SlideShare ist ein Scribd-Unternehmen logo
1 von 22
Downloaden Sie, um offline zu lesen
EXERCÍCIOS BÁSICOS
www.matematicapura.com.br
CONJUNTOS NUMÉRICOS
Exercícios resolvidos
Sendo A=[1;7] e B=[3;9[, determine os conjuntos abaixo:
a)
Analisando as retas abaixo, constatamos que a intersecção entre A e B
é dada pela área compreendida entre as retas azuis.
Logo: = [3;7]
b)
Novamente analisando as retas, consta-se que a união entre A e B é
dada pela área compreendida entre as retas vermelhas, não contando
9, pois [3;9[
Logo: = [1;9[
Representar na reta real os intervalos:
a) [1;7]
b) [3;9[
Veja que o ponto 9 não estar incluído.
EXERCÍCIOS BÁSICOS
www.matematicapura.com.br
1) Sendo A=]-1;3] e B=[3;5[, determine:
a)
b)
2) Sendo A=[1;4] e B=]-1;2], determine:
a)
b)
3) Represente na reta real os seguintes intervalos:
a) ]-3;4]
b) [1;4]
c) [2; [
d) ]- ;1]
CÁLCULO ALGÉBRICO
1) Calcular:
Exemplo: (3x²+2x-1) + (-2x²+4x+2) = 3x²+2x-1-2x²+4x+2 = x²+6x+1
a) (3a-2b+c) + (-6a-b-2c) + (2a+3b-c)
b) (3x²-1/3) - (6x²-4/5)
c) (2a-3ab+5b) - (-a-ab+2b)
2) Efetue e simplifique:
Exemplo: (2x+3).(4x+1) = 8x²+2x+12x+3 = 8x²+14x+3
a) (2a+3b).(5a-b)
b) (x-y).(x²-xy+y²)
c) (3x-y).(3x+y).(2x-y)
3) Simplifique:
Exemplo: 10x³y²/5x²y = 2xy
a) 8a³b²/2ab²
EXERCÍCIOS BÁSICOS
www.matematicapura.com.br
b) 4a³-2a²+8a / 2a
c) 18x³y²/6x²y³
4) (Fuvest) O valor da expressão a³-3a²x²y², para a=10, x=3 e y=1 é:
(a) 100
(b) 50
(c) 250
(d) -150
(e) -200
5) (Fuvest) Se A=(x-y)/xy, x=2/5 e y=1/2, então A é igual a:
(a) -0,1
(b) 0,2
(c) -0,3
(d) 0,4
(e) -0,5
Respostas dos testes: 4)E, 5)E
PRODUTOS NOTÁVEIS
1) Calcule os produtos notáveis:
a) (a+2)(a-2)
b) (xy+3z)(xy-3z)
c) (x²-4y)(x²+4y)
d)
e) (x+3)²
f) (2a-5)²
g) (2xy+4)²
h)
i) (x+4)³
j) (2a+b)³
l) (a-1)³
Exercício resolvido: Calcule 41.39 usando um produto notável.
(40+1)(40-1) = 40² -1² = 1.599
2) Calcule 101.99 usando um produto notável.
EXERCÍCIOS BÁSICOS
www.matematicapura.com.br
FATORAÇÃO
1) Fatorar, colocando os fatores comuns em evidência:
Exemplos:
ax+2a = a(x+2)
a²-b² = (a+b)(a-b)
a² - 4ab + 4b² = (a-2b)²
2x²-2 = 2(x²-1) = 2(x+1)(x-1)
a) 3ax-7ay
b) x³ -x² + x
c) x³y² + x²y² + xy²
d) a²b² - ab³
e) a² + ab + ac + bc
f) x² - b²
g) x²-25
h) (x²/9 - y²/16)
i) x² + 4x + 4
j) a² + 6ab + 9b²
l) 144x²-1
m) ab + ac + 10b + 10c
n) 4a² - 4
o) x³y - xy³
p) x² + 16x + 64
q) 2x² + 4x + 2
r) ax³ + 2a²x² + a³x
Resolução do exercício (e) a² + ab + ac + bc = a.(a+b) + c.(a+b) = (a+b).(a+c)
EXERCÍCIOS BÁSICOS
www.matematicapura.com.br
FRAÇÕES ALGÉBRICAS
1) Ache o mínimo múltiplo comum (mmc) de:
a) (x²-9) e (x²+6x+9)
b) (x²+x), (x²-x) e (x³-x)
c) (x²-4), (x²-4x+4) e (x²+4x+4)
2) Simplificar:
a)
b)
c)
d)
3) Efetuar:
a)
b)
4) Efetuar as multiplicações:
a)
b)
c)
d)
EXERCÍCIOS BÁSICOS
www.matematicapura.com.br
e)
5) Efetuar as divisões:
a)
b)
c)
d)
EQUAÇÃO DO 1º GRAU
1) Resolva as seguinte equações:
Exemplo: 2(2x+7) + 3(3x-5) = 3(4x+5) -1
Aplicando a propriedade distributiva:
4x+14+9x-15=12x+15-1
4x+9x-12x=15-1+15-14
x=15
Portanto V={15}
a) 2x-3=17
b) 4x+7=x-8
c) 3-7(1-2x)=5-(x-9)
d) 3-7(1-2x)=5-(x-9)
e)
[Sugestão]: Ache o mmc e elimine o denominador
f)
g)
Respostas: (e)1; f)2/7; g)15/2
EXERCÍCIOS BÁSICOS
www.matematicapura.com.br
SISTEMAS DE EQUAÇÕES
1) Resolver os seguintes sistemas:
a)
b)
c)
d)
2) Problemas com sistemas já montados:
a) Em um terreiro há galinhas e coelhos, num total de 23 animais e 82 pés.
Quantas são as galinhas e os coelhos?
x+y=23
2x+4y=82
b) A soma das idades de duas pessoas é 25 anos e a diferença entre essas
idades é de 13 anos. Qual a idade de cada uma?
x+y=25
x-y=13
c) A soma de dois números é 50 e o maior deles é igual ao dobro do
menor, menos 1. Quais são os números?
x+y=50
x=2y-1
d) Duas pessoas ganharam juntas, 50 reais por um trabalho e uma delas
ganhou 25% do que a outra. Quanto ganhou cada pessoa?
x+y=50
x=1/4y
e) O preço de uma caneta é o dobro do preço de uma lapiseira e duas
canetas juntas custam 30. Qual o preço da caneta e da lapiseira?
x=2y
x+y=30
3) (Fuvest) Um copo cheio de água pesa 325g. Se jogarmos metade da
água fora, seu peso cai para 180g. O peso do copo vazio é?
(A) 20g
EXERCÍCIOS BÁSICOS
www.matematicapura.com.br
(B) 25g
(C) 35g
(D) 40g
(E) 45g
4) (F.C.CHAGAS) Somando-se os 2/3 de um número x como os 3/5 do
número y, obtém-se 84. Se o número x é metade do número y, então a
diferença y-x é igual a:
(A) 18
(B) 25
(C) 30
(D) 45
(E) 60
Respostas dos testes: 3)C, 4)D
RAÍZES E RADICAIS
1) Dê o valor de cada radical no campo dos número reais. Caso não
exista, escreva: não existe.
a) h)
b) i)
c) j)
d) l)
e) m)
f) n)
g) o)
Não existem: (b), (h)
EXERCÍCIOS BÁSICOS
www.matematicapura.com.br
2) Aplicação das propriedades:
Exemplo 1:
a)
b)
c)
d)
[Nota]: 25 = 5²
e)
Exemplo 2:
f)
g)
[Nota]:
h)
i)
j)
Exemplo 3:
l)
m)
n)
EXERCÍCIOS BÁSICOS
www.matematicapura.com.br
Exemplos 4: ;
o)
p)
q)
r)
Exemplo 5:
s)
t)
Exemplo 6:
u)
v)
x)
z)
Exemplo 7:
a`)
b`)
EXERCÍCIOS BÁSICOS
www.matematicapura.com.br
c`)
d`)
Exemplos 8:
e`)
f`)
g`)
h`)
i`)
POTENCIAÇÃO
1) Efetuar, observando as definições e propriedades:
a) (-2)³ i)
b) j) (0,5)³
c) 500¹ l) 15¹
d) 100º m)
e) 0³ n)
f) 0º
o)
g)
p)
h)
q)
EXERCÍCIOS BÁSICOS
www.matematicapura.com.br
2) (Fuvest) O valor de , é:
(a) 0,0264
(b) 0,0336
(c) 0,1056
(d) 0,2568
(e) 0,6256
3) (Fei) O valor da expressão é:
(a) -5/6
(b) 5/6
(c) 1
(d) -5/3
(e) -5/2
4) (UECE) O valor de é
(a) -15/17
(b) -16/17
(c) -15/16
(d) -17/16
5) (F.C. CHAGAS) Simplificando-se a expressão , obtém-
se:
(a) 0,16
(b) 0,24
(c) 1,12
(d) 1,16
(e) 1,24
Respostas dos testes: 2) B; 3) E; 4)B; 5) D
RACIONALIZAÇÃO
1) Racionalize o denominador de cada fração:
a) p)
b) q)
EXERCÍCIOS BÁSICOS
www.matematicapura.com.br
c) r)
d) s)
e) t)
f) u)
g) v)
h) w)
i) x)
j) y)
k) z)
l) a`)
m) b`)
EXERCÍCIOS BÁSICOS
www.matematicapura.com.br
n) c`)
o) d`)
2) (Fuvest)
(a)
(b)
(c)
(d)
(e)
Resp: 2)D
EQUAÇÃO DO 2º GRAU
1) Complete o quadro conforme o exemplo:
Equação
Coeficientes
a b c
6x²-3x+1=0 6 -3 1
-3x²=5/2+4x
y²=5y
6x²=0
2) Determine as raízes das seguintes equações:
a) x²-3x+2=0
b) 2y²-14y+12=0
EXERCÍCIOS BÁSICOS
www.matematicapura.com.br
c) -x²+7x-10=0
d) 5x²-x+7=0
e) y²-25=0
f) x²-1/4=0
g) 5x²-10x=0
h) 5+x²=9
i) 7x²-3x=4x+x²
j) z²-8z+12 = 0
2) Determine o valor de k nas equações, de modo que:
a) x² - 12x + k = 0 , tenha duas raízes reais e iguais
b) 2x² - 6x +3k = 0, não tenha raízes reais
c) x² + kx + 4 = 0, tenha raízes reais e iguais
d) kx² - 2(k+1)x + (k+5) = 0, tenha duas raízes reais e diferentes.
3) Complete o quadro:
Lembre-se: Soma das raízes de uma equação do 2º grau = -
b/a
Produto das raízes de uma equação do 2º grau =
c/a
Equação
Soma das
raízes
Produto das
raízes
x² - 6x + 9 = 0 6 9
x² - 2x + 3 = 0
2x² + 5x - 8 = 0
x² + 5x -24=0 -5 24
5 -6
-6 -3
4) Dê o conjunto solução das seguintes equações fracionárias:
a)
b)
c)
EXERCÍCIOS BÁSICOS
www.matematicapura.com.br
d)
e)
f)
5) Dê o conjunto solução das seguintes equações literais:
a) x² - (a+1) + x = 0
b) x² - (a+m) + am = 0
c) y² - by - 2b³ = 0
d) ax² - (a²+1) + a = 0
e) x² - 3rx + 2r² = 0
6) Dê o conjunto solução das seguintes equações biquadradas:
a)
b)
c)
d)
e)
7) Resolução de equações irracionais:
Primeiramente devemos eliminar o radical
Eleve ambos os membros ao quadrado para eliminar o radical
Exemplo:
x - 1 = x² - 6x + 9
EXERCÍCIOS BÁSICOS
www.matematicapura.com.br
x² - 7x +10 = 0
Aplicando a fórmula de Bháskara, encontramos as raízes x=5, x`=2
Verificação: Substitua os valores das raízes em ambos os membros
e verifiquem se a igualdade é satisfeita
Para x=5
1º membro:
2º membro: x-3 = 5-3 = 2
Como o 1º membro é igual ao 2º membro, X1=5 é solução da
equação.
Para X2=2
1º membro:
2º membro: x-3 = 2-3 = -1
Como o 1º membro é diferente do 2º membro, x`=2 não é solução
da equação
Portanto, V={5}
Nunca se esqueçam de fazer a verificação...
a)
b)
c)
d)
e)
8) (UFSC) A soma das raízes da equação x²-28/6 = 7x/2 - x/2 é?
Resposta: 8) 11
EXERCÍCIOS BÁSICOS
www.matematicapura.com.br
FUNÇÃO DO 1º GRAU
1) Represente graficamente a função definida por:
a) f(x) = 2x-1
b) f(x) = -1/2x+3
c) f(x) = 4x
d) f(x) = 1/3x+2
e) f(x) = -3x+6
2) Determine a raiz ou zero de cada uma das seguintes
equações:
a) f(x) = 2x+5
b) f(x) = -x+2
c) f(x) = 1/3x+3
d) f(x) = 1-5x
e) f(x) = 4x
EXERCÍCIO RESOLVIDO:
Determine a expressão da função representada pelo gráfico
abaixo:
Uma equação do 1º grau é definida por y=ax+b com
Pelo gráfico, conclui-se que:
Quando x=0, y=2; portanto, o valor de b na expressão é igual
a 2
EXERCÍCIOS BÁSICOS
www.matematicapura.com.br
Quando y=0, x=-4 (raiz ou zero da função)
Substituindo os valores em y=ax+b:
0 = -4a + 2
a = 1/2
Logo, a expressão é y = 1/2x+2.
3) As figuras abaixo representam os gráficos de funções, de R
em R, determine as expressões que as definem.
a)
b)
Respostas: 3: a) y= -1/2x+2; b) y = x-1
EXERCÍCIOS BÁSICOS
www.matematicapura.com.br
FUNÇÃO DO 2º GRAU
1) As equações abaixo definem funções do 2º grau. Para cada uma
dessas funções, ache as coordenadas do vértice que a representa:
a) f(x)= x² - 4x + 5
b) f(x)= x² +4x - 6
c) f(x)= 2x² +5x - 4
d) f(x)= -x² + 6x - 2
e) f(x)= -x² - 4x +1
2) Determine, se existirem, os zeros reais das funções seguintes:
a) f(x)= 3x² - 7x + 2
b) f(x)= -x² + 3x - 4
c) f(x)= -x² + 3/2x + 1
d) f(x)= x² -4
e) f(x)= 3x²
Não existe zeros em (b)
3) Construa o gráfico das seguintes funções:
a) f(x)= x² - 16x + 63
b) f(x)= 2x² - 7x + 3
c) f(x)= 4x² - 4x +1
d) f(x)= -x² + 4x - 5
e) f(x)= -2x² +8x- 6
4) Em uma partida de vôlei, um jogador deu um saque em que a
bola atingiu uma altura h em metros, num tempo t, em segundos,
de acordo com a relação h(t) = -t² + 8t.
a) Em que instante a bola atingiu a altura máxima?
[Nota]: observem o vértice
b) De quantos metros foi a altura máxima alcançada pela bola?
c) Esboce o gráfico que represente esta situação.
Respostas: 4: a)4s; b) 16m]
EXERCÍCIOS BÁSICOS
www.matematicapura.com.br
PROBLEMAS
Exercício resolvido: O problema clássico das torneiras
Uma torneira A enche sozinha um tanque em 10h, uma torneira B,
enche o mesmo tanque sozinha em 15h. Em quanta horas as duas
torneiras juntas encherão o tanque?
Sendo V a capacidade do tanque em 1 hora:
A enche V/10 do tanque; B enche V/15 do tanque
A e B enchem juntas: V/10 + V/15 = V/6
Sendo t o tempo em que as duas juntas enchem o tanque: V/6.t =
V
Portanto t = 6horas
1) (Fuvest) O dobro de um número, mais a sua terça parte, mais a
sua quarta parte somam 31. Determine o número.
2) (Vunesp) Uma certa importância deve ser dividida entre 10
pessoas em partes iguais. Se a partilha fosse feita somente entre 8
dessas pessoas, cada uma destas receberia R$5.000,00 a mais.
Calcule a importância.
3) (Unicamp) Roberto disse a Valéria: "pense um número, dobre
esse número, some 12 ao resultado, divida o novo resultado por 2.
Quanto deu?". Valéria disse "15", ao Roberto que imediatamente
revelou o número original que Valéria havia pensado. Calcule esse
número.
4) Obter dois números consecutivos inteiros cuja soma seja igual a
57.
5) (F.C.CHAGAS) Por 2/3 de um lote de peças iguais, um
comerciante pagou R$8.000,00 a naus do que pagaria pelos 2/5 do
mesmo lote. Qual o preço do lote todo?
6) Uma torneira gasta sozinha 20 min para encher um tanque.
Outra torneira sozinha gasta 5min para encher o mesmo tanque.
Em quanto tempo, as duas torneiras juntas enchem esse tanque?
Respostas: 1)12; 2)R$200.000,00; 3)9; 4)28 e 29; 5) R$30.000,00; 6) 4min
7) A diferença entre o quadrado de um número e o seu dobro é 35.
Qual é o número?
8) Qual é o número que, adicionado ao triplo do seu quadrado, vale
14?
EXERCÍCIOS BÁSICOS
www.matematicapura.com.br
9) A metade do quadrado de um número menos o dobro desse
número é igual a 30. Determine esse número.
10) Se do quadrado de um número subtrairmos 6, o resto será 30.
Qual é esse número?
11) O produto de um número positivo pela sua terça parte é igual a
12. Qual é esse número?
12) Determine dois números consecutivos ímpares cujo produto
seja 195.
13) A diferença entre as idades de dois irmãos é 3 anos e o produto
de suas idades é 270. Qual é a idade de cada um?
14) Qual é o número inteiro positivo cuja metade acrescida de sua
terça parte é igual ao seu quadrado diminuído 134?
15) Calcule as dimensões de um retângulo de 16cm de perímetro e
15cm² de área.
16) A diferença de um número e o seu inverso é 8/3. Qual é esse
número?

Weitere ähnliche Inhalte

Was ist angesagt?

EXERCÍCIOS SOBRE RELAÇÕES ENTRE CONJUNTOS - 2ª AULA - 9º ANO
EXERCÍCIOS SOBRE RELAÇÕES ENTRE CONJUNTOS - 2ª AULA - 9º ANOEXERCÍCIOS SOBRE RELAÇÕES ENTRE CONJUNTOS - 2ª AULA - 9º ANO
EXERCÍCIOS SOBRE RELAÇÕES ENTRE CONJUNTOS - 2ª AULA - 9º ANOP Valter De Almeida Gomes
 
Exercícios monomios extra 8º ano
Exercícios monomios extra   8º anoExercícios monomios extra   8º ano
Exercícios monomios extra 8º anoAdriano Capilupe
 
Exercicios função
 Exercicios função Exercicios função
Exercicios funçãoRobson S
 
Aula 02 polígonos - exercicios
Aula 02   polígonos - exerciciosAula 02   polígonos - exercicios
Aula 02 polígonos - exerciciosJeane Carvalho
 
Exercícios de revisão funçao 1 grau
Exercícios de revisão funçao 1 grauExercícios de revisão funçao 1 grau
Exercícios de revisão funçao 1 grauiraciva
 
Potenciação e Radiciação
Potenciação e RadiciaçãoPotenciação e Radiciação
Potenciação e Radiciaçãomatechp
 
Lista de exercícios PG
Lista de exercícios PGLista de exercícios PG
Lista de exercícios PGprofederson
 
Revisão radiciação 9º qano
Revisão radiciação  9º qanoRevisão radiciação  9º qano
Revisão radiciação 9º qanoMariza Santos
 
Lista 02 exercícios de função do 1º grau (gabarito)
Lista 02 exercícios de função do 1º grau (gabarito)Lista 02 exercícios de função do 1º grau (gabarito)
Lista 02 exercícios de função do 1º grau (gabarito)Manoel Silva
 
Lista de exercícios sobre matrizes série
Lista de exercícios sobre matrizes     sérieLista de exercícios sobre matrizes     série
Lista de exercícios sobre matrizes sériejackpage
 
51582839 caderno-de-exercicios-de-matematica-basica
51582839 caderno-de-exercicios-de-matematica-basica51582839 caderno-de-exercicios-de-matematica-basica
51582839 caderno-de-exercicios-de-matematica-basicaSimone Belorte de Andrade
 
I lista de exercícios de matemática 7ano - gabarito
I lista de exercícios de matemática   7ano - gabaritoI lista de exercícios de matemática   7ano - gabarito
I lista de exercícios de matemática 7ano - gabaritojonihson
 
Lista exercicios 9º ano 1º bimestre
Lista exercicios 9º ano 1º bimestreLista exercicios 9º ano 1º bimestre
Lista exercicios 9º ano 1º bimestreRafael Marques
 
Mat fatoracao algebrica exercicios resolvidos
Mat fatoracao algebrica exercicios resolvidosMat fatoracao algebrica exercicios resolvidos
Mat fatoracao algebrica exercicios resolvidostrigono_metria
 

Was ist angesagt? (20)

Eq. 2º grau
Eq. 2º grauEq. 2º grau
Eq. 2º grau
 
Lista de revisao 6ª
Lista de revisao 6ªLista de revisao 6ª
Lista de revisao 6ª
 
EXERCÍCIOS SOBRE RELAÇÕES ENTRE CONJUNTOS - 2ª AULA - 9º ANO
EXERCÍCIOS SOBRE RELAÇÕES ENTRE CONJUNTOS - 2ª AULA - 9º ANOEXERCÍCIOS SOBRE RELAÇÕES ENTRE CONJUNTOS - 2ª AULA - 9º ANO
EXERCÍCIOS SOBRE RELAÇÕES ENTRE CONJUNTOS - 2ª AULA - 9º ANO
 
Exercícios monomios extra 8º ano
Exercícios monomios extra   8º anoExercícios monomios extra   8º ano
Exercícios monomios extra 8º ano
 
Exercicios função
 Exercicios função Exercicios função
Exercicios função
 
Aula 02 polígonos - exercicios
Aula 02   polígonos - exerciciosAula 02   polígonos - exercicios
Aula 02 polígonos - exercicios
 
Prova 8º ano b e c
Prova 8º ano b e cProva 8º ano b e c
Prova 8º ano b e c
 
Provas 9º ano
Provas 9º anoProvas 9º ano
Provas 9º ano
 
Exercícios de revisão funçao 1 grau
Exercícios de revisão funçao 1 grauExercícios de revisão funçao 1 grau
Exercícios de revisão funçao 1 grau
 
Potenciação e Radiciação
Potenciação e RadiciaçãoPotenciação e Radiciação
Potenciação e Radiciação
 
Lista de exercícios PG
Lista de exercícios PGLista de exercícios PG
Lista de exercícios PG
 
Reforco matematica-em-radiciacao-atividade-5
Reforco matematica-em-radiciacao-atividade-5Reforco matematica-em-radiciacao-atividade-5
Reforco matematica-em-radiciacao-atividade-5
 
Revisão radiciação 9º qano
Revisão radiciação  9º qanoRevisão radiciação  9º qano
Revisão radiciação 9º qano
 
Exercicios prismas
Exercicios prismasExercicios prismas
Exercicios prismas
 
Lista 02 exercícios de função do 1º grau (gabarito)
Lista 02 exercícios de função do 1º grau (gabarito)Lista 02 exercícios de função do 1º grau (gabarito)
Lista 02 exercícios de função do 1º grau (gabarito)
 
Lista de exercícios sobre matrizes série
Lista de exercícios sobre matrizes     sérieLista de exercícios sobre matrizes     série
Lista de exercícios sobre matrizes série
 
51582839 caderno-de-exercicios-de-matematica-basica
51582839 caderno-de-exercicios-de-matematica-basica51582839 caderno-de-exercicios-de-matematica-basica
51582839 caderno-de-exercicios-de-matematica-basica
 
I lista de exercícios de matemática 7ano - gabarito
I lista de exercícios de matemática   7ano - gabaritoI lista de exercícios de matemática   7ano - gabarito
I lista de exercícios de matemática 7ano - gabarito
 
Lista exercicios 9º ano 1º bimestre
Lista exercicios 9º ano 1º bimestreLista exercicios 9º ano 1º bimestre
Lista exercicios 9º ano 1º bimestre
 
Mat fatoracao algebrica exercicios resolvidos
Mat fatoracao algebrica exercicios resolvidosMat fatoracao algebrica exercicios resolvidos
Mat fatoracao algebrica exercicios resolvidos
 

Andere mochten auch

Lista de exercícios equações irracionais - II unidade
Lista de exercícios   equações irracionais - II unidadeLista de exercícios   equações irracionais - II unidade
Lista de exercícios equações irracionais - II unidadeCinthia Oliveira Brito da Silva
 
Lista de exercícios II Unidade - equações irracionais
Lista de exercícios   II Unidade - equações irracionaisLista de exercícios   II Unidade - equações irracionais
Lista de exercícios II Unidade - equações irracionaisCinthia Oliveira Brito da Silva
 
Conjunto Numéricos (Exercício)
Conjunto Numéricos (Exercício)Conjunto Numéricos (Exercício)
Conjunto Numéricos (Exercício)Danilo Siqueira
 
Conjuntos operações com conjuntos- 2012 - parte -03 de 04
Conjuntos   operações com conjuntos- 2012  - parte -03 de 04Conjuntos   operações com conjuntos- 2012  - parte -03 de 04
Conjuntos operações com conjuntos- 2012 - parte -03 de 04Carlos Eduardo Rigoti
 
Lista com gabarito Equações fracionárias, biquadradas e irracionais
Lista com gabarito Equações fracionárias, biquadradas e irracionaisLista com gabarito Equações fracionárias, biquadradas e irracionais
Lista com gabarito Equações fracionárias, biquadradas e irracionaisAndréia Rodrigues
 
Conjuntos operações com conjuntos- etc - fevereiro 2010 - parte -04 de 04
Conjuntos   operações com conjuntos- etc - fevereiro 2010  - parte -04 de 04Conjuntos   operações com conjuntos- etc - fevereiro 2010  - parte -04 de 04
Conjuntos operações com conjuntos- etc - fevereiro 2010 - parte -04 de 04Carlos Eduardo Rigoti
 
Conjuntos relacoes funcoes
Conjuntos relacoes funcoesConjuntos relacoes funcoes
Conjuntos relacoes funcoesFelipe Bugov
 
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 2
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 2MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 2
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 2Alexander Mayer
 
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 3
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 3MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 3
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 3Alexander Mayer
 
Razão, proporção, escalas (explicação da matéria)
Razão, proporção, escalas (explicação da matéria)Razão, proporção, escalas (explicação da matéria)
Razão, proporção, escalas (explicação da matéria)Afonso Sousa
 
Exercicio De ProporçãO Com Gabarito
Exercicio De ProporçãO Com GabaritoExercicio De ProporçãO Com Gabarito
Exercicio De ProporçãO Com Gabaritoguesta4929b
 
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 4
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 4MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 4
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 4Alexander Mayer
 
Apostila 001 razão, proporção, regra de três e porcentagem
Apostila  001 razão, proporção, regra de três e porcentagemApostila  001 razão, proporção, regra de três e porcentagem
Apostila 001 razão, proporção, regra de três e porcentagemcon_seguir
 
RELAÇÕES MÉTRICAS NO TRIÂNGULO RETÂNGULO
RELAÇÕES MÉTRICAS NO TRIÂNGULO RETÂNGULORELAÇÕES MÉTRICAS NO TRIÂNGULO RETÂNGULO
RELAÇÕES MÉTRICAS NO TRIÂNGULO RETÂNGULOe.lribeiro
 
4 - 2014 razão proporção porcentagem e regra de 3
4 - 2014 razão proporção porcentagem e regra de 34 - 2014 razão proporção porcentagem e regra de 3
4 - 2014 razão proporção porcentagem e regra de 3Milton Henrique do Couto Neto
 

Andere mochten auch (20)

Lista de exercícios equações irracionais - II unidade
Lista de exercícios   equações irracionais - II unidadeLista de exercícios   equações irracionais - II unidade
Lista de exercícios equações irracionais - II unidade
 
Função composta
Função compostaFunção composta
Função composta
 
Lista de exercícios II Unidade - equações irracionais
Lista de exercícios   II Unidade - equações irracionaisLista de exercícios   II Unidade - equações irracionais
Lista de exercícios II Unidade - equações irracionais
 
Conjunto2
Conjunto2Conjunto2
Conjunto2
 
Conjunto Numéricos (Exercício)
Conjunto Numéricos (Exercício)Conjunto Numéricos (Exercício)
Conjunto Numéricos (Exercício)
 
Conjuntos operações com conjuntos- 2012 - parte -03 de 04
Conjuntos   operações com conjuntos- 2012  - parte -03 de 04Conjuntos   operações com conjuntos- 2012  - parte -03 de 04
Conjuntos operações com conjuntos- 2012 - parte -03 de 04
 
Lista com gabarito Equações fracionárias, biquadradas e irracionais
Lista com gabarito Equações fracionárias, biquadradas e irracionaisLista com gabarito Equações fracionárias, biquadradas e irracionais
Lista com gabarito Equações fracionárias, biquadradas e irracionais
 
Conjuntos operações com conjuntos- etc - fevereiro 2010 - parte -04 de 04
Conjuntos   operações com conjuntos- etc - fevereiro 2010  - parte -04 de 04Conjuntos   operações com conjuntos- etc - fevereiro 2010  - parte -04 de 04
Conjuntos operações com conjuntos- etc - fevereiro 2010 - parte -04 de 04
 
Funções
FunçõesFunções
Funções
 
Conjuntos relacoes funcoes
Conjuntos relacoes funcoesConjuntos relacoes funcoes
Conjuntos relacoes funcoes
 
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 2
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 2MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 2
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 2
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 3
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 3MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 3
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 3
 
Prova de razões e proporções
Prova de razões e proporçõesProva de razões e proporções
Prova de razões e proporções
 
Razão, proporção, escalas (explicação da matéria)
Razão, proporção, escalas (explicação da matéria)Razão, proporção, escalas (explicação da matéria)
Razão, proporção, escalas (explicação da matéria)
 
Exercicio De ProporçãO Com Gabarito
Exercicio De ProporçãO Com GabaritoExercicio De ProporçãO Com Gabarito
Exercicio De ProporçãO Com Gabarito
 
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 4
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 4MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 4
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 4
 
Apostila 001 razão, proporção, regra de três e porcentagem
Apostila  001 razão, proporção, regra de três e porcentagemApostila  001 razão, proporção, regra de três e porcentagem
Apostila 001 razão, proporção, regra de três e porcentagem
 
RELAÇÕES MÉTRICAS NO TRIÂNGULO RETÂNGULO
RELAÇÕES MÉTRICAS NO TRIÂNGULO RETÂNGULORELAÇÕES MÉTRICAS NO TRIÂNGULO RETÂNGULO
RELAÇÕES MÉTRICAS NO TRIÂNGULO RETÂNGULO
 
4 - 2014 razão proporção porcentagem e regra de 3
4 - 2014 razão proporção porcentagem e regra de 34 - 2014 razão proporção porcentagem e regra de 3
4 - 2014 razão proporção porcentagem e regra de 3
 

Ähnlich wie Exercicios basicos conjuntos numéricos

Doc matematica _687904612
Doc matematica _687904612Doc matematica _687904612
Doc matematica _687904612Manuel Lucrecio
 
9 ano-funcoes-do-2-grau-equacoes-biquadradas-equacoes-irracionais
9 ano-funcoes-do-2-grau-equacoes-biquadradas-equacoes-irracionais9 ano-funcoes-do-2-grau-equacoes-biquadradas-equacoes-irracionais
9 ano-funcoes-do-2-grau-equacoes-biquadradas-equacoes-irracionaiscristinaeguga
 
Prof robsonlistaeq2graurevprova2012
Prof robsonlistaeq2graurevprova2012Prof robsonlistaeq2graurevprova2012
Prof robsonlistaeq2graurevprova2012Mardson Pimenta
 
Exercicios
ExerciciosExercicios
Exerciciosnosbier
 
Retomada de objetivos do 1º trimestre 2013
Retomada de objetivos do 1º trimestre 2013Retomada de objetivos do 1º trimestre 2013
Retomada de objetivos do 1º trimestre 2013iraciva
 
Exercicios resolvidos
Exercicios resolvidosExercicios resolvidos
Exercicios resolvidostexa0111
 
Ita2009 3dia
Ita2009 3diaIta2009 3dia
Ita2009 3diacavip
 
Hl lista segundo grau 23
Hl lista segundo grau 23Hl lista segundo grau 23
Hl lista segundo grau 23celiomelosouza
 
Matematica 2 grau (reparado)
Matematica 2 grau (reparado)Matematica 2 grau (reparado)
Matematica 2 grau (reparado)Aldenor Jovino
 
resumo Função do 2 grau
 resumo Função do 2 grau resumo Função do 2 grau
resumo Função do 2 grauCelia Lana
 
L mat03(estudo.com)
L mat03(estudo.com)L mat03(estudo.com)
L mat03(estudo.com)Arthur Prata
 
Equações do 2º grau completas
Equações do 2º grau completasEquações do 2º grau completas
Equações do 2º grau completasClaudemir Favin
 
Lista funcao quadratica
Lista funcao quadraticaLista funcao quadratica
Lista funcao quadraticalittlevic4
 
Função quadrática 10º exercicios
Função quadrática 10º exerciciosFunção quadrática 10º exercicios
Função quadrática 10º exerciciosAna Tapadinhas
 
Conteúdo de matemática 8o ano
Conteúdo de matemática 8o anoConteúdo de matemática 8o ano
Conteúdo de matemática 8o anoMichele Boulanger
 

Ähnlich wie Exercicios basicos conjuntos numéricos (20)

Doc matematica _687904612
Doc matematica _687904612Doc matematica _687904612
Doc matematica _687904612
 
9 ano-funcoes-do-2-grau-equacoes-biquadradas-equacoes-irracionais
9 ano-funcoes-do-2-grau-equacoes-biquadradas-equacoes-irracionais9 ano-funcoes-do-2-grau-equacoes-biquadradas-equacoes-irracionais
9 ano-funcoes-do-2-grau-equacoes-biquadradas-equacoes-irracionais
 
Prof robsonlistaeq2graurevprova2012
Prof robsonlistaeq2graurevprova2012Prof robsonlistaeq2graurevprova2012
Prof robsonlistaeq2graurevprova2012
 
Prof robsonlistaeq2graurevprova2012
Prof robsonlistaeq2graurevprova2012Prof robsonlistaeq2graurevprova2012
Prof robsonlistaeq2graurevprova2012
 
Exercicios
ExerciciosExercicios
Exercicios
 
Retomada de objetivos do 1º trimestre 2013
Retomada de objetivos do 1º trimestre 2013Retomada de objetivos do 1º trimestre 2013
Retomada de objetivos do 1º trimestre 2013
 
Equacoes grau
Equacoes  grauEquacoes  grau
Equacoes grau
 
Ft eq do 2º grau
Ft eq do 2º grauFt eq do 2º grau
Ft eq do 2º grau
 
Exercicios resolvidos
Exercicios resolvidosExercicios resolvidos
Exercicios resolvidos
 
Ita2009 3dia
Ita2009 3diaIta2009 3dia
Ita2009 3dia
 
Hl lista segundo grau 23
Hl lista segundo grau 23Hl lista segundo grau 23
Hl lista segundo grau 23
 
Matematica 2 grau (reparado)
Matematica 2 grau (reparado)Matematica 2 grau (reparado)
Matematica 2 grau (reparado)
 
resumo Função do 2 grau
 resumo Função do 2 grau resumo Função do 2 grau
resumo Função do 2 grau
 
L mat03(estudo.com)
L mat03(estudo.com)L mat03(estudo.com)
L mat03(estudo.com)
 
Equações do 2º grau completas
Equações do 2º grau completasEquações do 2º grau completas
Equações do 2º grau completas
 
Lista funcao quadratica
Lista funcao quadraticaLista funcao quadratica
Lista funcao quadratica
 
Função quadrática 10º exercicios
Função quadrática 10º exerciciosFunção quadrática 10º exercicios
Função quadrática 10º exercicios
 
1 lista 1 tri - 9 ano
1 lista   1 tri - 9 ano1 lista   1 tri - 9 ano
1 lista 1 tri - 9 ano
 
1 lista 1 tri - 9 ano
1 lista   1 tri - 9 ano1 lista   1 tri - 9 ano
1 lista 1 tri - 9 ano
 
Conteúdo de matemática 8o ano
Conteúdo de matemática 8o anoConteúdo de matemática 8o ano
Conteúdo de matemática 8o ano
 

Mehr von André Luís Nogueira

Trigonometria senos - cossenos e tangentes
Trigonometria   senos - cossenos e tangentesTrigonometria   senos - cossenos e tangentes
Trigonometria senos - cossenos e tangentesAndré Luís Nogueira
 
Lista de-exercacios-notacao-cientifica
Lista de-exercacios-notacao-cientificaLista de-exercacios-notacao-cientifica
Lista de-exercacios-notacao-cientificaAndré Luís Nogueira
 
Lei dos-senos-e-lei-dos-cossenos-aula-07
Lei dos-senos-e-lei-dos-cossenos-aula-07Lei dos-senos-e-lei-dos-cossenos-aula-07
Lei dos-senos-e-lei-dos-cossenos-aula-07André Luís Nogueira
 
Exercicios+de+notacao+cientifica[1] +com+gabarito
Exercicios+de+notacao+cientifica[1] +com+gabaritoExercicios+de+notacao+cientifica[1] +com+gabarito
Exercicios+de+notacao+cientifica[1] +com+gabaritoAndré Luís Nogueira
 
Exercícios resolvidos sobre fatoração de polinômios
Exercícios resolvidos sobre fatoração de polinômiosExercícios resolvidos sobre fatoração de polinômios
Exercícios resolvidos sobre fatoração de polinômiosAndré Luís Nogueira
 
Exercícios resolvidos de problemas de equações do 2º grau
Exercícios resolvidos de problemas de equações do 2º grauExercícios resolvidos de problemas de equações do 2º grau
Exercícios resolvidos de problemas de equações do 2º grauAndré Luís Nogueira
 
Exercícios resolvidos de polinômios, produtos notáveis
Exercícios resolvidos de polinômios, produtos notáveisExercícios resolvidos de polinômios, produtos notáveis
Exercícios resolvidos de polinômios, produtos notáveisAndré Luís Nogueira
 
Exercícios de razões trigonométricas
Exercícios de razões trigonométricasExercícios de razões trigonométricas
Exercícios de razões trigonométricasAndré Luís Nogueira
 

Mehr von André Luís Nogueira (18)

Trigonometria senos - cossenos e tangentes
Trigonometria   senos - cossenos e tangentesTrigonometria   senos - cossenos e tangentes
Trigonometria senos - cossenos e tangentes
 
Notação científica completo
Notação científica   completoNotação científica   completo
Notação científica completo
 
Matematica unidade 08_seja
Matematica unidade 08_sejaMatematica unidade 08_seja
Matematica unidade 08_seja
 
Lista de-exercacios-notacao-cientifica
Lista de-exercacios-notacao-cientificaLista de-exercacios-notacao-cientifica
Lista de-exercacios-notacao-cientifica
 
Lei dos-senos-e-lei-dos-cossenos-aula-07
Lei dos-senos-e-lei-dos-cossenos-aula-07Lei dos-senos-e-lei-dos-cossenos-aula-07
Lei dos-senos-e-lei-dos-cossenos-aula-07
 
Funções trigonométricas
Funções trigonométricasFunções trigonométricas
Funções trigonométricas
 
Exercicios+de+notacao+cientifica[1] +com+gabarito
Exercicios+de+notacao+cientifica[1] +com+gabaritoExercicios+de+notacao+cientifica[1] +com+gabarito
Exercicios+de+notacao+cientifica[1] +com+gabarito
 
Exercícios resolvidos sobre fatoração de polinômios
Exercícios resolvidos sobre fatoração de polinômiosExercícios resolvidos sobre fatoração de polinômios
Exercícios resolvidos sobre fatoração de polinômios
 
Exercícios resolvidos de problemas de equações do 2º grau
Exercícios resolvidos de problemas de equações do 2º grauExercícios resolvidos de problemas de equações do 2º grau
Exercícios resolvidos de problemas de equações do 2º grau
 
Exercícios resolvidos de polinômios, produtos notáveis
Exercícios resolvidos de polinômios, produtos notáveisExercícios resolvidos de polinômios, produtos notáveis
Exercícios resolvidos de polinômios, produtos notáveis
 
Exercícios de razões trigonométricas
Exercícios de razões trigonométricasExercícios de razões trigonométricas
Exercícios de razões trigonométricas
 
Equações trigronométricas
Equações trigronométricasEquações trigronométricas
Equações trigronométricas
 
Equações e funções exponenciais
Equações e funções exponenciaisEquações e funções exponenciais
Equações e funções exponenciais
 
Equações de 2 grau funções
Equações de 2 grau   funçõesEquações de 2 grau   funções
Equações de 2 grau funções
 
Equações de 1 grau
Equações de 1 grauEquações de 1 grau
Equações de 1 grau
 
Conjuntos numericos
Conjuntos numericosConjuntos numericos
Conjuntos numericos
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
 
Trigonometria básica
Trigonometria básicaTrigonometria básica
Trigonometria básica
 

Kürzlich hochgeladen

Texto dramático com Estrutura e exemplos.ppt
Texto dramático com Estrutura e exemplos.pptTexto dramático com Estrutura e exemplos.ppt
Texto dramático com Estrutura e exemplos.pptjricardo76
 
Sistema de Bibliotecas UCS - Cantos do fim do século
Sistema de Bibliotecas UCS  - Cantos do fim do séculoSistema de Bibliotecas UCS  - Cantos do fim do século
Sistema de Bibliotecas UCS - Cantos do fim do séculoBiblioteca UCS
 
Artigo Científico - Estrutura e Formatação.ppt
Artigo Científico - Estrutura e Formatação.pptArtigo Científico - Estrutura e Formatação.ppt
Artigo Científico - Estrutura e Formatação.pptRogrioGonalves41
 
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...azulassessoria9
 
Tema de redação - As dificuldades para barrar o casamento infantil no Brasil ...
Tema de redação - As dificuldades para barrar o casamento infantil no Brasil ...Tema de redação - As dificuldades para barrar o casamento infantil no Brasil ...
Tema de redação - As dificuldades para barrar o casamento infantil no Brasil ...AnaAugustaLagesZuqui
 
Poesiamodernismo fase dois. 1930 prosa e poesiapptx
Poesiamodernismo fase dois. 1930 prosa e poesiapptxPoesiamodernismo fase dois. 1930 prosa e poesiapptx
Poesiamodernismo fase dois. 1930 prosa e poesiapptxPabloGabrielKdabra
 
Cartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptxCartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptxMarcosLemes28
 
LENDA DA MANDIOCA - leitura e interpretação
LENDA DA MANDIOCA - leitura e interpretaçãoLENDA DA MANDIOCA - leitura e interpretação
LENDA DA MANDIOCA - leitura e interpretaçãoLidianePaulaValezi
 
Camadas da terra -Litosfera conteúdo 6º ano
Camadas da terra -Litosfera  conteúdo 6º anoCamadas da terra -Litosfera  conteúdo 6º ano
Camadas da terra -Litosfera conteúdo 6º anoRachel Facundo
 
Aula prática JOGO-Regencia-Verbal-e-Nominal.pdf
Aula prática JOGO-Regencia-Verbal-e-Nominal.pdfAula prática JOGO-Regencia-Verbal-e-Nominal.pdf
Aula prática JOGO-Regencia-Verbal-e-Nominal.pdfKarinaSouzaCorreiaAl
 
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdfTCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdfamarianegodoi
 
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptxSlides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptxLuizHenriquedeAlmeid6
 
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptxResponde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptxAntonioVieira539017
 
aula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.pptaula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.pptssuser2b53fe
 
Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM POLÍGON...
Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM  POLÍGON...Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM  POLÍGON...
Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM POLÍGON...marcelafinkler
 
Plano de aula Nova Escola períodos simples e composto parte 1.pptx
Plano de aula Nova Escola períodos simples e composto parte 1.pptxPlano de aula Nova Escola períodos simples e composto parte 1.pptx
Plano de aula Nova Escola períodos simples e composto parte 1.pptxPaulaYaraDaasPedro
 
O que é arte. Definição de arte. História da arte.
O que é arte. Definição de arte. História da arte.O que é arte. Definição de arte. História da arte.
O que é arte. Definição de arte. História da arte.denisecompasso2
 
Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...
Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...
Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...MariaCristinaSouzaLe1
 
QUIZ ensino fundamental 8º ano revisão geral
QUIZ ensino fundamental 8º ano revisão geralQUIZ ensino fundamental 8º ano revisão geral
QUIZ ensino fundamental 8º ano revisão geralAntonioVieira539017
 
Monoteísmo, Politeísmo, Panteísmo 7 ANO2.pptx
Monoteísmo, Politeísmo, Panteísmo 7 ANO2.pptxMonoteísmo, Politeísmo, Panteísmo 7 ANO2.pptx
Monoteísmo, Politeísmo, Panteísmo 7 ANO2.pptxFlviaGomes64
 

Kürzlich hochgeladen (20)

Texto dramático com Estrutura e exemplos.ppt
Texto dramático com Estrutura e exemplos.pptTexto dramático com Estrutura e exemplos.ppt
Texto dramático com Estrutura e exemplos.ppt
 
Sistema de Bibliotecas UCS - Cantos do fim do século
Sistema de Bibliotecas UCS  - Cantos do fim do séculoSistema de Bibliotecas UCS  - Cantos do fim do século
Sistema de Bibliotecas UCS - Cantos do fim do século
 
Artigo Científico - Estrutura e Formatação.ppt
Artigo Científico - Estrutura e Formatação.pptArtigo Científico - Estrutura e Formatação.ppt
Artigo Científico - Estrutura e Formatação.ppt
 
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
 
Tema de redação - As dificuldades para barrar o casamento infantil no Brasil ...
Tema de redação - As dificuldades para barrar o casamento infantil no Brasil ...Tema de redação - As dificuldades para barrar o casamento infantil no Brasil ...
Tema de redação - As dificuldades para barrar o casamento infantil no Brasil ...
 
Poesiamodernismo fase dois. 1930 prosa e poesiapptx
Poesiamodernismo fase dois. 1930 prosa e poesiapptxPoesiamodernismo fase dois. 1930 prosa e poesiapptx
Poesiamodernismo fase dois. 1930 prosa e poesiapptx
 
Cartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptxCartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptx
 
LENDA DA MANDIOCA - leitura e interpretação
LENDA DA MANDIOCA - leitura e interpretaçãoLENDA DA MANDIOCA - leitura e interpretação
LENDA DA MANDIOCA - leitura e interpretação
 
Camadas da terra -Litosfera conteúdo 6º ano
Camadas da terra -Litosfera  conteúdo 6º anoCamadas da terra -Litosfera  conteúdo 6º ano
Camadas da terra -Litosfera conteúdo 6º ano
 
Aula prática JOGO-Regencia-Verbal-e-Nominal.pdf
Aula prática JOGO-Regencia-Verbal-e-Nominal.pdfAula prática JOGO-Regencia-Verbal-e-Nominal.pdf
Aula prática JOGO-Regencia-Verbal-e-Nominal.pdf
 
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdfTCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
 
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptxSlides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
 
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptxResponde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
 
aula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.pptaula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.ppt
 
Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM POLÍGON...
Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM  POLÍGON...Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM  POLÍGON...
Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM POLÍGON...
 
Plano de aula Nova Escola períodos simples e composto parte 1.pptx
Plano de aula Nova Escola períodos simples e composto parte 1.pptxPlano de aula Nova Escola períodos simples e composto parte 1.pptx
Plano de aula Nova Escola períodos simples e composto parte 1.pptx
 
O que é arte. Definição de arte. História da arte.
O que é arte. Definição de arte. História da arte.O que é arte. Definição de arte. História da arte.
O que é arte. Definição de arte. História da arte.
 
Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...
Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...
Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...
 
QUIZ ensino fundamental 8º ano revisão geral
QUIZ ensino fundamental 8º ano revisão geralQUIZ ensino fundamental 8º ano revisão geral
QUIZ ensino fundamental 8º ano revisão geral
 
Monoteísmo, Politeísmo, Panteísmo 7 ANO2.pptx
Monoteísmo, Politeísmo, Panteísmo 7 ANO2.pptxMonoteísmo, Politeísmo, Panteísmo 7 ANO2.pptx
Monoteísmo, Politeísmo, Panteísmo 7 ANO2.pptx
 

Exercicios basicos conjuntos numéricos

  • 1. EXERCÍCIOS BÁSICOS www.matematicapura.com.br CONJUNTOS NUMÉRICOS Exercícios resolvidos Sendo A=[1;7] e B=[3;9[, determine os conjuntos abaixo: a) Analisando as retas abaixo, constatamos que a intersecção entre A e B é dada pela área compreendida entre as retas azuis. Logo: = [3;7] b) Novamente analisando as retas, consta-se que a união entre A e B é dada pela área compreendida entre as retas vermelhas, não contando 9, pois [3;9[ Logo: = [1;9[ Representar na reta real os intervalos: a) [1;7] b) [3;9[ Veja que o ponto 9 não estar incluído.
  • 2. EXERCÍCIOS BÁSICOS www.matematicapura.com.br 1) Sendo A=]-1;3] e B=[3;5[, determine: a) b) 2) Sendo A=[1;4] e B=]-1;2], determine: a) b) 3) Represente na reta real os seguintes intervalos: a) ]-3;4] b) [1;4] c) [2; [ d) ]- ;1] CÁLCULO ALGÉBRICO 1) Calcular: Exemplo: (3x²+2x-1) + (-2x²+4x+2) = 3x²+2x-1-2x²+4x+2 = x²+6x+1 a) (3a-2b+c) + (-6a-b-2c) + (2a+3b-c) b) (3x²-1/3) - (6x²-4/5) c) (2a-3ab+5b) - (-a-ab+2b) 2) Efetue e simplifique: Exemplo: (2x+3).(4x+1) = 8x²+2x+12x+3 = 8x²+14x+3 a) (2a+3b).(5a-b) b) (x-y).(x²-xy+y²) c) (3x-y).(3x+y).(2x-y) 3) Simplifique: Exemplo: 10x³y²/5x²y = 2xy a) 8a³b²/2ab²
  • 3. EXERCÍCIOS BÁSICOS www.matematicapura.com.br b) 4a³-2a²+8a / 2a c) 18x³y²/6x²y³ 4) (Fuvest) O valor da expressão a³-3a²x²y², para a=10, x=3 e y=1 é: (a) 100 (b) 50 (c) 250 (d) -150 (e) -200 5) (Fuvest) Se A=(x-y)/xy, x=2/5 e y=1/2, então A é igual a: (a) -0,1 (b) 0,2 (c) -0,3 (d) 0,4 (e) -0,5 Respostas dos testes: 4)E, 5)E PRODUTOS NOTÁVEIS 1) Calcule os produtos notáveis: a) (a+2)(a-2) b) (xy+3z)(xy-3z) c) (x²-4y)(x²+4y) d) e) (x+3)² f) (2a-5)² g) (2xy+4)² h) i) (x+4)³ j) (2a+b)³ l) (a-1)³ Exercício resolvido: Calcule 41.39 usando um produto notável. (40+1)(40-1) = 40² -1² = 1.599 2) Calcule 101.99 usando um produto notável.
  • 4. EXERCÍCIOS BÁSICOS www.matematicapura.com.br FATORAÇÃO 1) Fatorar, colocando os fatores comuns em evidência: Exemplos: ax+2a = a(x+2) a²-b² = (a+b)(a-b) a² - 4ab + 4b² = (a-2b)² 2x²-2 = 2(x²-1) = 2(x+1)(x-1) a) 3ax-7ay b) x³ -x² + x c) x³y² + x²y² + xy² d) a²b² - ab³ e) a² + ab + ac + bc f) x² - b² g) x²-25 h) (x²/9 - y²/16) i) x² + 4x + 4 j) a² + 6ab + 9b² l) 144x²-1 m) ab + ac + 10b + 10c n) 4a² - 4 o) x³y - xy³ p) x² + 16x + 64 q) 2x² + 4x + 2 r) ax³ + 2a²x² + a³x Resolução do exercício (e) a² + ab + ac + bc = a.(a+b) + c.(a+b) = (a+b).(a+c)
  • 5. EXERCÍCIOS BÁSICOS www.matematicapura.com.br FRAÇÕES ALGÉBRICAS 1) Ache o mínimo múltiplo comum (mmc) de: a) (x²-9) e (x²+6x+9) b) (x²+x), (x²-x) e (x³-x) c) (x²-4), (x²-4x+4) e (x²+4x+4) 2) Simplificar: a) b) c) d) 3) Efetuar: a) b) 4) Efetuar as multiplicações: a) b) c) d)
  • 6. EXERCÍCIOS BÁSICOS www.matematicapura.com.br e) 5) Efetuar as divisões: a) b) c) d) EQUAÇÃO DO 1º GRAU 1) Resolva as seguinte equações: Exemplo: 2(2x+7) + 3(3x-5) = 3(4x+5) -1 Aplicando a propriedade distributiva: 4x+14+9x-15=12x+15-1 4x+9x-12x=15-1+15-14 x=15 Portanto V={15} a) 2x-3=17 b) 4x+7=x-8 c) 3-7(1-2x)=5-(x-9) d) 3-7(1-2x)=5-(x-9) e) [Sugestão]: Ache o mmc e elimine o denominador f) g) Respostas: (e)1; f)2/7; g)15/2
  • 7. EXERCÍCIOS BÁSICOS www.matematicapura.com.br SISTEMAS DE EQUAÇÕES 1) Resolver os seguintes sistemas: a) b) c) d) 2) Problemas com sistemas já montados: a) Em um terreiro há galinhas e coelhos, num total de 23 animais e 82 pés. Quantas são as galinhas e os coelhos? x+y=23 2x+4y=82 b) A soma das idades de duas pessoas é 25 anos e a diferença entre essas idades é de 13 anos. Qual a idade de cada uma? x+y=25 x-y=13 c) A soma de dois números é 50 e o maior deles é igual ao dobro do menor, menos 1. Quais são os números? x+y=50 x=2y-1 d) Duas pessoas ganharam juntas, 50 reais por um trabalho e uma delas ganhou 25% do que a outra. Quanto ganhou cada pessoa? x+y=50 x=1/4y e) O preço de uma caneta é o dobro do preço de uma lapiseira e duas canetas juntas custam 30. Qual o preço da caneta e da lapiseira? x=2y x+y=30 3) (Fuvest) Um copo cheio de água pesa 325g. Se jogarmos metade da água fora, seu peso cai para 180g. O peso do copo vazio é? (A) 20g
  • 8. EXERCÍCIOS BÁSICOS www.matematicapura.com.br (B) 25g (C) 35g (D) 40g (E) 45g 4) (F.C.CHAGAS) Somando-se os 2/3 de um número x como os 3/5 do número y, obtém-se 84. Se o número x é metade do número y, então a diferença y-x é igual a: (A) 18 (B) 25 (C) 30 (D) 45 (E) 60 Respostas dos testes: 3)C, 4)D RAÍZES E RADICAIS 1) Dê o valor de cada radical no campo dos número reais. Caso não exista, escreva: não existe. a) h) b) i) c) j) d) l) e) m) f) n) g) o) Não existem: (b), (h)
  • 9. EXERCÍCIOS BÁSICOS www.matematicapura.com.br 2) Aplicação das propriedades: Exemplo 1: a) b) c) d) [Nota]: 25 = 5² e) Exemplo 2: f) g) [Nota]: h) i) j) Exemplo 3: l) m) n)
  • 10. EXERCÍCIOS BÁSICOS www.matematicapura.com.br Exemplos 4: ; o) p) q) r) Exemplo 5: s) t) Exemplo 6: u) v) x) z) Exemplo 7: a`) b`)
  • 11. EXERCÍCIOS BÁSICOS www.matematicapura.com.br c`) d`) Exemplos 8: e`) f`) g`) h`) i`) POTENCIAÇÃO 1) Efetuar, observando as definições e propriedades: a) (-2)³ i) b) j) (0,5)³ c) 500¹ l) 15¹ d) 100º m) e) 0³ n) f) 0º o) g) p) h) q)
  • 12. EXERCÍCIOS BÁSICOS www.matematicapura.com.br 2) (Fuvest) O valor de , é: (a) 0,0264 (b) 0,0336 (c) 0,1056 (d) 0,2568 (e) 0,6256 3) (Fei) O valor da expressão é: (a) -5/6 (b) 5/6 (c) 1 (d) -5/3 (e) -5/2 4) (UECE) O valor de é (a) -15/17 (b) -16/17 (c) -15/16 (d) -17/16 5) (F.C. CHAGAS) Simplificando-se a expressão , obtém- se: (a) 0,16 (b) 0,24 (c) 1,12 (d) 1,16 (e) 1,24 Respostas dos testes: 2) B; 3) E; 4)B; 5) D RACIONALIZAÇÃO 1) Racionalize o denominador de cada fração: a) p) b) q)
  • 13. EXERCÍCIOS BÁSICOS www.matematicapura.com.br c) r) d) s) e) t) f) u) g) v) h) w) i) x) j) y) k) z) l) a`) m) b`)
  • 14. EXERCÍCIOS BÁSICOS www.matematicapura.com.br n) c`) o) d`) 2) (Fuvest) (a) (b) (c) (d) (e) Resp: 2)D EQUAÇÃO DO 2º GRAU 1) Complete o quadro conforme o exemplo: Equação Coeficientes a b c 6x²-3x+1=0 6 -3 1 -3x²=5/2+4x y²=5y 6x²=0 2) Determine as raízes das seguintes equações: a) x²-3x+2=0 b) 2y²-14y+12=0
  • 15. EXERCÍCIOS BÁSICOS www.matematicapura.com.br c) -x²+7x-10=0 d) 5x²-x+7=0 e) y²-25=0 f) x²-1/4=0 g) 5x²-10x=0 h) 5+x²=9 i) 7x²-3x=4x+x² j) z²-8z+12 = 0 2) Determine o valor de k nas equações, de modo que: a) x² - 12x + k = 0 , tenha duas raízes reais e iguais b) 2x² - 6x +3k = 0, não tenha raízes reais c) x² + kx + 4 = 0, tenha raízes reais e iguais d) kx² - 2(k+1)x + (k+5) = 0, tenha duas raízes reais e diferentes. 3) Complete o quadro: Lembre-se: Soma das raízes de uma equação do 2º grau = - b/a Produto das raízes de uma equação do 2º grau = c/a Equação Soma das raízes Produto das raízes x² - 6x + 9 = 0 6 9 x² - 2x + 3 = 0 2x² + 5x - 8 = 0 x² + 5x -24=0 -5 24 5 -6 -6 -3 4) Dê o conjunto solução das seguintes equações fracionárias: a) b) c)
  • 16. EXERCÍCIOS BÁSICOS www.matematicapura.com.br d) e) f) 5) Dê o conjunto solução das seguintes equações literais: a) x² - (a+1) + x = 0 b) x² - (a+m) + am = 0 c) y² - by - 2b³ = 0 d) ax² - (a²+1) + a = 0 e) x² - 3rx + 2r² = 0 6) Dê o conjunto solução das seguintes equações biquadradas: a) b) c) d) e) 7) Resolução de equações irracionais: Primeiramente devemos eliminar o radical Eleve ambos os membros ao quadrado para eliminar o radical Exemplo: x - 1 = x² - 6x + 9
  • 17. EXERCÍCIOS BÁSICOS www.matematicapura.com.br x² - 7x +10 = 0 Aplicando a fórmula de Bháskara, encontramos as raízes x=5, x`=2 Verificação: Substitua os valores das raízes em ambos os membros e verifiquem se a igualdade é satisfeita Para x=5 1º membro: 2º membro: x-3 = 5-3 = 2 Como o 1º membro é igual ao 2º membro, X1=5 é solução da equação. Para X2=2 1º membro: 2º membro: x-3 = 2-3 = -1 Como o 1º membro é diferente do 2º membro, x`=2 não é solução da equação Portanto, V={5} Nunca se esqueçam de fazer a verificação... a) b) c) d) e) 8) (UFSC) A soma das raízes da equação x²-28/6 = 7x/2 - x/2 é? Resposta: 8) 11
  • 18. EXERCÍCIOS BÁSICOS www.matematicapura.com.br FUNÇÃO DO 1º GRAU 1) Represente graficamente a função definida por: a) f(x) = 2x-1 b) f(x) = -1/2x+3 c) f(x) = 4x d) f(x) = 1/3x+2 e) f(x) = -3x+6 2) Determine a raiz ou zero de cada uma das seguintes equações: a) f(x) = 2x+5 b) f(x) = -x+2 c) f(x) = 1/3x+3 d) f(x) = 1-5x e) f(x) = 4x EXERCÍCIO RESOLVIDO: Determine a expressão da função representada pelo gráfico abaixo: Uma equação do 1º grau é definida por y=ax+b com Pelo gráfico, conclui-se que: Quando x=0, y=2; portanto, o valor de b na expressão é igual a 2
  • 19. EXERCÍCIOS BÁSICOS www.matematicapura.com.br Quando y=0, x=-4 (raiz ou zero da função) Substituindo os valores em y=ax+b: 0 = -4a + 2 a = 1/2 Logo, a expressão é y = 1/2x+2. 3) As figuras abaixo representam os gráficos de funções, de R em R, determine as expressões que as definem. a) b) Respostas: 3: a) y= -1/2x+2; b) y = x-1
  • 20. EXERCÍCIOS BÁSICOS www.matematicapura.com.br FUNÇÃO DO 2º GRAU 1) As equações abaixo definem funções do 2º grau. Para cada uma dessas funções, ache as coordenadas do vértice que a representa: a) f(x)= x² - 4x + 5 b) f(x)= x² +4x - 6 c) f(x)= 2x² +5x - 4 d) f(x)= -x² + 6x - 2 e) f(x)= -x² - 4x +1 2) Determine, se existirem, os zeros reais das funções seguintes: a) f(x)= 3x² - 7x + 2 b) f(x)= -x² + 3x - 4 c) f(x)= -x² + 3/2x + 1 d) f(x)= x² -4 e) f(x)= 3x² Não existe zeros em (b) 3) Construa o gráfico das seguintes funções: a) f(x)= x² - 16x + 63 b) f(x)= 2x² - 7x + 3 c) f(x)= 4x² - 4x +1 d) f(x)= -x² + 4x - 5 e) f(x)= -2x² +8x- 6 4) Em uma partida de vôlei, um jogador deu um saque em que a bola atingiu uma altura h em metros, num tempo t, em segundos, de acordo com a relação h(t) = -t² + 8t. a) Em que instante a bola atingiu a altura máxima? [Nota]: observem o vértice b) De quantos metros foi a altura máxima alcançada pela bola? c) Esboce o gráfico que represente esta situação. Respostas: 4: a)4s; b) 16m]
  • 21. EXERCÍCIOS BÁSICOS www.matematicapura.com.br PROBLEMAS Exercício resolvido: O problema clássico das torneiras Uma torneira A enche sozinha um tanque em 10h, uma torneira B, enche o mesmo tanque sozinha em 15h. Em quanta horas as duas torneiras juntas encherão o tanque? Sendo V a capacidade do tanque em 1 hora: A enche V/10 do tanque; B enche V/15 do tanque A e B enchem juntas: V/10 + V/15 = V/6 Sendo t o tempo em que as duas juntas enchem o tanque: V/6.t = V Portanto t = 6horas 1) (Fuvest) O dobro de um número, mais a sua terça parte, mais a sua quarta parte somam 31. Determine o número. 2) (Vunesp) Uma certa importância deve ser dividida entre 10 pessoas em partes iguais. Se a partilha fosse feita somente entre 8 dessas pessoas, cada uma destas receberia R$5.000,00 a mais. Calcule a importância. 3) (Unicamp) Roberto disse a Valéria: "pense um número, dobre esse número, some 12 ao resultado, divida o novo resultado por 2. Quanto deu?". Valéria disse "15", ao Roberto que imediatamente revelou o número original que Valéria havia pensado. Calcule esse número. 4) Obter dois números consecutivos inteiros cuja soma seja igual a 57. 5) (F.C.CHAGAS) Por 2/3 de um lote de peças iguais, um comerciante pagou R$8.000,00 a naus do que pagaria pelos 2/5 do mesmo lote. Qual o preço do lote todo? 6) Uma torneira gasta sozinha 20 min para encher um tanque. Outra torneira sozinha gasta 5min para encher o mesmo tanque. Em quanto tempo, as duas torneiras juntas enchem esse tanque? Respostas: 1)12; 2)R$200.000,00; 3)9; 4)28 e 29; 5) R$30.000,00; 6) 4min 7) A diferença entre o quadrado de um número e o seu dobro é 35. Qual é o número? 8) Qual é o número que, adicionado ao triplo do seu quadrado, vale 14?
  • 22. EXERCÍCIOS BÁSICOS www.matematicapura.com.br 9) A metade do quadrado de um número menos o dobro desse número é igual a 30. Determine esse número. 10) Se do quadrado de um número subtrairmos 6, o resto será 30. Qual é esse número? 11) O produto de um número positivo pela sua terça parte é igual a 12. Qual é esse número? 12) Determine dois números consecutivos ímpares cujo produto seja 195. 13) A diferença entre as idades de dois irmãos é 3 anos e o produto de suas idades é 270. Qual é a idade de cada um? 14) Qual é o número inteiro positivo cuja metade acrescida de sua terça parte é igual ao seu quadrado diminuído 134? 15) Calcule as dimensões de um retângulo de 16cm de perímetro e 15cm² de área. 16) A diferença de um número e o seu inverso é 8/3. Qual é esse número?