SlideShare ist ein Scribd-Unternehmen logo
1 von 25
Downloaden Sie, um offline zu lesen
Role of the vacuum fluctuation forces in
microscopic systems
Colloquia Doctoralia XXI ciclo, Modena 9/2/09
Candidate
Andrea Benassi
Supervisor
Prof. Carlo Calandra
Buonaura
§ Introduction to the vacuum fluctuation forces
i) Macroscopic and microscopic forces
ii) The sign of the force
§ New Developments
i) Quantum size effects
ii) Surface effects
§ Applications
i) Stability of thin films
ii) A vacuum force based device
Outline
Macroscopic and Microscopic Forces
Van	
  der	
  Waals-­‐London	
  force	
  
MICRO	
  MACRO	
  
NON	
  RELATIVISTIC	
  (small	
  d)	
   RELATIVISTIC	
  (large	
  d)	
  
Casimir-­‐Polder	
  force	
  
F(d) = −
18
πd7
 ∞
0
α1(ω)α2(ω)dω
α1 α2
d
α1 α2
d
Casimir	
  force	
  
F(d) = −
cπ2
240d4
L2
Hamaker	
  force	
  
d
L
F(d) = −
H(1(ω), 2(ω))
d3
L2
1 2
d
L
(0) → ∞
H.G.B. Casimir Proc.Ned.Akad.Wet. (1948) S.K. Lamoreaux Rep.Prog.Phys. (1997)
Macroscopic and Microscopic Forces
Van	
  der	
  Waals-­‐London	
  force	
  
MICRO	
  MACRO	
  
NON	
  RELATIVISTIC	
  (small	
  d)	
   RELATIVISTIC	
  (large	
  d)	
  
Casimir-­‐Polder	
  force	
  
F(d) = −
18
πd7
 ∞
0
α1(ω)α2(ω)dω
α1 α2
d
α1 α2
d
Lifshitz	
  theory	
  
F = F(d, 1(ω), 2(ω), 3(ω))
• 	
  Extension	
  to	
  other	
  materials	
  
• 	
  Extension	
  to	
  other	
  geometries	
  
• 	
  Extendion	
  to	
  finite	
  temerature	
  
E.M. Lifshitz Sov.Phys.JEPT (1956) S.K. Lamoreaux Physics Today (2007)
The sign of the force
d d
AIracJve	
  
BETWEEN	
  ONTO	
  
ISOLATED	
   INTERACTING	
  
Repulsive	
  if	
  
Stretching	
  if	
  	
  Squeezing	
  
dd
3
1 2 1 2
33 1
1  3  2
1  3
J.N. Munday and F. Capasso Nature (2009) Benassi and Calandra J.Phys.A. 40,13453
Electron Confinement (EC)
When	
  the	
  dimension	
  of	
  the	
  interacJng	
  objects	
  is	
  comparable	
  to	
  the	
  electron	
  wavelength	
  
the	
  quantum	
  nature	
  of	
  the	
  electrons	
  cannot	
  be	
  neglected,	
  this	
  is	
  the	
  case	
  of	
  nanometric	
  
thickness	
  films:	
  
The	
  film	
  is	
  considered	
  as	
  a	
  quantum	
  well:	
  
• 	
  The	
  electron	
  spill	
  out	
  is	
  simulated	
  arJficially	
  
	
  	
  	
  in	
  the	
  case	
  of	
  an	
  infinite	
  well,	
  it	
  comes	
  	
  
	
  	
  out	
  naturally	
  in	
  the	
  case	
  of	
  a	
  finite	
  well	
  
• 	
  The	
  discreJzaJon	
  of	
  the	
  energy	
  levels	
  
	
  	
  gives	
  rise	
  to	
  kinks	
  in	
  the	
  electron	
  density	
  
	
  	
  or	
  in	
  the	
  Fermi	
  energy	
  	
  
Wood and Ashcroft Phys.Rev.B (1982)
The	
  RPA	
  dielectric	
  tensor	
  of	
  the	
  nanometric	
  film	
  can	
  be	
  calculated…	
  	
  
• 	
  The	
  system	
  is	
  anisotropic	
  
• 	
  The	
  dielectric	
  tensor	
  components	
  depends	
  on	
  the	
  film	
  (well)	
  thickness	
  
• 	
  The	
  zz	
  component	
  becomes	
  semiconducJng	
  while	
  the	
  parallel	
  ones	
  remains	
  metallic	
  
• 	
  The	
  dielectric	
  funcJon	
  depends	
  on	
  the	
  electron	
  density	
  so	
  kinks	
  are	
  also	
  present	
  in	
  the	
  
dielectric	
  funcJon	
  
Quantum Models for the film
Benassi and Calandra Europhys.Lett. 82, 61002
The interaction between films
Some	
  plot	
  of	
  the	
  relaJve	
  percent	
  difference	
  of	
  the	
  force	
  with	
  and	
  without	
  the	
  EC:	
  
• 	
  Including	
  the	
  EC	
  the	
  force	
  strength	
  decreases,	
  along	
  the	
  z	
  direcJon	
  the	
  metallic	
  film	
  
becomes	
  transparent,	
  trapping	
  less	
  modes	
  inside	
  the	
  cavity	
  	
  
• 	
  Kinks	
  appear	
  each	
  Jme	
  that	
  a	
  new	
  level	
  fall	
  below	
  the	
  Fermi	
  energy	
  
	
  
• 	
  For	
  large	
  film	
  thickness	
  and	
  large	
  electron	
  density	
  the	
  EC	
  is	
  negligible	
  	
  
and	
  the	
  relaJve	
  difference	
  goes	
  to	
  zero	
  	
  
δP =
Fbulk − FEC
Fbulk
d

d
Ωp = 1014
rad/s  = 10nm
Ωp = 1014
rad/s  = 50nm
Ωp = 5 · 1014
rad/s  = 50nm
Benassi and Calandra J.Phys.Conf.Series (2009)
Conclusions I
	
  
	
  
The	
  inclusion	
  of	
  EC	
  gives	
  correcJons	
  depending	
  on	
  the	
  film	
  density,	
  the	
  film	
  separaJon	
  
and	
  the	
  film	
  thickness,	
  these	
  correcJon	
  can	
  vary	
  between	
  few	
  percent	
  up	
  to	
  50%	
  
	
  
The	
  EC	
  correc*ons	
  can	
  be	
  improved	
  in	
  order	
  to:	
  
	
  
• 	
  include	
  atomisJc	
  descripJon	
  of	
  the	
  film	
  la]ce	
  
• 	
  include	
  surface	
  effects	
  
We	
  believe	
  that	
  for	
  all	
  these	
  purposes	
  an	
  ab-­‐iniJo	
  approach	
  can	
  be	
  suitable	
  !	
  
	
  
The	
  final	
  goal:	
  
	
  
• 	
  treat	
  arbitrary	
  shape	
  objects	
  (designing	
  MEMS)	
  
	
  
	
  
	
  
A Silicon Surface: (111)2x1
Surface	
  properJes	
  start	
  to	
  be	
  relevant	
  when	
  the	
  system	
  of	
  interest	
  is	
  strongly	
  confined.	
  	
  
A	
  semiconducJng	
  surface	
  introduces	
  some	
  new	
  features:	
  
	
  
• 	
  Presence	
  of	
  surface	
  states	
  inside	
  the	
  bulk	
  gap	
  
• 	
  Surface	
  reconstrucJon	
  
Benassi and Calandra in preparation
Modification of Dielectric Properties
An	
  RPA	
  dielectric	
  funcJon	
  can	
  be	
  calculated	
  both	
  for	
  the	
  bulk	
  and	
  the	
  slab:	
  
• 	
  The	
  off-­‐diagonal	
  components	
  are	
  negligible	
  
	
  
• 	
   A	
   strong	
   anisotropy	
   is	
   present	
   in	
   the	
   slab:	
  
the	
  Lifshitz	
  theory	
  must	
  be	
  extended	
  to	
  treat	
  
anisotropy	
  
• 	
   For	
   symmetry	
   reasons	
   the	
   surface	
   states	
  
affect	
  only	
  the	
  yy	
  component	
  	
  
Slab	
  real	
  
slab	
  
imaginary	
  yy	
   xx	
  
zz	
  
bulk	
  
imaginary	
  RPA	
  
exp	
  
Benassi and Calandra in preparation
Modification of Vacuum Interaction
Using	
  the	
  Lifshitz	
  formalism	
  the	
  force	
  between	
  films	
  can	
  be	
  calculated	
  using	
  RPA	
  bulk	
  and	
  
the	
  RPA	
  slab	
  dielectric	
  funcJons.	
  Their	
  difference	
  tells	
  us	
  how	
  important	
  can	
  be	
  the	
  
surface	
  effects:	
  

d = 2nm
• 	
  enlarging	
  the	
  film	
  thickness	
  the	
  surface	
  effects	
  become	
  negligible	
  
• 	
  the	
  relaJve	
  percent	
  difference	
  is	
  large	
  for	
  large	
  separaJons,	
  where	
  only	
  the	
  staJc	
  value	
  
is	
  important	
  
Benassi and Calandra in preparation
Conclusions II
	
  
The	
  calculaJon	
  of	
  the	
  vacuum	
  force	
  between	
  thin	
  films	
  gives	
  very	
  different	
  results	
  when	
  
performed	
  using	
  an	
  ab-­‐iniJo	
  calculated	
  dielectric	
  funcJon	
  instead	
  of	
  the	
  ordinary	
  bulk	
  
one.	
  This	
  is	
  mainly	
  due	
  to:	
  
	
  
• 	
  the	
  appearance	
  of	
  surface	
  states	
  inside	
  the	
  bulk	
  band	
  gap	
  that	
  gives	
  rise	
  to	
  a	
  strong	
  
absorpJon	
  at	
  low	
  frequency	
  
• 	
  the	
  presence	
  of	
  the	
  surface	
  reconstrucJon	
  that	
  brings	
  to	
  a	
  highly	
  anisotropic	
  dielectric	
  
response	
  
	
  
To	
  improve	
  the	
  calculaJons	
  one	
  has	
  to	
  go	
  beyond	
  the	
  RPA	
  approximaJon	
  of	
  the	
  dielectric	
  
tensor	
  including	
  many-­‐body	
  effects	
  
	
  
A	
   separaJon	
   of	
   the	
   confinement	
   contribuJon	
   from	
   the	
   surface	
   one	
   must	
   be	
   done:	
  
hydrogen	
  passivaJon	
  prevent	
  surface	
  reconstrucJon.	
  
	
  
A Model for the Film Stability
The	
  vacuum	
  force	
  can	
  cause	
  a	
  change	
  in	
  the	
  surface	
  morphology	
  of	
  a	
  thin	
  film.	
  	
  In	
  an	
  
epitaxial	
  film	
  3	
  main	
  contribuJons	
  can	
  be	
  considered…	
  
La]ce	
  mismatch	
  stress	
   Surface	
  stress	
   Vacuum	
  
stress	
  
The	
  first	
  two	
  contribuJon	
  are	
  several	
  order	
  of	
  magnitude	
  larger	
  that	
  the	
  Vacuum	
  force	
  
however,	
  close	
  to	
  the	
  equilibrium	
  they	
  cancel	
  out	
  and	
  the	
  system	
  becomes	
  sensible	
  to	
  
the	
  vacuum	
  force	
  	
  
R. Asaro and W. Tiller. Met.Trans (1971)
A Model for the Film Stability
With	
  a	
  slight	
  (	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  )	
  sinusoidal	
  corrugaJon	
  we	
  have:	
  q  d  λ
The	
  change	
  in	
  energy	
  is:	
  
CriJcal	
  thickness	
  and	
  wavelength	
  exist	
  if	
  the	
  vacuum	
  force	
  is	
  repulsive:	
  
∆E = −
1 − ν2
E
σ2
πq2
+ γ
π2
q2
λ
−
q2
λH
8πd4
Benassi and Calandra J.Phys.A 41,175401
Film Stability Diagrams
(ω) = 1 −
Ω2
1
ω2
(ω) = 1 −
Ω2
3
ω2
Corrugated	
  interface	
  
Plasma	
  model	
  for	
  simple	
  metals:	
  the	
  
plasma	
  frequency	
  is	
  proporJonal	
  to	
  
the	
  electron	
  density	
  of	
  the	
  metal	
  
Benassi and Calandra J.Phys.A 41,175401
Conclusions I
We	
   have	
   shown	
   how	
   the	
   morphology	
   of	
   a	
   thin	
   deposited	
   film	
   can	
   be	
   affected	
   by	
   the	
  
presence	
  of	
  vacuum	
  forces,	
  its	
  behaviour	
  depending	
  on	
  the	
  dielectric	
  properJes	
  of	
  both	
  
the	
  film	
  and	
  the	
  substrate.	
  
	
  
This	
  phenomenon	
  can	
  be	
  used:	
  
	
  
• 	
  to	
  modify	
  the	
  film	
  properJes	
  during/acer	
  their	
  growth	
  	
  
	
  
• 	
  to	
  measure	
  the	
  Casimir	
  force	
  on	
  a	
  single	
  object	
  (not	
  yet	
  measured)	
  
	
  
However,	
  to	
  compare	
  our	
  result	
  with	
  realisJc	
  situaJons	
  some	
  improvements	
  are	
  needed:	
  
	
  
• 	
  void	
  defects	
  and	
  dislocaJon	
  must	
  be	
  included	
  
	
  	
  	
  in	
  the	
  elasJc	
  model	
  of	
  the	
  film	
  
• 	
  the	
  relaxaJon	
  of	
  the	
  substrate	
  la]ce	
  must	
  be	
  included	
  
A Vacuum Force Based MEMS
Understanding	
   vacuum	
   forces	
   properJes	
   is	
   crucial	
   in	
   the	
   world	
   of	
   micro	
   and	
   nano	
  
mechanics:	
  
	
  
• 	
  to	
  prevent	
  micro	
  and	
  nano-­‐devices	
  	
  
	
  	
  from	
  sJcJon,	
  adhesion	
  and	
  breaking	
  
	
  	
  
• 	
  to	
  actuate	
  micro	
  and	
  nano-­‐devices	
  
	
  	
  	
  using	
  vacuum	
  forces	
  
	
  
Vacuum	
  forces	
  depends	
  on	
  the	
  dielectric	
  properJes	
  of	
  the	
  interacJng	
  media,	
  tuning	
  the	
  
dielectric	
  properJes	
  we	
  can	
  control	
  the	
  force	
  tailoring	
  the	
  mechanical	
  moJon.	
  
	
  
• 	
  The	
  force	
  depends	
  on	
  the	
  integral	
  over	
  frequencies	
  of	
  the	
  dielectric	
  funcJon,	
  a	
  drasJc	
  
change	
  in	
  the	
  dielectric	
  properJes	
  is	
  needed	
  to	
  modify	
  a	
  rather	
  insensible	
  force	
  
• 	
  This	
  change	
  must	
  be	
  reversible	
  in	
  order	
  to	
  be	
  able	
  both	
  to	
  increase	
  and	
  decrease	
  the	
  
vacuum	
  force	
  
H.B.Chen et al.Science (2001) Buks and Rouckes Europhys.Lett. (2001)
The candidate: GeTe
A	
   good	
   candidate	
   is	
   the	
   Germanium	
   Telluride,	
   which	
   undergoes	
   a	
   fast	
   and	
   reversible	
  
crystalline-­‐amorphous	
  transiJon…	
  
	
  
In	
  the	
  transiJon	
  the	
  dielectric	
  properJes	
  change	
  strongly	
  moving	
  from	
  a	
  metal	
  to	
  an	
  
insulator	
  with	
  1	
  eV	
  gap.	
  	
  
	
  
CalculaJng	
  the	
  vacuum	
  force	
  we	
  found	
  we	
  found	
  large	
  differences	
  in	
  the	
  interacJon	
  
between	
  two	
  amorphous	
  plates	
  FAA	
  and	
  two	
  crystalline	
  plates	
  FCC	
  	
  
Benassi and Calandra Europhys.Lett. 84,11002
with	
  the	
  equilibrium	
  condiJon:	
  
	
  
	
  
	
  
the	
  soluJon	
  is	
  a	
  bi-­‐stable	
  potenJal:	
  	
  
	
  
• 	
   the	
   distance	
   between	
   the	
   maximum	
   and	
   the	
   minimum	
  
gives	
  the	
  mechanical	
  excursion	
  of	
  the	
  device	
  
	
  
• 	
  The	
  height	
  of	
  the	
  barrier	
  gives	
  an	
  idea	
  of	
  the	
  stability	
  	
  
	
  
• 	
  The	
  posiJon	
  of	
  the	
  barrier	
  gives	
  the	
  s*c*on	
  point	
  	
  
The Model Device
We	
  can	
  model	
  a	
  mechanical	
  device	
  by	
  a	
  fixed	
  plate	
  interacJng	
  with	
  a	
  mobile	
  plate	
  with	
  a	
  
given	
  elasJcity	
  represented	
  by	
  a	
  spring.	
  
The	
  two	
  plates	
  are	
  covered	
  with	
  a	
  thick	
  GeTe	
  film	
  whose	
  phase	
  can	
  be	
  switched	
  using	
  a	
  
laser	
  pulse	
  or	
  a	
  current	
  pulse.	
  	
  
F(x) = Fres. − Fdisp. = k(x − x0) − ΣF(x − x0)
(x − x0) −
Σ
k
F(x − x0) = 0
	
  Σ
k
Batra et al. Europhys.Lett. (2007)
Tailoring the Device motion
What	
  happen	
  if	
  we	
  change	
  the	
  GeTe	
  phase?	
  
• 	
  The	
  mechanical	
  excursion	
  can	
  be	
  modified	
  by	
  10	
  %	
  
	
  
• 	
  The	
  stability	
  of	
  the	
  device	
  can	
  be	
  changed	
  up	
  to	
  80%	
  
	
  
• 	
  The	
  sJcJon	
  point	
  can	
  be	
  moved	
  by	
  10%	
  
	
  
	
  
x/x0
CC	
  
AC	
  
AA	
  
Benassi and Calandra Europhys.Lett. 84,11002
Conclusions IV
We	
   have	
   shown	
   the	
   feasibility	
   of	
   a	
   vacuum	
   forces	
   based	
   device	
   that	
   exploit	
   a	
   metal-­‐
insulator	
  phase	
  transiJon	
  to	
  modify	
  the	
  mechanical	
  properJes	
  of	
  a	
  micro	
  oscillator.	
  
	
  
The	
  device	
  model	
  is	
  sJll	
  rough	
  and	
  can	
  be	
  improved	
  in	
  a	
  number	
  of	
  ways	
  before	
  it	
  can	
  be	
  
used	
  to	
  design	
  a	
  real	
  device:	
  
	
  
• 	
  Surface	
  roughness	
  effects	
  are	
  known	
  to	
  be	
  relevant	
  in	
  the	
  vacuum	
  interacJon	
  between	
  
plates,	
  they	
  must	
  be	
  included	
  in	
  our	
  calculaJons	
  
	
  
•  	
   The	
   finiteness	
   of	
   the	
   plates	
   introduces	
   edge	
   effects	
   whose	
   importance	
   increase	
  
decreasing	
  the	
  device	
  dimension	
  	
  
	
  
• 	
  In	
  our	
  model	
  we	
  considered	
  a	
  global	
  phase	
  change	
  of	
  the	
  plates	
  media,	
  but	
  each	
  phase	
  
change	
  process	
  has	
  its	
  own	
  penetraJon	
  depth	
  inside	
  the	
  GeTe	
  film	
  
	
  
• 	
  Finite	
  Jme	
  required	
  by	
  the	
  phase	
  change	
  
Acknowledgments
I	
  would	
  like	
  to	
  express	
  my	
  special	
  thanks	
  to	
  professor	
  Carlo	
  Calandra	
  Buonaura	
  for	
  his	
  in-­‐	
  
valuable	
  guidance,	
  help	
  and	
  support	
  over	
  these	
  years.	
  	
  
	
  
Another	
  special	
  thanks	
  to	
  professor	
  Elisa	
  Molinari	
  who	
  hosted	
  me	
  in	
  S3	
  na*onal	
  research	
  
center	
  giving	
  me	
  the	
  opportunity	
  to	
  aIend	
  schools,	
  workshop	
  and	
  seminars	
  all	
  over	
  the	
  world.	
  	
  
	
  
I	
  want	
  to	
  acknowledge	
  CINECA	
  consorzio	
  interuniversitario	
  for	
  funding	
  my	
  Ph.D.	
  fellowship.
Field and charge quantization
• 	
  QuanJzed	
  charges	
  (perturbaJon	
  theory)	
  
• 	
  ConJnuous	
  fields	
  
MICRO	
  MACRO	
  
• 	
  ConJnuos	
  media	
  (linear	
  response	
  theory)	
  
• 	
  QuanJzed	
  fields	
  
α1
d
d
1 2
Two	
  approximaJons	
  of	
  the	
  same	
  theory,	
  
the	
   QED,	
   in	
   which	
   both	
   the	
   fields	
   and	
  
the	
  charges	
  are	
  quanJzed	
  
	
  
The	
  field-­‐charge	
  interacJon	
  is	
  hidden	
  
inside	
  the	
  response	
  funcJon	
  
Temperature: a way to eliminate the kinks
The	
  kinks	
  issue	
  can	
  be	
  solved	
  introducing	
  a	
  finite	
  value	
  for	
  the	
  temperature,	
  the	
  energy	
  
levels	
   becomes	
   conJnuously	
   populated,	
   the	
   kinks	
   disappear	
   from	
   the	
   energy	
   and	
   the	
  
force:	
  
T = 0◦
K
T = 1◦
K
T = 2◦
K
T = 30◦
K

Weitere ähnliche Inhalte

Was ist angesagt?

NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)Rene Kotze
 
2014 APS March Meeting Presentation
2014 APS March Meeting Presentation2014 APS March Meeting Presentation
2014 APS March Meeting PresentationCorbyn Mellinger
 
Properties of Metallic Helimagnets
Properties of Metallic HelimagnetsProperties of Metallic Helimagnets
Properties of Metallic HelimagnetsKwan-yuet Ho
 
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...SEENET-MTP
 
Seismic attributes
Seismic attributesSeismic attributes
Seismic attributeszaheehussain
 
1.crystal structure using x – ray diffraction
1.crystal structure using  x – ray diffraction1.crystal structure using  x – ray diffraction
1.crystal structure using x – ray diffractionNarayan Behera
 
1989 optical measurement of the refractive index, layer thickness, and volume...
1989 optical measurement of the refractive index, layer thickness, and volume...1989 optical measurement of the refractive index, layer thickness, and volume...
1989 optical measurement of the refractive index, layer thickness, and volume...pmloscholte
 
Crystal structure analysis
Crystal structure analysisCrystal structure analysis
Crystal structure analysiszoelfalia
 
The metal-insulator transition of VO2 revisited
The metal-insulator transition of VO2revisitedThe metal-insulator transition of VO2revisited
The metal-insulator transition of VO2 revisitedABDERRAHMANE REGGAD
 
Burin braneworld cosmological effect with induced gravity
Burin braneworld cosmological effect with induced gravityBurin braneworld cosmological effect with induced gravity
Burin braneworld cosmological effect with induced gravityluciolucena
 
Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...
Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...
Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...ABDERRAHMANE REGGAD
 
1.85 combined absorption and scattering (kubelka–munk analysis)
1.85    combined absorption and scattering (kubelka–munk analysis)1.85    combined absorption and scattering (kubelka–munk analysis)
1.85 combined absorption and scattering (kubelka–munk analysis)QC Labs
 
The distribution and_annihilation_of_dark_matter_around_black_holes
The distribution and_annihilation_of_dark_matter_around_black_holesThe distribution and_annihilation_of_dark_matter_around_black_holes
The distribution and_annihilation_of_dark_matter_around_black_holesSérgio Sacani
 

Was ist angesagt? (20)

NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
 
2014 APS March Meeting Presentation
2014 APS March Meeting Presentation2014 APS March Meeting Presentation
2014 APS March Meeting Presentation
 
Properties of Metallic Helimagnets
Properties of Metallic HelimagnetsProperties of Metallic Helimagnets
Properties of Metallic Helimagnets
 
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
 
Seismic attributes
Seismic attributesSeismic attributes
Seismic attributes
 
UCSD NANO106 - 11 - X-rays and their interaction with matter
UCSD NANO106 - 11 - X-rays and their interaction with matterUCSD NANO106 - 11 - X-rays and their interaction with matter
UCSD NANO106 - 11 - X-rays and their interaction with matter
 
1.crystal structure using x – ray diffraction
1.crystal structure using  x – ray diffraction1.crystal structure using  x – ray diffraction
1.crystal structure using x – ray diffraction
 
Eso1124
Eso1124Eso1124
Eso1124
 
1989 optical measurement of the refractive index, layer thickness, and volume...
1989 optical measurement of the refractive index, layer thickness, and volume...1989 optical measurement of the refractive index, layer thickness, and volume...
1989 optical measurement of the refractive index, layer thickness, and volume...
 
Crystal structure analysis
Crystal structure analysisCrystal structure analysis
Crystal structure analysis
 
NANO266 - Lecture 8 - Properties of Periodic Solids
NANO266 - Lecture 8 - Properties of Periodic SolidsNANO266 - Lecture 8 - Properties of Periodic Solids
NANO266 - Lecture 8 - Properties of Periodic Solids
 
The metal-insulator transition of VO2 revisited
The metal-insulator transition of VO2revisitedThe metal-insulator transition of VO2revisited
The metal-insulator transition of VO2 revisited
 
Burin braneworld cosmological effect with induced gravity
Burin braneworld cosmological effect with induced gravityBurin braneworld cosmological effect with induced gravity
Burin braneworld cosmological effect with induced gravity
 
Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...
Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...
Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...
 
GR analysis techniques
GR analysis techniquesGR analysis techniques
GR analysis techniques
 
20160113 (2)
20160113 (2)20160113 (2)
20160113 (2)
 
NANO266 - Lecture 11 - Surfaces and Interfaces
NANO266 - Lecture 11 - Surfaces and InterfacesNANO266 - Lecture 11 - Surfaces and Interfaces
NANO266 - Lecture 11 - Surfaces and Interfaces
 
1.85 combined absorption and scattering (kubelka–munk analysis)
1.85    combined absorption and scattering (kubelka–munk analysis)1.85    combined absorption and scattering (kubelka–munk analysis)
1.85 combined absorption and scattering (kubelka–munk analysis)
 
Variation of Fundamental Constants
Variation of Fundamental ConstantsVariation of Fundamental Constants
Variation of Fundamental Constants
 
The distribution and_annihilation_of_dark_matter_around_black_holes
The distribution and_annihilation_of_dark_matter_around_black_holesThe distribution and_annihilation_of_dark_matter_around_black_holes
The distribution and_annihilation_of_dark_matter_around_black_holes
 

Andere mochten auch

Does rotational meltin make molecular crystal surfaces more slippery?
Does rotational meltin make molecular crystal surfaces more slippery?Does rotational meltin make molecular crystal surfaces more slippery?
Does rotational meltin make molecular crystal surfaces more slippery?Andrea Benassi
 
the role of exchange bias in domain dynamics control
the role of exchange bias in domain dynamics controlthe role of exchange bias in domain dynamics control
the role of exchange bias in domain dynamics controlAndrea Benassi
 
Understanding graphene nano-ribbon manipulation
Understanding graphene nano-ribbon manipulationUnderstanding graphene nano-ribbon manipulation
Understanding graphene nano-ribbon manipulationAndrea Benassi
 
Non-equilibrium molecular dynamics with LAMMPS
Non-equilibrium molecular dynamics with LAMMPSNon-equilibrium molecular dynamics with LAMMPS
Non-equilibrium molecular dynamics with LAMMPSAndrea Benassi
 
Sliding motion and adhesion control through magnetic domamins
Sliding motion and adhesion control through magnetic domaminsSliding motion and adhesion control through magnetic domamins
Sliding motion and adhesion control through magnetic domaminsAndrea Benassi
 
How long can the superlubricity go?
How long can the superlubricity go?How long can the superlubricity go?
How long can the superlubricity go?Andrea Benassi
 
Sliding over a phase transition
Sliding over a phase transitionSliding over a phase transition
Sliding over a phase transitionAndrea Benassi
 

Andere mochten auch (8)

Does rotational meltin make molecular crystal surfaces more slippery?
Does rotational meltin make molecular crystal surfaces more slippery?Does rotational meltin make molecular crystal surfaces more slippery?
Does rotational meltin make molecular crystal surfaces more slippery?
 
the role of exchange bias in domain dynamics control
the role of exchange bias in domain dynamics controlthe role of exchange bias in domain dynamics control
the role of exchange bias in domain dynamics control
 
Understanding graphene nano-ribbon manipulation
Understanding graphene nano-ribbon manipulationUnderstanding graphene nano-ribbon manipulation
Understanding graphene nano-ribbon manipulation
 
Non-equilibrium molecular dynamics with LAMMPS
Non-equilibrium molecular dynamics with LAMMPSNon-equilibrium molecular dynamics with LAMMPS
Non-equilibrium molecular dynamics with LAMMPS
 
Sliding motion and adhesion control through magnetic domamins
Sliding motion and adhesion control through magnetic domaminsSliding motion and adhesion control through magnetic domamins
Sliding motion and adhesion control through magnetic domamins
 
How long can the superlubricity go?
How long can the superlubricity go?How long can the superlubricity go?
How long can the superlubricity go?
 
Sliding over a phase transition
Sliding over a phase transitionSliding over a phase transition
Sliding over a phase transition
 
Cisco - See Everything, Secure Everything
Cisco - See Everything, Secure EverythingCisco - See Everything, Secure Everything
Cisco - See Everything, Secure Everything
 

Ähnlich wie Role of the vacuum fluctuation forces in microscopic systems

Electrochemical Quartz Crystal Microbalance
Electrochemical Quartz Crystal MicrobalanceElectrochemical Quartz Crystal Microbalance
Electrochemical Quartz Crystal MicrobalanceSaurav Ch. Sarma
 
Interaction of small molecules with grapheen supported on metal substrates: A...
Interaction of small molecules with grapheen supported on metal substrates: A...Interaction of small molecules with grapheen supported on metal substrates: A...
Interaction of small molecules with grapheen supported on metal substrates: A...MIHIR RANJAN SAHOO
 
TRM-11fhsdbjbfffffffffffffffffffffffffffffffffffffff.ppt
TRM-11fhsdbjbfffffffffffffffffffffffffffffffffffffff.pptTRM-11fhsdbjbfffffffffffffffffffffffffffffffffffffff.ppt
TRM-11fhsdbjbfffffffffffffffffffffffffffffffffffffff.pptsauravnair2003
 
semo conductor.ppt
semo conductor.pptsemo conductor.ppt
semo conductor.pptkasthuri73
 
Quartz Crystal Microbalance QCM - Theory and Modeling
Quartz Crystal Microbalance QCM - Theory and ModelingQuartz Crystal Microbalance QCM - Theory and Modeling
Quartz Crystal Microbalance QCM - Theory and ModelingMarco Mauro
 
Laser trappedmirrorsinspace
Laser trappedmirrorsinspaceLaser trappedmirrorsinspace
Laser trappedmirrorsinspaceClifford Stone
 
11.property analysis of quantum dot cuboid nanocrystals with different nanost...
11.property analysis of quantum dot cuboid nanocrystals with different nanost...11.property analysis of quantum dot cuboid nanocrystals with different nanost...
11.property analysis of quantum dot cuboid nanocrystals with different nanost...Alexander Decker
 
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...Property analysis of quantum dot cuboid nanocrystals with different nanostruc...
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...Alexander Decker
 
AME441AL_Final_Report
AME441AL_Final_ReportAME441AL_Final_Report
AME441AL_Final_ReportMatt Tonokawa
 
Electrowetting of-water-and-aqueous-solutions-on-poly-ethylene-terephthalate-...
Electrowetting of-water-and-aqueous-solutions-on-poly-ethylene-terephthalate-...Electrowetting of-water-and-aqueous-solutions-on-poly-ethylene-terephthalate-...
Electrowetting of-water-and-aqueous-solutions-on-poly-ethylene-terephthalate-...Bhargavkrishna Kondreddy
 
Highly mismatched alloys for optoelectronics
Highly mismatched alloys for optoelectronicsHighly mismatched alloys for optoelectronics
Highly mismatched alloys for optoelectronicsMohammadreza Nematollahi
 
0417062299 Sakib Reza
0417062299 Sakib Reza0417062299 Sakib Reza
0417062299 Sakib RezaSAKIB REZA
 
The Physics of Gas Sloshing in Galaxy Clusters
The Physics of Gas Sloshing in Galaxy ClustersThe Physics of Gas Sloshing in Galaxy Clusters
The Physics of Gas Sloshing in Galaxy ClustersJohn ZuHone
 

Ähnlich wie Role of the vacuum fluctuation forces in microscopic systems (20)

Electrochemical Quartz Crystal Microbalance
Electrochemical Quartz Crystal MicrobalanceElectrochemical Quartz Crystal Microbalance
Electrochemical Quartz Crystal Microbalance
 
Interaction of small molecules with grapheen supported on metal substrates: A...
Interaction of small molecules with grapheen supported on metal substrates: A...Interaction of small molecules with grapheen supported on metal substrates: A...
Interaction of small molecules with grapheen supported on metal substrates: A...
 
Diaz payen
Diaz payenDiaz payen
Diaz payen
 
Luo Presentation
Luo PresentationLuo Presentation
Luo Presentation
 
TRM-11fhsdbjbfffffffffffffffffffffffffffffffffffffff.ppt
TRM-11fhsdbjbfffffffffffffffffffffffffffffffffffffff.pptTRM-11fhsdbjbfffffffffffffffffffffffffffffffffffffff.ppt
TRM-11fhsdbjbfffffffffffffffffffffffffffffffffffffff.ppt
 
semo conductor.ppt
semo conductor.pptsemo conductor.ppt
semo conductor.ppt
 
Roy-document-3
Roy-document-3Roy-document-3
Roy-document-3
 
1310.1421v3
1310.1421v31310.1421v3
1310.1421v3
 
Quartz Crystal Microbalance QCM - Theory and Modeling
Quartz Crystal Microbalance QCM - Theory and ModelingQuartz Crystal Microbalance QCM - Theory and Modeling
Quartz Crystal Microbalance QCM - Theory and Modeling
 
Presentation1.pptx
Presentation1.pptxPresentation1.pptx
Presentation1.pptx
 
Laser trappedmirrorsinspace
Laser trappedmirrorsinspaceLaser trappedmirrorsinspace
Laser trappedmirrorsinspace
 
11.property analysis of quantum dot cuboid nanocrystals with different nanost...
11.property analysis of quantum dot cuboid nanocrystals with different nanost...11.property analysis of quantum dot cuboid nanocrystals with different nanost...
11.property analysis of quantum dot cuboid nanocrystals with different nanost...
 
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...Property analysis of quantum dot cuboid nanocrystals with different nanostruc...
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...
 
AME441AL_Final_Report
AME441AL_Final_ReportAME441AL_Final_Report
AME441AL_Final_Report
 
thesis
thesisthesis
thesis
 
Electrowetting of-water-and-aqueous-solutions-on-poly-ethylene-terephthalate-...
Electrowetting of-water-and-aqueous-solutions-on-poly-ethylene-terephthalate-...Electrowetting of-water-and-aqueous-solutions-on-poly-ethylene-terephthalate-...
Electrowetting of-water-and-aqueous-solutions-on-poly-ethylene-terephthalate-...
 
Highly mismatched alloys for optoelectronics
Highly mismatched alloys for optoelectronicsHighly mismatched alloys for optoelectronics
Highly mismatched alloys for optoelectronics
 
0417062299 Sakib Reza
0417062299 Sakib Reza0417062299 Sakib Reza
0417062299 Sakib Reza
 
99995069.ppt
99995069.ppt99995069.ppt
99995069.ppt
 
The Physics of Gas Sloshing in Galaxy Clusters
The Physics of Gas Sloshing in Galaxy ClustersThe Physics of Gas Sloshing in Galaxy Clusters
The Physics of Gas Sloshing in Galaxy Clusters
 

Kürzlich hochgeladen

Good agricultural practices 3rd year bpharm. herbal drug technology .pptx
Good agricultural practices 3rd year bpharm. herbal drug technology .pptxGood agricultural practices 3rd year bpharm. herbal drug technology .pptx
Good agricultural practices 3rd year bpharm. herbal drug technology .pptxSimeonChristian
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPirithiRaju
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationColumbia Weather Systems
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPirithiRaju
 
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingNetHelix
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
 
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRlizamodels9
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024AyushiRastogi48
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxEran Akiva Sinbar
 
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In DubaiDubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubaikojalkojal131
 
Four Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptFour Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptJoemSTuliba
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxBerniceCayabyab1
 
User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...lizamodels9
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxpriyankatabhane
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationColumbia Weather Systems
 

Kürzlich hochgeladen (20)

Good agricultural practices 3rd year bpharm. herbal drug technology .pptx
Good agricultural practices 3rd year bpharm. herbal drug technology .pptxGood agricultural practices 3rd year bpharm. herbal drug technology .pptx
Good agricultural practices 3rd year bpharm. herbal drug technology .pptx
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdf
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather Station
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
 
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
 
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptx
 
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In DubaiDubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
 
Four Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptFour Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.ppt
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
 
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
 
User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather Station
 

Role of the vacuum fluctuation forces in microscopic systems

  • 1. Role of the vacuum fluctuation forces in microscopic systems Colloquia Doctoralia XXI ciclo, Modena 9/2/09 Candidate Andrea Benassi Supervisor Prof. Carlo Calandra Buonaura
  • 2. § Introduction to the vacuum fluctuation forces i) Macroscopic and microscopic forces ii) The sign of the force § New Developments i) Quantum size effects ii) Surface effects § Applications i) Stability of thin films ii) A vacuum force based device Outline
  • 3. Macroscopic and Microscopic Forces Van  der  Waals-­‐London  force   MICRO  MACRO   NON  RELATIVISTIC  (small  d)   RELATIVISTIC  (large  d)   Casimir-­‐Polder  force   F(d) = − 18 πd7 ∞ 0 α1(ω)α2(ω)dω α1 α2 d α1 α2 d Casimir  force   F(d) = − cπ2 240d4 L2 Hamaker  force   d L F(d) = − H(1(ω), 2(ω)) d3 L2 1 2 d L (0) → ∞ H.G.B. Casimir Proc.Ned.Akad.Wet. (1948) S.K. Lamoreaux Rep.Prog.Phys. (1997)
  • 4. Macroscopic and Microscopic Forces Van  der  Waals-­‐London  force   MICRO  MACRO   NON  RELATIVISTIC  (small  d)   RELATIVISTIC  (large  d)   Casimir-­‐Polder  force   F(d) = − 18 πd7 ∞ 0 α1(ω)α2(ω)dω α1 α2 d α1 α2 d Lifshitz  theory   F = F(d, 1(ω), 2(ω), 3(ω)) •   Extension  to  other  materials   •   Extension  to  other  geometries   •   Extendion  to  finite  temerature   E.M. Lifshitz Sov.Phys.JEPT (1956) S.K. Lamoreaux Physics Today (2007)
  • 5. The sign of the force d d AIracJve   BETWEEN  ONTO   ISOLATED   INTERACTING   Repulsive  if   Stretching  if    Squeezing   dd 3 1 2 1 2 33 1 1 3 2 1 3 J.N. Munday and F. Capasso Nature (2009) Benassi and Calandra J.Phys.A. 40,13453
  • 6. Electron Confinement (EC) When  the  dimension  of  the  interacJng  objects  is  comparable  to  the  electron  wavelength   the  quantum  nature  of  the  electrons  cannot  be  neglected,  this  is  the  case  of  nanometric   thickness  films:   The  film  is  considered  as  a  quantum  well:   •   The  electron  spill  out  is  simulated  arJficially        in  the  case  of  an  infinite  well,  it  comes        out  naturally  in  the  case  of  a  finite  well   •   The  discreJzaJon  of  the  energy  levels      gives  rise  to  kinks  in  the  electron  density      or  in  the  Fermi  energy     Wood and Ashcroft Phys.Rev.B (1982)
  • 7. The  RPA  dielectric  tensor  of  the  nanometric  film  can  be  calculated…     •   The  system  is  anisotropic   •   The  dielectric  tensor  components  depends  on  the  film  (well)  thickness   •   The  zz  component  becomes  semiconducJng  while  the  parallel  ones  remains  metallic   •   The  dielectric  funcJon  depends  on  the  electron  density  so  kinks  are  also  present  in  the   dielectric  funcJon   Quantum Models for the film Benassi and Calandra Europhys.Lett. 82, 61002
  • 8. The interaction between films Some  plot  of  the  relaJve  percent  difference  of  the  force  with  and  without  the  EC:   •   Including  the  EC  the  force  strength  decreases,  along  the  z  direcJon  the  metallic  film   becomes  transparent,  trapping  less  modes  inside  the  cavity     •   Kinks  appear  each  Jme  that  a  new  level  fall  below  the  Fermi  energy     •   For  large  film  thickness  and  large  electron  density  the  EC  is  negligible     and  the  relaJve  difference  goes  to  zero     δP = Fbulk − FEC Fbulk d d Ωp = 1014 rad/s = 10nm Ωp = 1014 rad/s = 50nm Ωp = 5 · 1014 rad/s = 50nm Benassi and Calandra J.Phys.Conf.Series (2009)
  • 9. Conclusions I     The  inclusion  of  EC  gives  correcJons  depending  on  the  film  density,  the  film  separaJon   and  the  film  thickness,  these  correcJon  can  vary  between  few  percent  up  to  50%     The  EC  correc*ons  can  be  improved  in  order  to:     •   include  atomisJc  descripJon  of  the  film  la]ce   •   include  surface  effects   We  believe  that  for  all  these  purposes  an  ab-­‐iniJo  approach  can  be  suitable  !     The  final  goal:     •   treat  arbitrary  shape  objects  (designing  MEMS)        
  • 10. A Silicon Surface: (111)2x1 Surface  properJes  start  to  be  relevant  when  the  system  of  interest  is  strongly  confined.     A  semiconducJng  surface  introduces  some  new  features:     •   Presence  of  surface  states  inside  the  bulk  gap   •   Surface  reconstrucJon   Benassi and Calandra in preparation
  • 11. Modification of Dielectric Properties An  RPA  dielectric  funcJon  can  be  calculated  both  for  the  bulk  and  the  slab:   •   The  off-­‐diagonal  components  are  negligible     •    A   strong   anisotropy   is   present   in   the   slab:   the  Lifshitz  theory  must  be  extended  to  treat   anisotropy   •    For   symmetry   reasons   the   surface   states   affect  only  the  yy  component     Slab  real   slab   imaginary  yy   xx   zz   bulk   imaginary  RPA   exp   Benassi and Calandra in preparation
  • 12. Modification of Vacuum Interaction Using  the  Lifshitz  formalism  the  force  between  films  can  be  calculated  using  RPA  bulk  and   the  RPA  slab  dielectric  funcJons.  Their  difference  tells  us  how  important  can  be  the   surface  effects:   d = 2nm •   enlarging  the  film  thickness  the  surface  effects  become  negligible   •   the  relaJve  percent  difference  is  large  for  large  separaJons,  where  only  the  staJc  value   is  important   Benassi and Calandra in preparation
  • 13. Conclusions II   The  calculaJon  of  the  vacuum  force  between  thin  films  gives  very  different  results  when   performed  using  an  ab-­‐iniJo  calculated  dielectric  funcJon  instead  of  the  ordinary  bulk   one.  This  is  mainly  due  to:     •   the  appearance  of  surface  states  inside  the  bulk  band  gap  that  gives  rise  to  a  strong   absorpJon  at  low  frequency   •   the  presence  of  the  surface  reconstrucJon  that  brings  to  a  highly  anisotropic  dielectric   response     To  improve  the  calculaJons  one  has  to  go  beyond  the  RPA  approximaJon  of  the  dielectric   tensor  including  many-­‐body  effects     A   separaJon   of   the   confinement   contribuJon   from   the   surface   one   must   be   done:   hydrogen  passivaJon  prevent  surface  reconstrucJon.    
  • 14. A Model for the Film Stability The  vacuum  force  can  cause  a  change  in  the  surface  morphology  of  a  thin  film.    In  an   epitaxial  film  3  main  contribuJons  can  be  considered…   La]ce  mismatch  stress   Surface  stress   Vacuum   stress   The  first  two  contribuJon  are  several  order  of  magnitude  larger  that  the  Vacuum  force   however,  close  to  the  equilibrium  they  cancel  out  and  the  system  becomes  sensible  to   the  vacuum  force     R. Asaro and W. Tiller. Met.Trans (1971)
  • 15. A Model for the Film Stability With  a  slight  (                                                                  )  sinusoidal  corrugaJon  we  have:  q d λ The  change  in  energy  is:   CriJcal  thickness  and  wavelength  exist  if  the  vacuum  force  is  repulsive:   ∆E = − 1 − ν2 E σ2 πq2 + γ π2 q2 λ − q2 λH 8πd4 Benassi and Calandra J.Phys.A 41,175401
  • 16. Film Stability Diagrams (ω) = 1 − Ω2 1 ω2 (ω) = 1 − Ω2 3 ω2 Corrugated  interface   Plasma  model  for  simple  metals:  the   plasma  frequency  is  proporJonal  to   the  electron  density  of  the  metal   Benassi and Calandra J.Phys.A 41,175401
  • 17. Conclusions I We   have   shown   how   the   morphology   of   a   thin   deposited   film   can   be   affected   by   the   presence  of  vacuum  forces,  its  behaviour  depending  on  the  dielectric  properJes  of  both   the  film  and  the  substrate.     This  phenomenon  can  be  used:     •   to  modify  the  film  properJes  during/acer  their  growth       •   to  measure  the  Casimir  force  on  a  single  object  (not  yet  measured)     However,  to  compare  our  result  with  realisJc  situaJons  some  improvements  are  needed:     •   void  defects  and  dislocaJon  must  be  included        in  the  elasJc  model  of  the  film   •   the  relaxaJon  of  the  substrate  la]ce  must  be  included  
  • 18. A Vacuum Force Based MEMS Understanding   vacuum   forces   properJes   is   crucial   in   the   world   of   micro   and   nano   mechanics:     •   to  prevent  micro  and  nano-­‐devices        from  sJcJon,  adhesion  and  breaking       •   to  actuate  micro  and  nano-­‐devices        using  vacuum  forces     Vacuum  forces  depends  on  the  dielectric  properJes  of  the  interacJng  media,  tuning  the   dielectric  properJes  we  can  control  the  force  tailoring  the  mechanical  moJon.     •   The  force  depends  on  the  integral  over  frequencies  of  the  dielectric  funcJon,  a  drasJc   change  in  the  dielectric  properJes  is  needed  to  modify  a  rather  insensible  force   •   This  change  must  be  reversible  in  order  to  be  able  both  to  increase  and  decrease  the   vacuum  force   H.B.Chen et al.Science (2001) Buks and Rouckes Europhys.Lett. (2001)
  • 19. The candidate: GeTe A   good   candidate   is   the   Germanium   Telluride,   which   undergoes   a   fast   and   reversible   crystalline-­‐amorphous  transiJon…     In  the  transiJon  the  dielectric  properJes  change  strongly  moving  from  a  metal  to  an   insulator  with  1  eV  gap.       CalculaJng  the  vacuum  force  we  found  we  found  large  differences  in  the  interacJon   between  two  amorphous  plates  FAA  and  two  crystalline  plates  FCC     Benassi and Calandra Europhys.Lett. 84,11002
  • 20. with  the  equilibrium  condiJon:         the  soluJon  is  a  bi-­‐stable  potenJal:       •    the   distance   between   the   maximum   and   the   minimum   gives  the  mechanical  excursion  of  the  device     •   The  height  of  the  barrier  gives  an  idea  of  the  stability       •   The  posiJon  of  the  barrier  gives  the  s*c*on  point     The Model Device We  can  model  a  mechanical  device  by  a  fixed  plate  interacJng  with  a  mobile  plate  with  a   given  elasJcity  represented  by  a  spring.   The  two  plates  are  covered  with  a  thick  GeTe  film  whose  phase  can  be  switched  using  a   laser  pulse  or  a  current  pulse.     F(x) = Fres. − Fdisp. = k(x − x0) − ΣF(x − x0) (x − x0) − Σ k F(x − x0) = 0  Σ k Batra et al. Europhys.Lett. (2007)
  • 21. Tailoring the Device motion What  happen  if  we  change  the  GeTe  phase?   •   The  mechanical  excursion  can  be  modified  by  10  %     •   The  stability  of  the  device  can  be  changed  up  to  80%     •   The  sJcJon  point  can  be  moved  by  10%       x/x0 CC   AC   AA   Benassi and Calandra Europhys.Lett. 84,11002
  • 22. Conclusions IV We   have   shown   the   feasibility   of   a   vacuum   forces   based   device   that   exploit   a   metal-­‐ insulator  phase  transiJon  to  modify  the  mechanical  properJes  of  a  micro  oscillator.     The  device  model  is  sJll  rough  and  can  be  improved  in  a  number  of  ways  before  it  can  be   used  to  design  a  real  device:     •   Surface  roughness  effects  are  known  to  be  relevant  in  the  vacuum  interacJon  between   plates,  they  must  be  included  in  our  calculaJons     •    The   finiteness   of   the   plates   introduces   edge   effects   whose   importance   increase   decreasing  the  device  dimension       •   In  our  model  we  considered  a  global  phase  change  of  the  plates  media,  but  each  phase   change  process  has  its  own  penetraJon  depth  inside  the  GeTe  film     •   Finite  Jme  required  by  the  phase  change  
  • 23. Acknowledgments I  would  like  to  express  my  special  thanks  to  professor  Carlo  Calandra  Buonaura  for  his  in-­‐   valuable  guidance,  help  and  support  over  these  years.       Another  special  thanks  to  professor  Elisa  Molinari  who  hosted  me  in  S3  na*onal  research   center  giving  me  the  opportunity  to  aIend  schools,  workshop  and  seminars  all  over  the  world.       I  want  to  acknowledge  CINECA  consorzio  interuniversitario  for  funding  my  Ph.D.  fellowship.
  • 24. Field and charge quantization •   QuanJzed  charges  (perturbaJon  theory)   •   ConJnuous  fields   MICRO  MACRO   •   ConJnuos  media  (linear  response  theory)   •   QuanJzed  fields   α1 d d 1 2 Two  approximaJons  of  the  same  theory,   the   QED,   in   which   both   the   fields   and   the  charges  are  quanJzed     The  field-­‐charge  interacJon  is  hidden   inside  the  response  funcJon  
  • 25. Temperature: a way to eliminate the kinks The  kinks  issue  can  be  solved  introducing  a  finite  value  for  the  temperature,  the  energy   levels   becomes   conJnuously   populated,   the   kinks   disappear   from   the   energy   and   the   force:   T = 0◦ K T = 1◦ K T = 2◦ K T = 30◦ K