SlideShare ist ein Scribd-Unternehmen logo
1 von 20
Identification of new genes
in adult-onset
mitochondrial diseases
MRes Project 2012
Alexia Chrysostomou
(083707160)
 Introduction
 Mitochondria and diseases
 Progressive External Ophthalmoplegia (PEO)
 Patients cohort
 Methodology
 Exome sequencing
 Variant filtering criteria
 Sanger sequencing
 Results
 RRM1
 TOP3A
 Conclusions
 Discussion and Future Work
Mitochondria and diseases
• Subcellular organelles required for
maintenance and survival
• Production of the majority of
energy demand through
oxidative phosphorylation (Kim,
Kim et al. 1989)
• Contain circular double-stranded
DNA (mtDNA)
• Wide spectrum of disorders linked
to them
• Primary mtDNA defects
• Secondary changes due to
nuclear-encoded genes (Taylor
and Turnbull 2005; Copeland
2008)
Progressive External Ophthalmoplegia
(PEO)
• Commonest mitochondrial
myopathy in adults
• “Facial expression with eyes
motionless and dropping lids
giving the impression that the
patient is half asleep” (Hutchinson
1879)
• Characterized by ptosis and
ophthalmoparesis
• Symptoms include: proximal limb
muscle weakness, ataxia, axonal
neuropathy and cardiomyopathy
• Disease progression
• Genetic causes: primary
mtDNA defects or nuclear
DNA mutations leading to
multiple mtDNA deletions
• Muscle biopsy demonstrates
cytochrome c oxidase (COX)
inactivity
Progressive External Ophthalmoplegia
(PEO)
1 2 3
- 9.9 kb
Patients cohort
• Recruitment of an initial cohort of 8 patients
• Similar disease phenotype, mainly PEO
• Multiple mtDNA deletions and COX-negative fibers
• Exclusion of known genes (POLG, POLG2, ANT1, Twinkle, RRM2B)
• Exome sequenced
• We had a panel of 48 further patients for testing of any candidate genes
Patient 1 2 3 4 5 6 7 8
Phenotype PEO;NOS
PEO;
Ataxia
PEO;NOS
PEO;
Ataxia
PEO; Ataxia;
Neuropathy;
Cardiomyopathy
PEO;
OPMD-like
PEO;
Ataxia
PEO;
OPMD-like
Suspected
mode of
inheritance
Autosomal
Recessive
Autosomal
Recessive
Autosomal
Dominant
Autosomal
Recessive
Autosomal
Recessive
Autosomal
Recessive
Autosomal
Dominant
Autosomal
Dominant
Exome sequencing
Methodology
• Exome sequencing-Filtering criteria
1. Selection of genes predicted to be mitochondrial
2. Exclusion of known polymorphisms, mutations reported in
the Thousand Genomes Projects and other non-coding
changes
3. For sporadic cases, assumed with autosomal recessive
inheritance: homozygote or compound heterozygote coding
changes -> 106 candidates
4. For familial cases, inherited the disease in a dominant
fashion: single heterozygous coding changes -> 533 genes
5. From (3) and (4), evaluated the genes according to function
(biological plausibility-mtDNA replication and mitochondrial
dynamics) -> final list of 13 genes
• Sanger sequencing
• Verification of mutations that came up from exome sequencing
• Whole (candidate) gene sequencing
Methodology Lane
1
Lane
5
Lane
6
Lane
3
Lane
7
Lane
8
Genes Function
PANK2 May be the master regulator of the CoA biosynthesis √
TTN Assembly and functioning of vertebrate striated
muscles √
CPT1B Enzyme of the long-chain fatty acid beta-oxidation √
DNAH14 Microtubule-dependent motor ATPase √ √ √
SUOX Oxidation of sulfite to sulfate √
TOP3A Control and alteration of the topologic states of DNA √ √
SACS regulator of the Hsp70 chaperone machinery √
RARS2 Arginyl-tRNA synthetase √
DMWD Could have a regulatory function in meiosis √
SYNE1 Maintenance of subcellular spatial organization √
RRM1 Provides the precursors necessary for DNA synthesis √ √
SPG11 Phosphorylated upon DNA damage-defects cause
spastic paraplegia type 11 √
NDUFV2 Subunit of the mitochondrial membrane respiratory
chain NADH dehydrogenase (Complex I) √
Results
Gene
symbol
Variant Prediction Patient
Sanger
Sequencing
TTN
chr2_179428370_C_T
chr2_179454530_C_T
chr2_179455731_C_G
chr2_179500777_C_T
disease_causing;p.G18622R
disease_causing;p.R11766Q
disease_causing;p.E11366Q
polymorphism;p.D4968N
5 TRUE
PANK2
chr20_3870334_T_C
chr20_3869911_T_G
polymorphism
polymorphism
1 FALSE
RARS2 chr6_88239365_C_T disease_causing; p.R258H 8 TRUE
TOP3A
chr17_18208522_G_A
chr17_18211681_T_C
chr17_18196087_G_A
NMD; p.R135*
polymorphism; p.M100V
disease_causing;rs139068958; p.P385S
5
5
7
TRUE
NDUFV2
chr18_9104204_G__C_ins
chr18_9122529_G_A
NMD;p.H4P
polymorphism; p.V110I
8 TRUE
SUOX chr12_56398455_G_A disease_causing 3 FALSE
SYNE1 chr6_152702311_G_C disease_causing 8 FALSE
DNAH14
chr1_225393676_T_A
chr1_225231636_G_T
chr1_225270424_A_T
polymorphism;p.F1972Y
disease_causing
polymorphism;p.N1104Y
3
7
8
TRUE
SACS chr13_23906739_G_A disease_causing; p.T3759M 8 TRUE
CPT1B chr22_51014487_C_T disease_causing; p.V252M 3 TRUE
DMWD chr19_46294291_T_G disease_causing 3 FALSE
RRM1
chr11_4154851_T_C
chr11_4144575_C_A
disease_causing; p.M6555T
disease_causing; p.N427K
7
8
TRUE
RRM1
• Ribonucleotide Reductase
large subunit (RNR1)
• Normal partner of RRM2B,
known to cause ad PEO, for
supplying resting cells with
deoxynucleotides for DNA
repair
• Baruffinni and colleagues
(2006) demonstrated that
overexpression of RNR1 (or
deletion of its inhibitor-
SML1) is able to rescue yeast
petite colonies
Reference ID Position in chromosome Region in gene
rs111548639 g.412A>C; Chr11_4116335 Intron
rs725518 g.12922G>A;Chr11_4128845 Intron
rs56336381 g.17394C>A;Chr11_4133317 Intron
rs183484 c.850C>A;Chr11_4141132 CDS
rs9937 c.2223A>G;Chr11_4159457 CDS
rs1042858 c.2232G>A;Chr11_4159466 CDS
 Screening the remaining 48 patients in the panel did not indicate
further changes in any of the gene’s exons. Common
polymorphisms were detected instead:
Gene
symbol
Variant Prediction Patient
Sanger
Sequencing
TTN
chr2_179428370_C_T
chr2_179454530_C_T
chr2_179455731_C_G
chr2_179500777_C_T
disease_causing;p.G18622R
disease_causing;p.R11766Q
disease_causing;p.E11366Q
polymorphism;p.D4968N
5 TRUE
PANK2
chr20_3870334_T_C
chr20_3869911_T_G
polymorphism
polymorphism
1 FALSE
RARS2 chr6_88239365_C_T disease_causing; p.R258H 8 TRUE
TOP3A
chr17_18208522_G_A
chr17_18211681_T_C
chr17_18196087_G_A
NMD; p.R135*
polymorphism; p.M100V
disease_causing;rs139068958; p.P385S
5
5
7
TRUE
NDUFV2
chr18_9104204_G__C_ins
chr18_9122529_G_A
NMD;p.H4P
polymorphism; p.V110I
8 TRUE
SUOX chr12_56398455_G_A disease_causing 3 FALSE
SYNE1 chr6_152702311_G_C disease_causing 8 FALSE
DNAH14
chr1_225393676_T_A
chr1_225231636_G_T
chr1_225270424_A_T
polymorphism;p.F1972Y
disease_causing
polymorphism;p.N1104Y
3
7
8
TRUE
SACS chr13_23906739_G_A disease_causing; p.T3759M 8 TRUE
CPT1B chr22_51014487_C_T disease_causing; p.V252M 3 TRUE
DMWD chr19_46294291_T_G disease_causing 3 FALSE
RRM1
chr11_4154851_T_C
chr11_4144575_C_A
disease_causing; p.M6555T
disease_causing; p.N427K
7
8
TRUE
TOPOISOMERASE 3A (TOP3A)
• Maintaining genome integrity,
through the resolution of DNA
replication and recombination
intermediates (Holliday junctions)
• Shown to be crucial for Drosophila
and Arabidopsis cell viability and
normal development (Wu, Feng et
al. 2010;Hartung, Suer et al.
2008), also involved in mtDNA
depletion in Drosophila (Wu, Feng
et al. 2010)
• Able to localize both in the nucleus
and mitochondria (Wang 2002)
Patient5
 chr17_18211681_T_C_ENST00000412083
Patient45
 chr17_18211681_T_C_ENST00000412083
 TOP3A was the preferred
candidate for sporadic cases
(compound heterozygous
changes in patient 5).
 Screening for the presence of the
3 changes found from exome
sequencing revealed the presence
of one of them in patient 45
(p.M100V)
 That same change was not found
in any of the 102 regionally- and
ethnically-matched controls (204
chromosomes)
Reference ID Position in chromosome
Region in
gene
rs17805992 g.386C>G;Chr17_18217903 intron
rs7212337 c.331G>A;Chr17_18217958 CDS
rs 6502645 g.23927G>A;Chr17_18194362 intron
rs7213789 g.29574G>A;Chr17_18188715 intron
rs7207123 g.9745C>T;Chr17_18208544 intron
rs2294913 g.15293G>A;Chr17_18202996 intron
rs2230154 c.1723C>T;Chr17_18193941 CDS
rs3817992 g.24278G>T;Chr17_18194011 intron
rs6502644 g.34278C>A;Chr17_18184011 intron
rs140837737 c.3016C>T;Chr17_18180996 CDS
 Sequencing all of the gene’s exons in a panel of 19 clinically well-
characterized patients did not indicate the existence of any further
variants
Conclusions
• Exome sequencing identified novel sequence variants in RRM1
and TOP3A
• Conventional Sanger sequencing did not reveal the presence of
any further variants, expect for the p.M100V mutation in TOP3A
(patient 5,45)
• Patient 45 is a sporadic case, thus autosomal recessive
inheritance is expected (compound heterozygote changes). No
new variants were detected, apart from the p.M100V one
• The p.M100V change did not appear in any of the 102 regionally-
and ethnically-matched controls
Future work
• Sequence the remaining patients in the panel for TOP3A
• Revise the gene list
Discussion
• The control group size is still small, since the p.M100V change
could be a polymorphism with low frequency
• Patient 7 was subsequently diagnosed with Spinocerebellar ataxia
type 28, hence the RRM1 variant is unlikely to be of significance
• Possible reasons for missing out the disease gene(variants):
• Lack of family data
• Stringent filtering criteria
• Low call rates
• Coverage of each gene
References
• Baruffini, E., T. Lodi, et al. (2006). "Genetic and chemical rescue of the Saccharomyces cerevisiae phenotype
induced by mitochondrial DNA polymerase mutations associated with progressive external ophthalmoplegia
in humans." Human Molecular Genetics 15(19): 2846-2855.
• Copeland, W. C. (2008). Inherited mitochondrial diseases of DNA replication. 59: 131-146.
• Gorman, G. S. and R. W. Taylor (2011). "Mitochondrial DNA abnormalities in ophthalmological disease." Saudi
Journal of Ophthalmology 25(4): 395-404.
• Hartung, F., S. Suer, et al. (2008). "Topoisomerase 3α and RMI1 Suppress Somatic Crossovers and Are
Essential for Resolution of Meiotic Recombination Intermediates in <italic>Arabidopsis thaliana</italic>."
PLoS Genet 4(12): e1000285.
• Hutchinson, J. (1879). "On Ophthalmoplegia Externa, or Symmetrical Immobility (partial) of the Eyes, with
Ptosis." Med Chir Trans 62: 307-329.
• Kim, J. S., C. J. Kim, et al. (1989). "Chronic progressive external ophthalmoplegia (CPEO) with 'ragged red
fibers': a case report." J Korean Med Sci 4(2): 91-96.
• Singleton, A. B. (2011). "Exome sequencing: a transformative technology." The Lancet Neurology 10(10): 942-
946.
• Taylor, R. W. and D. M. Turnbull (2005). "Mitochondrial DNA mutations in human disease." Nat Rev Genet
6(5): 389-402.
• Thelander, L. (2007). "Ribonucleotide reductase and mitochondrial DNA synthesis." Nat Genet 39(6): 703-
704.
• Wang, J. C. (2002). "Cellular roles of DNA topoisomerases: a molecular perspective." Nat Rev Mol Cell Biol
3(6): 430-440.
• Wu, J., L. Feng, et al. (2010). "Drosophila topo IIIα is required for the maintenance of mitochondrial genome
and male germ-line stem cells." Proceedings of the National Academy of Sciences 107(14): 6228-6233.
• Yang, J., C. Z. Bachrati, et al. (2010). "Human Topoisomerase IIIα Is a Single-stranded DNA Decatenase That Is
Stimulated by BLM and RMI1." Journal of Biological Chemistry 285(28): 21426-21436.
Acknowledgments
 Professor Patrick Chinnery
 Professor Robert Taylor
• Dr. Gerald Pfeffer
• Dr. Angela Pyle
• Dr. Gavin Hudson
• Dr. Helen Griffin
• Dr. Grainne Gorman
• Mrs. Tania Smertenko
• Everyone in PFC lab

Weitere ähnliche Inhalte

Was ist angesagt?

IMATINIB RESISTANT CML
IMATINIB RESISTANT CMLIMATINIB RESISTANT CML
IMATINIB RESISTANT CMLspa718
 
Epigenetics and small molecule
Epigenetics and small moleculeEpigenetics and small molecule
Epigenetics and small moleculeFei Xiang
 
Dr_Döhner aml st. petersburg_04.03.2016
Dr_Döhner aml st. petersburg_04.03.2016Dr_Döhner aml st. petersburg_04.03.2016
Dr_Döhner aml st. petersburg_04.03.2016EAFO2014
 
Acquired resistance to EGFR TKIs in Lung Cancer (NSCLC)
Acquired resistance to EGFR TKIs in Lung Cancer (NSCLC)Acquired resistance to EGFR TKIs in Lung Cancer (NSCLC)
Acquired resistance to EGFR TKIs in Lung Cancer (NSCLC)H. Jack West
 
Changing Landscape of Treatment for Multiple Myeloma
Changing Landscape of Treatment for Multiple MyelomaChanging Landscape of Treatment for Multiple Myeloma
Changing Landscape of Treatment for Multiple Myelomaspa718
 
Ultra-High-Field 1H MRS as a Prognostic Precision Medicine Biomarker Detectio...
Ultra-High-Field 1H MRS as a Prognostic Precision Medicine Biomarker Detectio...Ultra-High-Field 1H MRS as a Prognostic Precision Medicine Biomarker Detectio...
Ultra-High-Field 1H MRS as a Prognostic Precision Medicine Biomarker Detectio...Uzay Emir
 
CAR-T cell therapy in China
CAR-T cell therapy in ChinaCAR-T cell therapy in China
CAR-T cell therapy in Chinaspa718
 
Thalassemia and Stem cell transplant
Thalassemia and Stem cell transplantThalassemia and Stem cell transplant
Thalassemia and Stem cell transplantspa718
 
Retinoic Acid Receptor Alpha
Retinoic Acid Receptor AlphaRetinoic Acid Receptor Alpha
Retinoic Acid Receptor AlphaTaylor Beard
 
10.29.07 Coumadin P Gx Jonas
10.29.07 Coumadin P Gx Jonas10.29.07 Coumadin P Gx Jonas
10.29.07 Coumadin P Gx JonasFlavio Guzmán
 
V_Hematology_Forum_Prof_Lowenberg
V_Hematology_Forum_Prof_LowenbergV_Hematology_Forum_Prof_Lowenberg
V_Hematology_Forum_Prof_LowenbergEAFO1
 
Thalassemia Transplant Update. Dr. Suradej Hongeng
Thalassemia Transplant Update. Dr. Suradej HongengThalassemia Transplant Update. Dr. Suradej Hongeng
Thalassemia Transplant Update. Dr. Suradej Hongengspa718
 
Donor Selection: Unrealted donor transplant. Prof. Richard Champlin
Donor Selection: Unrealted donor transplant. Prof. Richard ChamplinDonor Selection: Unrealted donor transplant. Prof. Richard Champlin
Donor Selection: Unrealted donor transplant. Prof. Richard Champlinspa718
 
Carfilzomib: new standard of care for myeloma
Carfilzomib: new standard of care for myelomaCarfilzomib: new standard of care for myeloma
Carfilzomib: new standard of care for myelomaspa718
 
donor selection in Haplo Transplant
donor selection in Haplo Transplantdonor selection in Haplo Transplant
donor selection in Haplo Transplantspa718
 
Cellular Therapy for multiple myeloma
Cellular Therapy for multiple myelomaCellular Therapy for multiple myeloma
Cellular Therapy for multiple myelomaspa718
 

Was ist angesagt? (20)

Poster
PosterPoster
Poster
 
IMATINIB RESISTANT CML
IMATINIB RESISTANT CMLIMATINIB RESISTANT CML
IMATINIB RESISTANT CML
 
Epigenetics and small molecule
Epigenetics and small moleculeEpigenetics and small molecule
Epigenetics and small molecule
 
Dr_Döhner aml st. petersburg_04.03.2016
Dr_Döhner aml st. petersburg_04.03.2016Dr_Döhner aml st. petersburg_04.03.2016
Dr_Döhner aml st. petersburg_04.03.2016
 
Acquired resistance to EGFR TKIs in Lung Cancer (NSCLC)
Acquired resistance to EGFR TKIs in Lung Cancer (NSCLC)Acquired resistance to EGFR TKIs in Lung Cancer (NSCLC)
Acquired resistance to EGFR TKIs in Lung Cancer (NSCLC)
 
Changing Landscape of Treatment for Multiple Myeloma
Changing Landscape of Treatment for Multiple MyelomaChanging Landscape of Treatment for Multiple Myeloma
Changing Landscape of Treatment for Multiple Myeloma
 
Ultra-High-Field 1H MRS as a Prognostic Precision Medicine Biomarker Detectio...
Ultra-High-Field 1H MRS as a Prognostic Precision Medicine Biomarker Detectio...Ultra-High-Field 1H MRS as a Prognostic Precision Medicine Biomarker Detectio...
Ultra-High-Field 1H MRS as a Prognostic Precision Medicine Biomarker Detectio...
 
Crizo
CrizoCrizo
Crizo
 
Dr. Goy MCL
Dr. Goy MCLDr. Goy MCL
Dr. Goy MCL
 
CAR-T cell therapy in China
CAR-T cell therapy in ChinaCAR-T cell therapy in China
CAR-T cell therapy in China
 
Thalassemia and Stem cell transplant
Thalassemia and Stem cell transplantThalassemia and Stem cell transplant
Thalassemia and Stem cell transplant
 
Retinoic Acid Receptor Alpha
Retinoic Acid Receptor AlphaRetinoic Acid Receptor Alpha
Retinoic Acid Receptor Alpha
 
10.29.07 Coumadin P Gx Jonas
10.29.07 Coumadin P Gx Jonas10.29.07 Coumadin P Gx Jonas
10.29.07 Coumadin P Gx Jonas
 
508 search for genomic and proteomic risk factors and protective factors asso...
508 search for genomic and proteomic risk factors and protective factors asso...508 search for genomic and proteomic risk factors and protective factors asso...
508 search for genomic and proteomic risk factors and protective factors asso...
 
V_Hematology_Forum_Prof_Lowenberg
V_Hematology_Forum_Prof_LowenbergV_Hematology_Forum_Prof_Lowenberg
V_Hematology_Forum_Prof_Lowenberg
 
Thalassemia Transplant Update. Dr. Suradej Hongeng
Thalassemia Transplant Update. Dr. Suradej HongengThalassemia Transplant Update. Dr. Suradej Hongeng
Thalassemia Transplant Update. Dr. Suradej Hongeng
 
Donor Selection: Unrealted donor transplant. Prof. Richard Champlin
Donor Selection: Unrealted donor transplant. Prof. Richard ChamplinDonor Selection: Unrealted donor transplant. Prof. Richard Champlin
Donor Selection: Unrealted donor transplant. Prof. Richard Champlin
 
Carfilzomib: new standard of care for myeloma
Carfilzomib: new standard of care for myelomaCarfilzomib: new standard of care for myeloma
Carfilzomib: new standard of care for myeloma
 
donor selection in Haplo Transplant
donor selection in Haplo Transplantdonor selection in Haplo Transplant
donor selection in Haplo Transplant
 
Cellular Therapy for multiple myeloma
Cellular Therapy for multiple myelomaCellular Therapy for multiple myeloma
Cellular Therapy for multiple myeloma
 

Andere mochten auch

Mitochondial disorders
Mitochondial disordersMitochondial disorders
Mitochondial disordersaqsa ayoub
 
Cortical stimulation and mapping
Cortical stimulation and mappingCortical stimulation and mapping
Cortical stimulation and mappingPramod Krishnan
 
Mitochondrial disorders overview
Mitochondrial disorders overviewMitochondrial disorders overview
Mitochondrial disorders overviewsabiiiiii
 
GENETIC HETEROGENEITY OF MITOCHONDRIAL DISORDERS - Agnès Rötig
GENETIC HETEROGENEITY OF MITOCHONDRIAL DISORDERS - Agnès RötigGENETIC HETEROGENEITY OF MITOCHONDRIAL DISORDERS - Agnès Rötig
GENETIC HETEROGENEITY OF MITOCHONDRIAL DISORDERS - Agnès RötigHuman Variome Project
 
Mitochondrial Diseases
Mitochondrial DiseasesMitochondrial Diseases
Mitochondrial DiseasesTayyab Chishti
 
Genetics of Mitochondrial disorders
Genetics of Mitochondrial disordersGenetics of Mitochondrial disorders
Genetics of Mitochondrial disordersPramod Krishnan
 
Psychiatric Disorders in Mitochondrial Diseases; Mitochondrial Dysregulation ...
Psychiatric Disorders in Mitochondrial Diseases; Mitochondrial Dysregulation ...Psychiatric Disorders in Mitochondrial Diseases; Mitochondrial Dysregulation ...
Psychiatric Disorders in Mitochondrial Diseases; Mitochondrial Dysregulation ...mitoaction
 
genetic diseases of mitochondrial origin genetic diseases
genetic diseases  of mitochondrial origin genetic diseases genetic diseases  of mitochondrial origin genetic diseases
genetic diseases of mitochondrial origin genetic diseases Nisha Sunny
 

Andere mochten auch (14)

Mitochondial disorders
Mitochondial disordersMitochondial disorders
Mitochondial disorders
 
Cortical stimulation and mapping
Cortical stimulation and mappingCortical stimulation and mapping
Cortical stimulation and mapping
 
Mitochondrial disorders overview
Mitochondrial disorders overviewMitochondrial disorders overview
Mitochondrial disorders overview
 
GENETIC HETEROGENEITY OF MITOCHONDRIAL DISORDERS - Agnès Rötig
GENETIC HETEROGENEITY OF MITOCHONDRIAL DISORDERS - Agnès RötigGENETIC HETEROGENEITY OF MITOCHONDRIAL DISORDERS - Agnès Rötig
GENETIC HETEROGENEITY OF MITOCHONDRIAL DISORDERS - Agnès Rötig
 
Mitochondrial Diseases
Mitochondrial DiseasesMitochondrial Diseases
Mitochondrial Diseases
 
GENOME EDITING IN MITOCHONDRIAL DISEASES
GENOME EDITING IN MITOCHONDRIAL DISEASES GENOME EDITING IN MITOCHONDRIAL DISEASES
GENOME EDITING IN MITOCHONDRIAL DISEASES
 
Anti epileptic drugs
Anti epileptic drugsAnti epileptic drugs
Anti epileptic drugs
 
Mitochondrial diseases overview!
Mitochondrial diseases overview!Mitochondrial diseases overview!
Mitochondrial diseases overview!
 
Mitochondrial Disorder
Mitochondrial DisorderMitochondrial Disorder
Mitochondrial Disorder
 
Genetics of Mitochondrial disorders
Genetics of Mitochondrial disordersGenetics of Mitochondrial disorders
Genetics of Mitochondrial disorders
 
Mitochondrial diseases
Mitochondrial diseasesMitochondrial diseases
Mitochondrial diseases
 
Mitochondrial dna
Mitochondrial dnaMitochondrial dna
Mitochondrial dna
 
Psychiatric Disorders in Mitochondrial Diseases; Mitochondrial Dysregulation ...
Psychiatric Disorders in Mitochondrial Diseases; Mitochondrial Dysregulation ...Psychiatric Disorders in Mitochondrial Diseases; Mitochondrial Dysregulation ...
Psychiatric Disorders in Mitochondrial Diseases; Mitochondrial Dysregulation ...
 
genetic diseases of mitochondrial origin genetic diseases
genetic diseases  of mitochondrial origin genetic diseases genetic diseases  of mitochondrial origin genetic diseases
genetic diseases of mitochondrial origin genetic diseases
 

Ähnlich wie Alexia Chrysostomou (083707160)

Dra. Mary Reilly - 'Neuropatías periféricas hereditarias'
Dra. Mary Reilly - 'Neuropatías periféricas hereditarias' Dra. Mary Reilly - 'Neuropatías periféricas hereditarias'
Dra. Mary Reilly - 'Neuropatías periféricas hereditarias' Fundación Ramón Areces
 
Genome sequencing uncovers MS phenocopies in primary progressive multiple scl...
Genome sequencing uncovers MS phenocopies in primary progressive multiple scl...Genome sequencing uncovers MS phenocopies in primary progressive multiple scl...
Genome sequencing uncovers MS phenocopies in primary progressive multiple scl...Sherman Jia
 
Gene Profiling in Clinical Oncology - Slide 4 - L. Lacroix - New markers to d...
Gene Profiling in Clinical Oncology - Slide 4 - L. Lacroix - New markers to d...Gene Profiling in Clinical Oncology - Slide 4 - L. Lacroix - New markers to d...
Gene Profiling in Clinical Oncology - Slide 4 - L. Lacroix - New markers to d...European School of Oncology
 
NSCLC: diagnóstico molecular, pronóstico y seguimiento; CTC
NSCLC: diagnóstico molecular, pronóstico y seguimiento; CTCNSCLC: diagnóstico molecular, pronóstico y seguimiento; CTC
NSCLC: diagnóstico molecular, pronóstico y seguimiento; CTCMauricio Lema
 
Gene Profiling in Clinical Oncology - Slide 4 - L. Lacroix - New markers to d...
Gene Profiling in Clinical Oncology - Slide 4 - L. Lacroix - New markers to d...Gene Profiling in Clinical Oncology - Slide 4 - L. Lacroix - New markers to d...
Gene Profiling in Clinical Oncology - Slide 4 - L. Lacroix - New markers to d...European School of Oncology
 
ACUTE MYELOID LEUKEMIA
ACUTE MYELOID LEUKEMIAACUTE MYELOID LEUKEMIA
ACUTE MYELOID LEUKEMIAflasco_org
 
Genetic Markers in AML
Genetic Markers in AMLGenetic Markers in AML
Genetic Markers in AMLFerdie Fatiga
 
Present and Future Impact of Cytogenetics on Acute Myeloid Leukemia
Present and Future Impact of Cytogenetics on Acute Myeloid LeukemiaPresent and Future Impact of Cytogenetics on Acute Myeloid Leukemia
Present and Future Impact of Cytogenetics on Acute Myeloid Leukemialarriva
 
Dr. John Svaren - 'Neuropatías periféricas hereditarias'
Dr. John Svaren - 'Neuropatías periféricas hereditarias'Dr. John Svaren - 'Neuropatías periféricas hereditarias'
Dr. John Svaren - 'Neuropatías periféricas hereditarias'Fundación Ramón Areces
 
Use of Affymetrix Arrays (GeneChip® Human Transcriptome 2.0 Array and Cytosca...
Use of Affymetrix Arrays (GeneChip® Human Transcriptome 2.0 Array and Cytosca...Use of Affymetrix Arrays (GeneChip® Human Transcriptome 2.0 Array and Cytosca...
Use of Affymetrix Arrays (GeneChip® Human Transcriptome 2.0 Array and Cytosca...Affymetrix
 
Symposium Presentation-Change in Transcriptome in Human Cells Deficient and P...
Symposium Presentation-Change in Transcriptome in Human Cells Deficient and P...Symposium Presentation-Change in Transcriptome in Human Cells Deficient and P...
Symposium Presentation-Change in Transcriptome in Human Cells Deficient and P...Usman Hyder
 
EHA poster Genomic Analysis by MyAML with Chemotherapy
EHA poster Genomic Analysis by MyAML with ChemotherapyEHA poster Genomic Analysis by MyAML with Chemotherapy
EHA poster Genomic Analysis by MyAML with ChemotherapySuzanne M. Graham
 
Genetics in prostate cancer
Genetics in prostate cancerGenetics in prostate cancer
Genetics in prostate cancerAlok Gupta
 
Personalized Oncology Through Integrative High-Throughput Sequencing:
Personalized Oncology Through Integrative High-Throughput Sequencing:Personalized Oncology Through Integrative High-Throughput Sequencing:
Personalized Oncology Through Integrative High-Throughput Sequencing:Raunak Shrestha
 
Aug2013 Heidi Rehm integrating large scale sequencing into clinical practice
Aug2013 Heidi Rehm integrating large scale sequencing into clinical practiceAug2013 Heidi Rehm integrating large scale sequencing into clinical practice
Aug2013 Heidi Rehm integrating large scale sequencing into clinical practiceGenomeInABottle
 
Translational Genomics and Prostate Cancer: Meet the NGS Experts Series Part 2
Translational Genomics and Prostate Cancer: Meet the NGS Experts Series Part 2Translational Genomics and Prostate Cancer: Meet the NGS Experts Series Part 2
Translational Genomics and Prostate Cancer: Meet the NGS Experts Series Part 2QIAGEN
 
2011 Rna Course Part 1
2011 Rna Course Part 12011 Rna Course Part 1
2011 Rna Course Part 1ICGEB
 
Rabade_Nikhil_V_Hematology_Forum
Rabade_Nikhil_V_Hematology_ForumRabade_Nikhil_V_Hematology_Forum
Rabade_Nikhil_V_Hematology_ForumEAFO1
 
MCO 2011 - Slide 30 - K. Öberg - Spotlight session - Neuroendocrine tumours
MCO 2011 - Slide 30 - K. Öberg - Spotlight session - Neuroendocrine tumoursMCO 2011 - Slide 30 - K. Öberg - Spotlight session - Neuroendocrine tumours
MCO 2011 - Slide 30 - K. Öberg - Spotlight session - Neuroendocrine tumoursEuropean School of Oncology
 

Ähnlich wie Alexia Chrysostomou (083707160) (20)

Dra. Mary Reilly - 'Neuropatías periféricas hereditarias'
Dra. Mary Reilly - 'Neuropatías periféricas hereditarias' Dra. Mary Reilly - 'Neuropatías periféricas hereditarias'
Dra. Mary Reilly - 'Neuropatías periféricas hereditarias'
 
Genome sequencing uncovers MS phenocopies in primary progressive multiple scl...
Genome sequencing uncovers MS phenocopies in primary progressive multiple scl...Genome sequencing uncovers MS phenocopies in primary progressive multiple scl...
Genome sequencing uncovers MS phenocopies in primary progressive multiple scl...
 
Gene Profiling in Clinical Oncology - Slide 4 - L. Lacroix - New markers to d...
Gene Profiling in Clinical Oncology - Slide 4 - L. Lacroix - New markers to d...Gene Profiling in Clinical Oncology - Slide 4 - L. Lacroix - New markers to d...
Gene Profiling in Clinical Oncology - Slide 4 - L. Lacroix - New markers to d...
 
NSCLC: diagnóstico molecular, pronóstico y seguimiento; CTC
NSCLC: diagnóstico molecular, pronóstico y seguimiento; CTCNSCLC: diagnóstico molecular, pronóstico y seguimiento; CTC
NSCLC: diagnóstico molecular, pronóstico y seguimiento; CTC
 
Gene Profiling in Clinical Oncology - Slide 4 - L. Lacroix - New markers to d...
Gene Profiling in Clinical Oncology - Slide 4 - L. Lacroix - New markers to d...Gene Profiling in Clinical Oncology - Slide 4 - L. Lacroix - New markers to d...
Gene Profiling in Clinical Oncology - Slide 4 - L. Lacroix - New markers to d...
 
ACUTE MYELOID LEUKEMIA
ACUTE MYELOID LEUKEMIAACUTE MYELOID LEUKEMIA
ACUTE MYELOID LEUKEMIA
 
Genetic Markers in AML
Genetic Markers in AMLGenetic Markers in AML
Genetic Markers in AML
 
Present and Future Impact of Cytogenetics on Acute Myeloid Leukemia
Present and Future Impact of Cytogenetics on Acute Myeloid LeukemiaPresent and Future Impact of Cytogenetics on Acute Myeloid Leukemia
Present and Future Impact of Cytogenetics on Acute Myeloid Leukemia
 
Dr. John Svaren - 'Neuropatías periféricas hereditarias'
Dr. John Svaren - 'Neuropatías periféricas hereditarias'Dr. John Svaren - 'Neuropatías periféricas hereditarias'
Dr. John Svaren - 'Neuropatías periféricas hereditarias'
 
Use of Affymetrix Arrays (GeneChip® Human Transcriptome 2.0 Array and Cytosca...
Use of Affymetrix Arrays (GeneChip® Human Transcriptome 2.0 Array and Cytosca...Use of Affymetrix Arrays (GeneChip® Human Transcriptome 2.0 Array and Cytosca...
Use of Affymetrix Arrays (GeneChip® Human Transcriptome 2.0 Array and Cytosca...
 
Symposium Presentation-Change in Transcriptome in Human Cells Deficient and P...
Symposium Presentation-Change in Transcriptome in Human Cells Deficient and P...Symposium Presentation-Change in Transcriptome in Human Cells Deficient and P...
Symposium Presentation-Change in Transcriptome in Human Cells Deficient and P...
 
EHA poster Genomic Analysis by MyAML with Chemotherapy
EHA poster Genomic Analysis by MyAML with ChemotherapyEHA poster Genomic Analysis by MyAML with Chemotherapy
EHA poster Genomic Analysis by MyAML with Chemotherapy
 
Final project-kbakshy
Final project-kbakshyFinal project-kbakshy
Final project-kbakshy
 
Genetics in prostate cancer
Genetics in prostate cancerGenetics in prostate cancer
Genetics in prostate cancer
 
Personalized Oncology Through Integrative High-Throughput Sequencing:
Personalized Oncology Through Integrative High-Throughput Sequencing:Personalized Oncology Through Integrative High-Throughput Sequencing:
Personalized Oncology Through Integrative High-Throughput Sequencing:
 
Aug2013 Heidi Rehm integrating large scale sequencing into clinical practice
Aug2013 Heidi Rehm integrating large scale sequencing into clinical practiceAug2013 Heidi Rehm integrating large scale sequencing into clinical practice
Aug2013 Heidi Rehm integrating large scale sequencing into clinical practice
 
Translational Genomics and Prostate Cancer: Meet the NGS Experts Series Part 2
Translational Genomics and Prostate Cancer: Meet the NGS Experts Series Part 2Translational Genomics and Prostate Cancer: Meet the NGS Experts Series Part 2
Translational Genomics and Prostate Cancer: Meet the NGS Experts Series Part 2
 
2011 Rna Course Part 1
2011 Rna Course Part 12011 Rna Course Part 1
2011 Rna Course Part 1
 
Rabade_Nikhil_V_Hematology_Forum
Rabade_Nikhil_V_Hematology_ForumRabade_Nikhil_V_Hematology_Forum
Rabade_Nikhil_V_Hematology_Forum
 
MCO 2011 - Slide 30 - K. Öberg - Spotlight session - Neuroendocrine tumours
MCO 2011 - Slide 30 - K. Öberg - Spotlight session - Neuroendocrine tumoursMCO 2011 - Slide 30 - K. Öberg - Spotlight session - Neuroendocrine tumours
MCO 2011 - Slide 30 - K. Öberg - Spotlight session - Neuroendocrine tumours
 

Alexia Chrysostomou (083707160)

  • 1. Identification of new genes in adult-onset mitochondrial diseases MRes Project 2012 Alexia Chrysostomou (083707160)
  • 2.  Introduction  Mitochondria and diseases  Progressive External Ophthalmoplegia (PEO)  Patients cohort  Methodology  Exome sequencing  Variant filtering criteria  Sanger sequencing  Results  RRM1  TOP3A  Conclusions  Discussion and Future Work
  • 3. Mitochondria and diseases • Subcellular organelles required for maintenance and survival • Production of the majority of energy demand through oxidative phosphorylation (Kim, Kim et al. 1989) • Contain circular double-stranded DNA (mtDNA) • Wide spectrum of disorders linked to them • Primary mtDNA defects • Secondary changes due to nuclear-encoded genes (Taylor and Turnbull 2005; Copeland 2008)
  • 4. Progressive External Ophthalmoplegia (PEO) • Commonest mitochondrial myopathy in adults • “Facial expression with eyes motionless and dropping lids giving the impression that the patient is half asleep” (Hutchinson 1879) • Characterized by ptosis and ophthalmoparesis • Symptoms include: proximal limb muscle weakness, ataxia, axonal neuropathy and cardiomyopathy • Disease progression
  • 5. • Genetic causes: primary mtDNA defects or nuclear DNA mutations leading to multiple mtDNA deletions • Muscle biopsy demonstrates cytochrome c oxidase (COX) inactivity Progressive External Ophthalmoplegia (PEO) 1 2 3 - 9.9 kb
  • 6. Patients cohort • Recruitment of an initial cohort of 8 patients • Similar disease phenotype, mainly PEO • Multiple mtDNA deletions and COX-negative fibers • Exclusion of known genes (POLG, POLG2, ANT1, Twinkle, RRM2B) • Exome sequenced • We had a panel of 48 further patients for testing of any candidate genes Patient 1 2 3 4 5 6 7 8 Phenotype PEO;NOS PEO; Ataxia PEO;NOS PEO; Ataxia PEO; Ataxia; Neuropathy; Cardiomyopathy PEO; OPMD-like PEO; Ataxia PEO; OPMD-like Suspected mode of inheritance Autosomal Recessive Autosomal Recessive Autosomal Dominant Autosomal Recessive Autosomal Recessive Autosomal Recessive Autosomal Dominant Autosomal Dominant
  • 8. Methodology • Exome sequencing-Filtering criteria 1. Selection of genes predicted to be mitochondrial 2. Exclusion of known polymorphisms, mutations reported in the Thousand Genomes Projects and other non-coding changes 3. For sporadic cases, assumed with autosomal recessive inheritance: homozygote or compound heterozygote coding changes -> 106 candidates 4. For familial cases, inherited the disease in a dominant fashion: single heterozygous coding changes -> 533 genes 5. From (3) and (4), evaluated the genes according to function (biological plausibility-mtDNA replication and mitochondrial dynamics) -> final list of 13 genes • Sanger sequencing • Verification of mutations that came up from exome sequencing • Whole (candidate) gene sequencing
  • 9. Methodology Lane 1 Lane 5 Lane 6 Lane 3 Lane 7 Lane 8 Genes Function PANK2 May be the master regulator of the CoA biosynthesis √ TTN Assembly and functioning of vertebrate striated muscles √ CPT1B Enzyme of the long-chain fatty acid beta-oxidation √ DNAH14 Microtubule-dependent motor ATPase √ √ √ SUOX Oxidation of sulfite to sulfate √ TOP3A Control and alteration of the topologic states of DNA √ √ SACS regulator of the Hsp70 chaperone machinery √ RARS2 Arginyl-tRNA synthetase √ DMWD Could have a regulatory function in meiosis √ SYNE1 Maintenance of subcellular spatial organization √ RRM1 Provides the precursors necessary for DNA synthesis √ √ SPG11 Phosphorylated upon DNA damage-defects cause spastic paraplegia type 11 √ NDUFV2 Subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) √
  • 10. Results Gene symbol Variant Prediction Patient Sanger Sequencing TTN chr2_179428370_C_T chr2_179454530_C_T chr2_179455731_C_G chr2_179500777_C_T disease_causing;p.G18622R disease_causing;p.R11766Q disease_causing;p.E11366Q polymorphism;p.D4968N 5 TRUE PANK2 chr20_3870334_T_C chr20_3869911_T_G polymorphism polymorphism 1 FALSE RARS2 chr6_88239365_C_T disease_causing; p.R258H 8 TRUE TOP3A chr17_18208522_G_A chr17_18211681_T_C chr17_18196087_G_A NMD; p.R135* polymorphism; p.M100V disease_causing;rs139068958; p.P385S 5 5 7 TRUE NDUFV2 chr18_9104204_G__C_ins chr18_9122529_G_A NMD;p.H4P polymorphism; p.V110I 8 TRUE SUOX chr12_56398455_G_A disease_causing 3 FALSE SYNE1 chr6_152702311_G_C disease_causing 8 FALSE DNAH14 chr1_225393676_T_A chr1_225231636_G_T chr1_225270424_A_T polymorphism;p.F1972Y disease_causing polymorphism;p.N1104Y 3 7 8 TRUE SACS chr13_23906739_G_A disease_causing; p.T3759M 8 TRUE CPT1B chr22_51014487_C_T disease_causing; p.V252M 3 TRUE DMWD chr19_46294291_T_G disease_causing 3 FALSE RRM1 chr11_4154851_T_C chr11_4144575_C_A disease_causing; p.M6555T disease_causing; p.N427K 7 8 TRUE
  • 11. RRM1 • Ribonucleotide Reductase large subunit (RNR1) • Normal partner of RRM2B, known to cause ad PEO, for supplying resting cells with deoxynucleotides for DNA repair • Baruffinni and colleagues (2006) demonstrated that overexpression of RNR1 (or deletion of its inhibitor- SML1) is able to rescue yeast petite colonies
  • 12. Reference ID Position in chromosome Region in gene rs111548639 g.412A>C; Chr11_4116335 Intron rs725518 g.12922G>A;Chr11_4128845 Intron rs56336381 g.17394C>A;Chr11_4133317 Intron rs183484 c.850C>A;Chr11_4141132 CDS rs9937 c.2223A>G;Chr11_4159457 CDS rs1042858 c.2232G>A;Chr11_4159466 CDS  Screening the remaining 48 patients in the panel did not indicate further changes in any of the gene’s exons. Common polymorphisms were detected instead:
  • 13. Gene symbol Variant Prediction Patient Sanger Sequencing TTN chr2_179428370_C_T chr2_179454530_C_T chr2_179455731_C_G chr2_179500777_C_T disease_causing;p.G18622R disease_causing;p.R11766Q disease_causing;p.E11366Q polymorphism;p.D4968N 5 TRUE PANK2 chr20_3870334_T_C chr20_3869911_T_G polymorphism polymorphism 1 FALSE RARS2 chr6_88239365_C_T disease_causing; p.R258H 8 TRUE TOP3A chr17_18208522_G_A chr17_18211681_T_C chr17_18196087_G_A NMD; p.R135* polymorphism; p.M100V disease_causing;rs139068958; p.P385S 5 5 7 TRUE NDUFV2 chr18_9104204_G__C_ins chr18_9122529_G_A NMD;p.H4P polymorphism; p.V110I 8 TRUE SUOX chr12_56398455_G_A disease_causing 3 FALSE SYNE1 chr6_152702311_G_C disease_causing 8 FALSE DNAH14 chr1_225393676_T_A chr1_225231636_G_T chr1_225270424_A_T polymorphism;p.F1972Y disease_causing polymorphism;p.N1104Y 3 7 8 TRUE SACS chr13_23906739_G_A disease_causing; p.T3759M 8 TRUE CPT1B chr22_51014487_C_T disease_causing; p.V252M 3 TRUE DMWD chr19_46294291_T_G disease_causing 3 FALSE RRM1 chr11_4154851_T_C chr11_4144575_C_A disease_causing; p.M6555T disease_causing; p.N427K 7 8 TRUE
  • 14. TOPOISOMERASE 3A (TOP3A) • Maintaining genome integrity, through the resolution of DNA replication and recombination intermediates (Holliday junctions) • Shown to be crucial for Drosophila and Arabidopsis cell viability and normal development (Wu, Feng et al. 2010;Hartung, Suer et al. 2008), also involved in mtDNA depletion in Drosophila (Wu, Feng et al. 2010) • Able to localize both in the nucleus and mitochondria (Wang 2002)
  • 15. Patient5  chr17_18211681_T_C_ENST00000412083 Patient45  chr17_18211681_T_C_ENST00000412083  TOP3A was the preferred candidate for sporadic cases (compound heterozygous changes in patient 5).  Screening for the presence of the 3 changes found from exome sequencing revealed the presence of one of them in patient 45 (p.M100V)  That same change was not found in any of the 102 regionally- and ethnically-matched controls (204 chromosomes)
  • 16. Reference ID Position in chromosome Region in gene rs17805992 g.386C>G;Chr17_18217903 intron rs7212337 c.331G>A;Chr17_18217958 CDS rs 6502645 g.23927G>A;Chr17_18194362 intron rs7213789 g.29574G>A;Chr17_18188715 intron rs7207123 g.9745C>T;Chr17_18208544 intron rs2294913 g.15293G>A;Chr17_18202996 intron rs2230154 c.1723C>T;Chr17_18193941 CDS rs3817992 g.24278G>T;Chr17_18194011 intron rs6502644 g.34278C>A;Chr17_18184011 intron rs140837737 c.3016C>T;Chr17_18180996 CDS  Sequencing all of the gene’s exons in a panel of 19 clinically well- characterized patients did not indicate the existence of any further variants
  • 17. Conclusions • Exome sequencing identified novel sequence variants in RRM1 and TOP3A • Conventional Sanger sequencing did not reveal the presence of any further variants, expect for the p.M100V mutation in TOP3A (patient 5,45) • Patient 45 is a sporadic case, thus autosomal recessive inheritance is expected (compound heterozygote changes). No new variants were detected, apart from the p.M100V one • The p.M100V change did not appear in any of the 102 regionally- and ethnically-matched controls
  • 18. Future work • Sequence the remaining patients in the panel for TOP3A • Revise the gene list Discussion • The control group size is still small, since the p.M100V change could be a polymorphism with low frequency • Patient 7 was subsequently diagnosed with Spinocerebellar ataxia type 28, hence the RRM1 variant is unlikely to be of significance • Possible reasons for missing out the disease gene(variants): • Lack of family data • Stringent filtering criteria • Low call rates • Coverage of each gene
  • 19. References • Baruffini, E., T. Lodi, et al. (2006). "Genetic and chemical rescue of the Saccharomyces cerevisiae phenotype induced by mitochondrial DNA polymerase mutations associated with progressive external ophthalmoplegia in humans." Human Molecular Genetics 15(19): 2846-2855. • Copeland, W. C. (2008). Inherited mitochondrial diseases of DNA replication. 59: 131-146. • Gorman, G. S. and R. W. Taylor (2011). "Mitochondrial DNA abnormalities in ophthalmological disease." Saudi Journal of Ophthalmology 25(4): 395-404. • Hartung, F., S. Suer, et al. (2008). "Topoisomerase 3α and RMI1 Suppress Somatic Crossovers and Are Essential for Resolution of Meiotic Recombination Intermediates in <italic>Arabidopsis thaliana</italic>." PLoS Genet 4(12): e1000285. • Hutchinson, J. (1879). "On Ophthalmoplegia Externa, or Symmetrical Immobility (partial) of the Eyes, with Ptosis." Med Chir Trans 62: 307-329. • Kim, J. S., C. J. Kim, et al. (1989). "Chronic progressive external ophthalmoplegia (CPEO) with 'ragged red fibers': a case report." J Korean Med Sci 4(2): 91-96. • Singleton, A. B. (2011). "Exome sequencing: a transformative technology." The Lancet Neurology 10(10): 942- 946. • Taylor, R. W. and D. M. Turnbull (2005). "Mitochondrial DNA mutations in human disease." Nat Rev Genet 6(5): 389-402. • Thelander, L. (2007). "Ribonucleotide reductase and mitochondrial DNA synthesis." Nat Genet 39(6): 703- 704. • Wang, J. C. (2002). "Cellular roles of DNA topoisomerases: a molecular perspective." Nat Rev Mol Cell Biol 3(6): 430-440. • Wu, J., L. Feng, et al. (2010). "Drosophila topo IIIα is required for the maintenance of mitochondrial genome and male germ-line stem cells." Proceedings of the National Academy of Sciences 107(14): 6228-6233. • Yang, J., C. Z. Bachrati, et al. (2010). "Human Topoisomerase IIIα Is a Single-stranded DNA Decatenase That Is Stimulated by BLM and RMI1." Journal of Biological Chemistry 285(28): 21426-21436.
  • 20. Acknowledgments  Professor Patrick Chinnery  Professor Robert Taylor • Dr. Gerald Pfeffer • Dr. Angela Pyle • Dr. Gavin Hudson • Dr. Helen Griffin • Dr. Grainne Gorman • Mrs. Tania Smertenko • Everyone in PFC lab