SlideShare ist ein Scribd-Unternehmen logo
1 von 21
INVESTIGATING MECHANISMS OF
GLIOBLASTOMACELL MIGRATION WITHINA 3D
BIOMIMETIC MICROENVIRONMENT
Amanda Powell, Chandra Kothapalli
Department of Chemical & Biomedical Engineering
Cleveland State University
Presented at the Society for Biomaterials Annual Meeting,
April 17, 2014, Denver, CO
Background
• Cancer cell phenotype
• Uncontrollable cellular proliferation
• Formation of localized or remote tumor sites
• Progressive acquisition of organs and various vital systems
• What influences proliferation, migration, tumor formations etc. of
these cells?
• What is glioblastoma?
• Most prevalent and aggressive malignant primary brain tumor
• Accounts for about 52% of all primary brain tumor cases
• High mortality rates
• Highly migratory and invasive, often resulting in new tumor sites
throughout the body
• Current treatment options
• Surgical intervention
• Radiotherapy and chemotherapy
• Corticosteroids
• Antiangiogenic therapy
• Various clinical trials
Objectives of this project
• Develop a microfluidic device to mimic 3D physiological
microenvironment of cancer cells, and that allows for in
situ monitoring
• Investigate the role of chemogradients and matrix
stiffness on glioblastoma cell chemotaxis
• Investigate cancer cell- endothelial cell interactions within
this device
Microfluidics
[Y.Toh et al., 2007, Lab Chip] [H.Wu et al., 2006, JACS]
[T.Frisk et al., 2007, Electrophoresis] [A.Taylor et al., 2005, Nat. Method]
[M.Kim et al., 2007, Biomed Microdev] [F.Q.Nie et al., 2007, Biomaterials]
[A.Wong et al., 2008, Biomaterials] [G.Walker et al., 2005, Lab Chip]
[W.Saadi et al., 2007, Biomed Microdev] [N.Jeon et al., 2002, Nat Biotech]
[A.Paguirigan., 2006, Lab Chip] [B.Chung, 2005, Lab Chip]
[S.Cheng et al., 2007, Lab Chip] [S.Wang et al., 2004, Exp. Cell Res.]
[Y.Ling et al., 2007, Lab Chip]
• Physiologically-relevant length and time
scales
• precise control
• micro-environment
• in situ monitoring
• live cell imaging
• minimal resources
• simple and inexpensive (< $1/device)
• high-magnification investigation
• quantification
Outlay of device
Growth Factor
Cancer
cells
Gel-loading
port
Cell chamber
Growth
factor
chamber
3D gel
region
Experimental conditions: Glioma cells & Growth factors
Controls
• 1 mg/ml
collagen-1
• 2 mg/ml
collagen-1
• 3 mg/ml
collagen-1
1 mg/ml
Collagen-1
• VEGF
• 0.1 mM
• 1.0 mM
• 10 mM
• EGF
• 0.1 mM
• 1.0 mM
• 10 mM
2 mg/ml
Collagen-1
• VEGF
• 0.1 mM
• 1.0 mM
• 10 mM
• EGF
• 0.1 mM
• 1.0 mM
• 10 mM
3 mg/ml
Collagen-1
• VEGF
• 0.1 mM
• 1.0 mM
• 10 mM
• EGF
• 0.1 mM
• 1.0 mM
• 10 mM
Quantification of diffusion gradients
• Device parameters
• Cell loading area
• Growth factor loading area
• Collagen matrix injection port
• Einstein-stokes Equation
• Time For complete diffusion across
channel
𝑫 𝑪 =
𝒌 𝑩 𝑻
𝟔𝝅ɳ𝒓
𝝉 =
𝑳 𝟐
𝟒𝝅 𝟐 𝑫 𝑪
Zone5
Zone4
Zone3
Zone2
Zone1
0.00E+00
1.00E-04
0hr
2hr
4hr
6hr
18hr
30hr
42hr
ConcentrationofVEGF
Diffusion concentrations of VEGF through
1 mg/ml collagen per zone over 48 h
Zone5
Zone4
Zone3
Zone2
Zone1
0.00E+00
1.00E-04
0hr
2hr
4hr
6hr
18hr
30hr
42hr
ConcentrationofVEGF
Diffusion concentrations of VEGF through
2 mg/ml collagen- per zone over 48 h
Zone5
Zone4
Zone3
Zone2
Zone1
0.00E+00
1.00E-04
0hr
2hr
4hr
6hr
18hr
30hr
42hr
ConcentrationofVEGF
Diffusion concentration of VEGF through
3 mg/ml collagen-1 per zone over 48 h
Cancer cell migration over 48 h within 3D scaffolds
1 mg/mL collagen scaffold
1 mM VEGF gradient
VEGF EGF
Cellsmigratedover48h
0
100
200
300
400
500
600
0 mM
0.1 mM
1 mM
10 mM
1 mg/mL collagen
VEGF EGF
Cellsmigratedover48h
0
10
20
30
40
50
60
70 0 mM
0.1 mM
1 mM
10 mM
2 mg/mL collagen
VEGF EGF
Cellsmigratedover48h
0
5
10
15
20
25
30
35
0 mM
0.1 mM
1 mM
10 mM
3 mg/mL collagen
Average migration distance over 48 h
Time (min)
0 500 1000 1500 2000 2500 3000
Averagedistancemigrated(mm)
0
20
40
60
80
0.1 mM
1 mM
10 mM
VEGF in 1 mg/mL collagen
Time (min)
0 500 1000 1500 2000 2500 3000
Averagedistancemigrated(mm)
0
20
40
60
80
VEGF in 2 mg/mL collagen
Time (min)
0 500 1000 1500 2000 2500 3000
Averagedistancemigrated(mm)
0
20
40
60
80 VEGF in 3 mg/mL collagen
Time (min)
0 500 1000 1500 2000 2500 3000
Averagedistancemigrated(mm)
0
20
40
60
80
EGF in 1 mg/mL collagen
Time (min)
0 500 1000 1500 2000 2500 3000
Averagedistancemigrated(mm)
0
20
40
60
80 EGF in 2 mg/mL collagen
Time (min)
0 500 1000 1500 2000 2500 3000
Averagedistancemigrated(mm) 0
20
40
60
80 EGF in 3 mg/mL collagen
1.0 µM VEGF in 2 mg/ml Collagen-1
Glioblastoma cell shape index (CSI) at 48 h
CSI =
4𝜋∗𝐴
𝑃2
In controls, CSI ~ 1
0 h 12 h 24 h 48 h
*1.0 µM EGF in 2 mg/ml collagen
20 µm 20 µm 20 µm
0.0
0.2
0.4
0.6
0.8
1.0
1
2
3
4 0.1
1
10
Cellshapeindex
C
ollagen
(m
g/m
L)
VEGF dosage (mM)
0.0
0.2
0.4
0.6
0.8
1.0
1
2
3
0.1
1
10
Cellshapeindex
Collagen (mg/mL)
EG
F
dose
(mM
)
20 µm
Average cell speed over 48 h
Time (min)
0 500 1000 1500 2000 2500 3000
Averagecellspeed(mm/h)
0
2
4
6
8
10
12
14
VEGF-0.1 mM
VEGF-1 mM
VEGF-10 mM
EGF-0.1 mM
EGF-1 mM
EGF-10 mM
1 mg/mL collagen
Time (min)
0 500 1000 1500 2000 2500 3000
Averagecellspeed(mm/h)
0
2
4
6
8
10
12
14
VEGF-0.1 mM
VEGF-1 mM
VEGF-10 mM
EGF-0.1 mM
EGF-1 mM
EGF-10 mM
3 mg/mL collagen
Time (min)
0 500 1000 1500 2000 2500 3000
Averagecellspeed(mm/h)
0
2
4
6
8
10
12
14
VEGF-0.1 mM
VEGF-1 mM
VEGF-10 mM
EGF-0.1 mM
EGF-1 mM
EGF-10 mM
2 mg/mL collagen
Cell migration trajectories 1 mg/ml
collagen
2 mg/ml
collagen
3 mg/ml
collagen
Cell-cell coculture configurations
Kothapalli et al., Biomicrofluidics, 2011, 5, 013406
Effect of cell-cell paracrine signaling on cancer cell migration
Human
endothelial cells
Human
Glioblatoma
cells
*U-87 cells in 1 mg/ml Collagen-1
Collagen concentration
1 mg/mL 2 mg/mL 3 mg/mL
Numberofcellsmigrated
over144h
1
10
100
1000
U87
HMVEC
Migration parameters for U87MG and EC cells
Time (h)
0 20 40 60 80 100 120 140 160
Averagedistancemigrated(mm)
0
10
20
30
40
50
60
U87
HMVEC
1 mg/mL collagen
Time (h)
0 20 40 60 80 100 120 140 160
Averagedistancemigrated(mm) 0
10
20
30
40
50
60
U87
HMVEC
2 mg/mL collagen
Time (h)
0 20 40 60 80 100 120 140 160
Averagedistancemigrated(mm)
0
5
10
15
20
25
U87
HMVEC
3 mg/mL collagen
Time (h)
0 20 40 60 80 100 120 140 160
Averagecellspeed(mm/h)
0.0
0.1
0.2
0.3
0.4
0.5
U87
HMVEC
1 mg/mL collagen
Time (h)
0 20 40 60 80 100 120 140 160
Averagecellspeed(mm/h)
0.00
0.01
0.02
0.03
0.04
0.40
0.45
0.50
U87
HMVEC
2 mg/mL collagen
Time (h)
0 20 40 60 80 100 120 140 160Averagecellspeed(mm/h)
0.00
0.05
0.10
0.15
0.20
0.40
0.45
0.50
U87
HMVEC
3 mg/mL collagen
Comparison of our results with literature
Group Culture
Period
Platform Cell Count Distance Speed Conditions
**Our
Research**
48 h
3D Microfluidic
device 12 < n < 455 25 - 50 µm 2 – 14 µm/h
Gliomas
w/EGF &
VEGF
168 h
3D Microfluidic
device ~ 600 5 - 55 µm
0.4 – 0.45
µm/h
Gliomas
w/HMVECs
Wick et al.
(2001) 96 h
48 well chemotaxis
chamber ~ 200 900 µm
Standard
gliomas
Agudelo-
Garcia et al.
(2011)
48 h
Nanofiber-coated
agar plates ~ 250
Standard
gliomas
Burgoyne et
al. (2009) 48 h
Brain slice assay
280 µm
Standard
gliomas
Kim et al.
(2008) 10 h
3D collagen matrix
on cell culture
dishes
15 -19 µm/h
Gliomas
w/EGF
Schichor et al.
(2006) 24 h
Boyden chamber,
spheroid migration
in Laminin
~ 2 per
visual field
~350 µm
Gliomas
w/VEGF
Schichor et al.
(2006) 24 h
Boyden chamber,
spheroid migration
in Laminin
~6 µm
Gliomas
w/HMSCs
Conclusions from this study
• Microfluidic devices offer a unique platform to study cancer cell
biology under diffusive chemogradients within 3D matrices
• Strong role of matrix concentration (and thereby stiffness, porosity,
pore-size, etc.) on glioblastoma cell migration evident
• Within each collagen scaffold, cell migration is influenced by the type
(VEGF vs. EGF) and dosage (0-10 mM) of growth factor
• Higher migration of HMVECs towards cancer cells noted, suggesting
onset of angiogenesis
• Future work to screen and identify the benefits of delivering
therapeutic drugs to inhibit cancer cell migration and/or angiogenesis
REFERENCES
IMAGES
1. Image 1: McLaren, Iren. “Brain food or how to eat to your mental advantage.” Master Cook- Blog About Cooking. 10
Nov 2008, Retrieved 20 June 2012 from http://mastercookblog.blogspot.com/2008/11/brain-food-or-how-to-eat-to-
your-mental.html.
2. Image 2: “Cancer requires multiple mutations from NIHen.png” Wikipedia.com. 31 Aug 2004, Retrieved 17 June
2012 from http://en.wikipedia.org/wiki/File:Cancer_requires_multiple_mutations_from_NIHen.png.
3. Image 3: “Glioblastoma Multiforme.” ThirdAge.com 2009, Retrieved 17 June 2012 from
http://www.thirdage.com/hc/c/what-is-glioblastoma-multiforme.
4. Image 4: Bruce, J. “Glioblastoma Multiforme.” Medscape.com. 6 Dec. 2006, Retrieved 17 June 2012 from
http://emedicine.medscape.com/article/283252-overview.
5. Image 5&6: “Molecular and Cellular Biology.” Wikipedia.com 14 Dec. 2013. Retrieved 12 June 2012 from
http://commons.wikimedia.org/wiki/Molecular_and_Cellular_Biology.
6. Image 7: “Neurotransmitter Acetylcholine.” Dutchpipesmoker.wordpress.com 4 Aug. 2013. Retrieved 19 Jan. 2014
from http://dutchpipesmoker.wordpress.com/tag/neurotransmitter-acetylcholine/.
LITERATURE
1. Kim HD et al. (2008) “Epidermal growth factor-induced enhancement of glioblastoma cell migration in 3D arises from
an intrinsic increase in speed but an extrinsic matrix and proteolysis-dependent increase in persistence.” Molecular
Biology of the Cell. 19:4249-89.
2. “Glioblastoma.” abta.org. 2012, Retrieved 17 June 2012 from http://www.abta.org/understanding-brain-tumors/types-
of-tumors/glioblastoma.html.
3. “Glioblastoma Multiforme (GBM).” NeuroOncologia. Retrieved 18 June 2012 from
http://www.neurooncologia.com/en/tumortypes/GBM/diagnosis.html.
4. Chung, S. et al. “Cell migration into scaffolds under co-culture conditions in a microfluidic platform.” The Royal
Society of Chemistry. 2008: 1-8.
5. Vickerman, V. et al. “Design, fabrication, and implementation of a novel multi parameter control microfluidic platform
for three-dimensional cell culture and real-time imaging.” Lab Chip. 2008 Sept., 8(9): 1468-1477.
6. Kothapalli, C. “Mechanisms of glioma cell migration.”
7. Ngalim. S. H. et. al. “How do cells make decisions: engineering micro- and nanoenvironments for cell migration.”
Journal of Oncology. 1 April 2010, 2010: 1-7.
8. Huang, Y. et. al. “Microfluidics-based devices: new tools for studying cancer and cancer stem cell migration.”
Biomicrofluidics, 5, 013412 (2011).
Acknowledgements
PERSONNEL
• Chandra Kothapalli, Ph.D., Advisor
• Joanne Belovich, Ph.D., provided U87-MG cells
• Kurt Farrell, lab mate
FUNDING
• Choose Ohio First Scholarship Program
• Travel Scholarship from Choose Ohio First Scholarship to
attend this conference
• CSU Start-Up Funds
• FRD Grant from CSU
THANK YOU
Multi-step model of invasion metastasis
Primary tumor
Secondary tumor
guidance intravasation
The Biology of Cancer (© Garland Science 2007)
extravasation
metastasis
Breast tumor progression
Vargo-Gogola
et al, 2008

Weitere ähnliche Inhalte

Was ist angesagt?

Excellent extracellular matrix_inspired_biomaterials
Excellent extracellular matrix_inspired_biomaterialsExcellent extracellular matrix_inspired_biomaterials
Excellent extracellular matrix_inspired_biomaterialsComprehensiveBiologi
 
Sigma Xi - A Living Band-Aid
Sigma Xi - A Living Band-AidSigma Xi - A Living Band-Aid
Sigma Xi - A Living Band-Aidalivingbandaid
 
Gari et al bmc medical genetics
Gari et al bmc medical geneticsGari et al bmc medical genetics
Gari et al bmc medical geneticsTariq Mohammed
 
EWMA 2014 - EP425 COMPARATIVE STUDY OF HUMAN FULL THICKNESS SKIN GRAFT SURVIV...
EWMA 2014 - EP425 COMPARATIVE STUDY OF HUMAN FULL THICKNESS SKIN GRAFT SURVIV...EWMA 2014 - EP425 COMPARATIVE STUDY OF HUMAN FULL THICKNESS SKIN GRAFT SURVIV...
EWMA 2014 - EP425 COMPARATIVE STUDY OF HUMAN FULL THICKNESS SKIN GRAFT SURVIV...EWMA
 
Cyto2015_negative_sorting
Cyto2015_negative_sortingCyto2015_negative_sorting
Cyto2015_negative_sortingKazuo Takeda
 
Senior Seminar composite scaffold Poster-Template-42x60
Senior Seminar composite scaffold Poster-Template-42x60Senior Seminar composite scaffold Poster-Template-42x60
Senior Seminar composite scaffold Poster-Template-42x60Eric Queen
 
Substrate stiffness and cell fate
Substrate stiffness and cell fateSubstrate stiffness and cell fate
Substrate stiffness and cell fateDiana Santos
 
Effect of Seeding Density of Mesenchymal Stem Cells on Cell Proliferation and...
Effect of Seeding Density of Mesenchymal Stem Cells on Cell Proliferation and...Effect of Seeding Density of Mesenchymal Stem Cells on Cell Proliferation and...
Effect of Seeding Density of Mesenchymal Stem Cells on Cell Proliferation and...Jaideep Sahni
 
Motion-Based Angiogenesis Analysis_A Simple Method to Quanitfy Blood Vessel G...
Motion-Based Angiogenesis Analysis_A Simple Method to Quanitfy Blood Vessel G...Motion-Based Angiogenesis Analysis_A Simple Method to Quanitfy Blood Vessel G...
Motion-Based Angiogenesis Analysis_A Simple Method to Quanitfy Blood Vessel G...Joe Lee
 
Peripheral neuropathyumbilicalcord
Peripheral neuropathyumbilicalcordPeripheral neuropathyumbilicalcord
Peripheral neuropathyumbilicalcordComprehensiveBiologi
 
The effects of diethylstilbestrol administration on rat kidney. ultrastructur...
The effects of diethylstilbestrol administration on rat kidney. ultrastructur...The effects of diethylstilbestrol administration on rat kidney. ultrastructur...
The effects of diethylstilbestrol administration on rat kidney. ultrastructur...Prof. Hesham N. Mustafa
 
code sc poster final draft
code sc poster final draftcode sc poster final draft
code sc poster final draftVictoria Rael
 
Three dimensional bioprinting in orthopaedics
Three dimensional bioprinting in orthopaedicsThree dimensional bioprinting in orthopaedics
Three dimensional bioprinting in orthopaedicsBipulBorthakur
 
SeedEZ 3D cell culture application notes - gel and drug embedding
SeedEZ 3D cell culture application notes - gel and drug embeddingSeedEZ 3D cell culture application notes - gel and drug embedding
SeedEZ 3D cell culture application notes - gel and drug embeddingLena Biosciences
 
2014 E cells and mats 27 332-349
2014 E cells and mats 27 332-3492014 E cells and mats 27 332-349
2014 E cells and mats 27 332-349Helen Cox
 

Was ist angesagt? (20)

Excellent extracellular matrix_inspired_biomaterials
Excellent extracellular matrix_inspired_biomaterialsExcellent extracellular matrix_inspired_biomaterials
Excellent extracellular matrix_inspired_biomaterials
 
Sigma Xi - A Living Band-Aid
Sigma Xi - A Living Band-AidSigma Xi - A Living Band-Aid
Sigma Xi - A Living Band-Aid
 
Gari et al bmc medical genetics
Gari et al bmc medical geneticsGari et al bmc medical genetics
Gari et al bmc medical genetics
 
Fphys 07-00180
Fphys 07-00180Fphys 07-00180
Fphys 07-00180
 
EWMA 2014 - EP425 COMPARATIVE STUDY OF HUMAN FULL THICKNESS SKIN GRAFT SURVIV...
EWMA 2014 - EP425 COMPARATIVE STUDY OF HUMAN FULL THICKNESS SKIN GRAFT SURVIV...EWMA 2014 - EP425 COMPARATIVE STUDY OF HUMAN FULL THICKNESS SKIN GRAFT SURVIV...
EWMA 2014 - EP425 COMPARATIVE STUDY OF HUMAN FULL THICKNESS SKIN GRAFT SURVIV...
 
Cyto2015_negative_sorting
Cyto2015_negative_sortingCyto2015_negative_sorting
Cyto2015_negative_sorting
 
Senior Seminar composite scaffold Poster-Template-42x60
Senior Seminar composite scaffold Poster-Template-42x60Senior Seminar composite scaffold Poster-Template-42x60
Senior Seminar composite scaffold Poster-Template-42x60
 
Substrate stiffness and cell fate
Substrate stiffness and cell fateSubstrate stiffness and cell fate
Substrate stiffness and cell fate
 
Effect of Seeding Density of Mesenchymal Stem Cells on Cell Proliferation and...
Effect of Seeding Density of Mesenchymal Stem Cells on Cell Proliferation and...Effect of Seeding Density of Mesenchymal Stem Cells on Cell Proliferation and...
Effect of Seeding Density of Mesenchymal Stem Cells on Cell Proliferation and...
 
ASMR_POSTER
ASMR_POSTERASMR_POSTER
ASMR_POSTER
 
Bioprinting
BioprintingBioprinting
Bioprinting
 
Biological Augmentation Of Rotator Cuff Tears
Biological Augmentation Of Rotator Cuff TearsBiological Augmentation Of Rotator Cuff Tears
Biological Augmentation Of Rotator Cuff Tears
 
Poster
PosterPoster
Poster
 
Motion-Based Angiogenesis Analysis_A Simple Method to Quanitfy Blood Vessel G...
Motion-Based Angiogenesis Analysis_A Simple Method to Quanitfy Blood Vessel G...Motion-Based Angiogenesis Analysis_A Simple Method to Quanitfy Blood Vessel G...
Motion-Based Angiogenesis Analysis_A Simple Method to Quanitfy Blood Vessel G...
 
Peripheral neuropathyumbilicalcord
Peripheral neuropathyumbilicalcordPeripheral neuropathyumbilicalcord
Peripheral neuropathyumbilicalcord
 
The effects of diethylstilbestrol administration on rat kidney. ultrastructur...
The effects of diethylstilbestrol administration on rat kidney. ultrastructur...The effects of diethylstilbestrol administration on rat kidney. ultrastructur...
The effects of diethylstilbestrol administration on rat kidney. ultrastructur...
 
code sc poster final draft
code sc poster final draftcode sc poster final draft
code sc poster final draft
 
Three dimensional bioprinting in orthopaedics
Three dimensional bioprinting in orthopaedicsThree dimensional bioprinting in orthopaedics
Three dimensional bioprinting in orthopaedics
 
SeedEZ 3D cell culture application notes - gel and drug embedding
SeedEZ 3D cell culture application notes - gel and drug embeddingSeedEZ 3D cell culture application notes - gel and drug embedding
SeedEZ 3D cell culture application notes - gel and drug embedding
 
2014 E cells and mats 27 332-349
2014 E cells and mats 27 332-3492014 E cells and mats 27 332-349
2014 E cells and mats 27 332-349
 

Ähnlich wie SFB Denver Presentation

Investing in Process Development for Increased MSC Production in Stirred Tank...
Investing in Process Development for Increased MSC Production in Stirred Tank...Investing in Process Development for Increased MSC Production in Stirred Tank...
Investing in Process Development for Increased MSC Production in Stirred Tank...MilliporeSigma
 
Investing in Process Development for Increased MSC Production in Stirred Tank...
Investing in Process Development for Increased MSC Production in Stirred Tank...Investing in Process Development for Increased MSC Production in Stirred Tank...
Investing in Process Development for Increased MSC Production in Stirred Tank...Merck Life Sciences
 
Evolving Treatment Paradigms in Multiple Myeloma and Implications for Shared ...
Evolving Treatment Paradigms in Multiple Myeloma and Implications for Shared ...Evolving Treatment Paradigms in Multiple Myeloma and Implications for Shared ...
Evolving Treatment Paradigms in Multiple Myeloma and Implications for Shared ...i3 Health
 
Exploring the Versatility of Micro-flow Technology – From Peptide Biomarkers ...
Exploring the Versatility of Micro-flow Technology – From Peptide Biomarkers ...Exploring the Versatility of Micro-flow Technology – From Peptide Biomarkers ...
Exploring the Versatility of Micro-flow Technology – From Peptide Biomarkers ...Waters Corporation
 
Anticancer drug screening
Anticancer drug screeningAnticancer drug screening
Anticancer drug screeningshishirkawde
 
Ultrasound triggered release of anticancer agents from alginate chitosan hydr...
Ultrasound triggered release of anticancer agents from alginate chitosan hydr...Ultrasound triggered release of anticancer agents from alginate chitosan hydr...
Ultrasound triggered release of anticancer agents from alginate chitosan hydr...Tomsk Polytechnic University
 
Cimetta et al., 2013
Cimetta et al., 2013Cimetta et al., 2013
Cimetta et al., 2013Fran Flores
 
MSTP SURF Presentation
MSTP SURF PresentationMSTP SURF Presentation
MSTP SURF PresentationSarah Albrecht
 
Biol500 Cell Growth & Kinetics
Biol500 Cell Growth & KineticsBiol500 Cell Growth & Kinetics
Biol500 Cell Growth & KineticsFaryn
 
Anticancer activity studies
Anticancer activity studiesAnticancer activity studies
Anticancer activity studiesshishirkawde
 
multiplemyeloma-200929172223 (2).pdf
multiplemyeloma-200929172223 (2).pdfmultiplemyeloma-200929172223 (2).pdf
multiplemyeloma-200929172223 (2).pdfVaraprasadArigela
 
Decellularized whartons jelly_from_human_umbilical_cord_as_a_novel_3_d_scaffo...
Decellularized whartons jelly_from_human_umbilical_cord_as_a_novel_3_d_scaffo...Decellularized whartons jelly_from_human_umbilical_cord_as_a_novel_3_d_scaffo...
Decellularized whartons jelly_from_human_umbilical_cord_as_a_novel_3_d_scaffo...ComprehensiveBiologi
 
Acellular matrices (for wound management)
Acellular matrices (for wound management)Acellular matrices (for wound management)
Acellular matrices (for wound management)Seyed Mohammad Zargar
 
Chondrocytes in Microgravity
Chondrocytes in MicrogravityChondrocytes in Microgravity
Chondrocytes in MicrogravityOliviaAskowitz
 
Cambridge Bioscience_ ACEA User Group Meeting2014
Cambridge Bioscience_ ACEA User Group Meeting2014Cambridge Bioscience_ ACEA User Group Meeting2014
Cambridge Bioscience_ ACEA User Group Meeting2014Jay Champaneri
 

Ähnlich wie SFB Denver Presentation (20)

Investing in Process Development for Increased MSC Production in Stirred Tank...
Investing in Process Development for Increased MSC Production in Stirred Tank...Investing in Process Development for Increased MSC Production in Stirred Tank...
Investing in Process Development for Increased MSC Production in Stirred Tank...
 
Investing in Process Development for Increased MSC Production in Stirred Tank...
Investing in Process Development for Increased MSC Production in Stirred Tank...Investing in Process Development for Increased MSC Production in Stirred Tank...
Investing in Process Development for Increased MSC Production in Stirred Tank...
 
Evolving Treatment Paradigms in Multiple Myeloma and Implications for Shared ...
Evolving Treatment Paradigms in Multiple Myeloma and Implications for Shared ...Evolving Treatment Paradigms in Multiple Myeloma and Implications for Shared ...
Evolving Treatment Paradigms in Multiple Myeloma and Implications for Shared ...
 
Exploring the Versatility of Micro-flow Technology – From Peptide Biomarkers ...
Exploring the Versatility of Micro-flow Technology – From Peptide Biomarkers ...Exploring the Versatility of Micro-flow Technology – From Peptide Biomarkers ...
Exploring the Versatility of Micro-flow Technology – From Peptide Biomarkers ...
 
Neurotech
NeurotechNeurotech
Neurotech
 
Anticancer drug screening
Anticancer drug screeningAnticancer drug screening
Anticancer drug screening
 
Ultrasound triggered release of anticancer agents from alginate chitosan hydr...
Ultrasound triggered release of anticancer agents from alginate chitosan hydr...Ultrasound triggered release of anticancer agents from alginate chitosan hydr...
Ultrasound triggered release of anticancer agents from alginate chitosan hydr...
 
La struttura della medicina di precisione
La struttura della medicina di precisioneLa struttura della medicina di precisione
La struttura della medicina di precisione
 
Cimetta et al., 2013
Cimetta et al., 2013Cimetta et al., 2013
Cimetta et al., 2013
 
MSTP SURF Presentation
MSTP SURF PresentationMSTP SURF Presentation
MSTP SURF Presentation
 
Biol500 Cell Growth & Kinetics
Biol500 Cell Growth & KineticsBiol500 Cell Growth & Kinetics
Biol500 Cell Growth & Kinetics
 
Anticancer activity studies
Anticancer activity studiesAnticancer activity studies
Anticancer activity studies
 
Multiple myeloma
Multiple myelomaMultiple myeloma
Multiple myeloma
 
multiplemyeloma-200929172223 (2).pdf
multiplemyeloma-200929172223 (2).pdfmultiplemyeloma-200929172223 (2).pdf
multiplemyeloma-200929172223 (2).pdf
 
MacoskaLabFinal
MacoskaLabFinalMacoskaLabFinal
MacoskaLabFinal
 
Decellularized whartons jelly_from_human_umbilical_cord_as_a_novel_3_d_scaffo...
Decellularized whartons jelly_from_human_umbilical_cord_as_a_novel_3_d_scaffo...Decellularized whartons jelly_from_human_umbilical_cord_as_a_novel_3_d_scaffo...
Decellularized whartons jelly_from_human_umbilical_cord_as_a_novel_3_d_scaffo...
 
Acellular matrices (for wound management)
Acellular matrices (for wound management)Acellular matrices (for wound management)
Acellular matrices (for wound management)
 
Chondrocytes in Microgravity
Chondrocytes in MicrogravityChondrocytes in Microgravity
Chondrocytes in Microgravity
 
Cambridge Bioscience_ ACEA User Group Meeting2014
Cambridge Bioscience_ ACEA User Group Meeting2014Cambridge Bioscience_ ACEA User Group Meeting2014
Cambridge Bioscience_ ACEA User Group Meeting2014
 
Theoretical models
Theoretical models Theoretical models
Theoretical models
 

SFB Denver Presentation

  • 1. INVESTIGATING MECHANISMS OF GLIOBLASTOMACELL MIGRATION WITHINA 3D BIOMIMETIC MICROENVIRONMENT Amanda Powell, Chandra Kothapalli Department of Chemical & Biomedical Engineering Cleveland State University Presented at the Society for Biomaterials Annual Meeting, April 17, 2014, Denver, CO
  • 2. Background • Cancer cell phenotype • Uncontrollable cellular proliferation • Formation of localized or remote tumor sites • Progressive acquisition of organs and various vital systems • What influences proliferation, migration, tumor formations etc. of these cells? • What is glioblastoma? • Most prevalent and aggressive malignant primary brain tumor • Accounts for about 52% of all primary brain tumor cases • High mortality rates • Highly migratory and invasive, often resulting in new tumor sites throughout the body • Current treatment options • Surgical intervention • Radiotherapy and chemotherapy • Corticosteroids • Antiangiogenic therapy • Various clinical trials
  • 3. Objectives of this project • Develop a microfluidic device to mimic 3D physiological microenvironment of cancer cells, and that allows for in situ monitoring • Investigate the role of chemogradients and matrix stiffness on glioblastoma cell chemotaxis • Investigate cancer cell- endothelial cell interactions within this device
  • 4. Microfluidics [Y.Toh et al., 2007, Lab Chip] [H.Wu et al., 2006, JACS] [T.Frisk et al., 2007, Electrophoresis] [A.Taylor et al., 2005, Nat. Method] [M.Kim et al., 2007, Biomed Microdev] [F.Q.Nie et al., 2007, Biomaterials] [A.Wong et al., 2008, Biomaterials] [G.Walker et al., 2005, Lab Chip] [W.Saadi et al., 2007, Biomed Microdev] [N.Jeon et al., 2002, Nat Biotech] [A.Paguirigan., 2006, Lab Chip] [B.Chung, 2005, Lab Chip] [S.Cheng et al., 2007, Lab Chip] [S.Wang et al., 2004, Exp. Cell Res.] [Y.Ling et al., 2007, Lab Chip] • Physiologically-relevant length and time scales • precise control • micro-environment • in situ monitoring • live cell imaging • minimal resources • simple and inexpensive (< $1/device) • high-magnification investigation • quantification
  • 5. Outlay of device Growth Factor Cancer cells Gel-loading port Cell chamber Growth factor chamber 3D gel region
  • 6. Experimental conditions: Glioma cells & Growth factors Controls • 1 mg/ml collagen-1 • 2 mg/ml collagen-1 • 3 mg/ml collagen-1 1 mg/ml Collagen-1 • VEGF • 0.1 mM • 1.0 mM • 10 mM • EGF • 0.1 mM • 1.0 mM • 10 mM 2 mg/ml Collagen-1 • VEGF • 0.1 mM • 1.0 mM • 10 mM • EGF • 0.1 mM • 1.0 mM • 10 mM 3 mg/ml Collagen-1 • VEGF • 0.1 mM • 1.0 mM • 10 mM • EGF • 0.1 mM • 1.0 mM • 10 mM
  • 7. Quantification of diffusion gradients • Device parameters • Cell loading area • Growth factor loading area • Collagen matrix injection port • Einstein-stokes Equation • Time For complete diffusion across channel 𝑫 𝑪 = 𝒌 𝑩 𝑻 𝟔𝝅ɳ𝒓 𝝉 = 𝑳 𝟐 𝟒𝝅 𝟐 𝑫 𝑪 Zone5 Zone4 Zone3 Zone2 Zone1 0.00E+00 1.00E-04 0hr 2hr 4hr 6hr 18hr 30hr 42hr ConcentrationofVEGF Diffusion concentrations of VEGF through 1 mg/ml collagen per zone over 48 h Zone5 Zone4 Zone3 Zone2 Zone1 0.00E+00 1.00E-04 0hr 2hr 4hr 6hr 18hr 30hr 42hr ConcentrationofVEGF Diffusion concentrations of VEGF through 2 mg/ml collagen- per zone over 48 h Zone5 Zone4 Zone3 Zone2 Zone1 0.00E+00 1.00E-04 0hr 2hr 4hr 6hr 18hr 30hr 42hr ConcentrationofVEGF Diffusion concentration of VEGF through 3 mg/ml collagen-1 per zone over 48 h
  • 8. Cancer cell migration over 48 h within 3D scaffolds 1 mg/mL collagen scaffold 1 mM VEGF gradient VEGF EGF Cellsmigratedover48h 0 100 200 300 400 500 600 0 mM 0.1 mM 1 mM 10 mM 1 mg/mL collagen VEGF EGF Cellsmigratedover48h 0 10 20 30 40 50 60 70 0 mM 0.1 mM 1 mM 10 mM 2 mg/mL collagen VEGF EGF Cellsmigratedover48h 0 5 10 15 20 25 30 35 0 mM 0.1 mM 1 mM 10 mM 3 mg/mL collagen
  • 9. Average migration distance over 48 h Time (min) 0 500 1000 1500 2000 2500 3000 Averagedistancemigrated(mm) 0 20 40 60 80 0.1 mM 1 mM 10 mM VEGF in 1 mg/mL collagen Time (min) 0 500 1000 1500 2000 2500 3000 Averagedistancemigrated(mm) 0 20 40 60 80 VEGF in 2 mg/mL collagen Time (min) 0 500 1000 1500 2000 2500 3000 Averagedistancemigrated(mm) 0 20 40 60 80 VEGF in 3 mg/mL collagen Time (min) 0 500 1000 1500 2000 2500 3000 Averagedistancemigrated(mm) 0 20 40 60 80 EGF in 1 mg/mL collagen Time (min) 0 500 1000 1500 2000 2500 3000 Averagedistancemigrated(mm) 0 20 40 60 80 EGF in 2 mg/mL collagen Time (min) 0 500 1000 1500 2000 2500 3000 Averagedistancemigrated(mm) 0 20 40 60 80 EGF in 3 mg/mL collagen 1.0 µM VEGF in 2 mg/ml Collagen-1
  • 10. Glioblastoma cell shape index (CSI) at 48 h CSI = 4𝜋∗𝐴 𝑃2 In controls, CSI ~ 1 0 h 12 h 24 h 48 h *1.0 µM EGF in 2 mg/ml collagen 20 µm 20 µm 20 µm 0.0 0.2 0.4 0.6 0.8 1.0 1 2 3 4 0.1 1 10 Cellshapeindex C ollagen (m g/m L) VEGF dosage (mM) 0.0 0.2 0.4 0.6 0.8 1.0 1 2 3 0.1 1 10 Cellshapeindex Collagen (mg/mL) EG F dose (mM ) 20 µm
  • 11. Average cell speed over 48 h Time (min) 0 500 1000 1500 2000 2500 3000 Averagecellspeed(mm/h) 0 2 4 6 8 10 12 14 VEGF-0.1 mM VEGF-1 mM VEGF-10 mM EGF-0.1 mM EGF-1 mM EGF-10 mM 1 mg/mL collagen Time (min) 0 500 1000 1500 2000 2500 3000 Averagecellspeed(mm/h) 0 2 4 6 8 10 12 14 VEGF-0.1 mM VEGF-1 mM VEGF-10 mM EGF-0.1 mM EGF-1 mM EGF-10 mM 3 mg/mL collagen Time (min) 0 500 1000 1500 2000 2500 3000 Averagecellspeed(mm/h) 0 2 4 6 8 10 12 14 VEGF-0.1 mM VEGF-1 mM VEGF-10 mM EGF-0.1 mM EGF-1 mM EGF-10 mM 2 mg/mL collagen
  • 12. Cell migration trajectories 1 mg/ml collagen 2 mg/ml collagen 3 mg/ml collagen
  • 13. Cell-cell coculture configurations Kothapalli et al., Biomicrofluidics, 2011, 5, 013406
  • 14. Effect of cell-cell paracrine signaling on cancer cell migration Human endothelial cells Human Glioblatoma cells *U-87 cells in 1 mg/ml Collagen-1 Collagen concentration 1 mg/mL 2 mg/mL 3 mg/mL Numberofcellsmigrated over144h 1 10 100 1000 U87 HMVEC
  • 15. Migration parameters for U87MG and EC cells Time (h) 0 20 40 60 80 100 120 140 160 Averagedistancemigrated(mm) 0 10 20 30 40 50 60 U87 HMVEC 1 mg/mL collagen Time (h) 0 20 40 60 80 100 120 140 160 Averagedistancemigrated(mm) 0 10 20 30 40 50 60 U87 HMVEC 2 mg/mL collagen Time (h) 0 20 40 60 80 100 120 140 160 Averagedistancemigrated(mm) 0 5 10 15 20 25 U87 HMVEC 3 mg/mL collagen Time (h) 0 20 40 60 80 100 120 140 160 Averagecellspeed(mm/h) 0.0 0.1 0.2 0.3 0.4 0.5 U87 HMVEC 1 mg/mL collagen Time (h) 0 20 40 60 80 100 120 140 160 Averagecellspeed(mm/h) 0.00 0.01 0.02 0.03 0.04 0.40 0.45 0.50 U87 HMVEC 2 mg/mL collagen Time (h) 0 20 40 60 80 100 120 140 160Averagecellspeed(mm/h) 0.00 0.05 0.10 0.15 0.20 0.40 0.45 0.50 U87 HMVEC 3 mg/mL collagen
  • 16. Comparison of our results with literature Group Culture Period Platform Cell Count Distance Speed Conditions **Our Research** 48 h 3D Microfluidic device 12 < n < 455 25 - 50 µm 2 – 14 µm/h Gliomas w/EGF & VEGF 168 h 3D Microfluidic device ~ 600 5 - 55 µm 0.4 – 0.45 µm/h Gliomas w/HMVECs Wick et al. (2001) 96 h 48 well chemotaxis chamber ~ 200 900 µm Standard gliomas Agudelo- Garcia et al. (2011) 48 h Nanofiber-coated agar plates ~ 250 Standard gliomas Burgoyne et al. (2009) 48 h Brain slice assay 280 µm Standard gliomas Kim et al. (2008) 10 h 3D collagen matrix on cell culture dishes 15 -19 µm/h Gliomas w/EGF Schichor et al. (2006) 24 h Boyden chamber, spheroid migration in Laminin ~ 2 per visual field ~350 µm Gliomas w/VEGF Schichor et al. (2006) 24 h Boyden chamber, spheroid migration in Laminin ~6 µm Gliomas w/HMSCs
  • 17. Conclusions from this study • Microfluidic devices offer a unique platform to study cancer cell biology under diffusive chemogradients within 3D matrices • Strong role of matrix concentration (and thereby stiffness, porosity, pore-size, etc.) on glioblastoma cell migration evident • Within each collagen scaffold, cell migration is influenced by the type (VEGF vs. EGF) and dosage (0-10 mM) of growth factor • Higher migration of HMVECs towards cancer cells noted, suggesting onset of angiogenesis • Future work to screen and identify the benefits of delivering therapeutic drugs to inhibit cancer cell migration and/or angiogenesis
  • 18. REFERENCES IMAGES 1. Image 1: McLaren, Iren. “Brain food or how to eat to your mental advantage.” Master Cook- Blog About Cooking. 10 Nov 2008, Retrieved 20 June 2012 from http://mastercookblog.blogspot.com/2008/11/brain-food-or-how-to-eat-to- your-mental.html. 2. Image 2: “Cancer requires multiple mutations from NIHen.png” Wikipedia.com. 31 Aug 2004, Retrieved 17 June 2012 from http://en.wikipedia.org/wiki/File:Cancer_requires_multiple_mutations_from_NIHen.png. 3. Image 3: “Glioblastoma Multiforme.” ThirdAge.com 2009, Retrieved 17 June 2012 from http://www.thirdage.com/hc/c/what-is-glioblastoma-multiforme. 4. Image 4: Bruce, J. “Glioblastoma Multiforme.” Medscape.com. 6 Dec. 2006, Retrieved 17 June 2012 from http://emedicine.medscape.com/article/283252-overview. 5. Image 5&6: “Molecular and Cellular Biology.” Wikipedia.com 14 Dec. 2013. Retrieved 12 June 2012 from http://commons.wikimedia.org/wiki/Molecular_and_Cellular_Biology. 6. Image 7: “Neurotransmitter Acetylcholine.” Dutchpipesmoker.wordpress.com 4 Aug. 2013. Retrieved 19 Jan. 2014 from http://dutchpipesmoker.wordpress.com/tag/neurotransmitter-acetylcholine/. LITERATURE 1. Kim HD et al. (2008) “Epidermal growth factor-induced enhancement of glioblastoma cell migration in 3D arises from an intrinsic increase in speed but an extrinsic matrix and proteolysis-dependent increase in persistence.” Molecular Biology of the Cell. 19:4249-89. 2. “Glioblastoma.” abta.org. 2012, Retrieved 17 June 2012 from http://www.abta.org/understanding-brain-tumors/types- of-tumors/glioblastoma.html. 3. “Glioblastoma Multiforme (GBM).” NeuroOncologia. Retrieved 18 June 2012 from http://www.neurooncologia.com/en/tumortypes/GBM/diagnosis.html. 4. Chung, S. et al. “Cell migration into scaffolds under co-culture conditions in a microfluidic platform.” The Royal Society of Chemistry. 2008: 1-8. 5. Vickerman, V. et al. “Design, fabrication, and implementation of a novel multi parameter control microfluidic platform for three-dimensional cell culture and real-time imaging.” Lab Chip. 2008 Sept., 8(9): 1468-1477. 6. Kothapalli, C. “Mechanisms of glioma cell migration.” 7. Ngalim. S. H. et. al. “How do cells make decisions: engineering micro- and nanoenvironments for cell migration.” Journal of Oncology. 1 April 2010, 2010: 1-7. 8. Huang, Y. et. al. “Microfluidics-based devices: new tools for studying cancer and cancer stem cell migration.” Biomicrofluidics, 5, 013412 (2011).
  • 19. Acknowledgements PERSONNEL • Chandra Kothapalli, Ph.D., Advisor • Joanne Belovich, Ph.D., provided U87-MG cells • Kurt Farrell, lab mate FUNDING • Choose Ohio First Scholarship Program • Travel Scholarship from Choose Ohio First Scholarship to attend this conference • CSU Start-Up Funds • FRD Grant from CSU
  • 21. Multi-step model of invasion metastasis Primary tumor Secondary tumor guidance intravasation The Biology of Cancer (© Garland Science 2007) extravasation metastasis Breast tumor progression Vargo-Gogola et al, 2008