SlideShare ist ein Scribd-Unternehmen logo
1 von 17
Pulse Code Modulation




                                         4.#                                                   1
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
ANALOG-TO-DIGITAL CONVERSION

 A digital signal is superior to an analog signal because
 it is more robust to noise and can easily be recovered,
 corrected and amplified. For this reason, the tendency
 today is to change an analog signal to digital data. In
 this section we describe two techniques, pulse code
 modulation and delta modulation.

Topics discussed in this section:
 Pulse Code Modulation (PCM)
 Delta Modulation (DM)

                             4.#                            2
PCM
       PCM consists of three steps to digitize an
        analog signal:
    n     Sampling
    n     Quantization
    n     Binary encoding
       Before we sample, we have to filter the signal
        to limit the maximum frequency of the signal as
        it affects the sampling rate.
       Filtering should ensure that we do not distort
        the signal, ie remove high frequency
        components that affect the signal shape.


                             4.#                          3
Figure 4.21 Components of PCM encoder




                               4.#      4
Sampling
   Analog signal is sampled every TS secs.
   Ts is referred to as the sampling interval.
   fs = 1/Ts is called the sampling rate or sampling
    frequency.
   There are 3 sampling methods:
       Ideal - an impulse at each sampling instant
       Natural - a pulse of short width with varying amplitude
       Flattop - sample and hold, like natural but with single
        amplitude value
   The process is referred to as pulse amplitude
    modulation PAM and the outcome is a signal with
    analog (non integer) values

                                 4.#                              5
Figure 4.22 Three different sampling methods for PCM




                                  4.#                  6
Note

According to the Nyquist theorem, the
         sampling rate must be
at least 2 times the highest frequency
        contained in the signal.



                  4.#                    7
Figure 4.23 Nyquist sampling rate for low-pass and bandpass signals




                                    4.#                               8
Example 4.6

For an intuitive example of the Nyquist theorem, let us
sample a simple sine wave at three sampling rates: fs = 4f (2
times the Nyquist rate), fs = 2f (Nyquist rate), and
fs = f (one-half the Nyquist rate). Figure 4.24 shows the
sampling and the subsequent recovery of the signal.

It can be seen that sampling at the Nyquist rate can create
a good approximation of the original sine wave (part a).
Oversampling in part b can also create the same
approximation, but it is redundant and unnecessary.
Sampling below the Nyquist rate (part c) does not produce
a signal that looks like the original sine wave.
                              4.#                         9
Figure 4.24 Recovery of a sampled sine wave for different sampling rates




                                    4.#                                    10
Quantization
   Sampling results in a series of pulses of varying
    amplitude values ranging between two limits: a
    min and a max.
   The amplitude values are infinite between the
    two limits.
   We need to map the infinite amplitude values
    onto a finite set of known values.
   This is achieved by dividing the distance
    between min and max into L zones, each of
    height ∆.
                    ∆ = (max - min)/L

                           4.#                          11
Quantization Levels

   The midpoint of each zone is assigned a
    value from 0 to L-1 (resulting in L values)
   Each sample falling in a zone is then
    approximated to the value of the midpoint.




                        4.#                       12
Quantization Zones
   Assume we have a voltage signal with
    amplitutes Vmin=-20V and Vmax=+20V.
   We want to use L=8 quantization levels.
   Zone width ∆ = (20 - -20)/8 = 5
   The 8 zones are: -20 to -15, -15 to -10, -10
    to -5, -5 to 0, 0 to +5, +5 to +10, +10 to
    +15, +15 to +20
   The midpoints are: -17.5, -12.5, -7.5, -2.5,
    2.5, 7.5, 12.5, 17.5

                        4.#                        13
Assigning Codes to Zones
   Each zone is then assigned a binary code.
   The number of bits required to encode the zones,
    or the number of bits per sample as it is
    commonly referred to, is obtained as follows:
                      nb = log2 L
   Given our example, nb = 3
   The 8 zone (or level) codes are therefore: 000,
    001, 010, 011, 100, 101, 110, and 111
   Assigning codes to zones:
       000 will refer to zone -20 to -15
       001 to zone -15 to -10, etc.


                                 4.#                   14
Figure 4.26 Quantization and encoding of a sampled signal




                                   4.#                      15
Quantization Error
   When a signal is quantized, we introduce an
    error - the coded signal is an approximation of
    the actual amplitude value.
   The difference between actual and coded value
    (midpoint) is referred to as the quantization error.
   The more zones, the smaller ∆ which results in
    smaller errors.
   BUT, the more zones the more bits required to
    encode the samples -> higher bit rate




                            4.#                            16
Bit rate and bandwidth requirements of
PCM
   The bit rate of a PCM signal can be calculated form the
    number of bits per sample x the sampling rate
                         Bit rate = nb x fs
   The bandwidth required to transmit this signal depends on
    the type of line encoding used. Refer to previous section for
    discussion and formulas.
   A digitized signal will always need more bandwidth than the
    original analog signal. Price we pay for robustness and other
    features of digital transmission.




                                4.#                                 17

Weitere ähnliche Inhalte

Was ist angesagt?

ASK, FSK, PSK Modulation Techniques in Detail
ASK, FSK, PSK Modulation Techniques in DetailASK, FSK, PSK Modulation Techniques in Detail
ASK, FSK, PSK Modulation Techniques in Detailnomanbarki
 
Digital modulation techniques...
Digital modulation techniques...Digital modulation techniques...
Digital modulation techniques...Nidhi Baranwal
 
Digital carrier modulation
Digital carrier modulationDigital carrier modulation
Digital carrier modulationajitece
 
Introduction to communication systems
Introduction to communication systemsIntroduction to communication systems
Introduction to communication systemsMohsen Sarakbi
 
Delta modulation
Delta modulationDelta modulation
Delta modulationmpsrekha83
 
Differential pulse code modulation
Differential pulse code modulationDifferential pulse code modulation
Differential pulse code modulationRamraj Bhadu
 
Channel capacity
Channel capacityChannel capacity
Channel capacityPALLAB DAS
 
noise in pcm | Communication Systems
noise in pcm | Communication Systemsnoise in pcm | Communication Systems
noise in pcm | Communication SystemsLearn By Watch
 
communication system Chapter 4
communication system Chapter 4communication system Chapter 4
communication system Chapter 4moeen khan afridi
 
PULSE CODE MODULATION (PCM)
PULSE CODE MODULATION (PCM)PULSE CODE MODULATION (PCM)
PULSE CODE MODULATION (PCM)vishnudharan11
 
Digital Modulation Techniques ppt
Digital Modulation Techniques pptDigital Modulation Techniques ppt
Digital Modulation Techniques pptPankaj Singh
 
Digital modulation technique
Digital modulation techniqueDigital modulation technique
Digital modulation techniqueNidhi Baranwal
 
Introduction of digital communication
Introduction of digital communicationIntroduction of digital communication
Introduction of digital communicationasodariyabhavesh
 
Pulse code modulation (PCM)
Pulse code modulation (PCM)Pulse code modulation (PCM)
Pulse code modulation (PCM)Mahima Shastri
 

Was ist angesagt? (20)

ASK, FSK, PSK Modulation Techniques in Detail
ASK, FSK, PSK Modulation Techniques in DetailASK, FSK, PSK Modulation Techniques in Detail
ASK, FSK, PSK Modulation Techniques in Detail
 
Digital modulation techniques...
Digital modulation techniques...Digital modulation techniques...
Digital modulation techniques...
 
Digital modulation
Digital modulationDigital modulation
Digital modulation
 
Digital carrier modulation
Digital carrier modulationDigital carrier modulation
Digital carrier modulation
 
Introduction to communication systems
Introduction to communication systemsIntroduction to communication systems
Introduction to communication systems
 
Delta modulation
Delta modulationDelta modulation
Delta modulation
 
Differential pulse code modulation
Differential pulse code modulationDifferential pulse code modulation
Differential pulse code modulation
 
DPCM
DPCMDPCM
DPCM
 
Dc unit iv
Dc unit ivDc unit iv
Dc unit iv
 
Pulse Code Modulation
Pulse Code ModulationPulse Code Modulation
Pulse Code Modulation
 
Channel capacity
Channel capacityChannel capacity
Channel capacity
 
noise in pcm | Communication Systems
noise in pcm | Communication Systemsnoise in pcm | Communication Systems
noise in pcm | Communication Systems
 
communication system Chapter 4
communication system Chapter 4communication system Chapter 4
communication system Chapter 4
 
PULSE CODE MODULATION (PCM)
PULSE CODE MODULATION (PCM)PULSE CODE MODULATION (PCM)
PULSE CODE MODULATION (PCM)
 
Digital Modulation Techniques ppt
Digital Modulation Techniques pptDigital Modulation Techniques ppt
Digital Modulation Techniques ppt
 
Digital modulation technique
Digital modulation techniqueDigital modulation technique
Digital modulation technique
 
1 PCM & Encoding
1  PCM & Encoding1  PCM & Encoding
1 PCM & Encoding
 
Lecture 11
Lecture 11Lecture 11
Lecture 11
 
Introduction of digital communication
Introduction of digital communicationIntroduction of digital communication
Introduction of digital communication
 
Pulse code modulation (PCM)
Pulse code modulation (PCM)Pulse code modulation (PCM)
Pulse code modulation (PCM)
 

Andere mochten auch

Andere mochten auch (7)

Koding
KodingKoding
Koding
 
pulse code modulation pcm | Communication Systems
pulse code modulation pcm | Communication Systemspulse code modulation pcm | Communication Systems
pulse code modulation pcm | Communication Systems
 
30 CHL PCM PDH SDH BY SKG
30 CHL PCM PDH SDH BY SKG30 CHL PCM PDH SDH BY SKG
30 CHL PCM PDH SDH BY SKG
 
PCM (Pulse Code Modulation)
PCM (Pulse Code Modulation)PCM (Pulse Code Modulation)
PCM (Pulse Code Modulation)
 
Chapter 6m
Chapter 6mChapter 6m
Chapter 6m
 
Pulse code modulation
Pulse code modulationPulse code modulation
Pulse code modulation
 
Pulse modulation
Pulse modulationPulse modulation
Pulse modulation
 

Ähnlich wie PCM Encoding Explained

PCM and delta modulation.ppt
PCM and delta modulation.pptPCM and delta modulation.ppt
PCM and delta modulation.ppt1637ARUNIMADAS
 
DIGITAL TRANSMISSION
DIGITAL TRANSMISSIONDIGITAL TRANSMISSION
DIGITAL TRANSMISSIONAvijeet Negel
 
Ch4 1 Data communication and networking by neha g. kurale
Ch4 1 Data communication and networking by neha g. kuraleCh4 1 Data communication and networking by neha g. kurale
Ch4 1 Data communication and networking by neha g. kuraleNeha Kurale
 
Digital Transmission
Digital TransmissionDigital Transmission
Digital Transmissionanuragyadav94
 
TeleCom Lecture 07.ppt
TeleCom Lecture 07.pptTeleCom Lecture 07.ppt
TeleCom Lecture 07.pptRiyaBatool
 
4. Analog to digital conversation (1).ppt
4. Analog to digital conversation (1).ppt4. Analog to digital conversation (1).ppt
4. Analog to digital conversation (1).ppttest22333
 
_Pulse-Modulation-Techniqnes.pdf
_Pulse-Modulation-Techniqnes.pdf_Pulse-Modulation-Techniqnes.pdf
_Pulse-Modulation-Techniqnes.pdfSoyallRobi
 
Te 4 pulse_modulation
Te 4 pulse_modulationTe 4 pulse_modulation
Te 4 pulse_modulationShohan Ean
 
Chapter 4 - Digital Transmission
Chapter 4 - Digital TransmissionChapter 4 - Digital Transmission
Chapter 4 - Digital TransmissionWayne Jones Jnr
 
Ch04
Ch04Ch04
Ch04H K
 
Lecture7 encodingmodulation
Lecture7 encodingmodulationLecture7 encodingmodulation
Lecture7 encodingmodulationH K
 
Line_Coding.ppt for engineering students for ug and pg
Line_Coding.ppt for engineering students for ug and pgLine_Coding.ppt for engineering students for ug and pg
Line_Coding.ppt for engineering students for ug and pgHasanujJaman11
 

Ähnlich wie PCM Encoding Explained (20)

PCM and delta modulation.ppt
PCM and delta modulation.pptPCM and delta modulation.ppt
PCM and delta modulation.ppt
 
DIGITAL TRANSMISSION
DIGITAL TRANSMISSIONDIGITAL TRANSMISSION
DIGITAL TRANSMISSION
 
Ch4 2 v1
Ch4 2 v1Ch4 2 v1
Ch4 2 v1
 
Ch4 1 Data communication and networking by neha g. kurale
Ch4 1 Data communication and networking by neha g. kuraleCh4 1 Data communication and networking by neha g. kurale
Ch4 1 Data communication and networking by neha g. kurale
 
Digital Transmission
Digital TransmissionDigital Transmission
Digital Transmission
 
TeleCom Lecture 07.ppt
TeleCom Lecture 07.pptTeleCom Lecture 07.ppt
TeleCom Lecture 07.ppt
 
4. Analog to digital conversation (1).ppt
4. Analog to digital conversation (1).ppt4. Analog to digital conversation (1).ppt
4. Analog to digital conversation (1).ppt
 
ch4_2_v1.ppt
ch4_2_v1.pptch4_2_v1.ppt
ch4_2_v1.ppt
 
Analog_to_Digital.pdf
Analog_to_Digital.pdfAnalog_to_Digital.pdf
Analog_to_Digital.pdf
 
Ch04
Ch04Ch04
Ch04
 
_Pulse-Modulation-Techniqnes.pdf
_Pulse-Modulation-Techniqnes.pdf_Pulse-Modulation-Techniqnes.pdf
_Pulse-Modulation-Techniqnes.pdf
 
Te 4 pulse_modulation
Te 4 pulse_modulationTe 4 pulse_modulation
Te 4 pulse_modulation
 
Unit 3.pptx
Unit 3.pptxUnit 3.pptx
Unit 3.pptx
 
Digitization
DigitizationDigitization
Digitization
 
EC6651 COMMUNICATION ENGINEERING UNIT 2
EC6651 COMMUNICATION ENGINEERING UNIT 2EC6651 COMMUNICATION ENGINEERING UNIT 2
EC6651 COMMUNICATION ENGINEERING UNIT 2
 
Chapter 4 - Digital Transmission
Chapter 4 - Digital TransmissionChapter 4 - Digital Transmission
Chapter 4 - Digital Transmission
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
 
Ch04
Ch04Ch04
Ch04
 
Lecture7 encodingmodulation
Lecture7 encodingmodulationLecture7 encodingmodulation
Lecture7 encodingmodulation
 
Line_Coding.ppt for engineering students for ug and pg
Line_Coding.ppt for engineering students for ug and pgLine_Coding.ppt for engineering students for ug and pg
Line_Coding.ppt for engineering students for ug and pg
 

Kürzlich hochgeladen

Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 

Kürzlich hochgeladen (20)

Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 

PCM Encoding Explained

  • 1. Pulse Code Modulation 4.# 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
  • 2. ANALOG-TO-DIGITAL CONVERSION A digital signal is superior to an analog signal because it is more robust to noise and can easily be recovered, corrected and amplified. For this reason, the tendency today is to change an analog signal to digital data. In this section we describe two techniques, pulse code modulation and delta modulation. Topics discussed in this section:  Pulse Code Modulation (PCM)  Delta Modulation (DM) 4.# 2
  • 3. PCM  PCM consists of three steps to digitize an analog signal: n Sampling n Quantization n Binary encoding  Before we sample, we have to filter the signal to limit the maximum frequency of the signal as it affects the sampling rate.  Filtering should ensure that we do not distort the signal, ie remove high frequency components that affect the signal shape. 4.# 3
  • 4. Figure 4.21 Components of PCM encoder 4.# 4
  • 5. Sampling  Analog signal is sampled every TS secs.  Ts is referred to as the sampling interval.  fs = 1/Ts is called the sampling rate or sampling frequency.  There are 3 sampling methods:  Ideal - an impulse at each sampling instant  Natural - a pulse of short width with varying amplitude  Flattop - sample and hold, like natural but with single amplitude value  The process is referred to as pulse amplitude modulation PAM and the outcome is a signal with analog (non integer) values 4.# 5
  • 6. Figure 4.22 Three different sampling methods for PCM 4.# 6
  • 7. Note According to the Nyquist theorem, the sampling rate must be at least 2 times the highest frequency contained in the signal. 4.# 7
  • 8. Figure 4.23 Nyquist sampling rate for low-pass and bandpass signals 4.# 8
  • 9. Example 4.6 For an intuitive example of the Nyquist theorem, let us sample a simple sine wave at three sampling rates: fs = 4f (2 times the Nyquist rate), fs = 2f (Nyquist rate), and fs = f (one-half the Nyquist rate). Figure 4.24 shows the sampling and the subsequent recovery of the signal. It can be seen that sampling at the Nyquist rate can create a good approximation of the original sine wave (part a). Oversampling in part b can also create the same approximation, but it is redundant and unnecessary. Sampling below the Nyquist rate (part c) does not produce a signal that looks like the original sine wave. 4.# 9
  • 10. Figure 4.24 Recovery of a sampled sine wave for different sampling rates 4.# 10
  • 11. Quantization  Sampling results in a series of pulses of varying amplitude values ranging between two limits: a min and a max.  The amplitude values are infinite between the two limits.  We need to map the infinite amplitude values onto a finite set of known values.  This is achieved by dividing the distance between min and max into L zones, each of height ∆. ∆ = (max - min)/L 4.# 11
  • 12. Quantization Levels  The midpoint of each zone is assigned a value from 0 to L-1 (resulting in L values)  Each sample falling in a zone is then approximated to the value of the midpoint. 4.# 12
  • 13. Quantization Zones  Assume we have a voltage signal with amplitutes Vmin=-20V and Vmax=+20V.  We want to use L=8 quantization levels.  Zone width ∆ = (20 - -20)/8 = 5  The 8 zones are: -20 to -15, -15 to -10, -10 to -5, -5 to 0, 0 to +5, +5 to +10, +10 to +15, +15 to +20  The midpoints are: -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5 4.# 13
  • 14. Assigning Codes to Zones  Each zone is then assigned a binary code.  The number of bits required to encode the zones, or the number of bits per sample as it is commonly referred to, is obtained as follows: nb = log2 L  Given our example, nb = 3  The 8 zone (or level) codes are therefore: 000, 001, 010, 011, 100, 101, 110, and 111  Assigning codes to zones:  000 will refer to zone -20 to -15  001 to zone -15 to -10, etc. 4.# 14
  • 15. Figure 4.26 Quantization and encoding of a sampled signal 4.# 15
  • 16. Quantization Error  When a signal is quantized, we introduce an error - the coded signal is an approximation of the actual amplitude value.  The difference between actual and coded value (midpoint) is referred to as the quantization error.  The more zones, the smaller ∆ which results in smaller errors.  BUT, the more zones the more bits required to encode the samples -> higher bit rate 4.# 16
  • 17. Bit rate and bandwidth requirements of PCM  The bit rate of a PCM signal can be calculated form the number of bits per sample x the sampling rate Bit rate = nb x fs  The bandwidth required to transmit this signal depends on the type of line encoding used. Refer to previous section for discussion and formulas.  A digitized signal will always need more bandwidth than the original analog signal. Price we pay for robustness and other features of digital transmission. 4.# 17