Wir haben unsere Datenschutzbestimmungen aktualisiert. Klicke hier, um dir die _Einzelheiten anzusehen. Tippe hier, um dir die Einzelheiten anzusehen.
Aktiviere deine kostenlose 30-tägige Testversion, um unbegrenzt zu lesen.
Erstelle deine kostenlose 30-tägige Testversion, um weiterzulesen.
Herunterladen, um offline zu lesen
Model Inferencing use cases are becoming a requirement for models moving into the next phase of production deployments. More and more users are now encountering use cases around canary deployments, scale-to-zero or serverless characteristics. And then there are also advanced use cases coming around model explainability, including A/B tests, ensemble models, multi-armed bandits, etc.
In this talk, the speakers are going to detail how to handle these use cases using Kubeflow Serving and the native Kubernetes stack which is Istio and Knative. Knative and Istio help with autoscaling, scale-to-zero, canary deployments to be implemented, and scenarios where traffic is optimized to the best performing models. This can be combined with KNative eventing, Istio observability stack, KFServing Transformer to handle pre/post-processing and payload logging which consequentially can enable drift and outlier detection to be deployed. We will demonstrate where currently KFServing is, and where it's heading towards.
Model Inferencing use cases are becoming a requirement for models moving into the next phase of production deployments. More and more users are now encountering use cases around canary deployments, scale-to-zero or serverless characteristics. And then there are also advanced use cases coming around model explainability, including A/B tests, ensemble models, multi-armed bandits, etc.
In this talk, the speakers are going to detail how to handle these use cases using Kubeflow Serving and the native Kubernetes stack which is Istio and Knative. Knative and Istio help with autoscaling, scale-to-zero, canary deployments to be implemented, and scenarios where traffic is optimized to the best performing models. This can be combined with KNative eventing, Istio observability stack, KFServing Transformer to handle pre/post-processing and payload logging which consequentially can enable drift and outlier detection to be deployed. We will demonstrate where currently KFServing is, and where it's heading towards.
Sie haben diese Folie bereits ins Clipboard „“ geclippt.
Sie haben Ihre erste Folie geclippt!
Durch Clippen können Sie wichtige Folien sammeln, die Sie später noch einmal ansehen möchten. Passen Sie den Namen des Clipboards an, um Ihre Clips zu speichern.Die SlideShare-Familie hat sich gerade vergrößert. Genießen Sie nun Zugriff auf Millionen eBooks, Bücher, Hörbücher, Zeitschriften und mehr von Scribd.
Jederzeit kündbar.Unbegrenztes Lesevergnügen
Lerne schneller und intelligenter von Spitzenfachleuten
Unbegrenzte Downloads
Lade es dir zum Lernen offline und unterwegs herunter
Außerdem erhältst du auch kostenlosen Zugang zu Scribd!
Sofortiger Zugriff auf Millionen von E-Books, Hörbüchern, Zeitschriften, Podcasts und mehr.
Lese und höre offline mit jedem Gerät.
Kostenloser Zugang zu Premium-Diensten wie TuneIn, Mubi und mehr.
Wir haben unsere Datenschutzbestimmungen aktualisiert, um den neuen globalen Regeln zum Thema Datenschutzbestimmungen gerecht zu werden und dir einen Einblick in die begrenzten Möglichkeiten zu geben, wie wir deine Daten nutzen.
Die Einzelheiten findest du unten. Indem du sie akzeptierst, erklärst du dich mit den aktualisierten Datenschutzbestimmungen einverstanden.
Vielen Dank!