SlideShare ist ein Scribd-Unternehmen logo
1 von 14
Downloaden Sie, um offline zu lesen
Erg¨anzungsantrag
Niedrig-Rang Datendarstellung und
Bayes’sche Aktualisierung
stochastischer Modelle
in der Aerodynamik
Prof. Hermann G. Matthies und Alexander Litvinenko,
Technische Universit¨at Braunschweig
Institut f¨ur Wissenschaftliches Rechnen
0531-391-3008, litvinen@tu-bs.de
December 1, 2010
Outline
Ziel des Erg¨anzungsantrages
1. Die Technologie zur Behandlung stoch. Unsicherheiten zu
vertiefen und effektiver zu machen.
2. Den Aufwand f¨ur die Nutzung stoch. Methoden so weit zu senken,
dass sie in der Praxis eingesetzt werden k¨onnen.
3. Die Bayes’sche Aktualisierung anzuwenden um die `a priori
angenommenen Dichtefunktionen zu aktualisieren.
Schwerpunkte
1. Erweiterung der PCE Ans¨atze zur Approximierung der gesamten
stoch. L¨osung.
2. Analyse von Unsicherheiten nichtlinearer L¨osungsfunktionale,
beispielsweise der Position des Verdichtungsstoßes
3. Effizienzsteigerung der entwickelten
Datenkompressions-Methoden.
4. Entwicklung von Verfahren zur Bayes’schen Aktualisierung.
Arbeitspakete
A: Niedrig-Rang Approximation von stochastischen Daten
B: Bayes’sche Aktualisierung von Dichtefunktionen
C: Erweiterung der PCE Ans¨atze zur Approximierung der gesamten
stochastischen L¨osungsfelder
D: Bewertung der Methoden
Meilensteine des Erg¨anzungsantrages
EM1 01/2011 Niedrig-Rang Darstellung von stoch. Daten ist
entwickelt (AP A)
EM2 9/2011 Niedrig-Rang stat./stoch. Algorithmen sind bereitgestellt
(AP A)
EM3 9/2011 Bayes’sche Aktualisierung f¨ur Dichtefunktionen ist
entwickelt (AP B)
EM4 12/2011 Erweiterung der PCE Ans¨atze zur Approx. der
gesamten stoch. L¨osung ist bereitgestellt (AP C)
EM5 02/2012 Erfolg und Steigerung der Effizienz der neu
entwickelten Methoden anhand industrierelevantem Beispiel wird
demonstriert (AP D)
Niedrig-Rang Darstellung von stoch. Daten
U VΣ
T=M
U
VΣ∼
∼ ∼ T
=M
∼
Figure: Reduced SVD, only k biggest singular values are taken.
Datenkompressions-Methoden
rank k 2 5 10 20
D − ˜Dk 2/ D 2 6.6e-1 4.1e-2 3.5e-3 3.5e-4
P − ˜Pk 2/ P 2 6.9e-1 8.4e-2 8.2e-3 7.2e-4
CP − ˜CPk 2/ CP 2 6.0e-3 5.3e-4 3.2e-5 2.4e-6
CF − ˜CFk 2/ CF 2 9.0e-3 7.7e-4 4.6e-5 3.5e-6
memory, kB 18 46 92 185
Update time, sec 0.58 0.60 0.62 0.68
usual SVD time, sec 0.55 0.63 2.6 3.8
Table: Accuracy, computing time and memory requirements of the rank-k
approximation of the solution matrices D = [density], P = [pressure],
CP = [cp]; CF = [cf] ∈ R512×645
.
Dense matrix format costs 2.6MB
rank k pressure density tke to ev xv memory, MB
10 1.9e-2 1.9e-2 4.0e-3 1.4e-3 1.4e-3 1.1e-2 21
20 1.4e-2 1.3e-2 5.9e-3 3.3e-4 4.1e-4 9.7e-3 42
50 5.3e-3 5.1e-3 1.5e-4 9.1e-5 7.7e-5 3.4e-3 104
Table: Relative errors and memory requirements of rank-k approximations of
the solution matrices ∈ R260000×600
. Memory required for the storage of each
matrix in the dense matrix format is 1.25 GB.
rank k Update time, sec. SVD time, sec.
10 107 1537
20 150 2084
50 228 8236
Table: Computing times (for Table 2) of rank-k approximations of the solution
matrices ∈ R260000×600
.
Figure: An example of realisations of pressure and density
Figure: An example of realisations of turbulence kinetic energy and eddy
viscosity.
Figure: An example of realisations of velosities in x and z directions (the third
row).
Bayes’sche Aktualisierung
Bayes’sche Regel:
p(m|d) = k p(d|m) pm(m),
p(m|d) `a posteriori probability density for the model parameters m
pm(m) `a priori distribution
d an uncertain observation of the data
p(d|m) conditional probability distribution,
d = G(m) + η,
η additive errors.
Difficulty: p(m|d), p(d|m) and pm(m) are highdimensional objects.
Methods: PCE, KLE, MCMC, collocation, hign-dimensional sparse
Gauss-Hermite grids.
Bayes’sche Aktualisierung
The `a posteriori information in the space of model parameters is
given by the marginal probability density:
πm(m) =
D
p(m|d) dd = k pm(m) L(m),
L(m) likelihood function, which gives a measure of how good a model
G(m) is in explaining the data d.
L(m) = pη(d − G(m)) =
i
pη(di − Gi (m))
Numerical complexity: equivalent to multiple stochastic forward
problem.

Weitere ähnliche Inhalte

Mehr von Alexander Litvinenko

Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Alexander Litvinenko
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Alexander Litvinenko
 
Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...Alexander Litvinenko
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Propagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowPropagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowAlexander Litvinenko
 
Simulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowSimulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowAlexander Litvinenko
 
Approximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsApproximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsAlexander Litvinenko
 
Semi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster EnsembleSemi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster EnsembleAlexander Litvinenko
 
Talk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in HoustonTalk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in HoustonAlexander Litvinenko
 
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...Alexander Litvinenko
 
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...Alexander Litvinenko
 
Uncertainty quantification of groundwater contamination
Uncertainty quantification of groundwater contaminationUncertainty quantification of groundwater contamination
Uncertainty quantification of groundwater contaminationAlexander Litvinenko
 
Overview of sparse and low-rank matrix / tensor techniques
Overview of sparse and low-rank matrix / tensor techniques Overview of sparse and low-rank matrix / tensor techniques
Overview of sparse and low-rank matrix / tensor techniques Alexander Litvinenko
 
Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...
Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...
Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...Alexander Litvinenko
 

Mehr von Alexander Litvinenko (20)

Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...
 
Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Propagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowPropagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater Flow
 
Simulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowSimulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flow
 
Approximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsApproximation of large covariance matrices in statistics
Approximation of large covariance matrices in statistics
 
Semi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster EnsembleSemi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster Ensemble
 
Talk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in HoustonTalk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in Houston
 
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
 
Talk litvinenko gamm19
Talk litvinenko gamm19Talk litvinenko gamm19
Talk litvinenko gamm19
 
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...
 
Uncertainty quantification of groundwater contamination
Uncertainty quantification of groundwater contaminationUncertainty quantification of groundwater contamination
Uncertainty quantification of groundwater contamination
 
Overview of sparse and low-rank matrix / tensor techniques
Overview of sparse and low-rank matrix / tensor techniques Overview of sparse and low-rank matrix / tensor techniques
Overview of sparse and low-rank matrix / tensor techniques
 
Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...
Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...
Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...
 

Low-rank data representation and Bayesian update for problems in numerical aerodynamics

  • 1. Erg¨anzungsantrag Niedrig-Rang Datendarstellung und Bayes’sche Aktualisierung stochastischer Modelle in der Aerodynamik Prof. Hermann G. Matthies und Alexander Litvinenko, Technische Universit¨at Braunschweig Institut f¨ur Wissenschaftliches Rechnen 0531-391-3008, litvinen@tu-bs.de December 1, 2010
  • 3. Ziel des Erg¨anzungsantrages 1. Die Technologie zur Behandlung stoch. Unsicherheiten zu vertiefen und effektiver zu machen. 2. Den Aufwand f¨ur die Nutzung stoch. Methoden so weit zu senken, dass sie in der Praxis eingesetzt werden k¨onnen. 3. Die Bayes’sche Aktualisierung anzuwenden um die `a priori angenommenen Dichtefunktionen zu aktualisieren.
  • 4. Schwerpunkte 1. Erweiterung der PCE Ans¨atze zur Approximierung der gesamten stoch. L¨osung. 2. Analyse von Unsicherheiten nichtlinearer L¨osungsfunktionale, beispielsweise der Position des Verdichtungsstoßes 3. Effizienzsteigerung der entwickelten Datenkompressions-Methoden. 4. Entwicklung von Verfahren zur Bayes’schen Aktualisierung.
  • 5. Arbeitspakete A: Niedrig-Rang Approximation von stochastischen Daten B: Bayes’sche Aktualisierung von Dichtefunktionen C: Erweiterung der PCE Ans¨atze zur Approximierung der gesamten stochastischen L¨osungsfelder D: Bewertung der Methoden
  • 6. Meilensteine des Erg¨anzungsantrages EM1 01/2011 Niedrig-Rang Darstellung von stoch. Daten ist entwickelt (AP A) EM2 9/2011 Niedrig-Rang stat./stoch. Algorithmen sind bereitgestellt (AP A) EM3 9/2011 Bayes’sche Aktualisierung f¨ur Dichtefunktionen ist entwickelt (AP B) EM4 12/2011 Erweiterung der PCE Ans¨atze zur Approx. der gesamten stoch. L¨osung ist bereitgestellt (AP C) EM5 02/2012 Erfolg und Steigerung der Effizienz der neu entwickelten Methoden anhand industrierelevantem Beispiel wird demonstriert (AP D)
  • 7. Niedrig-Rang Darstellung von stoch. Daten U VΣ T=M U VΣ∼ ∼ ∼ T =M ∼ Figure: Reduced SVD, only k biggest singular values are taken.
  • 8. Datenkompressions-Methoden rank k 2 5 10 20 D − ˜Dk 2/ D 2 6.6e-1 4.1e-2 3.5e-3 3.5e-4 P − ˜Pk 2/ P 2 6.9e-1 8.4e-2 8.2e-3 7.2e-4 CP − ˜CPk 2/ CP 2 6.0e-3 5.3e-4 3.2e-5 2.4e-6 CF − ˜CFk 2/ CF 2 9.0e-3 7.7e-4 4.6e-5 3.5e-6 memory, kB 18 46 92 185 Update time, sec 0.58 0.60 0.62 0.68 usual SVD time, sec 0.55 0.63 2.6 3.8 Table: Accuracy, computing time and memory requirements of the rank-k approximation of the solution matrices D = [density], P = [pressure], CP = [cp]; CF = [cf] ∈ R512×645 . Dense matrix format costs 2.6MB
  • 9. rank k pressure density tke to ev xv memory, MB 10 1.9e-2 1.9e-2 4.0e-3 1.4e-3 1.4e-3 1.1e-2 21 20 1.4e-2 1.3e-2 5.9e-3 3.3e-4 4.1e-4 9.7e-3 42 50 5.3e-3 5.1e-3 1.5e-4 9.1e-5 7.7e-5 3.4e-3 104 Table: Relative errors and memory requirements of rank-k approximations of the solution matrices ∈ R260000×600 . Memory required for the storage of each matrix in the dense matrix format is 1.25 GB. rank k Update time, sec. SVD time, sec. 10 107 1537 20 150 2084 50 228 8236 Table: Computing times (for Table 2) of rank-k approximations of the solution matrices ∈ R260000×600 .
  • 10. Figure: An example of realisations of pressure and density
  • 11. Figure: An example of realisations of turbulence kinetic energy and eddy viscosity.
  • 12. Figure: An example of realisations of velosities in x and z directions (the third row).
  • 13. Bayes’sche Aktualisierung Bayes’sche Regel: p(m|d) = k p(d|m) pm(m), p(m|d) `a posteriori probability density for the model parameters m pm(m) `a priori distribution d an uncertain observation of the data p(d|m) conditional probability distribution, d = G(m) + η, η additive errors. Difficulty: p(m|d), p(d|m) and pm(m) are highdimensional objects. Methods: PCE, KLE, MCMC, collocation, hign-dimensional sparse Gauss-Hermite grids.
  • 14. Bayes’sche Aktualisierung The `a posteriori information in the space of model parameters is given by the marginal probability density: πm(m) = D p(m|d) dd = k pm(m) L(m), L(m) likelihood function, which gives a measure of how good a model G(m) is in explaining the data d. L(m) = pη(d − G(m)) = i pη(di − Gi (m)) Numerical complexity: equivalent to multiple stochastic forward problem.