Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

AWS reInvent 2017 Recap Webinar

1.707 Aufrufe

Veröffentlicht am


AWS re:Invent is an annual global conference of the Amazon Web Services community held in Las Vegas. If you missed it, and couldn’t make it to AWS re:Invent 2017 Recap in Hong Kong either, don’t worry! We are going to showcase a series of newly-released services at AWS re:Invent online in this webinar! We will cover new services and features for Compute & Containers, Database, Machine Learning and Artificial Intelligence, etc. Register now to explore the new features and services announced at AWS re:Invent 2017!

  • Visit Here to Read PDF Format === http://zakuratest.com/B00DOPTACW-Special-Report-How-to-Bundle-Products-Together-on-Amazon-fo.html
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier
  • DOWNLOAD FULL BOOKS, INTO AVAILABLE FORMAT ......................................................................................................................... ......................................................................................................................... 1.DOWNLOAD FULL. PDF EBOOK here { https://tinyurl.com/y6a5rkg5 } ......................................................................................................................... 1.DOWNLOAD FULL. EPUB Ebook here { https://tinyurl.com/y6a5rkg5 } ......................................................................................................................... 1.DOWNLOAD FULL. doc Ebook here { https://tinyurl.com/y6a5rkg5 } ......................................................................................................................... 1.DOWNLOAD FULL. PDF EBOOK here { https://tinyurl.com/y6a5rkg5 } ......................................................................................................................... 1.DOWNLOAD FULL. EPUB Ebook here { https://tinyurl.com/y6a5rkg5 } ......................................................................................................................... 1.DOWNLOAD FULL. doc Ebook here { https://tinyurl.com/y6a5rkg5 } ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... .............. Browse by Genre Available eBooks ......................................................................................................................... Art, Biography, Business, Chick Lit, Children's, Christian, Classics, Comics, Contemporary, Cookbooks, Crime, Ebooks, Fantasy, Fiction, Graphic Novels, Historical Fiction, History, Horror, Humor And Comedy, Manga, Memoir, Music, Mystery, Non Fiction, Paranormal, Philosophy, Poetry, Psychology, Religion, Romance, Science, Science Fiction, Self Help, Suspense, Spirituality, Sports, Thriller, Travel, Young Adult,
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier

AWS reInvent 2017 Recap Webinar

  1. 1. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved Sze Lok CHAN Startup Business Development AWS re:Invent 2017 Recap Webinar 23rd January, 2018
  2. 2. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved Sponsor
  3. 3. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved 4 3 , 0 0 0 + attendees 1 , 3 0 0 + technical sessions 6 0 , 0 0 0 + live stream registrations
  4. 4. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved A Q U I C K U P D A T E O N T H E A W S B U S I N E S S …
  5. 5. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved 4 2 % Y / Y G R O W T H (Q3 2017 vs Q3 2016) $ 1 8 B + R E V E N U E R U N R A T E (Annualized from Q3 2017)
  6. 6. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved 2012 2013 2015 TODAY2014 20162008 2009 2010 2011 M I L L I O N S O F A C T I V E C U S T O M E R S
  7. 7. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved L A R G E S T N U M B E R O F S T A R T U P C U S T O M E R S
  8. 8. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved L A R G E S T N U M B E R O F E N T E R P R I S E C U S T O M E R S
  9. 9. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved P U B L I C S E C T O R C U S T O M E R S
  10. 10. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved B R O A D E S T E C O S Y S T E M O F S Y S T E M I N T E G R A T O R S : P R E M I E R C O N S U L T I N G P A R T N E R S
  11. 11. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved B R O A D E S T E C O S Y S T E M O F I S V s A N D S a a S P R O V I D E R S
  12. 12. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved B U I L D E R S
  13. 13. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved B U I L D E R S MU S I C I A N S
  14. 14. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved CORE SERVICES Integrated Networking Rules Engine Device Shadows Device SDKs Device Gateway Registry Local Compute Custom Model Training & Hosting Conversational Chatbots Virtual Desktops App Streaming Schema Conversion Image & Scene Recognition Sharing & Collaboration Exabyte-Scale Data Migration Text to Speech Corporate Email Application Migration Database Migration Regions Availability Zones Points of Presence Data Warehousing Business Intelligence Elasticsearch Hadoop/Spark Data Pipelines Streaming Data Collection ETL Streaming Data Analysis Interactive SQL Queries Queuing & Notifications Workflow Email Transcoding Deep Learning (Apache MXNet, TensorFlow, & others) Server MigrationCommunications MARKETPLACE Business Apps Business Intelligence DevOps Tools Security Networking StorageDatabases Th e im ag e pa rt wi th rel ati on sh ip ID rId 18 w as no t fo un d in th e fil e. API Gateway Single Integrated Console Identity Sync Mobile Analytics Mobile App Testing Targeted Push Notifications One-click App Deployment DevOps Resource Management Application Lifecycle Management Containers Triggers Resource Templates Build & Test Analyze & Debug Identity Management Key Management & Storage Monitoring & Logs Configuration Compliance Web Application Firewall Assessment & Reporting Resource & Usage Auditing Access Control Account Grouping DDOS Protection TECHNICAL & BUSINESS SUPPORT Support Professional Services Optimization Guidance Partner Ecosystem Training & Certification Solutions Management Account Management Security & Billing Reports Personalized Dashboard Monitoring Manage Resources Data Integration Integrated Identity & Access Integrated Resource & Deployment Management Integrated Devices & Edge Systems Resource Templates Configuration Tracking Server Management Service Catalogue Search MIGRATIONHYBRID ARCHITECTUREENTERPRISE APPSMACHINE LEARNINGIoTMOBILE SERVICESDEV OPSANALYTICS APP SERVICES INFRASTRUCTURE SECURITY & COMPLIANCE MANAGEMENT TOOLS Compute VMs, Auto-scaling, Load Balancing, Containers, Virtual Private Servers, Batch Computing, Cloud Functions, Elastic GPUs, Edge Computing Storage Object, Blocks, File, Archivals, Import/Export, Exabyte-scale data transfer CDN Databases Relational, NoSQL, Caching, Migration, PostgreSQL compatible Networking VPC, DX, DNS Facial Recognition & Analysis Facial Search Patching Contact Center Th e im ag e pa rt wi th rel ati on sh ip ID rId 37 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 40 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 42 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 44 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 46 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 48 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 50 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 52 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 54 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 56 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 58 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 60 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 62 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 64 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 66 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 68 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 70 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 72 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 74 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 76 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 78 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 80 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 82 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 84 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 86 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 88 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 90 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 92 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 94 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 96 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 98 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 10 0 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 10 2 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 10 4 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 10 6 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 10 8 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 11 0 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 11 2 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 11 4 w as no t fo un d in th e fil e. T he im ag e pa rt wi th re lat io ns hi p ID rI d1 16 w as n ot fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 11 8 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 12 0 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 12 2 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 12 4 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 12 6 w as no t fo un d in th e fil e. Th e im ag e pa rt wit h rel ati on shi p ID rId 12 8 wa s no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 13 0 w as no t fo un d in th e fil e. Th e im ag e pa rt wit h rel ati on shi p ID rId 13 2 wa s no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 13 4 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 13 6 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 13 8 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 14 0 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 14 2 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 14 4 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 14 6 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 14 8 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 15 0 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 15 2 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 15 4 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 15 6 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 15 8 w as no t fo un d in th e fil Th e im ag e pa rt wi th rel ati on sh ip ID rId 16 0 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 16 2 w as no t fo un d in th e fil Th e im ag e pa rt wi th rel ati on sh ip ID rId 16 4 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 16 6 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 16 8 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 17 0 w as no t fo un d in th e fil e. Th e im ag e pa rt wi th rel ati on sh ip ID rId 17 2 w as no t fo un d in th M O S T R O B U S T , F U L L Y F E A T U R E D T E C H N O L O G Y I N F R A S T R U C T U R E P L A T F O R M
  15. 15. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved 516 24 48 61 82 159 280 722 1,017 LAUNCHES 2008 2009 2010 2011 2012 2013 2014 2015 2016 1,300+ 2017 New capabilities daily P A C E O F I N N O V A T I O N
  16. 16. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved INSTANCES C O M P U T E
  17. 17. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved B R O A D E S T S P E C T R U M O F C O M P U T E I N S T A N C E S Burstable T 2 Big Data Optimized H 1 Memory Optimized R 4 In-memory X 1 High I/O I 3 Compute Intensive C 5 Graphics Intensive G 3 General Purpose GPU P 3 Memory Intensive X 1 e General Purpose M 5 Virtual Private Se rvers Bare Metal High I/O I 3 m Dense Storage D 2 F 1 FPGA Amazon Lightsail EC2 Elastic GPUs Graphics acceleration for EC2 instances EC2 Spot Instances • Hibernation • No Bid Pricing N E W ! NEW! NEW! NEW! NEW!
  18. 18. © 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved. A m a z o n E C 2 H 1 I n s t a n c e s ( G A ) N e w d e n s e s t o r a g e i n s t a n c e f a m i l y f o r b i g d a t a w o r k l o a d s •H1 •New Storage-optimized instance Up to 16TB of locally attached HDD storage Up to 25 Gbps network bandwidth with ENA Big Data Clusters Kafka Streaming MapReduce
  19. 19. © 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon EC2 M5 Instances ( G A ) N e x t g e n e r a t i o n o f E C 2 g e n e r a l p u r p o s e i n s t a n c e s • Powered by 2.5 GHz Intel Xeon Platinum 8000- series ”Skylake” Processor • New larger instance size – m5.24xlarge with 96 vCPUs and 384 GiB of memory • Improved network and EBS performance on smaller instance sizes • Support for Intel AVX-512 • Powered by new lightweight Nitro Hypervisor 14% Price / Performance Improvement With M5 M4 M5
  20. 20. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved CONTAINERS C O M P U T E
  21. 21. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved AMAZON ELASTIC CONTAINER SERVICE (ECS) The easiest way to deploy and manage containers
  22. 22. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved Service integrations are at the container level Scales to support clusters and applications of any size Integration with entire AWS platform 1 2 3 ALB, Auto Scaling, Batch, Elastic Beanstalk, CloudFormation, CloudTrail, CloudWatch Events, CloudWatch Logs, CloudWatch Metrics, ECR, EC2 Spot, IAM, NLB, Parameter Store, and VPC Why customers love ECS AMAZON ELASTIC CONTAINER SERVICE (ECS) The easiest way to deploy and manage containers
  23. 23. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved W H AT A B O U T K U B E R N E T E S ?
  24. 24. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved Managed Kubernetes on AWS Amazon Elastic Container Service for Kubernetes (EKS) Available in preview today NEW!
  25. 25. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved A M A Z O N E L A S T I C C O N T A I N E R S E R V I C E F O R K U B E R N E T E S ( E K S ) Hybrid cloud compatible Highly available Automated upgrades and patches Integrated with AWS Services CloudTrail, CloudWatch, ELB, IAM, VPC, PrivateLink
  26. 26. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved … B U T W H A T E L S E ? M A N A G E D C L U S T E R S A R E G R E A T …
  27. 27. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved Run containers without managing servers or clusters AWS Fargate Available for ECS today Available for EKS in 2018 NEW!
  28. 28. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved A W S F A R G A T E No clusters to manage Manages underlying infrastructure Easy to run, easy to scale Run containers on ECS and EKS without managing servers
  29. 29. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved C O M P U T E SERVERLESS
  30. 30. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved C U S T O M E R S L O V E L A M B D A
  31. 31. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved A W S L A M B D A I S E V E R Y W H E R E Event-driven services Event sources Lambda inside AWS Lambda Amazon S3 Amazon CloudFormation AWS IoT Amazon API Gateway Amazon DynamoDB Amazon CloudWatch Logs AWS IoT Button AWS Step Functions Amazon Kinesis Streams Amazon CloudWatch Events AWS Greengrass AWS X-Ray Amazon Kinesis Firehose AWS CodeCommit AWS Snowball Edge Amazon SNS AWS Config AWS Lambda@Edge Amazon SES Amazon Lex Amazon Cognito Amazon CloudFront AWS IoT AWS Lambda
  32. 32. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved E V E R Y T H I N G I S E V E R Y T H I N G
  33. 33. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved E V E R Y T H I N G I S E V E R Y T H I N G AWS CodeDeploy AWS CloudTrail AWS Config and Config Rules AWS IAM AWS PrivateLink Managed NAT Gateway VMware Cloud on AWS Group Resource Tagging
  34. 34. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved C U S T O M E R S A R E M O V I N G T O O P E N D A T A B A S E S
  35. 35. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved AMAZON AURORA MySQL and PostgreSQL compatible Several times faster than standard MySQL and PostgreSQL Highly available and durable 1/10th the cost of commercial grade databases Fastest-growing AWS service, ever
  36. 36. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved re:Invent 2015: Thousands of customers A U R O R A I S T H E F A S T E S T G R O W I N G S E R V I C E I N T H E H I S T O R Y O F A W S
  37. 37. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved A U R O R A I S T H E F A S T E S T G R O W I N G S E R V I C E I N T H E H I S T O R Y O F A W S re:Invent 2016: 3.5X more customers
  38. 38. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved A U R O R A I S T H E F A S T E S T G R O W I N G S E R V I C E I N T H E H I S T O R Y O F A W S Today: Tens of thousands of customers
  39. 39. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved A U R O R A T O D A Y : S C A L E O U T F O R M I L L I O N S O F R E A D S P E R S E C O N D Seamless recovery from read replica failures Auto-scale new read replicas Up to 15 read replicas across 3 availability zones Application Read Replica 1 Master Node Read Replica 2 Shared Distributed Storage Volume Availability Zone 1 Availability Zone 2 Availability Zone 3
  40. 40. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved Scale out for both reads and writes A u r o r a M u l t i - M a s t e r Sign up for the preview today NEW!
  41. 41. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved Application Read/Write Master 2 Read/Write Master 1 Shared Distributed Storage Volume Availability Zone 1 Availability Zone 2 Availability Zone 3 Read/Write Master 3 A U R O R A M U L T I - M A S T E R First relational database service with scale-out across multiple datacenters Zero application downtime from ANY node failure Zero application downtime from ANY AZ failure Multi-region coming in 2018 Faster write performance
  42. 42. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved U N P R E D I C T A B L E W O R K L O A D S A R E C H A L L E N G I N G DATABASE REQUESTS TIME
  43. 43. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved On-demand, auto-scaling, serverless database A u r o r a S e r v e r l e s s Sign up for the preview today NEW!
  44. 44. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved A U R O R A S E R V E R L E S S Automatically scales capacity up and down Pay per second and only for the database capacity you use Starts up on demand and shuts down when not in use On-demand, auto-scaling database for applications with unpredictable or cyclical workloads No need to provision instances
  45. 45. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved E V O L U T I O N O F D A T A B A S E S AU ROR A Amazon RDS C OMMER C IAL C OMMU N ITY R e l a t i o n a l d a t a b a s e s
  46. 46. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved E V O L U T I O N O F D A T A B A S E S AU ROR A Amazon RDS C OMMER C IAL C OMMU N ITY R e l a t i o n a l d a t a b a s e s N o n - r e l a t i o n a l d a t a b a s e s Amazon DynamoDB KEY VALUE DOCUMENT
  47. 47. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved E V O L U T I O N O F D A T A B A S E S AU ROR A Amazon RDS C OMMER C IAL C OMMU N ITY R e l a t i o n a l d a t a b a s e s N o n - r e l a t i o n a l d a t a b a s e s Amazon DynamoDB KEY VALUE DOCUMENT Amazon ElastiCache IN-MEMORY STORE
  48. 48. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved Fully managed, multi-master, multi-region database DynamoDB Global Tables Generally available today NEW!
  49. 49. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved Build high performance, globally distributed applications Low latency reads and writes to locally available tables Disaster proof with multi-region redundancy Easy to setup and no application re-writes required D Y N A M O D B G L O B A L T A B L E S First fully managed, multi-master, multi-region database
  50. 50. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved Only cloud database to provide on-demand and continuous backups NEW! Backup hundreds of TB instantaneously with NO performance impact On-Demand Backups for long term data archival and compliance Point In Time Restore for short term retention and protection against application errors On-Demand Backup generally available today Point In Time Restore coming early 2018 I N T R O D U C I N G D Y N A M O D B B A C K U P A N D R E S T O R E
  51. 51. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved E V O L U T I O N O F D A T A B A S E S Amazo n Dynamo DB Amazo n ElastiCache KEY VALUE DOCUMENT IN-MEMORY STORE HIGHLY CONNECTED DATA AUROR A Amazon RDS C OMMER C IAL C OMMU N ITY R e l a t i o n a l d a t a b a s e s N o n - r e l a t i o n a l d a t a b a s e s
  52. 52. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved H I G H L Y C O N N E C T E D D A T A Social news feed Restaurant recommendations Retail fraud detection
  53. 53. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved C H A L L E N G E S B U I L D I N G A P P S W I T H H I G H L Y C O N N E C T E D D A T A Difficult to maintain high availability Difficult to scale Relational databases Existing graph databases Limited support for open standards Too expensive Unnatural for querying graph Inefficient graph processing Rigid schema inflexible for changing graphs
  54. 54. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved Fully managed graph database Amazon Neptune Available in preview today NEW!
  55. 55. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved A M A Z O N N E P T U N E FA S T A N D S C A L A B L E E A S Y Build powerful queries easily with Gremlin and SPARQL 6 replicas of your data across 3 AZs with full backup and restore R E L I A B L E Supports Apache TinkerPopTM and W3C RDF graph models O P E N Fully managed graph database Store billions of relationships and query with milliseconds latency
  56. 56. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved E V O L U T I O N O F D A T A B A S E S Amazo n Ne ptun e GRAPH Amazo n Dynamo DB Amazo n ElastiCache KEY VALUE DOCUMENT IN-MEMORY STORE AUROR A Amazon RDS C OMMER C IAL C OMMU N ITY R e l a t i o n a l d a t a b a s e s N o n - r e l a t i o n a l d a t a b a s e s
  57. 57. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved DATA LAKES
  58. 58. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved A M A Z O N S 3 I S T H E M O S T P O P U L A R C H O I C E F O R D A T A L A K E S Most ways to bring data in Best security, compliance, and audit capabilities Object-level controls Unmatched durability, availability, and scalability Twice as many partner integrations Business insights into your data
  59. 59. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved M A K I N G P E T A B Y T E - S C A L E A N A L Y T I C S A C C E S S I B L E T O C O M P A N I E S O F A L L S I Z E S Amazon Redshift + Redshift Spectrum Amazon QuickSight Amazon EMR Hadoop, Spark, Presto, Pig, Hive…19 total Amazon Athena Amazon Kinesis Amazon Elasticsearch Service AWS Glue S3 DATA LAKE
  60. 60. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved Objects in your S3 data lake v v v v v v v v v v v v v v v v v v v v v v v M O S T A N A L Y T I C S J O B S I N V O L V E P R O C E S S I N G O N L Y A S U B S E T O F O B J E C T D A T A
  61. 61. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved New API to select and retrieve data within objects Accelerate any application that processes a subset of object data in S3 Improve data access performance by up to 400% NEW! v Available in preview today Powerful new S3 capability to pull out only the object data you need using standard SQL expressions I N T R O D U C I N G S 3 S E L E C T
  62. 62. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved CAN WE FURTHER EXTEND THE DATA LAKE?
  63. 63. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved I N T R O D U C I N G G L A C I E R S E L E C T NEW! Run queries on data stored at rest in Amazon Glacier Any application can query Glacier data Retrieve only what you need Makes Glacier part of your data lake Generally available today Run queries directly on data stored in Glacier
  64. 64. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved M A C H I N E L E A R N I N G
  65. 65. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved A L O N G H E R I T A G E O F M A C H I N E L E A R N I N G A T A M A Z O N Personalized recommendations Inventing entirely new customer experiences Fulfillment automation and inventory management Drones Voice driven interactions
  66. 66. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved F R A M E W O R K S A N D I N T E R F A C E S AW S D E E P L E A R N I N G A P I Apache MXNet TensorFlowCaffe2 Torch KerasCNTK PyTorch Theano Gluon
  67. 67. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved B O T T O M L A Y E R : F R A M E W O R K S A N D I N T E R F A C E S P2 NVIDIA Tesla V100 GPUs P3 1 Petaflop of compute NVLink 2.0 5,120 Tensor cores 128GB of memory ~14X faster than P2 P3 Instance AWS Deep Learning AMI
  68. 68. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved L I S T E N T O A N D I N V E N T F O R C U S T O M E R S Frameworks KERAS Interfaces
  69. 69. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved …BUT, MOST COMPANIES DON’T HAVE EXPERT ML PRACTITIONERS (YET)
  70. 70. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved ML IS STILL TOO COMPLICATED FOR EVERYDAY DEVELOPERS Collect and prepare training data Choose and optimize your ML algorithm Set up and manage environments for training Train and tune model (trial and error) Deploy model in production Scale and manage the production environment
  71. 71. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved Easily build, train, and deploy machine learning models A m azon SageM aker Generally available today NEW!
  72. 72. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved A M A Z O N S A G E M A K E R S O L V E S A L L O F T H E S E P R O B L E M S Collect and prepare training data Choose and optimize your ML algorithm Set up and manage environments for training Deploy model in production Scale and manage the production environment Train and tune model (trial and error)
  73. 73. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved A M A Z O N S A G E M A K E R Pre-built notebooks for common problems BUILD Choose and optimize your ML algorithm Set up and manage environments for training Train and tune model (trial and error) Deploy model in production Scale and manage the production environment
  74. 74. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved A M A Z O N S A G E M A K E R Pre-built notebooks for common problems K-Means Clustering Principal Component Analysis Neural Topic Modelling Factorization Machines Linear Learner - Regression XGBoost Latent Dirichlet Allocation Image Classification Seq2Seq Linear Learner - Classification ALGORITHMS Apache MXNet TensorFlow Caffe2, CNTK, PyTorch, Torch FRAMEWORKS Set up and manage environments for training Train and tune model (trial and error) Deploy model in production Scale and manage the production environment Built-in, high performance algorithms BUILD
  75. 75. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved A M A Z O N S A G E M A K E R Pre-built notebooks for common problems Built-in, high performance algorithms One-click training BUILD TRAIN Train and tune model (trial and error) Deploy model in production Scale and manage the production environment
  76. 76. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved A M A Z O N S A G E M A K E R Pre-built notebooks for common problems Built-in, high performance algorithms One-click training Hyperparameter optimization BUILD TRAIN Deploy model in production Scale and manage the production environment
  77. 77. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved A M A Z O N S A G E M A K E R Pre-built notebooks for common problems Built-in, high performance algorithms One-click deployment One-click training Hyperparameter optimization Scale and manage the production environment BUILD TRAIN DEPLOY
  78. 78. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved A M A Z O N S A G E M A K E R Fully managed hosting with auto- scaling One-click deployment Pre-built notebooks for common problems Built-in, high performance algorithms One-click training Hyperparameter optimization BUILD TRAIN DEPLOY
  79. 79. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved AWS DeepLens The world’s first wireless, deep learning enabled video camera for developers Av a i l a b l e o n a m a z o n . c o m n e x t y e a r NEW!
  80. 80. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved W H A T I S A W S D E E P L E N S ? HD video camera Custom-designed deep learning inference engine Micro-SD Mini-HDMI USB USB Reset Audio out Power HD video camera with on-board compute optimized for deep learning Tutorials, examples, demos, and pre-built models From unboxing to first inference in <10 minutes Integrates with Amazon SageMaker and AWS Lambda 10 MIN
  81. 81. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved VISION LANGUAGE A P P L I C A T I O N S E R V I C E S Amazon Rekognition Amazon Polly Amazon Lex
  82. 82. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved Search, analyze, and organize millions of images A M A Z O N R E K O G N I T I O N Objects and scenes Facial analysis and recognition Inappropriate content detection Celebrity recognition Image in text recognition A M A Z O N R E K O G N I T I O N
  83. 83. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved Real-time and batch video analytics Amazon Rekognition Video Generally available today NEW!
  84. 84. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved A M A Z O N R E K O G N I T I O N V I D E O A M A Z O N R E K O G N I T I O N V I D E O Video in. People, activities, and details out. Objects and scenes Facial analysis and recognition Inappropriate content detection Celebrity recognition Person tracking
  85. 85. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved A M A Z O N R E K O G N I T I O N V I D E O Easy to use Batch processing Processes real-time video Continually trained Low costTimestamp generation
  86. 86. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved S T R E A M I N G D A T A F R O M C O N N E C T E D D E V I C E S
  87. 87. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved Securely ingest and store video, audio, and other time-encoded data Amazon Kinesis Video Streams Generally available today NEW!
  88. 88. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved VISION LANGUAGE A P P L I C A T I O N S E R V I C E S Amazon Rekognition Image Amazon Polly Amazon LexAmazon Rekognition Video
  89. 89. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved Automatic speech recognition Amazon Transcribe Available in preview today NEW!
  90. 90. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved A M A Z O N T R A N S C R I B E Support for telephony audio Timestamp generation Intelligent punctuation and formatting Recognize multiple speakers Custom vocabulary Multiple languages Automatic conversion of speech into accurate, grammatically correct text
  91. 91. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved Automatically translates text between languages Amazon Translate Available in preview today NEW!
  92. 92. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved A M A Z O N T R A N S L A T E Real-time translation Batch analysis Automatic language recognition Low cost
  93. 93. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved Fully managed natural language processing Amazon Comprehend Generally available today NEW!
  94. 94. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved Discover valuable insights from text Entities Key Phrases Language Sentiment Amazon Comprehend A M A Z O N C O M P R E H E N D
  95. 95. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved STORM WORLD SERIES STOCK MARKET WASHINGTON LIBRARY OF NEWS ARTICLES A M A Z O N C O M P R E H E N D Amazon Comprehend Discover valuable insights from text
  96. 96. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved B R O A D E S T M L P L A T F O R M T H A T ’ S T H E E A S I E S T T O U S E W I T H T H E M O S T C U S T O M E R S DATA LAKE STORAGE Amazon S3 SECURITY Access Control Encryption COMPUTE Powerful GPU and CPU Instances ANALYTICS Amazon Athena Amazon Redshift and Redshift Spectrum Amazon EMR (Spark, Hive, Presto, Pig) AWS Glue Amazon Kinesis Amazon QuickSight Amazon Macie AWS Organizations Complementary Services
  97. 97. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved B R O A D E S T M L P L A T F O R M T H A T ’ S T H E E A S I E S T T O U S E W I T H T H E M O S T C U S T O M E R S APPLICATION SERVICES Amazon Lex Amazon Polly Amazon Comprehend Amazon Translate Amazon Transcribe Amazon Rekognition Image Amazon Rekognition Video PLATFORM SERVICES Amazon SageMaker AWS DeepLens FRAMEWORKS AND INTERFACES AWS Deep Learning AMI Apache MXNet Caffe2 CNTK PyTorch TensorFlow Theano Torch Gluon Keras AWS ML Platform DATA LAKE STORAGE Amazon S3 SECURITY Access Control Encryption COMPUTE Powerful GPU and CPU Instances ANALYTICS Amazon Athena Amazon Redshift and Redshift Spectrum Amazon EMR (Spark, Hive, Presto, Pig) AWS Glue Amazon Kinesis Amazon QuickSight Amazon Macie AWS Organizations Complementary Services
  98. 98. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved B R O A D E S T M L P L A T F O R M T H A T ’ S T H E E A S I E S T T O U S E W I T H T H E M O S T C U S T O M E R S APPLICATION SERVICES Amazon Lex Amazon Polly Amazon Comprehend Amazon Translate Amazon Transcribe Amazon Rekognition Image Amazon Rekognition Video PLATFORM SERVICES Amazon SageMaker AWS DeepLens FRAMEWORKS AND INTERFACES AWS Deep Learning AMI Apache MXNet Caffe2 CNTK PyTorch TensorFlow Theano Torch Gluon Keras AWS ML Platform AWS ML Customers DATA LAKE STORAGE Amazon S3 SECURITY Access Control Encryption COMPUTE Powerful GPU and CPU Instances ANALYTICS Amazon Athena Amazon Redshift and Redshift Spectrum Amazon EMR (Spark, Hive, Presto, Pig) AWS Glue Amazon Kinesis Amazon QuickSight Amazon Macie AWS Organizations Complementary Services
  99. 99. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved N e w S e r v i c e s a t a g l a n c e C o m p u t e - H 1 , M 5 , B a r e M e t a l E C 2 - E l a s t i c C o n t a i n e r S e r v i c e s f o r K u b e r n e t e s - A m a z o n F a r g a t e D a t a b a s e - A u r o r a M u l t i - M a s t e r - D y n a m o D B G l o b a l T a b l e - D y n a m o D B B a c k u p a n d r e s t o r e - A m a z o n N e p t u n e A n a l y t i c s - S 3 S e l e c t - G l a c i e r S e l e c t A I - A m a z o n S a g e M a k e r - A W S D e e p L e n s - A m a z o n R e k o g n i t i o n V i d e o - A m a z o n K i n e s i s V i d e o S t r e a m s - A m a z o n T r a n s c r i b e - A m a z o n T r a n s l a t e - A m a z o n C o m p r e h e n d
  100. 100. Remember to complete your evaluations! R e m e m b e r t o c o m p l e t e y o u r e v a l u a t i o n s !
  101. 101. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved FOLLOW US ON FACEBOOK
  102. 102. ©2017, Amazon Web Services, Inc. or its affiliates. All rights reserved T H A N K Y O U

×