • 55. Transmission Media Introduction • Transmission medium – It is the physical path between transmitter and receiver • It is of two types / categories / classes – • Guided media – Electromagnetic waves are guided along a solid medium Eg: Copper Twisted Pair, Copper Coaxial Cable, and Optical fiber • Unguided media – wireless transmission occurs through the atmosphere, space, water • Characteristics and Quality of data transmission is determined by both characteristics of Medium and Signal • For guided media - Medium is more important for data transmission • For Unguided media - Bandwidth of the signal produced by the transmitting antenna is more important. - One key property is directionality of the signal. Signals at lower frequencies are omni-directional and at higher frequencies can be focused into a directional beam 9/27/2021 55
  • 56. Data Transmission System Design : Data rate & Distance are the key factors Design Factors Determining Data Rate and Distance • higher bandwidth gives higher data rate bandwidth • impairments, such as attenuation, limits the distance - Twisted Pair -> Coaxial Cable -> Optical Fiber transmission impairments • overlapping frequency bands can distort or wipe out a signal – More in Unguided than Guided medium. interference • more receivers introduces more attenuation - in case of shared link with multiple attachments. Not in point-point number of receivers 9/27/2021 56
  • 58. Transmission Characteristics of Guided Media Frequency Range Typical Attenuation Typical Delay Repeater Spacing Twisted pair (with loading) 0 to 3.5 kHz 0.2 dB/km @ 1 kHz 50 µs/km 2 km Twisted pairs (multi-pair cables) 0 to 1 MHz 0.7 dB/km @ 1 kHz 5 µs/km 2 km Coaxial cable 0 to 500 MHz 7 dB/km @ 10 MHz 4 µs/km 1 to 9 km Optical fiber 186 to 370 THz 0.2 to 0.5 dB/km 5 µs/km 40 km In Guided Media ,transmission capacity, in terms of either data rate or bandwidth, depends critically on the distance and on whether the medium is point-to-point or multipoint. 9/27/2021 58
  • 59. Guided Transmission Media – Twisted Pair 9/27/2021 59
  • 60. Guided Transmission Media - Coaxial Cable 9/27/2021 60
  • 61. Guided Transmission Media - Optical Fiber 9/27/2021 61
  • 62. Twisted Pair Twisted pair is the least expensive and most widely used guided transmission medium. • consists of two insulated copper wires arranged in a regular spiral pattern • a wire pair acts as a single communication link • pairs are bundled together into a cable • most commonly used in the telephone network and for communications • within buildings 9/27/2021 62
  • 63. Twisted Pair - Transmission Characteristics analog needs amplifiers every 5km to 6km digital can use either analog or digital signals needs a repeater every 2km to 3km limited: distance bandwidth (1MHz) data rate (100MHz) susceptible to interference and noise 9/27/2021 63
  • 64. Unshielded vs. Shielded Twisted Pair Unshielded Twisted Pair (UTP) • ordinary telephone wire • cheapest • easiest to install • suffers from external electromagnetic interference Shielded Twisted Pair (STP) • has metal braid or sheathing that reduces interference • provides better performance at higher data rates • more expensive • harder to handle (thick, heavy) 9/27/2021 64
  • 65. Twisted Pair Categories and Classes 9/27/2021 65
  • 66. Near End Crosstalk - occurs in Twisted Pair • Coupling of signal from one pair of conductors to another • Occurs when transmit signal entering the link couples back to the receiving pair - (near transmitted signal is picked up by near receiving pair) 9/27/2021 66
  • 67. Coaxial Cable Coaxial cable can be used over longer distances and support more stations on a shared line than twisted pair. • consists of a hollow outer cylindrical conductor that surrounds a single inner wire conductor • is a versatile transmission medium used in a wide variety of applications • used for TV distribution, long distance telephone transmission and LANs 9/27/2021 67
  • 68. Coaxial Cable – Transmission Characteristics frequency characteristics superior to twisted pair performance limited by attenuation & noise analog signals • amplifiers needed every few kilometers - closer if higher frequency • usable spectrum extends up to 500MHz digital signals • repeater every 1km - closer for higher data rates 9/27/2021 68
  • 69. Optical Fiber Optical fiber is a thin flexible medium capable of guiding an optical ray. • various glasses and plastics can be used to make optical fibers • has a cylindrical shape with three sections – core, cladding, jacket • widely used in long distance telecommunications • performance, price and advantages have made it popular to use 9/27/2021 69
  • 70. Optical Fiber - Benefits greater capacity ◦ data rates of hundreds of Gbps smaller size and lighter weight ◦ considerably thinner than coaxial or twisted pair cable ◦ reduces structural support requirements lower attenuation electromagnetic isolation ◦ not vulnerable to interference, impulse noise, or crosstalk ◦ high degree of security from eavesdropping greater repeater spacing ◦ lower cost and fewer sources of error 9/27/2021 70
  • 71. Optical Fiber - Transmission Characteristics • uses total internal reflection to transmit light • effectively acts as wave guide for 1014 to 1015 Hz (this covers portions of infrared & visible spectra) • Light sources used: • Light Emitting Diode (LED) • cheaper, operates over a greater temperature range, lasts longer • Injection Laser Diode (ILD) • more efficient, has greater data rates • has a relationship among wavelength, type of transmission and achievable data rate 9/27/2021 71
  • 72. Optical Fiber Transmission Modes 9/27/2021 72
  • 73. Optical Fiber Transmission Modes Light from a source enters the cylindrical glass or plastic core. Rays at shallow angles are reflected and propagated along the fiber; other rays are absorbed by the surrounding material. This form of propagation is called step-index multimode Varying the index of refraction of the core, a third type of transmission, known as graded-index multimode Reducing the radius of the core to the order of a wavelength, only a single angle or mode can pass: the axial ray. We have the single-mode propagation 9/27/2021 73
  • 74. Frequency Utilization for Fiber Applications WDM = wavelength division multiplexing 9/27/2021 74
  • 75. Attenuation in Guided Media 9/27/2021 75
  • 76. Wireless Transmission Frequencies 1GHz to 40GHz • referred to as microwave frequencies • highly directional beams are possible • suitable for point to point transmissions • also used for satellite 30MHz to 1GHz • suitable for omnidirectional applications • referred to as the radio range 3 x 1011 to 2 x 1014 • infrared portion of the spectrum • useful to local point-to-point and multipoint applications within confined areas 9/27/2021 76
  • 77. Antennas electrical conductors used to radiate or collect electromagnetic energy same antenna is often used for both purposes transmission antenna reception antenna electromagnetic energy impinging on antenna converted to radio frequency electrical energy fed to receiver radio frequency energy from transmitter converted to electromagnetic energy by antenna radiated into surrounding environment 9/27/2021 77
  • 78. Radiation Pattern •power radiated in all directions •does not perform equally well in all directions • as seen in a radiation pattern diagram •an isotropic antenna is a point in space that radiates power • in all directions equally • with a spherical radiation pattern 9/27/2021 78
  • 80. Antenna Gain •measure of the directionality of an antenna •power output in particular direction verses that produced by an isotropic antenna •measured in decibels (dB) •results in loss in power in another direction •effective area relates to physical size and shape 9/27/2021 80
  • 81. Terrestrial Microwave most common type is a parabolic dish with an antenna focusing a narrow beam onto a receiving antenna located at substantial heights above ground to extend range and transmit over obstacles uses a series of microwave relay towers with point-to-point microwave links to achieve long distance transmission 9/27/2021 81
  • 82. Terrestrial Microwave Applications • used for long haul telecommunications, short point-to-point links between buildings and cellular systems • used for both voice and TV transmission • fewer repeaters but requires line of sight transmission • 1-40GHz frequencies, with higher frequencies having higher data rates • main source of loss is attenuation caused mostly by distance, rainfall and interference 9/27/2021 82
  • 83. Microwave Bandwidth and Data Rates 9/27/2021 83
  • 84. Satellite Microwave • a communication satellite is in effect a microwave relay station • used to link two or more ground stations • receives on one frequency, amplifies or repeats signal and transmits on another frequency • frequency bands are called transponder channels • requires geo-stationary orbit • rotation match occurs at a height of 35,863km at the equator • need to be spaced at least 3° - 4° apart to avoid interfering with each other • spacing limits the number of possible satellites 9/27/2021 84
  • 87. Satellite Microwave Applications uses: private business networks ◦ satellite providers can divide capacity into channels to lease to individual business users television distribution ◦ programs are transmitted to the satellite then broadcast down to a number of stations which then distributes the programs to individual viewers ◦ Direct Broadcast Satellite (DBS) transmits video signals directly to the home user global positioning ◦ Navstar Global Positioning System (GPS) 9/27/2021 87
  • 88. Transmission Characteristics • the optimum frequency range for satellite transmission is 1 to 10 GHz • lower has significant noise from natural sources • higher is attenuated by atmospheric absorption and precipitation • satellites use a frequency bandwidth range of 5.925 to 6.425 GHz from earth to satellite (uplink) and a range of 3.7 to 4.2 GHz from satellite to earth (downlink) • this is referred to as the 4/6-GHz band • because of saturation the 12/14-GHz band has been developed (uplink: 14 - 14.5 GHz; downlink: 11.7 - 12.2 GH 9/27/2021 88
  • 89. Broadcast Radio radio is the term used to encompass frequencies in the range of 3kHz to 300GHz broadcast radio (30MHz - 1GHz) covers • FM radio • UHF and VHF television • data networking applications omnidirectional limited to line of sight suffers from multipath interference ◦ reflections from land, water, man-made objects 9/27/2021 89
  • 90. Infrared • achieved using transceivers that modulate noncoherent infrared light • transceivers must be within line of sight of each other directly or via reflection • does not penetrate walls • no licenses required • no frequency allocation issues • typical uses: • TV remote control 9/27/2021 90
  • 92. Wireless Propagation Ground Wave • ground wave propagation follows the contour of the earth and can propagate distances well over the visible horizon • this effect is found in frequencies up to 2MHz • the best known example of ground wave communication is AM radio 9/27/2021 92
  • 93. Wireless Propagation Sky Wave • sky wave propagation is used for amateur radio, CB radio, and international broadcasts such as BBC and Voice of America • a signal from an earth based antenna is reflected from the ionized layer of the upper atmosphere back down to earth • sky wave signals can travel through a number of hops, bouncing back and for the between the ionosphere and the earth’s surface 9/27/2021 93
  • 94. Wireless Propagation Line of Sight • ground and sky wave propagation modes do not operate above 30 MHz - - communication must be by line of sight 9/27/2021 94
  • 95. Refraction velocity of electromagnetic wave is a function of the density of the medium through which it travels • ~3 x 108 m/s in vacuum, less in anything else speed changes with movement between media index of refraction (refractive index) is ◦ sine(incidence)/sine(refraction) ◦ varies with wavelength gradual bending ◦ density of atmosphere decreases with height, resulting in bending of radio waves towards earth 9/27/2021 95
  • 96. Line of Sight Transmission Free space loss • loss of signal with distance Atmospheric Absorption • from water vapor and oxygen absorption Multipath • multiple interfering signals from reflections Refraction • bending signal away from receiver 9/27/2021 96
  • 97. Free Space Loss : which can be expressed in terms of the ratio of the radiated power Pt to the power Pr received by the antenna or, in decibels, by taking 10 times the log of that ratio. 9/27/2021 97
  • 99. • Line configuration, • Multiplexing – Frequency division, Time division and Wave division, 9/27/2021 99 Techniques for Bandwidth Utilization:
  • 100. Line Configuration - Topology •Physical arrangement of stations on medium • Point to Point - two stations • such as between two routers / computers • Multi point - multiple stations • traditionally mainframe computer and terminals • now typically a local area network (LAN) Note: Two characteristics that distinguish various data link configurations : Topology and Whether the link is half duplex or full duplex [Data Flow]. 9/27/2021 100
  • 101. Line Configuration - Topology • In point-to-point each terminal has a separate I/O Port and transmission link 9/27/2021 101
  • 102. Line Configuration - Duplex • classify data exchange as half or full duplex • half duplex (two-way alternate) • only one station may transmit at a time • requires one data path • full duplex (two-way simultaneous) • simultaneous transmission and reception between two stations • requires two data paths • separate media or frequencies used for each direction • or echo canceling ( can be used for transmitting using a single line) 9/27/2021 102
  • 103. MULTIPLEXING SHARING OF MEDIUM ??? WHY AS DATA AND TELECOMMUNICATIONS USE INCREASES, SO DOES TRAFFIC
  • 104. Introduction •Under the simplest conditions, a medium can carry only one signal at any moment in time. •For multiple signals to share one medium, the medium must somehow be divided, giving each signal a portion of the total bandwidth. •Whenever the bandwidth of a medium linking two devices is greater than the bandwidth needs of the devices, the link can be shared. •Efficiency can be achieved by multiplexing; i.e., sharing of the bandwidth between multiple users. •Transparent to the User 9/27/2021 104
  • 105. Multiplexing Definition: -- It is the set of techniques that allows the (simultaneous) transmission of multiple signals across a single data link. -- Two or more simultaneous transmissions on a single circuit. Figure: Dividing a link into channels 9/27/2021 105
  • 106. Multiplexing Techniques/Categories The current techniques include : 1. FDM: Frequency Division Multiplexing - Analog 2. WDM: Wavelength Division Multiplexing - Analog 3. TDM: Time Division Multiplexing - Digital a. Synchronous b. Statistical 9/27/2021 106
  • 107. Frequency Division Multiplexing • It is an analog multiplexing technique that combines analog signals. Uses the concept of modulation • Assignment of non-overlapping frequency ranges to each “user” or signal on a medium. Thus, all signals are transmitted at the same time, each using different frequencies. 9/27/2021 107
  • 108. Frequency Division Multiplexing Useful bandwidth of medium exceeds required bandwidth of channel 9/27/2021 108
  • 109. Frequency Division Multiplexing • Analog signaling is used to transmit the signals due to which it is more susceptible to noise. • It is the oldest multiplexing technique. • Examples of FDM: Broadcast radio and television, Cable television, AMPS cellular phone systems 9/27/2021 109
  • 110. FDM Process --A multiplexor accepts inputs and assigns frequencies to each device. --It is attached to a high-speed communications line. --A corresponding multiplexor, or demultiplexor, is on the end of the high-speed line and separates the multiplexed signals. 9/27/2021 110
  • 111. FDM Process --Each signal is modulated to a different carrier frequency --Carrier frequencies separated so signals do not overlap (guard bands) e.g. broadcast radio. --Channel allocated even if no data 9/27/2021 111
  • 113. Analog Carrier Systems and Hierarchy AT & T (USA) Groups 9/27/2021 113
  • 114. Wavelength Division Multiplexing WDM is an analog multiplexing technique to combine optical signals. Each message is given a different wavelength (frequency) 9/27/2021 114
  • 115. Wavelength Division Multiplexing • Easy to do with fiber optics and optical sources • Prisms used in WDM 9/27/2021 115
  • 116. Dense Wavelength Division Multiplexing • DWDM which is often called WDM multiplexes multiple data streams onto a single fiber optic line. Data Transmission through a single fiber optic line 9/27/2021 116
  • 117. Dense Wavelength Division Multiplexing (DWDM) • Different wavelength lasers (called lambdas) transmit the multiple signals. • Each signal carried at a different rate, combines(30, 40, more?) signals onto one fiber. 9/27/2021 117
  • 118. Wavelength Division Multiplexing 1997 Bell Labs ◦ 100 beams ◦ Each at 10 Gbps ◦ Giving 1 terabit per second (Tbps) Commercial systems of 160 channels of 10 Gbps now available Lab systems (Alcatel) 256 channels at 39.8 Gbps each ◦ 10.1 Tbps ◦ Over 100km 9/27/2021 118
  • 119. Time Division Multiplexing (TDM) •TDM is a digital multiplexing technique for combining several low-rate digital channels into one high-rate one. • Data rate of medium exceeds data rate of digital signal to be transmitted • Multiple digital signals interleaved in time • May be at bit level of blocks 9/27/2021 119
  • 120. Time Division Multiplexing (TDM) Sharing of the signal is accomplished by dividing available transmission time on a medium among users. 9/27/2021 120
  • 121. Time Division Multiplexing 9/27/2021 121 Time slots a. preassigned to sources and fixed, b. allocated even if no data, c. need not be evenly distributed amongst sources
  • 123. TDM Types/Forms •Time division multiplexing comes in two basic forms: •1. Synchronous time division multiplexing •2. Statistical, or Asynchronous time division multiplexing. 9/27/2021 123
  • 124. Synchronous TDM The original time division multiplexing. The multiplexor accepts input from attached devices in a round-robin fashion and transmit the data in a never ending pattern. Examples of STDM: T-1, ISDN telephone lines, SONET (Synchronous Optical NETwork) 9/27/2021 124
  • 125. STDM When one device generates data at a faster rate than other devices – then the multiplexor must either sample the incoming data stream from that device more often than it samples the other devices, or buffer the faster incoming stream. 9/27/2021 125
  • 126. STDM •When a device has nothing to transmit, the multiplexor must still insert a piece of data from that device into the multiplexed stream So that the receiver may stay synchronized with the incoming data stream •The transmitting multiplexor can insert alternating 1s and 0s into the data stream. 9/27/2021 126
  • 127. Synchronous TDM In synchronous TDM, the data rate of the link is n times faster, and the unit duration is n times shorter. 9/27/2021 127
  • 128. Interleaving The process of taking a group of bits from each input line for multiplexing is called interleaving. We interleave bits (1 - n) from each input onto one output. 9/27/2021 128
  • 129. TDM Link Control • No headers and trailers • Data link control protocols not needed • Flow control –Data rate of multiplexed line is fixed –If one channel receiver can not receive data, the others must carry on –The corresponding source must be quenched –This leaves empty slots • Error control –Errors are detected and handled by individual channel systems 9/27/2021 129
  • 130. Data Link Control in TDM 9/27/2021 130
  • 131. Synchronization •To ensure that the receiver correctly reads the incoming bits, i.e., knows the incoming bit boundaries to interpret a “1” and a “0”, a known bit pattern is used between the frames. •The receiver looks for the anticipated bit and starts counting bits till the end of the frame. •Then it starts over again with the reception of another known bit. •These bits (or bit patterns) are called synchronization bit(s). •They are part of the overhead of transmission. 9/27/2021 131
  • 132. Synchronization by use of Framing bits 9/27/2021 132 Thus No flag or SYNC characters bracketing TDM frames
  • 133. Data Rate Management • Synchronizing data sources • Not all input links maybe have the same data rate. • Some links maybe slower. There maybe several different input link speeds • Data rates from different sources not related by simple rational number • Clocks in different sources drifting • Three strategies that can be used to overcome the data rate mismatch: • Multilevel, Multislot and Pulse Stuffing 9/27/2021 133
  • 134. Data Rate Management • Multilevel: used when the data rate of the input links are multiples of each other. 9/27/2021 134
  • 135. Data Rate Management Multislot: used when there is a GCD between the data rates. The higher bit rate channels are allocated more slots per frame, and the output frame rate is a multiple of each input link. 9/27/2021 135
  • 136. Data Rate Management • Pulse Stuffing: used when there is no GCD between the links. The slowest speed link will be brought up to the speed of the other links by bit insertion, this is called pulse stuffing. –Outgoing data rate (excluding framing bits) higher than sum of incoming rates –Stuff extra dummy bits or pulses into each incoming signal until it matches local clock –Stuffed pulses inserted at fixed locations in frame and removed at demultiplexer 9/27/2021 136
  • 137. Inefficient use of Bandwidth • Sometimes an input link may have no data to transmit then, one or more slots on the output link will go unused. • Thus wasting bandwidth 9/27/2021 137
  • 138. Digital Hierarchy of TDM 9/27/2021 138
  • 139. Statistical TDM or Asynchronous TDM •In Synchronous TDM many slots are wasted •Statistical TDM allocates time slots dynamically based on demand •Multiplexer scans input lines and collects data until frame full •Data rate on line lower than aggregate rates of input lines 9/27/2021 139
  • 140. Difference between TDM and Statistical TDM 9/27/2021 140
  • 141. Statistical TDM • A statistical multiplexor transmits only the data from active workstations (or why work when you don’t have to). • If a workstation is not active, no space is wasted on the multiplexed stream. 9/27/2021 141
  • 142. Statistical TDM 9/27/2021 142 A statistical multiplexor accepts the incoming data streams and creates a frame containing only the data to be transmitted.
  • 143. Statistical TDM To identify each piece of data, an address is included. If the data is of variable size, a length is also included. 9/27/2021 143
  • 144. Statistical TDM •A statistical multiplexor does not require a line over as high a speed line as synchronous time division multiplexing since STDM does not assume all sources will transmit all of the time! •Good for low bandwidth lines (used for LANs) •Much more efficient use of bandwidth! 9/27/2021 144
  • 145. • Asynchronous and Synchronous Transmission, • XDSL – X Digital Subscriber Line -------- A, S, H, V Asymmetric, Symmetric, High Data Rate, Very High Data Rate 145 Techniques for Bandwidth Utilization: 9/27/2021
  • 146. Transmission of Data between 2 devices Types: Asynchronous and Synchronous Transmission •Transmission of a stream of bits from one device to another across a transmission link involves cooperation and agreement between the two sides. •Timing problems require a mechanism to synchronize the transmitter and receiver • receiver samples stream at bit intervals • if clocks not aligned and drifting will sample at wrong time after sufficient bits are sent •Two solutions to synchronizing clocks • Asynchronous transmission • Synchronous transmission 146 9/27/2021
  • 147. Asynchronous Transmission • Here each character of data is treated independently. • Timing problem is avoided by not sending long, uninterrupted streams of bits. So data is sent character by character. • Each character begins with a start bit that alerts the receiver that a character is arriving. The receiver samples each bit in the character and then looks for the beginning of the next character. [ does not work with long blocks of data as receiver clock may go out of sync with the transmitter’s clock. 147 9/27/2021
  • 148. Asynchronous Transmission • When no character is being transmitted, the line between transmitter and receiver is in an idle state (binary 1 level). • The beginning of a character is signaled by a start bit with a value of binary 0. • This is followed by the 5 to 8 bits that actually make up the character. • The bits of the character are transmitted beginning with the least significant bit. • Then the data bits are usually followed by a parity bit, set by the transmitter such that the total number of ones in the character, including the parity bit, is even (even parity) or odd (odd parity). • The receiver uses this bit for error detection. • The final element is a stop element, which is a binary 1. • A minimum length for the stop element is specified, and this is usually 1, 1.5, or 2 times the duration of an ordinary bit. • No maximum value is specified since the stop element is the same as the idle state, so the transmitter will continue to transmit the stop element until it is ready to send the next character. 148 9/27/2021
  • 149. Asynchronous Transmission • Example: Say the receiver is fast by 6%,. • Thus, the receiver samples the incoming character every 94 µs (based on the transmitter's clock). 🡪 • Thus the last sample is erroneous. Example: 🡪 149 9/27/2021
  • 150. Asynchronous Transmission - Merits •Simple & cheap •Overhead of 2 or 3 bits per char (~20%) •Example: For an 8-bit character with no parity bit, using a 1-bit-long stop element, two out of every ten bits convey no information but are there merely for synchronization; thus the overhead is 20%. •Good for data with large gaps (keyboard) 150 9/27/2021
  • 151. Synchronous Transmission •Block of data transmitted sent as a frame • [includes a starting and an ending flag, and is transmitted in a steady stream without start and stop codes. The block may be many bits in length. ] •Clocks must be synchronized [to avoid drift] • can use separate clock line • or embed clock signal in data •Need to indicate start and end of block of data for the receiver to sync • use preamble and postamble bits • Data plus preamble, postamble, and control information are called a frame (exact frame format depends of DLL procedure). • More efficient (lower overhead) than Asynchronous (20% more overhead). • Preamble, Postamble and control field would mostly less than 100 bits. 151 9/27/2021
  • 152. xDSL- ADSL, HDSL, SDSL, VDSL ASYMMETRIC DIGITAL SUBSCRIBER LINE (ADSL)
  • 153. What is DSL??? DSL BLOCK DIAGRAM 153 9/27/2021
  • 154. 154 Internet Access Technology: Upstream and Downstream • Internet access technology refers to a data communications system that connects an Internet subscriber to an ISP • such as a telephone company(DSL) or cable company • Most Internet users follow an asymmetric pattern • a subscriber receives more data from the Internet than sending • a browser sends a URL that comprises a few bytes • in response, a web server sends content • Upstream to refer to data traveling from a subscriber to an ISP • Downstream to refer to data traveling from an ISP in the Internet to a subscriber 154 9/27/2021
  • 155. 155 Internet Access Technology: Upstream and Downstream directions 155 9/27/2021
  • 156. 156 156 Narrowband and Broadband Access Technologies • A variety of technologies are used for Internet access • They can be divided into two broad categories based on the data rate they provide • Narrowband • Broadband • In networking terms, network bandwidth refers to data rate • Thus, the terms narrowband and broadband reflect industry practice 9/27/2021
  • 157. 157 157 Narrowband Access Technologies • Narrowband Technologies • refers to technologies that deliver data at up to 128 Kbps • For example, the maximum data rate for dialup noisy phone lines is 56 Kbps and classified as a narrowband technology • the main narrowband access technologies are given below 9/27/2021
  • 158. 158 158 Broadband Access Technologies • Broadband Technologies • generally refers to technologies that offer high data rates, but the exact boundary between broadband and narrowband is blurry • many suggest that broadband technologies deliver more than 1 Mbps • but this is not always the case, and may mean any speed higher than dialup • the main broadband access technologies are given below 9/27/2021
  • 160. 160 Internet connection—narrow or broadband 9/27/2021
  • 161. 161 161 Digital Subscriber Line (DSL) Technologies • DSL is one of the main technologies used to provide high-speed data communication services over a local loop • DSL variants are given below • Because the names differ only in the first word, the set is collectively referred to by the acronym xDSL • Currently, ADSL is most popular 9/27/2021
  • 162. 162 162 The Local Loop • Local loop describes the physical connection between a telephone company Central Office (CO) and a subscriber • consists of twisted pair and dialup call with 4 KHz of bandwidth • It often has much higher bandwidth; a subscriber close to a CO may be able to handle frequencies above 1 MHz 9/27/2021
  • 163. 163 ISP Hierarchy customer Local loop or Last mile 9/27/2021
  • 164. 164 LOCAL LOOP Technologies • Electric local loop(POTS lines): Voice, ISDN, DSL • Optical local loop: Fiber Optics services such as FiOS • Satellite local loop: communications satellite and cosmos Internet connections of satellite televisions (DVB-S) • Cable local loop: Cablemodem • Wireless local loop (WLL): LMDS, WiMAX, GPRS, HSDPA, DECT 9/27/2021
  • 165. 165 Telephone Standards for Digital Circuits 165 9/27/2021
  • 166. 166 Highest Capacity Circuits - (STS Standards) 166 9/27/2021
  • 167. Asymmetrical DSL (ADSL) • ADSL is an asymmetric communication technology designed for residential users; it is not suitable for businesses • ADSL is an adaptive technology. •Link between subscriber and network –Local loop •Uses currently installed twisted pair cable –Can carry broader spectrum –1 MHz or more 167 9/27/2021
  • 168. Asymmetrical DSL (ADSL) • ADSL divides up the available frequencies in a line on the assumption that most Internet users look at, or download, much more information than they send, or upload. • The system uses a data rate based on the condition of the local loop line. • Speed: Most existing local loops can handle bandwidths up to 1.1 MHz. 168 9/27/2021
  • 169. ADSL Design • Asymmetric – Greater capacity downstream than upstream • Frequency division multiplexing – Lowest 25kHz for voice • Plain old telephone service (POTS) – Use echo cancellation or FDM to give two bands – Use FDM within bands – The region above 25kHz is used for data transmission – Upstream: 64kbps to 640kbps – Downstream: 1.536Mbps to 6.144Mbp • Range 5.5km 169 9/27/2021
  • 172. Two standards for ADSL 1. Discrete multitone (DMT) 2. Carrierless amplitude/phase (CAP) 172 9/27/2021
  • 173. CAP - three distinct bands: 1. Voice channel - 0 to 4 KHz 2. Upstream channel - 25 and 160 KHz 3. Downstream channel - 1.5 MHz • Advantage: Minimizes the possibility of interference between the channels on one line, or between the signals on different lines 173 9/27/2021
  • 174. Discrete multitone (DMT) Constantly shifts signals between different channels, searching for the best channels for transmission and reception 174 9/27/2021
  • 175. Discrete Multitone • DMT • Multiple carrier signals at different frequencies • Some bits on each channel • 4kHz subchannels • Send test signal and use subchannels with better signal to noise ratio • 256 downstream subchannels at 4kHz (60kbps) – 15.36MHz – Impairments bring this down to 1.5Mbps to 9Mbps 175 9/27/2021
  • 178. ADSL Distance Limitations •ADSL is a distance-sensitive technology •The limit for ADSL service is 18,000 feet (5,460 meters) •At the extremes of the distance limits, ADSL customers may see speeds far below the promised maximums •customers nearer the central office have faster connections and may see extremely high speeds 178 9/27/2021
  • 179. OTHER TYPES OF DSL: • SDSL -- Symmetric DSL Used mainly by small businesses & residential areas Bit rate of downstream is higher than upstream • HDSL -- High-bit-rate DSL Used as alternative of T-1 line Uses 2B1Q encoding Less susceptible to attenuation at higher frequencies Unlike T-1 line (AMI/1.544Mbps/1km), it can reach 2Mbps @ 3.6Km 179 9/27/2021
  • 180. OTHER TYPES OF DSL: • VDSL -- Very high bit-rate DSL Uses DMT modulation technique Effective only for short distances(300-1800m) Speed: downstream: 50 - 55 Mbps upstream: 1.5-2.5 Mbps 180 9/27/2021
  • 181. Comparison of xDSL Alternatives 181 9/27/2021
  • 183. IEEE STANDARDS •In 1985, the Computer Society of the IEEE started a project, called Project 802. •Purpose was to set standards to enable intercommunication among equipment from a variety of manufacturers. •Project 802 is a way of specifying functions of the physical layer and the data link layer of major LAN protocols.
  • 185. HDLC frame compared with LLC and MAC frames
  • 186. STANDARD ETHERNET • The original Ethernet was created in 1976 at Xerox’s Palo Alto Research Center (PARC). • Since then, it has gone through four generations.
  • 189. Example of an Ethernet address in hexadecimal notation
  • 190. Unicast and multicast addresses The least significant bit of the first byte defines the type of address. If the bit is 0, the address is unicast; otherwise, it is multicast. The broadcast destination address is a special case of the multicast address in which all bits are 1s.
  • 191. Define the type of the following destination addresses: a. 4A:30:10:21:10:1A b. 47:20:1B:2E:08:EE c. FF:FF:FF:FF:FF:FF Solution To find the type of the address, we need to look at the second hexadecimal digit from the left. If it is even, the address is unicast. If it is odd, the address is multicast. If all digits are F’s, the address is broadcast. Therefore, we have the following: a. This is a unicast address because A in binary is 1010. b. This is a multicast address because 7 in binary is 0111. c. This is a broadcast address because all digits are F’s.
  • 192. Example shows how the address 47:20:1B:2E:08:EE is sent out on line. Solution The address is sent left-to-right, byte by byte; for each byte, it is sent right-to- left, bit by bit, as shown below:
  • 194. Encoding in a Standard Ethernet implementation
  • 199. Summary of Standard Ethernet implementations
  • 200. 13.200 CHANGES IN THE STANDARD The 10-Mbps Standard Ethernet has gone through several changes before moving to the higher data rates. These changes actually opened the road to the evolution of the Ethernet to become compatible with other high-data-rate LANs. Bridged Ethernet Switched Ethernet Full-Duplex Ethernet
  • 202. A network with and without a bridge
  • 203. Collision domains in an unbridged network and a bridged network
  • 206. 13.206 FAST ETHERNET Fast Ethernet was designed to compete with LAN protocols such as FDDI or Fiber Channel. IEEE created Fast Ethernet under the name 802.3u. Fast Ethernet is backward-compatible with Standard Ethernet, but it can transmit data 10 times faster at a rate of 100 Mbps. MAC Sublayer Physical Layer
  • 209. Encoding for Fast Ethernet implementation
  • 210. Summary of Fast Ethernet implementations
  • 211. GIGABIT ETHERNET • The need for an even higher data rate resulted in the design of the Gigabit Ethernet protocol (1000 Mbps). The IEEE committee calls the standard 802.3z. • In the full-duplex mode of Gigabit Ethernet, there is no collision; • the maximum length of the cable is determined by the signal attenuation in the cable. MAC Sublayer Physical Layer Ten-Gigabit Ethernet
  • 214. Encoding in Gigabit Ethernet implementations
  • 215. Summary of Gigabit Ethernet implementations
  • 216. Summary of Ten-Gigabit Ethernet implementations
  • 217. IEEE 802.11 - Wireless LAN Standard IEEE has defined the specifications for a wireless LAN, called IEEE 802.11, which covers the physical and data link layers. Architecture MAC Sublayer Physical Layer A BSS without an AP is called an ad hoc network; a BSS with an AP is called an infrastructure network.
  • 220. MAC layers in IEEE 802.11 standard
  • 224. Subfields in FC field
  • 226. Values of subfields in control frames
  • 229. Hidden station problem The CTS frame in CSMA/CA handshake can prevent collision from a hidden station.
  • 230. Use of handshaking to prevent hidden station problem
  • 232. Use of handshaking in exposed station problem
  • 234. Industrial, scientific, and medical (ISM) band
  • 235. Physical layer of IEEE 802.11 FHSS
  • 236. Physical layer of IEEE 802.11 DSSS
  • 237. Physical layer of IEEE 802.11 infrared
  • 238. Physical layer of IEEE 802.11b
  • 239. BLUETOOTH Bluetooth is a wireless LAN technology designed to connect devices of different functions such as telephones, notebooks, computers, cameras, printers, coffee makers, and so on. A Bluetooth LAN is an ad hoc network, which means that the network is formed spontaneously. Architecture Bluetooth Layers Baseband Layer L2CAP
  • 246. L2CAP data packet format