SlideShare ist ein Scribd-Unternehmen logo
1 von 21
Downloaden Sie, um offline zu lesen
1
In the fulfill of the requirement of the
Vibration of machines and structures
(MECH 6311)
Summer 15
A project report on
Vibration analysis of wheelchair
Submitted to
Dr. R Ganesan, Ph.D., Eng
By
Aniruddhsinh barad [7180217]
Bhoomirajsinh barad [7180225]
Viral kale [7677871]
Department of Mechanical and Industrial Engineering
Faculty of Engineering & Computer Science
2
Abstract
In this project, we concerned the vibration analysis of half portion of
the wheel chair. First we considered the different properties of the system and get
the values for all parameters from the real life examples. Then, we considered the
whole system as one equivalent SDOF model system and developed one
elementary model and we calculated the all the parameters and responses of
system. In the next step we analyzed magnification factor and transmissibility of
the system. At last the whole system is studied for multi degree of freedom system
for more complexity.
3
Index
1. Vibration model of wheel chair…………………………………4
2. SDOF system of wheelchair …………………………………….6
3. Two DOF system analysis……………………………………...11
4. MDOF system analysis…………………………………………13
5. References……………………………………………………….20
Figures
1. Wheelchair suspension system….………………………………4
2. SDOF suspension system………….…………………………….6
3. Two DOF suspension system……...………………………...…11
4. MDOF suspension system...……………………………………13
4
1. Vibration model of wheel chair:
Fig.1 Wheelchair suspension system
5
Contractions:
 Mh = mass of human
 Mf = mass of frame
 Mu = mass of tyre(wheel)
 Kc = stifness of tyre
 Kc = stifness of cushion
 Kf = stifness of frame suspension
 Cf = damping of frame
 Cc = damping of cushion
 v = velocity
 ξ = Damping Ratio
Data:
 Mh = 50 kg
 Mf = 13 kg
 Mu = 1.2 kg
 Ku = 56 ∗ 104 N
m
 Kc = 1.161 ∗ 104 N
m
 Kf = 104 N
m
 Kcf = 2.16 ∗ 104 N
m
 Cf = 150
Ns
m
 Cc = 115
Ns
m
 Ccf = 265
Ns
m
 v = 0.5
m
s
 ξ = 0(no damping)
y = 0.01sin(
2πvt
2.5
)
= 0.01sin(
2π ∗ 0.5 ∗ t
2.5
)
ω = (
2πv
2.5
)
6
= (
2π ∗ 0.5
2.5
)
∴ ω = 1.256 rad/sec
2. SDOF system of wheelchair:
Fig.2 SDOF suspension system
Kinetic energy:
T =
1
2
Muẋ 2
t+
1
2
Mhfẋ 2
t
=
1
2
(Mu + Mhf)ẋ 2
t
7
Meq = (Mu + Mhf)
= (1.2 + 63)
∴ Meq = 64.2 kg
Potential energy:
U =
1
2
Kuẋ2
t +
1
2
Kcfẋ 2
t
=
1
2
(Ku + Kcf)ẋ2
t
Keq = (Ku + Kcf)
Keq = 2.16 ∗ 104
N
m
Damping:
C = ∫ Ccf xt
2̇
Ceq = Ccf
Ceq = 265 Ns/m
Natural frequency:
ωn = √
Keq
Meq
= √
58.16 ∗ 104
64.2
ωn = 95.18 rad/sec
8
Frequency ratio:
r =
ω
ωn
=
1.256
95.18
r = 0.01319
Damped frequency:
ωd = ωn√1 − ξ2
ωn = 95.15 rad/sec
Critical Damping ratio:
Cc =2Meqωn
=2*64.2*95.18
Cc = 1.2 ∗ 104
Ns/m
Damping ratio:
ξ =
C
Cc
ξ =0.022
Amplitude of Vibration:
X
Y
= √
1 + (2ƺr)2
(1 − r2)2 + (2ƺr)2
9
Neglect damping,
X
Y
=
1
1 − r2
X
0.01
=
1
1 − 0.013192
X = xu=0.01000174 m
Magnification:
MF =
1
√(1 − r2)2 + (2ξr)2
MF = 1.00356
Case-1
For minimum magnification r = 1.5,
(𝑇𝑅) =
𝑋
𝑌
= √
1 + (2ƺ𝑟)2
(1 − 𝑟2)2 + (2ƺ𝑟)2
(TR) = 0.80
MFmin =
1
√(1 − r2)2 + (2ξr)2
MFmin = 0.799
Case-2
For maximum magnification ξ=0.022
MFmax =
1
2ξ√1 − ξ2
MFmax = 22.732
rmax = √1 − 2ξ2
rmax = 1.0009
10
Free undammed condition:
∴ ξ = 0, F(t) = 0
Meqẍ + Ceqẋ + Keqx = 0
Total response
x(t) =
ẋ(0)
ωn
sinωnt + x(0)cosωnt
x(t) =
ẋ(0)
95.18
sin95.18t + x(0)cos95.18t
For damped response:
F(t)=0
Meqẍ + Ceqẋ + Keqx = F(t)
Meqẍ + Ceqẋ + Keqx = 0
Total Response:
x(t) = e−ξωnt
(
ẋ(0) + ξωnx(0)
ωd
sinωdt + x(0)cosωdt)
x(t) = e−2.09t
(
ẋ(0) + 2.09x(0)
95.15
sin95.15t + x(0)cos95.15t)
For harmonic response:
Meqẍ + Ceqẋ + Keqx = F0sinωt
64.2ẍ + 265ẋ + 2.16 ∗ 104
x = F0sinωt
Total harmonic response
x(t) =
F0
K
(
sin(ωt − ∅)
√(1 − r2)2 + (2ξr)2
+ Xe−ξωnt
(sin(ωdt + ∅)
11
3. Two degree of freedom system [TDOF]:
Fig.3 Two DOF suspension system
Mu 𝑥 𝑢̈ = −Kuxu − Kcf(xu − xhf) − Ccf(𝑥 𝑢̇ − 𝑥ℎ𝑓)̇
Mhf 𝑥ℎ𝑓̈ = Kcf(xu − xhf) + Ccf(𝑥 𝑢̇ − 𝑥ℎ𝑓)̇
[
Mu 0
0 Mhf
] [
𝑥 𝑢̈
𝑥ℎ𝑓̈ ] + [
Ccf −Ccf
−Ccf Ccf
] ⌈
𝑥 𝑢̇
𝑥 𝑐𝑓̇ ⌉ + [
(Ku + Kcf) −Kcf
−Kcf Kcf
] ⌈
xu
xhf
⌉ = 0
[
xu
xhf
] = [
A1
A2
] 𝑠𝑖𝑛𝜔𝑡
⌈
𝑥 𝑢̇
𝑥 𝑐𝑓̇ ⌉ = 𝜔 [
A1
A2
] 𝑐𝑜𝑠𝜔𝑡
[
𝑥 𝑢̈
𝑥ℎ𝑓̈ ] = −𝜔2
[
A1
A2
] 𝑠𝑖𝑛𝜔𝑡
12
−𝜔2
𝑠𝑖𝑛𝜔𝑡 [
Mu 0
0 Mhf
] [
A1
A2
] + 𝜔𝑐𝑜𝑠𝜔𝑡 [
Ccf −Ccf
−Ccf Ccf
] ⌈
A1
A2
⌉
+ 𝑠𝑖𝑛𝜔𝑡 [
(Ku + Kcf) −Kcf
−Kcf Kcf
] ⌈
A1
A2
⌉ = [
0
0
]
−𝜔2
[
1.2 0
0 63
] [
A1
A2
] + 𝜔 [
265 −265
−265 265
] ⌈
A1
A2
⌉
+ [
581600 −21600
−21600 21600
] ⌈
A1
A2
⌉ = [
0
0
]
𝜔2
[−1.2𝜔2
+ 265𝜔 + 581600 −265𝜔 + 21600
−265𝜔 − 21600 −63𝜔2
+ 265𝜔 + 21600
] ⌈
A1
A2
⌉ = [
0
0
]
Solving the matrix we get the Eigen Values,
𝜆1 = 4.8468 ∗ 105
𝜆2 = 0.0033 ∗ 105
Using the Eigen values, we find out the Eigen vectors as below,
∅1 = {
0.999
−0.0007
}
∅2 = {
0.037
0.999
}
13
4. MDOF system of wheelchair:
Fig.4 MDOF suspension system
Kinetic energy,
T=
1
2
𝑀 𝑢 𝑋̇2
𝑢+
1
2
𝑀ℎ𝑓 𝑋̇2
ℎ𝑓+
1
2
𝐽 𝑜Ɵ̇ 2
Potential energy,
U=
1
2
𝐾 𝑢 𝑋2
𝑢+
1
2
𝐾 𝑐𝑓
2
(𝑋 𝑢 − (𝑋ℎ𝑓 − 𝑙1Ɵ))2
+
1
2
𝐾 𝑐𝑓
2
(𝑋 𝑢 − (𝑋ℎ𝑓 + 𝑙2Ɵ))2
14
Equation of motion,
1. 𝑞𝑖=𝑋 𝑢
𝑑
𝑑𝑡
(
𝜕𝑇
𝜕𝑋 𝑢
)= 𝑀 𝑢 𝑋̈ 𝑢
𝜕 𝑢
𝜕𝑥 𝑢
=𝐾 𝑢 𝑋 𝑢+
𝐾 𝑐𝑓
2
(𝑋 𝑢 − (𝑋ℎ𝑓 − 𝑙1Ɵ))+
𝐾 𝑐𝑓
2
(𝑋 𝑢 − (𝑋ℎ𝑓 + 𝑙2Ɵ))
𝑴 𝒖 𝑿̈ 𝒖+𝑿 𝒖(𝑲 𝒖 + 𝑲 𝒄𝒇)-𝑲 𝒄𝒇 𝑿 𝒉𝒇+
𝑲 𝒄𝒇
𝟐
Ɵ(𝒍 𝟏 − 𝒍 𝟐)=0
Now, 𝑞1̇ =𝑋ℎ𝑓
𝑑
𝑑𝑡
(
𝜕𝑇
𝜕𝑋̇ 𝐻𝐹
)= 𝑀ℎ𝑓 𝑋̈2
ℎ𝑓
𝜕𝑈
𝜕𝑋ℎ𝑓
=−
𝐾 𝑐𝑓
2
(𝑋 𝑢 − 𝑋ℎ𝑓 + 𝑙1Ɵ)- −
𝐾 𝑐𝑓
2
(𝑋 𝑢 − 𝑋ℎ𝑓 − 𝑙2Ɵ)
𝑴 𝒉𝒇 𝑿̈ 𝟐
𝒉𝒇 −
𝑲 𝒄𝒇
𝟐
(𝑿 𝒖 − 𝑿 𝒉𝒇 + 𝒍 𝟏Ɵ)- −
𝑲 𝒄𝒇
𝟐
(𝑿 𝒖 − 𝑿 𝒉𝒇 − 𝒍 𝟐Ɵ)=0
𝑓𝑜𝑟, 𝑞𝑖 =Ɵ
(
𝜕𝑇
𝜕𝜃
) = 𝐽˳𝜃̈
𝑑
𝑑𝑡
𝜕𝑈
𝜕𝜃
=
−𝐾𝑐𝐹
2
𝑙1(𝑥𝑢 − 𝑥ℎ𝐹 + 𝑙1𝜃) +
𝐾𝑐𝐹
2
𝑙2 (𝑥𝑢 − 𝑥ℎ𝐹 − 𝑙2𝜃)
𝑱˳𝜽̈ +
𝑲𝒄𝑭
𝟐
𝒙𝒖 (𝒍𝟐 − 𝒍𝟏) +
𝑲𝒄𝑭
𝟐
𝒙𝒉𝑭(𝒍𝟏 − 𝒍𝟐) −
𝑲𝒄𝑭
𝟐
(𝒍𝟏 𝟐
+ 𝒍𝟐 𝟐
)𝜽
[
𝑚 𝑢 0 0
0 𝑚ℎ𝑓 0
0 0 𝑗𝑜
] {
𝑥̈ 𝑢
𝑥̈ℎ𝑓
Ɵ̈
}+
[
𝑘 𝑢 + 𝑘 𝑐𝑓 −𝑘 𝑐𝑓
𝑘 𝑐𝑓(𝑙1−𝑙2)
2
−𝑘 𝑐𝑓 𝑘 𝑐𝑓
𝑘 𝑐𝑓(𝑙2−𝑙1)
2
𝑘 𝑐𝑓(𝑙1−𝑙2)
2
𝑘 𝑐𝑓(𝑙2−𝑙1)
2
−𝑘 𝑐𝑓(𝑙12+𝑙22)
2 ]
{
𝑋𝑢
𝑋ℎ𝑓
Ɵ
} = {
0
0
0
}
15
Now we take
{
𝑋𝑢
𝑋ℎ𝑓
Ɵ
} = {
𝐴𝑢
𝐴ℎ𝑓
Ɵℎ𝑓
} sinωt
-ω2
sin ωt[
𝑚 𝑢 0 0
0 𝑚ℎ𝑓 0
0 0 𝑗𝑜
] {
𝑋𝑢
𝑋ℎ𝑓
Ɵ
} +sin
ωt
[
𝑘 𝑢 + 𝑘 𝑐𝑓 −𝑘 𝑐𝑓
𝑘 𝑐𝑓(𝑙1−𝑙2)
2
−𝑘 𝑐𝑓 𝑘 𝑐𝑓
𝑘 𝑐𝑓(𝑙2−𝑙1)
2
𝑘 𝑐𝑓(𝑙1−𝑙2)
2
𝑘 𝑐𝑓(𝑙2−𝑙1)
2
−𝑘 𝑐𝑓(𝑙12+𝑙22)
2 ]
{
𝑋𝑢
𝑋ℎ𝑓
Ɵ
} = {
0
0
0
}
-ω2
[
1.2 0 0
0 63 0
0 0 0.5419
] {
𝑋𝑢
𝑋ℎ𝑓
Ɵ
} +
[
581600 −2.16 ∗ 104
0
−2.16 ∗ 104
2.16 ∗ 104
0
0 0 −111.48
] {
𝑋𝑢
𝑋ℎ𝑓
Ɵ
}={
0
0
0
}
Assume, ω2
=⅄
[
581600 − 1.2⅄ −2.16 ∗ 104
0
−2.16 ∗ 104
2.16 ∗ 104
− 63⅄ 0
0 0 −111.48 − 0.5419⅄
] {
𝑋𝑢
𝑋ℎ𝑓
Ɵ
}={
0
0
0
}
⅄=[
4.84679 0 0
0 0.00330115 0
0 0 −0.0205720
] 105
⅄1=4.84679*105
⅄2=0.00330115*105
16
⅄3=-0.0205720*105
𝜔3𝑛=0.0+45.3341i
𝜔1𝑛=696.19 𝑟𝑎𝑑
𝑠𝑒𝑐⁄
𝜔2𝑛=18.16 𝑟𝑎𝑑
𝑠𝑒𝑐⁄
𝜔3𝑛=45.35 𝑟𝑎𝑑
𝑠𝑒𝑐⁄
Eigen vectors,
∅1 = {
0.9999
−0.000707
0
}
∅2 = {
0.0371386
0.931012
0
}
∅3 = {
0
0
1.000
}
Modal matrix,
P=[
0.9999 0.0371386 0
−0.000707 0.9931012 0
0 0 1.000
]
𝑃 𝑇
=[
0.9999 −0.000707 0
0.0371386 0.9931012 0
0 0 1.000
]
17
Generalizes mass,
𝑃 𝑇
𝑀𝑃=[
1.2 0 0
0 62.9147 0
0 0 0.054190
]
Generalized stiffness,
𝑃 𝑇
𝐾𝑃=[
5.8163 0 0
0 0.2076911 0
0 0 −0.00111480
]
Amplitude ratio
Y=0.01,
ƺ=0.022
𝐹𝑜𝑟, 𝑟=
𝜔
𝜔 𝑛1
=1.8*10−3
𝑋
𝑌
=√
1+(2ƺ𝑟)2
(1−𝑟2)2+(2ƺ𝑟)2
𝑋
𝑌
=√
1+(2∗0.022∗1.8∗10−3)2
(1−1.8∗10−32
)
2
+(2∗0.022∗1.8∗10−3)2
X=0.01 m
𝐹𝑜𝑟, 𝑟=
𝜔
𝜔 𝑛2
=0.069
𝑋
𝑌
=√
1+(2ƺ𝑟)2
(1−𝑟2)2+(2ƺ𝑟)2
𝑋
𝑌
=√
1+(2∗0.022∗0.069)2
(1−0.0692)2+(2∗0.022∗0.069)2
X=0.01 m
18
Frequency ratio:
𝐹𝑜𝑟, 𝑟=
𝜔
𝜔 𝑛3
=0.027
Y=0.00989m
𝑋
𝑌
=√
1+(2ƺ𝑟)2
(1−𝑟2)2+(2ƺ𝑟)2
𝑋
𝑌
=√
1+(2∗0.022∗0.027)2
(1−0.0272)2+(2∗0.022∗0.027)2
X=0.01 m
Now we consider the force 𝑓0 sinωt
Where 𝑓0=500 N
F=[
0
𝑓0 sin ωt
0
]
F=[
0
500
0
] sin ωt
𝑃 𝑇
F=[
0.9999 −0.000707 0
0.0371386 0.9931012 0
0 0 1.000
] [
0
500
0
] sin ωt
𝑃 𝑇
F=[
18.569
499.65
0
] sin ωt
19
Assume
ƺ=0.05
𝑓𝑜𝑟 𝜔1𝑛=696.19 𝑟𝑎𝑑
𝑠𝑒𝑐⁄
𝑐 𝑐=1670.55 𝑁𝑆
𝑚⁄
C=83.54 𝑁𝑆
𝑚⁄
1.2𝒙̈ +83.54𝒙̇ +5.8163*𝟏𝟎 𝟓
𝒙=18.569 sin ωt
Total response,
𝑥(𝑡) = 𝑒−34.81𝑡
(
𝑥̇(0)+34.81𝑥(0)
695.32
𝑠𝑖𝑛695.32𝑡 + 𝑥(0)𝑐𝑜𝑠695.32𝑡) +
(3.19*105
sin(1.265𝑡 − 𝜙))
𝑓𝑜𝑟 𝜔12=18.16 𝑟𝑎𝑑
𝑠𝑒𝑐⁄
ƺ=0.05
𝑐 𝑐=2285.06 𝑁𝑆
𝑚⁄
C=114.25 𝑁𝑆
𝑚⁄
62.9147𝒙̈ +114.25𝒙̇ +0.2061*𝟏𝟎 𝟓
𝒙=499.65 sin ωt
𝑥(𝑡) = 𝑒−18.14𝑡
(
𝑥̇(0)+18.14𝑥(0)
18.14
𝑠𝑖𝑛18.14𝑡 + 𝑥(0)𝑐𝑜𝑠18.14𝑡) +
(0.024sin(1.265𝑡 − 𝜙))
𝑓𝑜𝑟 𝜔13=45.35 𝑟𝑎𝑑
𝑠𝑒𝑐⁄
ƺ=0.05
𝑐 𝑐=4.915 𝑁𝑆
𝑚⁄
20
C=0.2457 𝑁𝑆
𝑚⁄
0.5419𝒙̈ +0.2457𝒙̇ +0.001148*𝟏𝟎 𝟓
𝒙=0
𝑥(𝑡) = 𝑒−2.26𝑡
(
𝑥̇(0) + 2.26𝑥(0)
45.29
𝑠𝑖𝑛2.26𝑡 + 𝑥(0)𝑐𝑜𝑠2.26𝑡)
21
References:
5. http://www.rehab.research.va.gov/jour/11/483/pdf/akins.pdf
6. Damping characteristics of seat cushion materials for tractor ride comfort.
By (C.R.Mehta, V.K.Tiwari)

Weitere ähnliche Inhalte

Was ist angesagt?

AERO390Report_Xiang
AERO390Report_XiangAERO390Report_Xiang
AERO390Report_Xiang
XIANG Gao
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
Sohar Carr
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
Sohar Carr
 
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lherEngineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
cristhian cabrera
 

Was ist angesagt? (17)

AERO390Report_Xiang
AERO390Report_XiangAERO390Report_Xiang
AERO390Report_Xiang
 
86202008
8620200886202008
86202008
 
Solutions manual for engineering mechanics dynamics 13th edition by hibbeler
Solutions manual for engineering mechanics dynamics 13th edition by hibbelerSolutions manual for engineering mechanics dynamics 13th edition by hibbeler
Solutions manual for engineering mechanics dynamics 13th edition by hibbeler
 
An Introduction to Deep Learning with Apache MXNet (November 2017)
An Introduction to Deep Learning with Apache MXNet (November 2017)An Introduction to Deep Learning with Apache MXNet (November 2017)
An Introduction to Deep Learning with Apache MXNet (November 2017)
 
Perhitunngan
PerhitunnganPerhitunngan
Perhitunngan
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
 
Capítulo 15 engrenagens cônicas e sem-fim
Capítulo 15   engrenagens cônicas e sem-fimCapítulo 15   engrenagens cônicas e sem-fim
Capítulo 15 engrenagens cônicas e sem-fim
 
Capitulo 12
Capitulo 12Capitulo 12
Capitulo 12
 
Quantum Computing 101, Part 2 - Hello Entangled World
Quantum Computing 101, Part 2 - Hello Entangled WorldQuantum Computing 101, Part 2 - Hello Entangled World
Quantum Computing 101, Part 2 - Hello Entangled World
 
Quantum Computing 101, Part 1 - Hello Quantum World
Quantum Computing 101, Part 1 - Hello Quantum WorldQuantum Computing 101, Part 1 - Hello Quantum World
Quantum Computing 101, Part 1 - Hello Quantum World
 
Ch06 pt 2
Ch06 pt 2Ch06 pt 2
Ch06 pt 2
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
 
8389 ch06
8389 ch068389 ch06
8389 ch06
 
Ws004 motors calculations-240 v dc
Ws004 motors calculations-240 v dcWs004 motors calculations-240 v dc
Ws004 motors calculations-240 v dc
 
MINI SLED CRASH PROJECT
MINI SLED CRASH PROJECTMINI SLED CRASH PROJECT
MINI SLED CRASH PROJECT
 
Ws003 motors calculations-3 phase 480v induction
Ws003 motors calculations-3 phase 480v inductionWs003 motors calculations-3 phase 480v induction
Ws003 motors calculations-3 phase 480v induction
 
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lherEngineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
 

Andere mochten auch

Enigmas vieira da silva
Enigmas vieira da silvaEnigmas vieira da silva
Enigmas vieira da silva
FUNDAÇÃO EDP
 
Contar elementos mesa
Contar elementos mesaContar elementos mesa
Contar elementos mesa
Mari
 
Unidad educativa municipal oswaldo lombeyda
Unidad educativa municipal oswaldo lombeydaUnidad educativa municipal oswaldo lombeyda
Unidad educativa municipal oswaldo lombeyda
crisandy96
 
Aula 2 tipos textuais no webjornalismo
Aula 2   tipos textuais no webjornalismoAula 2   tipos textuais no webjornalismo
Aula 2 tipos textuais no webjornalismo
aulasdejornalismo
 
Nome sujo na praça. O que fazer?
Nome sujo na praça. O que fazer?Nome sujo na praça. O que fazer?
Nome sujo na praça. O que fazer?
Eliane Metz
 
O médico, o paciente e o processo
O médico, o paciente e o processoO médico, o paciente e o processo
O médico, o paciente e o processo
Eliane Metz
 
Esta vida é uma loteria
Esta vida é uma loteriaEsta vida é uma loteria
Esta vida é uma loteria
Geraldoferre
 
Exercícios 2o.ano 2o.bim 1a.lei ohm resistores e potência
Exercícios 2o.ano 2o.bim  1a.lei ohm  resistores e potênciaExercícios 2o.ano 2o.bim  1a.lei ohm  resistores e potência
Exercícios 2o.ano 2o.bim 1a.lei ohm resistores e potência
jucimarpeixoto
 

Andere mochten auch (20)

resume_ali_mckenzie
resume_ali_mckenzieresume_ali_mckenzie
resume_ali_mckenzie
 
Enigmas vieira da silva
Enigmas vieira da silvaEnigmas vieira da silva
Enigmas vieira da silva
 
Artigo - Feliz Dia do Trabalhador
Artigo -  Feliz Dia do TrabalhadorArtigo -  Feliz Dia do Trabalhador
Artigo - Feliz Dia do Trabalhador
 
Contar elementos mesa
Contar elementos mesaContar elementos mesa
Contar elementos mesa
 
Unidad educativa municipal oswaldo lombeyda
Unidad educativa municipal oswaldo lombeydaUnidad educativa municipal oswaldo lombeyda
Unidad educativa municipal oswaldo lombeyda
 
Aula 2 tipos textuais no webjornalismo
Aula 2   tipos textuais no webjornalismoAula 2   tipos textuais no webjornalismo
Aula 2 tipos textuais no webjornalismo
 
Ficha técnica tc 504
Ficha técnica   tc 504Ficha técnica   tc 504
Ficha técnica tc 504
 
Carta dos "Sofredores da Rua"
Carta dos "Sofredores da Rua"Carta dos "Sofredores da Rua"
Carta dos "Sofredores da Rua"
 
Pensando sobre
Pensando sobrePensando sobre
Pensando sobre
 
Literatura 1ª série - 01
Literatura   1ª série - 01Literatura   1ª série - 01
Literatura 1ª série - 01
 
Como poupar água
Como poupar águaComo poupar água
Como poupar água
 
Nome sujo na praça. O que fazer?
Nome sujo na praça. O que fazer?Nome sujo na praça. O que fazer?
Nome sujo na praça. O que fazer?
 
Informativo Julho
Informativo JulhoInformativo Julho
Informativo Julho
 
História renato - 3ºano - 01
História   renato - 3ºano - 01História   renato - 3ºano - 01
História renato - 3ºano - 01
 
1
11
1
 
O médico, o paciente e o processo
O médico, o paciente e o processoO médico, o paciente e o processo
O médico, o paciente e o processo
 
A finalidade da vida humana
A finalidade da vida humanaA finalidade da vida humana
A finalidade da vida humana
 
Esta vida é uma loteria
Esta vida é uma loteriaEsta vida é uma loteria
Esta vida é uma loteria
 
Quatro passos para seu negócio
Quatro passos para seu negócioQuatro passos para seu negócio
Quatro passos para seu negócio
 
Exercícios 2o.ano 2o.bim 1a.lei ohm resistores e potência
Exercícios 2o.ano 2o.bim  1a.lei ohm  resistores e potênciaExercícios 2o.ano 2o.bim  1a.lei ohm  resistores e potência
Exercícios 2o.ano 2o.bim 1a.lei ohm resistores e potência
 

Ähnlich wie vibration of machines and structures

13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
nutkoon
 
3131906 - GRAPHICAL AND ANALYTICAL LINKAGE SYNTHESIS
3131906 - GRAPHICAL AND ANALYTICAL LINKAGE SYNTHESIS3131906 - GRAPHICAL AND ANALYTICAL LINKAGE SYNTHESIS
3131906 - GRAPHICAL AND ANALYTICAL LINKAGE SYNTHESIS
Takshil Gajjar
 
High Bandwidth suspention modelling and Design LQR Full state Feedback Contro...
High Bandwidth suspention modelling and Design LQR Full state Feedback Contro...High Bandwidth suspention modelling and Design LQR Full state Feedback Contro...
High Bandwidth suspention modelling and Design LQR Full state Feedback Contro...
Idabagus Mahartana
 

Ähnlich wie vibration of machines and structures (20)

A Course in Fuzzy Systems and Control Matlab Chapter two
A Course in Fuzzy Systems and Control Matlab Chapter twoA Course in Fuzzy Systems and Control Matlab Chapter two
A Course in Fuzzy Systems and Control Matlab Chapter two
 
Soluções dos exercícios de cinética química digitados
Soluções dos exercícios de cinética química digitadosSoluções dos exercícios de cinética química digitados
Soluções dos exercícios de cinética química digitados
 
project designa.docx
project designa.docxproject designa.docx
project designa.docx
 
Lelt 240 semestre i-2021
Lelt   240 semestre i-2021Lelt   240 semestre i-2021
Lelt 240 semestre i-2021
 
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
 
Tín hiệu, hệ thống và phân giải mạch 6
Tín hiệu, hệ thống và phân giải mạch 6Tín hiệu, hệ thống và phân giải mạch 6
Tín hiệu, hệ thống và phân giải mạch 6
 
lecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxlecture 5 courseII (6).pptx
lecture 5 courseII (6).pptx
 
Tarea 1 vectores, matrices y determinantes laura montes
Tarea 1   vectores, matrices y determinantes laura montesTarea 1   vectores, matrices y determinantes laura montes
Tarea 1 vectores, matrices y determinantes laura montes
 
Thuyết minh đồ án môn chi tiết máy thiết kế trạm dẫn động xích tải
Thuyết minh đồ án môn chi tiết máy thiết kế trạm dẫn động xích tảiThuyết minh đồ án môn chi tiết máy thiết kế trạm dẫn động xích tải
Thuyết minh đồ án môn chi tiết máy thiết kế trạm dẫn động xích tải
 
Thuyết minh đồ án môn chi tiết máy thiết kế trạm dẫn động xích tải
Thuyết minh đồ án môn chi tiết máy thiết kế trạm dẫn động xích tảiThuyết minh đồ án môn chi tiết máy thiết kế trạm dẫn động xích tải
Thuyết minh đồ án môn chi tiết máy thiết kế trạm dẫn động xích tải
 
State feedback example
State feedback exampleState feedback example
State feedback example
 
Ejercicios resueltos en clase de fundaciones ayudante CALCULO DE ZAPATAS
Ejercicios resueltos en clase de fundaciones ayudante CALCULO DE ZAPATASEjercicios resueltos en clase de fundaciones ayudante CALCULO DE ZAPATAS
Ejercicios resueltos en clase de fundaciones ayudante CALCULO DE ZAPATAS
 
suspension system project report
suspension system project reportsuspension system project report
suspension system project report
 
quantum chemistry on quantum computer handson by Q# (2019/8/4@MDR Hongo, Tokyo)
quantum chemistry on quantum computer handson by Q# (2019/8/4@MDR Hongo, Tokyo)quantum chemistry on quantum computer handson by Q# (2019/8/4@MDR Hongo, Tokyo)
quantum chemistry on quantum computer handson by Q# (2019/8/4@MDR Hongo, Tokyo)
 
Rate-Responsive Pacemaker
Rate-Responsive PacemakerRate-Responsive Pacemaker
Rate-Responsive Pacemaker
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observers
 
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2)
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2)Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2)
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2)
 
3131906 - GRAPHICAL AND ANALYTICAL LINKAGE SYNTHESIS
3131906 - GRAPHICAL AND ANALYTICAL LINKAGE SYNTHESIS3131906 - GRAPHICAL AND ANALYTICAL LINKAGE SYNTHESIS
3131906 - GRAPHICAL AND ANALYTICAL LINKAGE SYNTHESIS
 
Machine design-2
Machine design-2Machine design-2
Machine design-2
 
High Bandwidth suspention modelling and Design LQR Full state Feedback Contro...
High Bandwidth suspention modelling and Design LQR Full state Feedback Contro...High Bandwidth suspention modelling and Design LQR Full state Feedback Contro...
High Bandwidth suspention modelling and Design LQR Full state Feedback Contro...
 

vibration of machines and structures

  • 1. 1 In the fulfill of the requirement of the Vibration of machines and structures (MECH 6311) Summer 15 A project report on Vibration analysis of wheelchair Submitted to Dr. R Ganesan, Ph.D., Eng By Aniruddhsinh barad [7180217] Bhoomirajsinh barad [7180225] Viral kale [7677871] Department of Mechanical and Industrial Engineering Faculty of Engineering & Computer Science
  • 2. 2 Abstract In this project, we concerned the vibration analysis of half portion of the wheel chair. First we considered the different properties of the system and get the values for all parameters from the real life examples. Then, we considered the whole system as one equivalent SDOF model system and developed one elementary model and we calculated the all the parameters and responses of system. In the next step we analyzed magnification factor and transmissibility of the system. At last the whole system is studied for multi degree of freedom system for more complexity.
  • 3. 3 Index 1. Vibration model of wheel chair…………………………………4 2. SDOF system of wheelchair …………………………………….6 3. Two DOF system analysis……………………………………...11 4. MDOF system analysis…………………………………………13 5. References……………………………………………………….20 Figures 1. Wheelchair suspension system….………………………………4 2. SDOF suspension system………….…………………………….6 3. Two DOF suspension system……...………………………...…11 4. MDOF suspension system...……………………………………13
  • 4. 4 1. Vibration model of wheel chair: Fig.1 Wheelchair suspension system
  • 5. 5 Contractions:  Mh = mass of human  Mf = mass of frame  Mu = mass of tyre(wheel)  Kc = stifness of tyre  Kc = stifness of cushion  Kf = stifness of frame suspension  Cf = damping of frame  Cc = damping of cushion  v = velocity  ξ = Damping Ratio Data:  Mh = 50 kg  Mf = 13 kg  Mu = 1.2 kg  Ku = 56 ∗ 104 N m  Kc = 1.161 ∗ 104 N m  Kf = 104 N m  Kcf = 2.16 ∗ 104 N m  Cf = 150 Ns m  Cc = 115 Ns m  Ccf = 265 Ns m  v = 0.5 m s  ξ = 0(no damping) y = 0.01sin( 2πvt 2.5 ) = 0.01sin( 2π ∗ 0.5 ∗ t 2.5 ) ω = ( 2πv 2.5 )
  • 6. 6 = ( 2π ∗ 0.5 2.5 ) ∴ ω = 1.256 rad/sec 2. SDOF system of wheelchair: Fig.2 SDOF suspension system Kinetic energy: T = 1 2 Muẋ 2 t+ 1 2 Mhfẋ 2 t = 1 2 (Mu + Mhf)ẋ 2 t
  • 7. 7 Meq = (Mu + Mhf) = (1.2 + 63) ∴ Meq = 64.2 kg Potential energy: U = 1 2 Kuẋ2 t + 1 2 Kcfẋ 2 t = 1 2 (Ku + Kcf)ẋ2 t Keq = (Ku + Kcf) Keq = 2.16 ∗ 104 N m Damping: C = ∫ Ccf xt 2̇ Ceq = Ccf Ceq = 265 Ns/m Natural frequency: ωn = √ Keq Meq = √ 58.16 ∗ 104 64.2 ωn = 95.18 rad/sec
  • 8. 8 Frequency ratio: r = ω ωn = 1.256 95.18 r = 0.01319 Damped frequency: ωd = ωn√1 − ξ2 ωn = 95.15 rad/sec Critical Damping ratio: Cc =2Meqωn =2*64.2*95.18 Cc = 1.2 ∗ 104 Ns/m Damping ratio: ξ = C Cc ξ =0.022 Amplitude of Vibration: X Y = √ 1 + (2ƺr)2 (1 − r2)2 + (2ƺr)2
  • 9. 9 Neglect damping, X Y = 1 1 − r2 X 0.01 = 1 1 − 0.013192 X = xu=0.01000174 m Magnification: MF = 1 √(1 − r2)2 + (2ξr)2 MF = 1.00356 Case-1 For minimum magnification r = 1.5, (𝑇𝑅) = 𝑋 𝑌 = √ 1 + (2ƺ𝑟)2 (1 − 𝑟2)2 + (2ƺ𝑟)2 (TR) = 0.80 MFmin = 1 √(1 − r2)2 + (2ξr)2 MFmin = 0.799 Case-2 For maximum magnification ξ=0.022 MFmax = 1 2ξ√1 − ξ2 MFmax = 22.732 rmax = √1 − 2ξ2 rmax = 1.0009
  • 10. 10 Free undammed condition: ∴ ξ = 0, F(t) = 0 Meqẍ + Ceqẋ + Keqx = 0 Total response x(t) = ẋ(0) ωn sinωnt + x(0)cosωnt x(t) = ẋ(0) 95.18 sin95.18t + x(0)cos95.18t For damped response: F(t)=0 Meqẍ + Ceqẋ + Keqx = F(t) Meqẍ + Ceqẋ + Keqx = 0 Total Response: x(t) = e−ξωnt ( ẋ(0) + ξωnx(0) ωd sinωdt + x(0)cosωdt) x(t) = e−2.09t ( ẋ(0) + 2.09x(0) 95.15 sin95.15t + x(0)cos95.15t) For harmonic response: Meqẍ + Ceqẋ + Keqx = F0sinωt 64.2ẍ + 265ẋ + 2.16 ∗ 104 x = F0sinωt Total harmonic response x(t) = F0 K ( sin(ωt − ∅) √(1 − r2)2 + (2ξr)2 + Xe−ξωnt (sin(ωdt + ∅)
  • 11. 11 3. Two degree of freedom system [TDOF]: Fig.3 Two DOF suspension system Mu 𝑥 𝑢̈ = −Kuxu − Kcf(xu − xhf) − Ccf(𝑥 𝑢̇ − 𝑥ℎ𝑓)̇ Mhf 𝑥ℎ𝑓̈ = Kcf(xu − xhf) + Ccf(𝑥 𝑢̇ − 𝑥ℎ𝑓)̇ [ Mu 0 0 Mhf ] [ 𝑥 𝑢̈ 𝑥ℎ𝑓̈ ] + [ Ccf −Ccf −Ccf Ccf ] ⌈ 𝑥 𝑢̇ 𝑥 𝑐𝑓̇ ⌉ + [ (Ku + Kcf) −Kcf −Kcf Kcf ] ⌈ xu xhf ⌉ = 0 [ xu xhf ] = [ A1 A2 ] 𝑠𝑖𝑛𝜔𝑡 ⌈ 𝑥 𝑢̇ 𝑥 𝑐𝑓̇ ⌉ = 𝜔 [ A1 A2 ] 𝑐𝑜𝑠𝜔𝑡 [ 𝑥 𝑢̈ 𝑥ℎ𝑓̈ ] = −𝜔2 [ A1 A2 ] 𝑠𝑖𝑛𝜔𝑡
  • 12. 12 −𝜔2 𝑠𝑖𝑛𝜔𝑡 [ Mu 0 0 Mhf ] [ A1 A2 ] + 𝜔𝑐𝑜𝑠𝜔𝑡 [ Ccf −Ccf −Ccf Ccf ] ⌈ A1 A2 ⌉ + 𝑠𝑖𝑛𝜔𝑡 [ (Ku + Kcf) −Kcf −Kcf Kcf ] ⌈ A1 A2 ⌉ = [ 0 0 ] −𝜔2 [ 1.2 0 0 63 ] [ A1 A2 ] + 𝜔 [ 265 −265 −265 265 ] ⌈ A1 A2 ⌉ + [ 581600 −21600 −21600 21600 ] ⌈ A1 A2 ⌉ = [ 0 0 ] 𝜔2 [−1.2𝜔2 + 265𝜔 + 581600 −265𝜔 + 21600 −265𝜔 − 21600 −63𝜔2 + 265𝜔 + 21600 ] ⌈ A1 A2 ⌉ = [ 0 0 ] Solving the matrix we get the Eigen Values, 𝜆1 = 4.8468 ∗ 105 𝜆2 = 0.0033 ∗ 105 Using the Eigen values, we find out the Eigen vectors as below, ∅1 = { 0.999 −0.0007 } ∅2 = { 0.037 0.999 }
  • 13. 13 4. MDOF system of wheelchair: Fig.4 MDOF suspension system Kinetic energy, T= 1 2 𝑀 𝑢 𝑋̇2 𝑢+ 1 2 𝑀ℎ𝑓 𝑋̇2 ℎ𝑓+ 1 2 𝐽 𝑜Ɵ̇ 2 Potential energy, U= 1 2 𝐾 𝑢 𝑋2 𝑢+ 1 2 𝐾 𝑐𝑓 2 (𝑋 𝑢 − (𝑋ℎ𝑓 − 𝑙1Ɵ))2 + 1 2 𝐾 𝑐𝑓 2 (𝑋 𝑢 − (𝑋ℎ𝑓 + 𝑙2Ɵ))2
  • 14. 14 Equation of motion, 1. 𝑞𝑖=𝑋 𝑢 𝑑 𝑑𝑡 ( 𝜕𝑇 𝜕𝑋 𝑢 )= 𝑀 𝑢 𝑋̈ 𝑢 𝜕 𝑢 𝜕𝑥 𝑢 =𝐾 𝑢 𝑋 𝑢+ 𝐾 𝑐𝑓 2 (𝑋 𝑢 − (𝑋ℎ𝑓 − 𝑙1Ɵ))+ 𝐾 𝑐𝑓 2 (𝑋 𝑢 − (𝑋ℎ𝑓 + 𝑙2Ɵ)) 𝑴 𝒖 𝑿̈ 𝒖+𝑿 𝒖(𝑲 𝒖 + 𝑲 𝒄𝒇)-𝑲 𝒄𝒇 𝑿 𝒉𝒇+ 𝑲 𝒄𝒇 𝟐 Ɵ(𝒍 𝟏 − 𝒍 𝟐)=0 Now, 𝑞1̇ =𝑋ℎ𝑓 𝑑 𝑑𝑡 ( 𝜕𝑇 𝜕𝑋̇ 𝐻𝐹 )= 𝑀ℎ𝑓 𝑋̈2 ℎ𝑓 𝜕𝑈 𝜕𝑋ℎ𝑓 =− 𝐾 𝑐𝑓 2 (𝑋 𝑢 − 𝑋ℎ𝑓 + 𝑙1Ɵ)- − 𝐾 𝑐𝑓 2 (𝑋 𝑢 − 𝑋ℎ𝑓 − 𝑙2Ɵ) 𝑴 𝒉𝒇 𝑿̈ 𝟐 𝒉𝒇 − 𝑲 𝒄𝒇 𝟐 (𝑿 𝒖 − 𝑿 𝒉𝒇 + 𝒍 𝟏Ɵ)- − 𝑲 𝒄𝒇 𝟐 (𝑿 𝒖 − 𝑿 𝒉𝒇 − 𝒍 𝟐Ɵ)=0 𝑓𝑜𝑟, 𝑞𝑖 =Ɵ ( 𝜕𝑇 𝜕𝜃 ) = 𝐽˳𝜃̈ 𝑑 𝑑𝑡 𝜕𝑈 𝜕𝜃 = −𝐾𝑐𝐹 2 𝑙1(𝑥𝑢 − 𝑥ℎ𝐹 + 𝑙1𝜃) + 𝐾𝑐𝐹 2 𝑙2 (𝑥𝑢 − 𝑥ℎ𝐹 − 𝑙2𝜃) 𝑱˳𝜽̈ + 𝑲𝒄𝑭 𝟐 𝒙𝒖 (𝒍𝟐 − 𝒍𝟏) + 𝑲𝒄𝑭 𝟐 𝒙𝒉𝑭(𝒍𝟏 − 𝒍𝟐) − 𝑲𝒄𝑭 𝟐 (𝒍𝟏 𝟐 + 𝒍𝟐 𝟐 )𝜽 [ 𝑚 𝑢 0 0 0 𝑚ℎ𝑓 0 0 0 𝑗𝑜 ] { 𝑥̈ 𝑢 𝑥̈ℎ𝑓 Ɵ̈ }+ [ 𝑘 𝑢 + 𝑘 𝑐𝑓 −𝑘 𝑐𝑓 𝑘 𝑐𝑓(𝑙1−𝑙2) 2 −𝑘 𝑐𝑓 𝑘 𝑐𝑓 𝑘 𝑐𝑓(𝑙2−𝑙1) 2 𝑘 𝑐𝑓(𝑙1−𝑙2) 2 𝑘 𝑐𝑓(𝑙2−𝑙1) 2 −𝑘 𝑐𝑓(𝑙12+𝑙22) 2 ] { 𝑋𝑢 𝑋ℎ𝑓 Ɵ } = { 0 0 0 }
  • 15. 15 Now we take { 𝑋𝑢 𝑋ℎ𝑓 Ɵ } = { 𝐴𝑢 𝐴ℎ𝑓 Ɵℎ𝑓 } sinωt -ω2 sin ωt[ 𝑚 𝑢 0 0 0 𝑚ℎ𝑓 0 0 0 𝑗𝑜 ] { 𝑋𝑢 𝑋ℎ𝑓 Ɵ } +sin ωt [ 𝑘 𝑢 + 𝑘 𝑐𝑓 −𝑘 𝑐𝑓 𝑘 𝑐𝑓(𝑙1−𝑙2) 2 −𝑘 𝑐𝑓 𝑘 𝑐𝑓 𝑘 𝑐𝑓(𝑙2−𝑙1) 2 𝑘 𝑐𝑓(𝑙1−𝑙2) 2 𝑘 𝑐𝑓(𝑙2−𝑙1) 2 −𝑘 𝑐𝑓(𝑙12+𝑙22) 2 ] { 𝑋𝑢 𝑋ℎ𝑓 Ɵ } = { 0 0 0 } -ω2 [ 1.2 0 0 0 63 0 0 0 0.5419 ] { 𝑋𝑢 𝑋ℎ𝑓 Ɵ } + [ 581600 −2.16 ∗ 104 0 −2.16 ∗ 104 2.16 ∗ 104 0 0 0 −111.48 ] { 𝑋𝑢 𝑋ℎ𝑓 Ɵ }={ 0 0 0 } Assume, ω2 =⅄ [ 581600 − 1.2⅄ −2.16 ∗ 104 0 −2.16 ∗ 104 2.16 ∗ 104 − 63⅄ 0 0 0 −111.48 − 0.5419⅄ ] { 𝑋𝑢 𝑋ℎ𝑓 Ɵ }={ 0 0 0 } ⅄=[ 4.84679 0 0 0 0.00330115 0 0 0 −0.0205720 ] 105 ⅄1=4.84679*105 ⅄2=0.00330115*105
  • 16. 16 ⅄3=-0.0205720*105 𝜔3𝑛=0.0+45.3341i 𝜔1𝑛=696.19 𝑟𝑎𝑑 𝑠𝑒𝑐⁄ 𝜔2𝑛=18.16 𝑟𝑎𝑑 𝑠𝑒𝑐⁄ 𝜔3𝑛=45.35 𝑟𝑎𝑑 𝑠𝑒𝑐⁄ Eigen vectors, ∅1 = { 0.9999 −0.000707 0 } ∅2 = { 0.0371386 0.931012 0 } ∅3 = { 0 0 1.000 } Modal matrix, P=[ 0.9999 0.0371386 0 −0.000707 0.9931012 0 0 0 1.000 ] 𝑃 𝑇 =[ 0.9999 −0.000707 0 0.0371386 0.9931012 0 0 0 1.000 ]
  • 17. 17 Generalizes mass, 𝑃 𝑇 𝑀𝑃=[ 1.2 0 0 0 62.9147 0 0 0 0.054190 ] Generalized stiffness, 𝑃 𝑇 𝐾𝑃=[ 5.8163 0 0 0 0.2076911 0 0 0 −0.00111480 ] Amplitude ratio Y=0.01, ƺ=0.022 𝐹𝑜𝑟, 𝑟= 𝜔 𝜔 𝑛1 =1.8*10−3 𝑋 𝑌 =√ 1+(2ƺ𝑟)2 (1−𝑟2)2+(2ƺ𝑟)2 𝑋 𝑌 =√ 1+(2∗0.022∗1.8∗10−3)2 (1−1.8∗10−32 ) 2 +(2∗0.022∗1.8∗10−3)2 X=0.01 m 𝐹𝑜𝑟, 𝑟= 𝜔 𝜔 𝑛2 =0.069 𝑋 𝑌 =√ 1+(2ƺ𝑟)2 (1−𝑟2)2+(2ƺ𝑟)2 𝑋 𝑌 =√ 1+(2∗0.022∗0.069)2 (1−0.0692)2+(2∗0.022∗0.069)2 X=0.01 m
  • 18. 18 Frequency ratio: 𝐹𝑜𝑟, 𝑟= 𝜔 𝜔 𝑛3 =0.027 Y=0.00989m 𝑋 𝑌 =√ 1+(2ƺ𝑟)2 (1−𝑟2)2+(2ƺ𝑟)2 𝑋 𝑌 =√ 1+(2∗0.022∗0.027)2 (1−0.0272)2+(2∗0.022∗0.027)2 X=0.01 m Now we consider the force 𝑓0 sinωt Where 𝑓0=500 N F=[ 0 𝑓0 sin ωt 0 ] F=[ 0 500 0 ] sin ωt 𝑃 𝑇 F=[ 0.9999 −0.000707 0 0.0371386 0.9931012 0 0 0 1.000 ] [ 0 500 0 ] sin ωt 𝑃 𝑇 F=[ 18.569 499.65 0 ] sin ωt
  • 19. 19 Assume ƺ=0.05 𝑓𝑜𝑟 𝜔1𝑛=696.19 𝑟𝑎𝑑 𝑠𝑒𝑐⁄ 𝑐 𝑐=1670.55 𝑁𝑆 𝑚⁄ C=83.54 𝑁𝑆 𝑚⁄ 1.2𝒙̈ +83.54𝒙̇ +5.8163*𝟏𝟎 𝟓 𝒙=18.569 sin ωt Total response, 𝑥(𝑡) = 𝑒−34.81𝑡 ( 𝑥̇(0)+34.81𝑥(0) 695.32 𝑠𝑖𝑛695.32𝑡 + 𝑥(0)𝑐𝑜𝑠695.32𝑡) + (3.19*105 sin(1.265𝑡 − 𝜙)) 𝑓𝑜𝑟 𝜔12=18.16 𝑟𝑎𝑑 𝑠𝑒𝑐⁄ ƺ=0.05 𝑐 𝑐=2285.06 𝑁𝑆 𝑚⁄ C=114.25 𝑁𝑆 𝑚⁄ 62.9147𝒙̈ +114.25𝒙̇ +0.2061*𝟏𝟎 𝟓 𝒙=499.65 sin ωt 𝑥(𝑡) = 𝑒−18.14𝑡 ( 𝑥̇(0)+18.14𝑥(0) 18.14 𝑠𝑖𝑛18.14𝑡 + 𝑥(0)𝑐𝑜𝑠18.14𝑡) + (0.024sin(1.265𝑡 − 𝜙)) 𝑓𝑜𝑟 𝜔13=45.35 𝑟𝑎𝑑 𝑠𝑒𝑐⁄ ƺ=0.05 𝑐 𝑐=4.915 𝑁𝑆 𝑚⁄
  • 20. 20 C=0.2457 𝑁𝑆 𝑚⁄ 0.5419𝒙̈ +0.2457𝒙̇ +0.001148*𝟏𝟎 𝟓 𝒙=0 𝑥(𝑡) = 𝑒−2.26𝑡 ( 𝑥̇(0) + 2.26𝑥(0) 45.29 𝑠𝑖𝑛2.26𝑡 + 𝑥(0)𝑐𝑜𝑠2.26𝑡)
  • 21. 21 References: 5. http://www.rehab.research.va.gov/jour/11/483/pdf/akins.pdf 6. Damping characteristics of seat cushion materials for tractor ride comfort. By (C.R.Mehta, V.K.Tiwari)