SlideShare ist ein Scribd-Unternehmen logo
1 von 17
Downloaden Sie, um offline zu lesen
A.	
  Benassi	
  
Sliding	
  mo*on	
  and	
  Adhesion	
  control	
  
through	
  magne*c	
  domains	
  	
  
EMPA	
  Materials	
  Science	
  &	
  Technology,	
  Zürich	
  (Switzerland)	
  
SINERGIA	
  project	
  CRSII2	
  136287/1	
  	
  	
  	
  
Micro	
  and	
  nano	
  scale	
  fric*on	
  control	
  
Geometrical	
  control	
  
exploi=ng	
  the	
  surface	
  geometry	
  and	
  
	
  interac=on	
  poten=al	
  periodicity	
  
	
  
	
  
•  Superlubricity	
  
•  Commensurability	
  
•  Nano	
  paDerning	
  
Chemical	
  control	
  
exploi=ng	
  chemical	
  reac=on	
  and	
  molecular	
  proper=es	
  
	
  
	
  
•  Coa=ng	
  and	
  surface	
  func=onaliza=on	
  
•  Lubricant	
  design	
  
•  Ionic	
  liquids	
  based	
  lubrica=on	
  
Dynamical	
  control	
  
ac=ng	
  on	
  the	
  system	
  with	
  an	
  
external	
  parameter	
  
	
  
•  Mechanical	
  vibra=ons	
  
•  Suppressing/promo=ng	
  a	
  phase	
  transi=on	
  
•  Termolubricity	
  	
  
Lantz	
  et	
  al.	
  Nat.	
  Nanotech.	
  4	
  586	
  (2009)	
  
Socoliuc	
  et	
  al.	
  	
  Science	
  313	
  	
  207	
  (2006)	
  
Benassi	
  et	
  al.	
  PRL	
  106	
  256102	
  (2011)	
  	
  
Urbakh	
  et	
  al.	
  Nature	
  430	
  525	
  (2004)…	
  
Dienwiebel	
  et	
  al.	
  PRL	
  92	
  126101	
  (2004)	
  
Park	
  et	
  al.	
  	
  Science	
  309	
  1354	
  (2005)	
  
CoJn-­‐Bizonne	
  et	
  al.	
  Nat.	
  Mater.	
  2	
  237	
  (2003)	
  
…	
  
Perkin,	
  Mistura,	
  Drummond,	
  
Bennewitz,	
  Spencer,	
  Szlufarska	
  
talks	
  
Magne*c	
  domains	
  and	
  sliding	
  mo*on	
  
New	
  ways	
  of	
  actua=ng	
  and	
  controlling	
  mo=on	
  in	
  MEMS	
  
If	
  we	
  coat	
  two	
  nearby	
  bodies	
  with	
  ferromagne=c	
  films,	
  
below	
  the	
  Curie	
  temperature	
  magne=c	
  domains	
  will	
  
appear	
  
Magne=c	
  domains	
  behave	
  like	
  micro-­‐scale	
  magnets	
  
and	
  they	
  will	
  interact	
  via	
  magne=c	
  field	
  	
  
The	
  magne=c	
  domain	
  paDern	
  can	
  be	
  controlled	
  with	
  a	
  
magne=c	
  field	
  crea=ng	
  disordered,	
  ordered	
  and	
  even	
  
periodic	
  structures	
  	
  
If	
  the	
  magne=c	
  interac=on	
  is	
  strong	
  enough	
  we	
  can	
  
thus	
  control	
  sliding	
  and	
  adhesion	
  dynamically	
  and	
  
reversibly	
  by	
  a	
  magne=c	
  field.	
  	
  	
  	
  	
  	
  
Domains	
   can	
   be	
   ordered	
   into	
   periodic	
   paDerns	
  
mimicking	
   the	
   atomic	
   periodicity	
   at	
   the	
  
nanoscale.	
  
	
  
Similar	
  aDempts	
  of	
  crea=ng	
  a	
  mesoscale	
  fric=on	
  
lab	
   have	
   been	
   recently	
   proposed	
   exploi=ng	
   ion	
  
traps	
  and	
  colloidal	
  suspensions.	
  
	
  
Benassi	
  et	
  al.	
  Nat.	
  Comm.	
  2	
  236	
  (2011)	
  	
  
Mandelli	
  et	
  al.	
  PRB	
  87	
  195418	
  (2013)	
  (see	
  POSTER)	
  
Bohlein	
  et	
  al.	
  Nat.	
  Mater.	
  11	
  126	
  (2012)	
  	
  
Vanossi	
  et	
  al.	
  PNAS	
  109	
  16429	
  (2012)	
  (see	
  POSTER)	
  
Why	
  magne*c	
  domains?	
  
The	
  domain	
  width	
  ranges	
  over	
  many	
  order	
  of	
  magnitude	
  depending	
  on	
  the	
  film	
  thickness:	
  
The	
  domain	
  shape	
  can	
  be	
  controlled	
  very	
  easily	
  applying	
  an	
  external	
  magne=c	
  field	
  perpendicular	
  to	
  the	
  film	
  surface,	
  maze	
  
paDerns	
  can	
  be	
  formed	
  as	
  well	
  as	
  bubble	
  laQces:	
  
2	
  µm	
  
t	
  =	
  23	
  nm	
  
60	
  µm	
  
t	
  =	
  9	
  nm	
  
110	
  µm	
  
t	
  =	
  12	
  nm	
  
Why	
  magne*c	
  domains?	
  
Maze-­‐like	
  domains	
  can	
  be	
  ordered	
  in	
  metastable	
  periodic	
  structures	
  like	
  stripes	
  whose	
  width	
  can	
  be	
  controlled	
  by	
  a	
  field	
  
parallel	
  to	
  the	
  film	
  surface:	
  
Defects,	
  impuri=es	
  and	
  inhomogenei=es	
  act	
  as	
  pinning	
  sites	
  for	
  the	
  domains,	
  determining	
  the	
  domain	
  mobility.	
  
The	
  density	
  of	
  inhomogenei=s	
  can	
  be	
  controlled	
  changing	
  the	
  film	
  growing	
  condi=ons:	
  	
  
thickness	
  
deposi=on	
  rate	
  
Modeling	
  the	
  magne*za*on	
  dynamics	
  
Our	
  Simplified	
  scalar	
  model:	
  
•  Less	
  accurate	
  than	
  Micro-­‐Magne=c	
  simula=ons	
  
•  Allows	
  to	
  treat	
  large	
  system	
  sizes	
  (few	
  µm2	
  up	
  to	
  hundreds	
  of	
  µm2)	
  
•  Quan=ta=ve	
  agreement	
  with	
  experiments	
  	
  
•  Ad-­‐hoc	
  for	
  perpendicular	
  anisotropy	
  ferromagne=c	
  films	
  	
  
E.	
  Jagla	
  PRB	
  72	
  094406	
  (2005)	
  	
  	
  	
  	
  	
  E.	
  Jagla	
  PRB	
  70	
  046204	
  (2004)	
  	
  
A.	
  Benassi	
  et	
  al.	
  PRB	
  84	
  214441	
  (2011)	
  
p
hKuiA
p
A/hKuiDomain	
  width	
   Wall	
  thickness	
   Boundaries	
  and	
  mobility	
   ⌘
The	
  Landau-­‐Lifshtz-­‐Gilbert	
  equa=on	
  contains	
  3	
  material	
  parameters:	
  
	
  
•  Anisotropy	
  constant	
  Ku	
  
•  Exchange	
  s=ffness	
  A	
  
•  Anisotropy	
  and	
  inhomogenei=es	
  strength	
  η	

They	
  set	
  all	
  the	
  domain	
  proper=es	
  (size,	
  walls,	
  regularity,	
  mobility…)
Modeling	
  the	
  magne*za*on	
  dynamics	
  
Our	
  Simplified	
  scalar	
  model:	
  
•  Less	
  accurate	
  than	
  Micro-­‐Magne=c	
  simula=ons	
  
•  Allows	
  to	
  treat	
  large	
  system	
  sizes	
  (few	
  µm2	
  up	
  to	
  hundreds	
  of	
  µm2)	
  
•  Quan=ta=ve	
  agreement	
  with	
  experiments	
  	
  
•  Ad-­‐hoc	
  for	
  perpendicular	
  anisotropy	
  ferromagne=c	
  films	
  	
  
E.	
  Jagla	
  PRB	
  72	
  094406	
  (2005)	
  	
  	
  	
  	
  	
  E.	
  Jagla	
  PRB	
  70	
  046204	
  (2004)	
  	
  
A.	
  Benassi	
  et	
  al.	
  PRB	
  84	
  214441	
  (2011)	
  
Each	
  dipole	
  moment	
  associated	
  to	
  the	
  infinitesimal	
  volume	
  elements	
  experiences	
  a	
  magne=c	
  field	
  due	
  to	
  the	
  rest	
  of	
  the	
  
medium,	
  its	
  precession	
  mo=on	
  is	
  described	
  by	
  a	
  Landau-­‐Lifshitz-­‐Gilbert	
  equa=on:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
The	
  local	
  field	
  is	
  determined	
  by	
  the	
  Hamiltonian	
  containing	
  the	
  material	
  proper=es	
  and	
  the	
  physics	
  of	
  the	
  medium.	
  
⇤m
⇤t
=
1 + ⇥2
m ⇥

B + ⇥
✓
m ⇥ B
◆
B =
1
Ms
H[m]
m
+ Q(R, t)
hQ(R, t)i = 0
hQ(R, t)Q(R0
, t0
)i = ⇥(t t0
)⇥(R R0
)2KBT⇤/Ms
Bm
precession	
  term	
  
Bm
damping	
  term	
  
dissipa=on	
  by	
  
microscopic	
  
degrees	
  of	
  freedom	
  	
  
Bm
stochas=c	
  term	
  
thermal	
  fluctua=ons	
  
Modeling	
  the	
  magne*za*on	
  dynamics	
  
Our	
  Simplified	
  scalar	
  model:	
  
•  Less	
  accurate	
  than	
  Micro-­‐Magne=c	
  simula=ons	
  
•  Allows	
  to	
  treat	
  large	
  system	
  sizes	
  (few	
  µm2	
  up	
  to	
  hundreds	
  of	
  µm2)	
  
•  Quan=ta=ve	
  agreement	
  with	
  experiments	
  	
  
•  Ad-­‐hoc	
  for	
  perpendicular	
  anisotropy	
  ferromagne=c	
  films	
  	
  
External	
   field:	
   uniform	
  
but	
  =me	
  dependent	
  	
  
Anisotropy	
  energy:	
  
1)	
   Energy	
   gain	
   if	
   the	
   dipole	
   is	
  
aligned	
  to	
  the	
  easy-­‐axis.	
  
	
  
2)	
   Its	
   fluctua=ons	
   around	
   an	
  
average	
   value	
   provides	
   strong	
  
pinning	
   points	
   for	
   the	
   domain	
  
walls.	
  
Ku(R) = hKui(1 P(x, y))
Exchange	
  energy:	
  
It	
   represents	
   the	
   energy	
   cost	
   for	
  
the	
  magne=za=on	
  misalignment	
  in	
  
the	
  walls	
  
	
  
	
  
	
  
	
  
	
  
We	
  do	
  not	
  have	
  real	
  Block	
  or	
  Neel	
  
walls,	
  just	
  their	
  projec=on	
  along	
  z.	
  	
  	
  
Stray	
  field	
  energy:	
  
Interac=on	
   energy	
   of	
   a	
   dipole	
  
moment	
   field	
   with	
   the	
   rest	
   of	
  
the	
  medium	
  
	
  
	
  
	
  
	
  
	
  
This	
   is	
   a	
   non	
   local	
   term	
   to	
   be	
  
treated	
  in	
  reciprocal	
  space	
  
H =
Z
d3
R

Ku(R)
m2
2
+
A
2
(⇥Rm)2
+
µ0M2
s d
8
Z
d2
R0 m(R0
)m(R)
|R R0|3
µ0Msm(Hext HUCS(R))=
Z
d3
R

Ku(R)
m2
2
+
A
2
(⇥Rm)2
+
µ0M2
s d
8
Z
d2
R0 m(R0
)m(R)
|R R0|3
µ0Msm(Hext HUCS(R))
Modeling	
  the	
  film-­‐film	
  interac*on	
  
Two	
  interac*ng	
  films:	
  
	
  
•  The	
  domains	
  feel	
  the	
  presence	
  of	
  the	
  other	
  film	
  through	
  
a	
  new	
  magne=c	
  field	
  and	
  they	
  can	
  mutually	
  modify	
  their	
  
shape	
  	
  
•  The	
  boDom	
  film	
  exert	
  a	
  force	
  on	
  the	
  upper	
  one,	
  i.e.	
  to	
  
the	
  slider	
  
•  The	
  slider	
  is	
  driven	
  at	
  constant	
  velocity	
  through	
  a	
  spring.	
  
Whit	
   2	
   LLG	
   equa=ons	
   +	
   one	
   Newton’s	
   equa=on	
   we	
   can	
   simultaneously	
   simulate	
   the	
   slider	
   mo=on	
   and	
   the	
  
dynamics	
  of	
  the	
  magne=c	
  domains	
  and	
  study	
  how	
  the	
  influence	
  each	
  other	
  	
  
	
  
	
  
The	
   work	
   done	
   by	
   the	
   driving	
   force	
   is	
   dissipated	
   exci=ng	
   the	
   microscopic	
   degrees	
   of	
   freedom,	
   i.e.	
   phonons,	
  
magnons	
  and	
  eddy	
  currents.	
  Dissipa=on	
  is	
  included	
  in	
  the	
  model	
  through	
  a	
  viscous	
  damping	
  term	
  in	
  the	
  domains	
  
equa=ons	
  (Gilbert	
  damping)	
  
	
  
	
  
For	
  the	
  moment	
  we	
  use	
  the	
  same	
  thickness	
  and	
  the	
  same	
  material	
  for	
  both	
  the	
  films	
  and	
  we	
  drive	
  the	
  slider	
  at	
  
constant	
  height	
  d.	
  
S*ck-­‐slip	
  dynamics	
  
Orien=ng	
   the	
   domains	
   into	
   parallel	
   stripes	
   we	
   can	
   obtain	
   a	
   periodic	
   magne=c	
   field	
   resul=ng	
   in	
   a	
   periodic	
   effec=ve	
  
interac=on	
  poten=al	
  between	
  the	
  two	
  films.	
  	
  	
  
	
  
With	
  an	
  effec=ve	
  periodic	
  poten=al	
  we	
  can	
  reach	
  a	
  s=ck-­‐slip	
  regime	
  if	
  we	
  drive	
  the	
  system	
  perpendicularly	
  to	
  the	
  stripe	
  
direc=on.	
  	
  
N	
  
N	
  
S	
  
S	
  
N	
  
S	
  S	
  
N	
  
Controlling	
  magne*c	
  fric*on	
  
-­‐	
  When	
  a	
  ferromagne=c	
  film	
  has	
  uniform	
  magne=za=on	
  
it	
   behaves	
   like	
   a	
   plane	
   capacitor:	
   the	
   inner	
   field	
   is	
  
constant,	
  the	
  outer	
  field	
  is	
  0.	
  No	
  domains,	
  no	
  field	
  à	
  
zero	
  fric=on!	
  
	
  
-­‐	
   Sliding	
   parallel	
   to	
   the	
   stripes	
   the	
   fric=on	
   force	
   is	
  
almost	
   zero	
   except	
   when	
   the	
   stripes	
   brake.	
   Very	
  
anisotropic	
  response!	
  
	
  
	
  
-­‐	
  Changing	
  the	
  homogeneity	
  of	
  the	
  sample	
  the	
  fric=on	
  
does	
  not	
  change	
  that	
  much.	
  S=ck-­‐slip	
  is	
  independent	
  of	
  
the	
  regularity	
  and	
  perfect	
  periodicity	
  of	
  the	
  stripes:	
  
top	
  film	
   boDom	
  film	
  
sliding	
  direc=on	
  
Controlling	
  magne*c	
  fric*on	
  
E(Hext=0)	
  
E	
  >	
  E(Hext=0)	
  
Hext	
  
Magne*c	
  fric*on	
  and	
  domain	
  proper*es	
  
The	
  magne=c	
  fric=on	
  is	
  also	
  sensi=ve	
  to	
  the	
  material	
  proper=es	
  and	
  growing	
  condi=ons:	
  	
  	
  
Larger	
  domain	
  width	
  results	
  in	
  a	
  larger	
  fric=on	
  force,	
  this	
  is	
  
not	
  always	
  true:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
•  larger	
  domains	
  à	
  smaller	
  repulsion	
  	
  
•  larger	
  domains	
  à	
  less	
  interac=ng	
  wall	
  per	
  unit	
  area	
  
	
  
a	
  non	
  monotonic	
  behavior	
  rises,	
  and	
  depends	
  on	
  the	
  film	
  
separa=on	
  d.	
  
Thinner	
   domain	
   walls	
   give	
   rise	
   to	
   a	
   larger	
   fric=on	
   force,	
  
the	
  force	
  between	
  the	
  films	
  goes	
  as	
  the	
  field	
  deriva=ve:	
  
	
  
	
  	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
The	
   stripes	
   break	
   down	
   when	
   their	
   width	
   is	
   comparable	
  
with	
   the	
   domain	
   wall	
   thickness.	
   Thinner	
   walls	
   resist	
   to	
  
higher	
  external	
  field	
  before	
  breaking	
  down.	
  
-1
+1mU
x
HU
x
F
-1
+1mU
x
HU
x
F
Playing	
  with	
  commensurability	
  
Non	
  trivial	
  behaviors	
  can	
  arise	
  from	
  the	
  domain	
  relaxa=on	
  that	
  can	
  some=mes	
  reduce	
  the	
  incommensurablity.	
  
	
  
S=ll	
  under	
  inves=ga=on…	
  
	
  
Controlling	
  magne*c	
  adhesion	
  
When	
  the	
  two	
  films	
  are	
  kept	
  in	
  close	
  contact	
  their	
  interac=on	
  is	
  so	
  strong	
  that	
  the	
  domain	
  paDern	
  on	
  both	
  of	
  them	
  is	
  
exactly	
  the	
  same.	
  
	
  
	
  
	
  
The	
  adhesion	
  force	
  is	
  propor=onal	
  to	
  the	
  total	
  domain	
  wall	
  length	
  (domain	
  perimeter)	
  per	
  unit	
  area.	
  	
  
	
  
Changing	
  the	
  domain	
  morphology	
  with	
  an	
  external	
  field	
  we	
  can	
  control	
  the	
  adhesion	
  between	
  the	
  plates!	
  
Magnet	
  fric*on	
  and	
  film	
  separa*on	
  
mixed	
  state	
  
pure	
  sliding	
  domain	
  plas=city	
  
pure	
  s=ck-­‐slip	
  
Decreasing	
  the	
  separa=on	
  between	
  films	
  makes	
  the	
  domain	
  interac=on	
  	
  
Stronger,	
  this	
  results	
  in	
  a	
  variety	
  of	
  non	
  trivial	
  sliding	
  regimes:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
At	
  fixed	
  driving	
  condi=ons	
  and	
  material	
  proper=es,	
  a	
  “phase	
  diagram”	
  
of	
  the	
  different	
  regimes	
  can	
  be	
  drown:	
  
Possible	
  experimental	
  setups	
  
Several	
  geometries	
  and	
  devices	
  can	
  be	
  exploited	
  to	
  measure	
  the	
  magne=c	
  contribu=on	
  of	
  
fric=on…	
  
non-­‐contact	
  AFM	
  with	
  
colloidal	
  probe	
  =p	
  
contact	
  AFM	
  or	
  MFT	
  
spacing	
  	
  
layer	
  
planar	
  geometry	
  
non	
  magne=c	
  coa=ng	
  
when	
  in	
  contact…	
  
Ftot = Fk
mag + Fmec =
= Fk
mag + µ(F?
mag + L + A)
L = vertical load
A = Adhesion force
F?
mag ' Fk
mag
µ 0.8 ÷ 0.002
Fmag and A / plate area
with:	
  Wang	
  et	
  al.	
  	
  
Experiment.	
  Mech.	
  47	
  123	
  (2007)	
  
Tang	
  et	
  al.	
  Rev.	
  Sci.	
  Instrum.	
  
84	
  013702	
  (2013)	
  
Forces	
  à	
  1	
  nN	
  ÷	
  10	
  µN	
  
Periodicty	
  à	
  50	
  nm	
  ÷	
  10	
  µm	
  

Weitere ähnliche Inhalte

Was ist angesagt?

Phd thesis- Quantum Computation
Phd thesis- Quantum ComputationPhd thesis- Quantum Computation
Phd thesis- Quantum Computationsilviagarelli
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...Lake Como School of Advanced Studies
 
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto SesanaLOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto SesanaLake Como School of Advanced Studies
 
Isostasy and Flexure Of Lithosphere: Estimation Of Effective Elastic Thickness
Isostasy and Flexure Of Lithosphere: Estimation Of Effective Elastic ThicknessIsostasy and Flexure Of Lithosphere: Estimation Of Effective Elastic Thickness
Isostasy and Flexure Of Lithosphere: Estimation Of Effective Elastic ThicknessAvadhesh Shukla
 
Lecture: Diffusion in Metals and Alloys
Lecture: Diffusion in Metals and AlloysLecture: Diffusion in Metals and Alloys
Lecture: Diffusion in Metals and AlloysNikolai Priezjev
 
Honors physics -_friction_inclines
Honors physics -_friction_inclinesHonors physics -_friction_inclines
Honors physics -_friction_inclinesMuhammad Shabbir
 
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...Lake Como School of Advanced Studies
 
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...Lake Como School of Advanced Studies
 
Plastic deformation in model glass induced by oscillating inclusion
Plastic deformation in model glass induced by oscillating inclusionPlastic deformation in model glass induced by oscillating inclusion
Plastic deformation in model glass induced by oscillating inclusionNikolai Priezjev
 
How Morphology Changes Bonding in Soft Materials: A Revelation Through Synchr...
How Morphology Changes Bonding in Soft Materials: A Revelation Through Synchr...How Morphology Changes Bonding in Soft Materials: A Revelation Through Synchr...
How Morphology Changes Bonding in Soft Materials: A Revelation Through Synchr...Alokmay Datta
 
Dynamical heterogeneity and structural relaxation in periodically deformed po...
Dynamical heterogeneity and structural relaxation in periodically deformed po...Dynamical heterogeneity and structural relaxation in periodically deformed po...
Dynamical heterogeneity and structural relaxation in periodically deformed po...Nikolai Priezjev
 
Lecture: Crystal Interfaces and Microstructure
Lecture: Crystal Interfaces and MicrostructureLecture: Crystal Interfaces and Microstructure
Lecture: Crystal Interfaces and MicrostructureNikolai Priezjev
 
MAGNETOSTATIC SURFACE WAVES IN A LEFT HANDED / FERRITE/ METAL-STRIP-GRATING S...
MAGNETOSTATIC SURFACE WAVES IN A LEFT HANDED / FERRITE/ METAL-STRIP-GRATING S...MAGNETOSTATIC SURFACE WAVES IN A LEFT HANDED / FERRITE/ METAL-STRIP-GRATING S...
MAGNETOSTATIC SURFACE WAVES IN A LEFT HANDED / FERRITE/ METAL-STRIP-GRATING S...ijrap
 
WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHE...
WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHE...WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHE...
WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHE...Nikolai Priezjev
 
Experimental nonlocal and surreal Bohmian trajectories.
Experimental nonlocal and surreal Bohmian trajectories.Experimental nonlocal and surreal Bohmian trajectories.
Experimental nonlocal and surreal Bohmian trajectories.Fausto Intilla
 

Was ist angesagt? (20)

NANO266 - Lecture 11 - Surfaces and Interfaces
NANO266 - Lecture 11 - Surfaces and InterfacesNANO266 - Lecture 11 - Surfaces and Interfaces
NANO266 - Lecture 11 - Surfaces and Interfaces
 
Phd thesis- Quantum Computation
Phd thesis- Quantum ComputationPhd thesis- Quantum Computation
Phd thesis- Quantum Computation
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
 
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto SesanaLOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
 
Isostasy and Flexure Of Lithosphere: Estimation Of Effective Elastic Thickness
Isostasy and Flexure Of Lithosphere: Estimation Of Effective Elastic ThicknessIsostasy and Flexure Of Lithosphere: Estimation Of Effective Elastic Thickness
Isostasy and Flexure Of Lithosphere: Estimation Of Effective Elastic Thickness
 
Lecture: Diffusion in Metals and Alloys
Lecture: Diffusion in Metals and AlloysLecture: Diffusion in Metals and Alloys
Lecture: Diffusion in Metals and Alloys
 
Electromagnetic counterparts of Gravitational Waves - Elena Pian
Electromagnetic counterparts of Gravitational Waves - Elena PianElectromagnetic counterparts of Gravitational Waves - Elena Pian
Electromagnetic counterparts of Gravitational Waves - Elena Pian
 
Honors physics -_friction_inclines
Honors physics -_friction_inclinesHonors physics -_friction_inclines
Honors physics -_friction_inclines
 
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...
 
Sgra235
Sgra235Sgra235
Sgra235
 
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
 
Plastic deformation in model glass induced by oscillating inclusion
Plastic deformation in model glass induced by oscillating inclusionPlastic deformation in model glass induced by oscillating inclusion
Plastic deformation in model glass induced by oscillating inclusion
 
Binary Black Holes & Tests of GR - Luis Lehner
Binary Black Holes & Tests of GR - Luis LehnerBinary Black Holes & Tests of GR - Luis Lehner
Binary Black Holes & Tests of GR - Luis Lehner
 
How Morphology Changes Bonding in Soft Materials: A Revelation Through Synchr...
How Morphology Changes Bonding in Soft Materials: A Revelation Through Synchr...How Morphology Changes Bonding in Soft Materials: A Revelation Through Synchr...
How Morphology Changes Bonding in Soft Materials: A Revelation Through Synchr...
 
Dynamical heterogeneity and structural relaxation in periodically deformed po...
Dynamical heterogeneity and structural relaxation in periodically deformed po...Dynamical heterogeneity and structural relaxation in periodically deformed po...
Dynamical heterogeneity and structural relaxation in periodically deformed po...
 
Lecture: Crystal Interfaces and Microstructure
Lecture: Crystal Interfaces and MicrostructureLecture: Crystal Interfaces and Microstructure
Lecture: Crystal Interfaces and Microstructure
 
MAGNETOSTATIC SURFACE WAVES IN A LEFT HANDED / FERRITE/ METAL-STRIP-GRATING S...
MAGNETOSTATIC SURFACE WAVES IN A LEFT HANDED / FERRITE/ METAL-STRIP-GRATING S...MAGNETOSTATIC SURFACE WAVES IN A LEFT HANDED / FERRITE/ METAL-STRIP-GRATING S...
MAGNETOSTATIC SURFACE WAVES IN A LEFT HANDED / FERRITE/ METAL-STRIP-GRATING S...
 
WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHE...
WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHE...WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHE...
WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHE...
 
Experimental nonlocal and surreal Bohmian trajectories.
Experimental nonlocal and surreal Bohmian trajectories.Experimental nonlocal and surreal Bohmian trajectories.
Experimental nonlocal and surreal Bohmian trajectories.
 
Frog ejp 1
Frog ejp 1Frog ejp 1
Frog ejp 1
 

Andere mochten auch

Role of the vacuum fluctuation forces in microscopic systems
Role of the vacuum fluctuation forces in microscopic systemsRole of the vacuum fluctuation forces in microscopic systems
Role of the vacuum fluctuation forces in microscopic systemsAndrea Benassi
 
Nucleation and avalanches in film with labyrintine magnetic domains
Nucleation and avalanches in film with labyrintine magnetic domainsNucleation and avalanches in film with labyrintine magnetic domains
Nucleation and avalanches in film with labyrintine magnetic domainsAndrea Benassi
 
Non-equilibrium molecular dynamics with LAMMPS
Non-equilibrium molecular dynamics with LAMMPSNon-equilibrium molecular dynamics with LAMMPS
Non-equilibrium molecular dynamics with LAMMPSAndrea Benassi
 
How long can the superlubricity go?
How long can the superlubricity go?How long can the superlubricity go?
How long can the superlubricity go?Andrea Benassi
 

Andere mochten auch (6)

Role of the vacuum fluctuation forces in microscopic systems
Role of the vacuum fluctuation forces in microscopic systemsRole of the vacuum fluctuation forces in microscopic systems
Role of the vacuum fluctuation forces in microscopic systems
 
Nucleation and avalanches in film with labyrintine magnetic domains
Nucleation and avalanches in film with labyrintine magnetic domainsNucleation and avalanches in film with labyrintine magnetic domains
Nucleation and avalanches in film with labyrintine magnetic domains
 
Non-equilibrium molecular dynamics with LAMMPS
Non-equilibrium molecular dynamics with LAMMPSNon-equilibrium molecular dynamics with LAMMPS
Non-equilibrium molecular dynamics with LAMMPS
 
How long can the superlubricity go?
How long can the superlubricity go?How long can the superlubricity go?
How long can the superlubricity go?
 
Cisco - See Everything, Secure Everything
Cisco - See Everything, Secure EverythingCisco - See Everything, Secure Everything
Cisco - See Everything, Secure Everything
 
Magnetism ppt
Magnetism pptMagnetism ppt
Magnetism ppt
 

Ähnlich wie Sliding motion and adhesion control through magnetic domamins

Isolation of MIMO Antenna with Electromagnetic Band Gap Structure
Isolation of MIMO Antenna with Electromagnetic Band Gap StructureIsolation of MIMO Antenna with Electromagnetic Band Gap Structure
Isolation of MIMO Antenna with Electromagnetic Band Gap StructureAysu COSKUN
 
Laser trappedmirrorsinspace
Laser trappedmirrorsinspaceLaser trappedmirrorsinspace
Laser trappedmirrorsinspaceClifford Stone
 
TRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDT
TRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDTTRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDT
TRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDTP singh
 
Qualitative model of transport
Qualitative model of transportQualitative model of transport
Qualitative model of transportRokhitTharshini
 
Modeling the transport of charge carriers in the active devices diode submicr...
Modeling the transport of charge carriers in the active devices diode submicr...Modeling the transport of charge carriers in the active devices diode submicr...
Modeling the transport of charge carriers in the active devices diode submicr...IJERA Editor
 
Multiphase Flow Modeling and Simulation: HPC-Enabled Capabilities Today and T...
Multiphase Flow Modeling and Simulation: HPC-Enabled Capabilities Today and T...Multiphase Flow Modeling and Simulation: HPC-Enabled Capabilities Today and T...
Multiphase Flow Modeling and Simulation: HPC-Enabled Capabilities Today and T...inside-BigData.com
 
sss-2002-podladchikova1.ppt
sss-2002-podladchikova1.pptsss-2002-podladchikova1.ppt
sss-2002-podladchikova1.pptOrba1
 
HFSS using FEM
HFSS using FEMHFSS using FEM
HFSS using FEMSai Saketh
 
Metasurface Hologram Invisibility - ppt
Metasurface Hologram Invisibility -  pptMetasurface Hologram Invisibility -  ppt
Metasurface Hologram Invisibility - pptCarlo Andrea Gonano
 
Carmelo_Barbagallo_IFCCs_modelling_in_superconducting_filamentary_Nb3Sn_stran...
Carmelo_Barbagallo_IFCCs_modelling_in_superconducting_filamentary_Nb3Sn_stran...Carmelo_Barbagallo_IFCCs_modelling_in_superconducting_filamentary_Nb3Sn_stran...
Carmelo_Barbagallo_IFCCs_modelling_in_superconducting_filamentary_Nb3Sn_stran...MartNikkiLouMantilla1
 
Artificial periodic substrates
Artificial periodic substratesArtificial periodic substrates
Artificial periodic substratesRajeev Kumar
 

Ähnlich wie Sliding motion and adhesion control through magnetic domamins (20)

Isolation of MIMO Antenna with Electromagnetic Band Gap Structure
Isolation of MIMO Antenna with Electromagnetic Band Gap StructureIsolation of MIMO Antenna with Electromagnetic Band Gap Structure
Isolation of MIMO Antenna with Electromagnetic Band Gap Structure
 
Stellar hydro
Stellar hydroStellar hydro
Stellar hydro
 
Laser trappedmirrorsinspace
Laser trappedmirrorsinspaceLaser trappedmirrorsinspace
Laser trappedmirrorsinspace
 
report
reportreport
report
 
TRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDT
TRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDTTRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDT
TRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDT
 
posterformicrofluidics
posterformicrofluidicsposterformicrofluidics
posterformicrofluidics
 
Qualitative model of transport
Qualitative model of transportQualitative model of transport
Qualitative model of transport
 
Modeling the transport of charge carriers in the active devices diode submicr...
Modeling the transport of charge carriers in the active devices diode submicr...Modeling the transport of charge carriers in the active devices diode submicr...
Modeling the transport of charge carriers in the active devices diode submicr...
 
ctr_tessicini
ctr_tessicinictr_tessicini
ctr_tessicini
 
Multiphase Flow Modeling and Simulation: HPC-Enabled Capabilities Today and T...
Multiphase Flow Modeling and Simulation: HPC-Enabled Capabilities Today and T...Multiphase Flow Modeling and Simulation: HPC-Enabled Capabilities Today and T...
Multiphase Flow Modeling and Simulation: HPC-Enabled Capabilities Today and T...
 
Tesi master Yin Meng
Tesi master Yin MengTesi master Yin Meng
Tesi master Yin Meng
 
sss-2002-podladchikova1.ppt
sss-2002-podladchikova1.pptsss-2002-podladchikova1.ppt
sss-2002-podladchikova1.ppt
 
Elastic Modeling
Elastic ModelingElastic Modeling
Elastic Modeling
 
HFSS using FEM
HFSS using FEMHFSS using FEM
HFSS using FEM
 
Metasurface Hologram Invisibility - ppt
Metasurface Hologram Invisibility -  pptMetasurface Hologram Invisibility -  ppt
Metasurface Hologram Invisibility - ppt
 
Carmelo_Barbagallo_IFCCs_modelling_in_superconducting_filamentary_Nb3Sn_stran...
Carmelo_Barbagallo_IFCCs_modelling_in_superconducting_filamentary_Nb3Sn_stran...Carmelo_Barbagallo_IFCCs_modelling_in_superconducting_filamentary_Nb3Sn_stran...
Carmelo_Barbagallo_IFCCs_modelling_in_superconducting_filamentary_Nb3Sn_stran...
 
Swi seminar final
Swi seminar finalSwi seminar final
Swi seminar final
 
Artificial periodic substrates
Artificial periodic substratesArtificial periodic substrates
Artificial periodic substrates
 
NUMERICAL SIMULATION OF FLOW INSIDE THE SQUARE CAVITY
NUMERICAL SIMULATION OF FLOW INSIDE THE SQUARE CAVITYNUMERICAL SIMULATION OF FLOW INSIDE THE SQUARE CAVITY
NUMERICAL SIMULATION OF FLOW INSIDE THE SQUARE CAVITY
 
Ijetcas14 318
Ijetcas14 318Ijetcas14 318
Ijetcas14 318
 

Kürzlich hochgeladen

STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Types of different blotting techniques.pptx
Types of different blotting techniques.pptxTypes of different blotting techniques.pptx
Types of different blotting techniques.pptxkhadijarafiq2012
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 

Kürzlich hochgeladen (20)

STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Types of different blotting techniques.pptx
Types of different blotting techniques.pptxTypes of different blotting techniques.pptx
Types of different blotting techniques.pptx
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 

Sliding motion and adhesion control through magnetic domamins

  • 1. A.  Benassi   Sliding  mo*on  and  Adhesion  control   through  magne*c  domains     EMPA  Materials  Science  &  Technology,  Zürich  (Switzerland)   SINERGIA  project  CRSII2  136287/1        
  • 2. Micro  and  nano  scale  fric*on  control   Geometrical  control   exploi=ng  the  surface  geometry  and    interac=on  poten=al  periodicity       •  Superlubricity   •  Commensurability   •  Nano  paDerning   Chemical  control   exploi=ng  chemical  reac=on  and  molecular  proper=es       •  Coa=ng  and  surface  func=onaliza=on   •  Lubricant  design   •  Ionic  liquids  based  lubrica=on   Dynamical  control   ac=ng  on  the  system  with  an   external  parameter     •  Mechanical  vibra=ons   •  Suppressing/promo=ng  a  phase  transi=on   •  Termolubricity     Lantz  et  al.  Nat.  Nanotech.  4  586  (2009)   Socoliuc  et  al.    Science  313    207  (2006)   Benassi  et  al.  PRL  106  256102  (2011)     Urbakh  et  al.  Nature  430  525  (2004)…   Dienwiebel  et  al.  PRL  92  126101  (2004)   Park  et  al.    Science  309  1354  (2005)   CoJn-­‐Bizonne  et  al.  Nat.  Mater.  2  237  (2003)   …   Perkin,  Mistura,  Drummond,   Bennewitz,  Spencer,  Szlufarska   talks  
  • 3. Magne*c  domains  and  sliding  mo*on   New  ways  of  actua=ng  and  controlling  mo=on  in  MEMS   If  we  coat  two  nearby  bodies  with  ferromagne=c  films,   below  the  Curie  temperature  magne=c  domains  will   appear   Magne=c  domains  behave  like  micro-­‐scale  magnets   and  they  will  interact  via  magne=c  field     The  magne=c  domain  paDern  can  be  controlled  with  a   magne=c  field  crea=ng  disordered,  ordered  and  even   periodic  structures     If  the  magne=c  interac=on  is  strong  enough  we  can   thus  control  sliding  and  adhesion  dynamically  and   reversibly  by  a  magne=c  field.             Domains   can   be   ordered   into   periodic   paDerns   mimicking   the   atomic   periodicity   at   the   nanoscale.     Similar  aDempts  of  crea=ng  a  mesoscale  fric=on   lab   have   been   recently   proposed   exploi=ng   ion   traps  and  colloidal  suspensions.     Benassi  et  al.  Nat.  Comm.  2  236  (2011)     Mandelli  et  al.  PRB  87  195418  (2013)  (see  POSTER)   Bohlein  et  al.  Nat.  Mater.  11  126  (2012)     Vanossi  et  al.  PNAS  109  16429  (2012)  (see  POSTER)  
  • 4. Why  magne*c  domains?   The  domain  width  ranges  over  many  order  of  magnitude  depending  on  the  film  thickness:   The  domain  shape  can  be  controlled  very  easily  applying  an  external  magne=c  field  perpendicular  to  the  film  surface,  maze   paDerns  can  be  formed  as  well  as  bubble  laQces:   2  µm   t  =  23  nm   60  µm   t  =  9  nm   110  µm   t  =  12  nm  
  • 5. Why  magne*c  domains?   Maze-­‐like  domains  can  be  ordered  in  metastable  periodic  structures  like  stripes  whose  width  can  be  controlled  by  a  field   parallel  to  the  film  surface:   Defects,  impuri=es  and  inhomogenei=es  act  as  pinning  sites  for  the  domains,  determining  the  domain  mobility.   The  density  of  inhomogenei=s  can  be  controlled  changing  the  film  growing  condi=ons:     thickness   deposi=on  rate  
  • 6. Modeling  the  magne*za*on  dynamics   Our  Simplified  scalar  model:   •  Less  accurate  than  Micro-­‐Magne=c  simula=ons   •  Allows  to  treat  large  system  sizes  (few  µm2  up  to  hundreds  of  µm2)   •  Quan=ta=ve  agreement  with  experiments     •  Ad-­‐hoc  for  perpendicular  anisotropy  ferromagne=c  films     E.  Jagla  PRB  72  094406  (2005)            E.  Jagla  PRB  70  046204  (2004)     A.  Benassi  et  al.  PRB  84  214441  (2011)   p hKuiA p A/hKuiDomain  width   Wall  thickness   Boundaries  and  mobility   ⌘ The  Landau-­‐Lifshtz-­‐Gilbert  equa=on  contains  3  material  parameters:     •  Anisotropy  constant  Ku   •  Exchange  s=ffness  A   •  Anisotropy  and  inhomogenei=es  strength  η They  set  all  the  domain  proper=es  (size,  walls,  regularity,  mobility…)
  • 7. Modeling  the  magne*za*on  dynamics   Our  Simplified  scalar  model:   •  Less  accurate  than  Micro-­‐Magne=c  simula=ons   •  Allows  to  treat  large  system  sizes  (few  µm2  up  to  hundreds  of  µm2)   •  Quan=ta=ve  agreement  with  experiments     •  Ad-­‐hoc  for  perpendicular  anisotropy  ferromagne=c  films     E.  Jagla  PRB  72  094406  (2005)            E.  Jagla  PRB  70  046204  (2004)     A.  Benassi  et  al.  PRB  84  214441  (2011)   Each  dipole  moment  associated  to  the  infinitesimal  volume  elements  experiences  a  magne=c  field  due  to  the  rest  of  the   medium,  its  precession  mo=on  is  described  by  a  Landau-­‐Lifshitz-­‐Gilbert  equa=on:                           The  local  field  is  determined  by  the  Hamiltonian  containing  the  material  proper=es  and  the  physics  of  the  medium.   ⇤m ⇤t = 1 + ⇥2 m ⇥  B + ⇥ ✓ m ⇥ B ◆ B = 1 Ms H[m] m + Q(R, t) hQ(R, t)i = 0 hQ(R, t)Q(R0 , t0 )i = ⇥(t t0 )⇥(R R0 )2KBT⇤/Ms Bm precession  term   Bm damping  term   dissipa=on  by   microscopic   degrees  of  freedom     Bm stochas=c  term   thermal  fluctua=ons  
  • 8. Modeling  the  magne*za*on  dynamics   Our  Simplified  scalar  model:   •  Less  accurate  than  Micro-­‐Magne=c  simula=ons   •  Allows  to  treat  large  system  sizes  (few  µm2  up  to  hundreds  of  µm2)   •  Quan=ta=ve  agreement  with  experiments     •  Ad-­‐hoc  for  perpendicular  anisotropy  ferromagne=c  films     External   field:   uniform   but  =me  dependent     Anisotropy  energy:   1)   Energy   gain   if   the   dipole   is   aligned  to  the  easy-­‐axis.     2)   Its   fluctua=ons   around   an   average   value   provides   strong   pinning   points   for   the   domain   walls.   Ku(R) = hKui(1 P(x, y)) Exchange  energy:   It   represents   the   energy   cost   for   the  magne=za=on  misalignment  in   the  walls             We  do  not  have  real  Block  or  Neel   walls,  just  their  projec=on  along  z.       Stray  field  energy:   Interac=on   energy   of   a   dipole   moment   field   with   the   rest   of   the  medium             This   is   a   non   local   term   to   be   treated  in  reciprocal  space   H = Z d3 R  Ku(R) m2 2 + A 2 (⇥Rm)2 + µ0M2 s d 8 Z d2 R0 m(R0 )m(R) |R R0|3 µ0Msm(Hext HUCS(R))= Z d3 R  Ku(R) m2 2 + A 2 (⇥Rm)2 + µ0M2 s d 8 Z d2 R0 m(R0 )m(R) |R R0|3 µ0Msm(Hext HUCS(R))
  • 9. Modeling  the  film-­‐film  interac*on   Two  interac*ng  films:     •  The  domains  feel  the  presence  of  the  other  film  through   a  new  magne=c  field  and  they  can  mutually  modify  their   shape     •  The  boDom  film  exert  a  force  on  the  upper  one,  i.e.  to   the  slider   •  The  slider  is  driven  at  constant  velocity  through  a  spring.   Whit   2   LLG   equa=ons   +   one   Newton’s   equa=on   we   can   simultaneously   simulate   the   slider   mo=on   and   the   dynamics  of  the  magne=c  domains  and  study  how  the  influence  each  other         The   work   done   by   the   driving   force   is   dissipated   exci=ng   the   microscopic   degrees   of   freedom,   i.e.   phonons,   magnons  and  eddy  currents.  Dissipa=on  is  included  in  the  model  through  a  viscous  damping  term  in  the  domains   equa=ons  (Gilbert  damping)       For  the  moment  we  use  the  same  thickness  and  the  same  material  for  both  the  films  and  we  drive  the  slider  at   constant  height  d.  
  • 10. S*ck-­‐slip  dynamics   Orien=ng   the   domains   into   parallel   stripes   we   can   obtain   a   periodic   magne=c   field   resul=ng   in   a   periodic   effec=ve   interac=on  poten=al  between  the  two  films.         With  an  effec=ve  periodic  poten=al  we  can  reach  a  s=ck-­‐slip  regime  if  we  drive  the  system  perpendicularly  to  the  stripe   direc=on.     N   N   S   S   N   S  S   N  
  • 11. Controlling  magne*c  fric*on   -­‐  When  a  ferromagne=c  film  has  uniform  magne=za=on   it   behaves   like   a   plane   capacitor:   the   inner   field   is   constant,  the  outer  field  is  0.  No  domains,  no  field  à   zero  fric=on!     -­‐   Sliding   parallel   to   the   stripes   the   fric=on   force   is   almost   zero   except   when   the   stripes   brake.   Very   anisotropic  response!       -­‐  Changing  the  homogeneity  of  the  sample  the  fric=on   does  not  change  that  much.  S=ck-­‐slip  is  independent  of   the  regularity  and  perfect  periodicity  of  the  stripes:   top  film   boDom  film   sliding  direc=on  
  • 12. Controlling  magne*c  fric*on   E(Hext=0)   E  >  E(Hext=0)   Hext  
  • 13. Magne*c  fric*on  and  domain  proper*es   The  magne=c  fric=on  is  also  sensi=ve  to  the  material  proper=es  and  growing  condi=ons:       Larger  domain  width  results  in  a  larger  fric=on  force,  this  is   not  always  true:                 •  larger  domains  à  smaller  repulsion     •  larger  domains  à  less  interac=ng  wall  per  unit  area     a  non  monotonic  behavior  rises,  and  depends  on  the  film   separa=on  d.   Thinner   domain   walls   give   rise   to   a   larger   fric=on   force,   the  force  between  the  films  goes  as  the  field  deriva=ve:                       The   stripes   break   down   when   their   width   is   comparable   with   the   domain   wall   thickness.   Thinner   walls   resist   to   higher  external  field  before  breaking  down.   -1 +1mU x HU x F -1 +1mU x HU x F
  • 14. Playing  with  commensurability   Non  trivial  behaviors  can  arise  from  the  domain  relaxa=on  that  can  some=mes  reduce  the  incommensurablity.     S=ll  under  inves=ga=on…    
  • 15. Controlling  magne*c  adhesion   When  the  two  films  are  kept  in  close  contact  their  interac=on  is  so  strong  that  the  domain  paDern  on  both  of  them  is   exactly  the  same.         The  adhesion  force  is  propor=onal  to  the  total  domain  wall  length  (domain  perimeter)  per  unit  area.       Changing  the  domain  morphology  with  an  external  field  we  can  control  the  adhesion  between  the  plates!  
  • 16. Magnet  fric*on  and  film  separa*on   mixed  state   pure  sliding  domain  plas=city   pure  s=ck-­‐slip   Decreasing  the  separa=on  between  films  makes  the  domain  interac=on     Stronger,  this  results  in  a  variety  of  non  trivial  sliding  regimes:                         At  fixed  driving  condi=ons  and  material  proper=es,  a  “phase  diagram”   of  the  different  regimes  can  be  drown:  
  • 17. Possible  experimental  setups   Several  geometries  and  devices  can  be  exploited  to  measure  the  magne=c  contribu=on  of   fric=on…   non-­‐contact  AFM  with   colloidal  probe  =p   contact  AFM  or  MFT   spacing     layer   planar  geometry   non  magne=c  coa=ng   when  in  contact…   Ftot = Fk mag + Fmec = = Fk mag + µ(F? mag + L + A) L = vertical load A = Adhesion force F? mag ' Fk mag µ 0.8 ÷ 0.002 Fmag and A / plate area with:  Wang  et  al.     Experiment.  Mech.  47  123  (2007)   Tang  et  al.  Rev.  Sci.  Instrum.   84  013702  (2013)   Forces  à  1  nN  ÷  10  µN   Periodicty  à  50  nm  ÷  10  µm