SlideShare ist ein Scribd-Unternehmen logo
1 von 69
Imaging of Pediatric White
Matter Diseases
Dr Tayyaba Niazi
PGR 4
SIMS
NORMAL MYELINATION
After normal myelination in utero, myelination of the neonatal brain is far from complete.
It does not reach maturity until 2 years or so. It correlates very closely to developmental milestones .
The progression of myelination is predictable and abides by a few simple general rules; myelination progresses
from:
1. central to peripheral
2. caudal to rostral
3. dorsal to ventral
4. sensory then motor
White matter diseases are traditionally divided into two
categories:
• Dysmyelinating diseases
• Demyelinating diseases
• Hypomyelinating diseases
Dysmyelinating diseases - also known as leukodystrophies, result
from an inherited enzyme deficiency that causes abnormal
formation, destruction, or turnover of myelin.
Demyelinating diseases - involve destruction of intrinsically
normal myelin.
Hypomyelinating diseases - the WM may partially myelinate but
never myelinates completely.
DYSMYELINATING DISORDERS/
LEUKODYSTROPHIES
I
Lysosomal storage disease
Disorder that primarily affect
white matter (Leukodystrophies).
TYPES
1. late infantile,
2. juvenile, and
3. adult.
• The most common type is late infantile metachromatic leukodystrophy, in
children between 12 and 18 months of age and is characterized by motor signs of
peripheral neuropathy followed by deterioration in intellect, speech, and
coordination.
• Within 2 years of onset, gait disturbance, quadriplegia, blindness, and decerebrate
posturing may be seen. Death occurs 6 months to 4 years after onset of symptoms
Imaging Features:
• At T2-weighted MR imaging, metachromatic leukodystrophy manifests as
symmetric confluent areas of high signal intensity in the periventricular white
matter with sparing of the subcortical U fibers .
• Islands of normal myelin around medullary veins in the WM may produce a
striking "tiger" or "leopard" pattern with linear hypointensities in a sea of
confluent hyperintensity. No enhancement is seen on T1 C+.
• The corpus callosum, internal capsule, and corticospinal tracts are also frequently
involved.
• The cerebellar white matter may appear hyperintense at T2-weighted MR
imaging.
Metachromatic leukodystrophy. (a) T2-weighted MR image demonstrates bilateral
confluent areas of high signal intensity in the periventricular white matter. Note
the classic sparing of the sub-cortical U fibers (arrowheads). (b) Contrast material–
enhanced MR image shows lack of enhancement in the demyelinated white
matter, a finding that is characteristic of metachromatic leukodystrophy.
Metachromatic leukodystrophy. (a) T2-weighted MR image shows numerous linear tubular
structures with low signal intensity in a radiating (“tigroid”) pattern within the demyelinated
deep white matter. (b) T2-weighted MR image shows a punctate (leopard skin) pat-tern in
the demyelinated centrum semiovale, a finding that suggests sparing of perivascular white
matter. (c) On a contrast-enhanced T1-weighted MR image, the tigroid pattern seen in a
appears as numerous punctate foci of enhancement (arrows) within the demyelinated white
matter, which is unenhanced and has low signal intensity (leopard skin pattern).
Metachromatic leukodystrophy with involvement of the corticospinal tract.
T2-weighted MR image shows bilateral high-signal-intensity areas in the periventricular white matter with posterior
predominance. The corpus callosum is also involved (arrows).
T2-weighted MR image obtained at a lower level shows involvement of the descending pyramidal tracts of the medulla
(arrows) and deep cerebellar white matter.
Krabbe Disease:
An autosomal recessive disorder caused by a deficiency of
galactocerebroside -galactosidase, an enzyme that degrades
cerebroside, a normal constituent of myelin. .
The diagnosis is made by demonstrating a deficiency of the enzyme in
peripheral blood leukocytes.
Clinical presentation:
• Infantile, late infantile, juvenile, and adult forms are recognized.
• The infantile form is the most common and manifests as hyperirritability,
increased muscle tone, fever, and developmental arrest and regression.
• Disease progression is characterized by cognitive decline, myoclonus and
opisthotonus, and nystagmus.
• Typically, Krabbe disease is rapidly progressive and fatal.
CT brain:
• CT performed during the initial
stage of the disease may
demonstrate symmetric high-
attenuation foci in the thalami,
caudate nuclei, corona radiata,
posterior limbs of the internal
capsule, and brainstem.
Krabbe Disease: Hyperdense thalami and
brain atrophy in frontal region:
Krabbe Disease:CT findings in a 4-month-old boy with early-infantile GLD.The series
demonstrates the hyperdensities in the primary myelination zones: brain stem,cerebellum, posterior
limb of the internal capsule, thalamus, and central part of the corona radiata. At this stage the CT
appearance is almost diagnostic, and more characteristic than the MRI findings.
Axial T2 weighted images show bilateral parietal, occipital, deep gray matter and
cerebellar white matter hyperintensities with spared subcortical white matter.
Mucopolysaccharidosis:
A deficiency of the various lysosomal enzymes involved in the
degradation of glycosaminoglycans.
• Brain imaging is usually performed when hydrocephalus or spinal
cord compression is suspected.
• CT and MR imaging usually reveal delayed myelination, atrophy,
varying degrees of hydrocephalus, and white matter changes.
• As the disease progresses, the lesions become larger and more
diffuse, reflecting the development of infarcts and demyelination.
• The major features of
Mucopolysacchroidosis are
• Macrocephaly,
• Enlarged perivascular spaces, A striking
sieve-like cribriform appearance in the
posterior cerebral WM.
• Pachymeningopathy.
Mucopolysaccharidosis in a 4-year-old boy with Hurler disease.
A patient with MPS II at 21 years of age,
Brain T2-weighted axial MR image demonstrating WM, mainly
found in the retrotrigonal area of the brain, and cribriform
changes in both periventricular and subcortical white matter.
Note also the enlarged ventricles and cortical sulci in the
frontal lobe.
Peroxisomal Disorders
• The subcortical white matter is relatively spared in the early stage but often becomes involved in the later
stages.
• The affected cerebral white matter typically has three different zones.
 The central or inner zone appears moderately hypointense at T1-weighted MR imaging and
markedly hyperintense at T2-weighted imaging. This zone corresponds to irreversible gliosis and
scarring.
 The intermediate zone represents active inflammation and breakdown in the blood-brain barrier. At
T2-weighted MR imaging, this zone may appear isointense or slightly hypointense and readily
enhances after intravenous administration of contrast material .
 The peripheral or outer zone represents the leading edge of active demyelination; it appears
moderately hyperintense at T2-weighted MR imaging and demonstrates no enhancement .
• Atypical cases with unilateral or predominantly frontal lobe involvement may occur .
NECT scans demonstrate
hypodensity in the corpus
callosum splenium and WM
around the atria and occipital
horns of the lateral ventricles.
Calcification in the affected WM
is common.
ALD in a 5-year-
old boy
ALD with preferential involvement of the internal capsule,descending
pyramidal tract,cerebellar white matter,(a.b)
C. Bilateral enhancement of internal capsule.
Atypical ALD
T2-weighted MR image shows
involvement predominantly of the
frontal lobe white matter, genu of the
corpus callosum, and anterior limbs of
the internal capsule (arrows).
Gadolinium-enhanced T1-weighted MR
image shows linear enhancement within
the involved white matter and the
anterior limbs of the internal capsule
(arrows).
Zellweger Syndrome
Zellweger syndrome, or cerebrohepatorenal syndrome, is an autosomal recessive disorder caused
by multiple enzyme defects and characterized by liver dysfunction with jaundice, marked
mental retardation, weakness, hypotonia, and craniofacial dysmorphism .
It may lead to death in early childhood. The severity of disease varies and is determined by the
degree of peroxisomal activity.
MR imaging : diffuse demyelination with abnormal gyration that is most severe in the
perisylvian region. The pattern of gyral abnormality is similar to that seen in
polymicrogyria or pachygyria. Subependymal germinolytic cysts are common finding.
Zellweger syndrome in a 5-month-old girl
T2-weighted MR image shows extensive areas of diffuse high signal intensity in the white
matter. The gyri are broad, the sulci are shallow, and there is incomplete branching of the
subcortical white matter, findings that suggest a migration anomaly with pachygyria.
On a T1-weighted MR image, the white matter abnormalities demonstrate low signal
intensity
Zellweger syndrome spectrum (ZSS)
Diseases Caused by Mitochondrial Dysfunction
MELAS Syndrome
(mitochondrial encephalopathy with lactic acidosis and stroke-like
episodes)
• Patients with MELAS syndrome usually appear healthy at birth with normal early development, then
exhibit delayed growth, episodic vomiting, seizures, and recurrent cerebral injuries resembling
stroke.
• These stroke like events may give rise to either permanent or reversible deficits.
Multiple infarcts involving multiple vascular territories.
Atrophy
MRI
chronic infarcts
• involving multiple vascular territories
• may be either symmetrical or asymmetrical
• parieto-occipital and parieto-temporal (most common)
acute infarcts
• swollen gyri with increased T2 signal
• subcortical white matter involved
• increased signal on DWI (T2 shine through) with little if any change on ADC: thought to
represent vasogenic rather than cytotoxic oedema 3
MELAS syndrome in a 10-year-old boy with migrating infarction.
Sequential MR images of a female patient with MELAS at ages 8 and 13 years.
A, T2-weighted coronal image during an acute stroke like episode shows parasagittal bilateral
hyperintense lesions (arrows) at the age of 8 years.
B, T2-weighted coronal image 2 months later shows that lesions have almost entirely resolved.
Cerebellar atrophy is evident.
C, T2-weighted axial image 5 years later, during a prolonged seizure, shows a new hyperintense
lesion in the left parietooccipital region (arrow).
Leighs Disease
• Leigh disease, or subacute necrotizing encephalomyelopathy, is an inherited, progressive,
neurodegenerative disease of infancy or early childhood with variable course and prognosis .
• Affected infants and children typically present with hypotonia, psychomotor deterioration, ataxia,
ophthalmoplegia, ptosis, dystonia, and swallowing difficulties.
 Typical MR imaging findings include symmetric putaminal involvement, which may be
associated with abnormalities of the caudate nuclei, globus pallidi, thalami, and brainstem and, less
frequently, of the cerebral cortex (Fig 13).
 The cerebral white matter is rarely affected.
 Enhancement may be seen at MR imaging and may correspond to the onset of acute necrosis.
• Leighs disease show
hypodensities in bilateral
putamens and globus pallidus.
LEIGHS DISEASE
LEIGHS DISEASE
Axial FLAIR images show hyperintense lesions in midbrain and
pons posteriorly.
Canavan Disease
Canavan disease, or spongiform leukodystrophy, is an autosomal recessive disorder
caused by a deficiency of N-acetylaspartylase, which results in an accumulation of N-
acetylaspartic acid in the urine, plasma, and brain.
It usually manifests in early infancy as hypotonia followed by spasticity, cortical
blindness, and macrocephaly.
Canavan disease is a rapidly progressive illness with a mean survival time of 3 years.
Definite diagnosis usually requires brain biopsy or autopsy.
• T1-weighted MR imaging symmetric areas of homogeneous, diffuse low signal intensity ,
whereas T2-weighted , homogeneous high signal intensity throughout the white matter.
• The subcortical U fibers are preferentially affected early in the course of the disease.
• In rapidly progressive cases, the internal and external capsules are involved, and the cerebellar
white matter is usually affected as well.
• As the disease progresses, atrophy becomes conspicuous.
Canavan disease in a 6-month-old boy with macrocephaly
T2-weighted MR image shows extensive high-signal-intensity areas throughout the white
matter, resulting in gyral expansion and cortical thinning. Striking demyelination of the
subcortical U fibers is also noted.
T1-weighted MR image shows demyelinated white matter with low signal intensity.
CANAVAN DISEASE
Axial T2 weighted image shows high signal in white matter
typically a diffuse bilateral cerebral involvement and sub
cortical U fibres.
Alexander Disease
• Alexander disease, or fibrinoid leukodystrophy, is characterized by massive deposition of Rosenthal
fibers in the subependymal, subpial, and perivascular regions (Fig 16b) (37).
• Three clinical subgroups are recognized.
• The infantile subgroup is characterized by early onset of macrocephaly, psychomotor retardation, and
seizure. Death occurs within 2–3 years. Definite diagnosis usually requires brain biopsy or autopsy.
• In the juvenile subgroup, onset 7 and 14 years of age. Progressive bulbar symptoms with spasticity are
common.
• In the adult subgroup, onset between the 2nd and 7th decades. The symptoms and disease course can
be indistinguishable from those of classic multiple sclerosis in the adult subgroup.
• Involvement of frontal lobes and subcortical white matter and hyperintensity at T2w image.
• Enhancement near the tips of the frontal horns early in the disease course
.
• These hyperintense areas progress posteriorly to the parietal white matter and internal and external
capsules .
• In the late stages of the disease, cysts may develop in affected regions of the brain.
Alexander disease in a 5-year-old boy with macrocephaly
Most common leukodystrophies, key points
REVISION
BILATERAL HYPERDENSE THALAMI ON CT
BILATERAL ABNORMAL SIGNAL INTENSITY IN
THALAMI ON MRI,HYPO ON T2w
Krabbe disease
T2w hyperinsities in peri trigonal and occipital
region,with contrast enhancement after injecting
contrast.
Adrenoleukodystrophy
Bilateral T1w hypointensity and T2w
hyperintensity of lentiform nuclei
leighs disease
T2w hyperintensities in frontal lobes bilateral
Alaxander disease
T2w hyperintensities in bilateral periventricular
region with tigroid appearance
Metachromatic leukodystrophy
T2w hyperintensity throughout white matter,
macrocephaly.
CANAVAN disease
Conclusions
There are many different white matter diseases, each of which has distinctive features.
MR imaging is highly sensitive in determining the presence and assessing the severity
of underlying white matter abnormalities.
Although the findings are often non-specific, systematic analysis of the finer details of
disease involvement may permit a narrower differential diagnosis, which the clinician
can then further refine with knowledge of patient history, clinical testing, and
metabolic analysis.
MR imaging has also been extensively used to monitor the natural progression of
various white matter disorders and the response to therapy.
THANK YOU

Weitere ähnliche Inhalte

Was ist angesagt?

Imaging of white matter diseases
Imaging of white matter diseasesImaging of white matter diseases
Imaging of white matter diseasesNavni Garg
 
Presentation1.pptx sellar and para sellar masses
Presentation1.pptx sellar and para sellar massesPresentation1.pptx sellar and para sellar masses
Presentation1.pptx sellar and para sellar massesAbdellah Nazeer
 
imaging of multiple sclerosis
imaging  of multiple sclerosisimaging  of multiple sclerosis
imaging of multiple sclerosisDrRenuka Pasupala
 
Diagnostic Imaging of Brain Tumors
Diagnostic Imaging of Brain TumorsDiagnostic Imaging of Brain Tumors
Diagnostic Imaging of Brain TumorsMohamed M.A. Zaitoun
 
Diagnostic Imaging of Degenerative & White Matter Diseases
Diagnostic Imaging of Degenerative & White Matter DiseasesDiagnostic Imaging of Degenerative & White Matter Diseases
Diagnostic Imaging of Degenerative & White Matter DiseasesMohamed M.A. Zaitoun
 
Approach to white matter disease
Approach to white matter diseaseApproach to white matter disease
Approach to white matter diseaseNeurologyKota
 
Imaging in inherited metabolic disorders
Imaging in inherited metabolic disordersImaging in inherited metabolic disorders
Imaging in inherited metabolic disordersvinothmezoss
 
Congenital malformations of brain
Congenital malformations of brainCongenital malformations of brain
Congenital malformations of brainabinash66
 
Diagnostic Imaging of Cerebral Toxic & Metabolic Diseases
Diagnostic Imaging of Cerebral Toxic & Metabolic DiseasesDiagnostic Imaging of Cerebral Toxic & Metabolic Diseases
Diagnostic Imaging of Cerebral Toxic & Metabolic DiseasesMohamed M.A. Zaitoun
 
DISORDERS OF MYELINATION
DISORDERS OF MYELINATIONDISORDERS OF MYELINATION
DISORDERS OF MYELINATIONManideep Malaka
 
Presentation1.pptx. radiological imaging of epilepsy.
Presentation1.pptx. radiological imaging of epilepsy.Presentation1.pptx. radiological imaging of epilepsy.
Presentation1.pptx. radiological imaging of epilepsy.Abdellah Nazeer
 
Mri in white matter diseases
Mri in white matter diseasesMri in white matter diseases
Mri in white matter diseasesSindhu Gowdar
 
Diagnostic Imaging of Orbital Lesions
Diagnostic Imaging of Orbital LesionsDiagnostic Imaging of Orbital Lesions
Diagnostic Imaging of Orbital LesionsMohamed M.A. Zaitoun
 
IMAGING OF INTRAVENTRICULAR TUMORS
IMAGING OF INTRAVENTRICULAR TUMORS IMAGING OF INTRAVENTRICULAR TUMORS
IMAGING OF INTRAVENTRICULAR TUMORS Ameen Rageh
 
Mri imaging finding in wilson disease
Mri imaging finding in wilson diseaseMri imaging finding in wilson disease
Mri imaging finding in wilson diseasegulabsoni
 
Radiology Spots PPT- 3 by Dr Chandni Wadhwani
 Radiology Spots PPT- 3 by Dr Chandni Wadhwani Radiology Spots PPT- 3 by Dr Chandni Wadhwani
Radiology Spots PPT- 3 by Dr Chandni WadhwaniChandni Wadhwani
 
Imaging in white matter disorders
Imaging in white matter disorders Imaging in white matter disorders
Imaging in white matter disorders Milan Silwal
 
Imaging neurology spotters
Imaging   neurology spottersImaging   neurology spotters
Imaging neurology spottersNeurologyKota
 
Sellar, Suprasellar and Pineal tumor final pk .ppt
Sellar, Suprasellar and Pineal tumor final pk .pptSellar, Suprasellar and Pineal tumor final pk .ppt
Sellar, Suprasellar and Pineal tumor final pk .pptDr pradeep Kumar
 

Was ist angesagt? (20)

Imaging of white matter diseases
Imaging of white matter diseasesImaging of white matter diseases
Imaging of white matter diseases
 
Presentation1.pptx sellar and para sellar masses
Presentation1.pptx sellar and para sellar massesPresentation1.pptx sellar and para sellar masses
Presentation1.pptx sellar and para sellar masses
 
imaging of multiple sclerosis
imaging  of multiple sclerosisimaging  of multiple sclerosis
imaging of multiple sclerosis
 
Diagnostic Imaging of Brain Tumors
Diagnostic Imaging of Brain TumorsDiagnostic Imaging of Brain Tumors
Diagnostic Imaging of Brain Tumors
 
Diagnostic Imaging of Degenerative & White Matter Diseases
Diagnostic Imaging of Degenerative & White Matter DiseasesDiagnostic Imaging of Degenerative & White Matter Diseases
Diagnostic Imaging of Degenerative & White Matter Diseases
 
Approach to white matter disease
Approach to white matter diseaseApproach to white matter disease
Approach to white matter disease
 
Imaging in inherited metabolic disorders
Imaging in inherited metabolic disordersImaging in inherited metabolic disorders
Imaging in inherited metabolic disorders
 
Congenital malformations of brain
Congenital malformations of brainCongenital malformations of brain
Congenital malformations of brain
 
Imaging cns tb
Imaging   cns tbImaging   cns tb
Imaging cns tb
 
Diagnostic Imaging of Cerebral Toxic & Metabolic Diseases
Diagnostic Imaging of Cerebral Toxic & Metabolic DiseasesDiagnostic Imaging of Cerebral Toxic & Metabolic Diseases
Diagnostic Imaging of Cerebral Toxic & Metabolic Diseases
 
DISORDERS OF MYELINATION
DISORDERS OF MYELINATIONDISORDERS OF MYELINATION
DISORDERS OF MYELINATION
 
Presentation1.pptx. radiological imaging of epilepsy.
Presentation1.pptx. radiological imaging of epilepsy.Presentation1.pptx. radiological imaging of epilepsy.
Presentation1.pptx. radiological imaging of epilepsy.
 
Mri in white matter diseases
Mri in white matter diseasesMri in white matter diseases
Mri in white matter diseases
 
Diagnostic Imaging of Orbital Lesions
Diagnostic Imaging of Orbital LesionsDiagnostic Imaging of Orbital Lesions
Diagnostic Imaging of Orbital Lesions
 
IMAGING OF INTRAVENTRICULAR TUMORS
IMAGING OF INTRAVENTRICULAR TUMORS IMAGING OF INTRAVENTRICULAR TUMORS
IMAGING OF INTRAVENTRICULAR TUMORS
 
Mri imaging finding in wilson disease
Mri imaging finding in wilson diseaseMri imaging finding in wilson disease
Mri imaging finding in wilson disease
 
Radiology Spots PPT- 3 by Dr Chandni Wadhwani
 Radiology Spots PPT- 3 by Dr Chandni Wadhwani Radiology Spots PPT- 3 by Dr Chandni Wadhwani
Radiology Spots PPT- 3 by Dr Chandni Wadhwani
 
Imaging in white matter disorders
Imaging in white matter disorders Imaging in white matter disorders
Imaging in white matter disorders
 
Imaging neurology spotters
Imaging   neurology spottersImaging   neurology spotters
Imaging neurology spotters
 
Sellar, Suprasellar and Pineal tumor final pk .ppt
Sellar, Suprasellar and Pineal tumor final pk .pptSellar, Suprasellar and Pineal tumor final pk .ppt
Sellar, Suprasellar and Pineal tumor final pk .ppt
 

Ähnlich wie paedriatic White matter diseases

Inherited white matter diseases
Inherited white matter diseasesInherited white matter diseases
Inherited white matter diseasesNavdeep Shah
 
Imaging of demyelinating diseases final
Imaging of demyelinating diseases finalImaging of demyelinating diseases final
Imaging of demyelinating diseases finalSunil Kumar
 
Demyelinating and inflammatory diseases
Demyelinating and inflammatory diseasesDemyelinating and inflammatory diseases
Demyelinating and inflammatory diseasesShivam Batra
 
Extensive gray and white matter abnormality of wilson's disease.Radiological ...
Extensive gray and white matter abnormality of wilson's disease.Radiological ...Extensive gray and white matter abnormality of wilson's disease.Radiological ...
Extensive gray and white matter abnormality of wilson's disease.Radiological ...tanzilur rahman
 
multiple sclerosis imaging...by dr.renuks
multiple sclerosis imaging...by dr.renuksmultiple sclerosis imaging...by dr.renuks
multiple sclerosis imaging...by dr.renuksDrRenuka Pasupala
 
Cortical dysplasia and epilepsy
Cortical dysplasia and epilepsyCortical dysplasia and epilepsy
Cortical dysplasia and epilepsyDr-Ashraf Abdou
 
Presentation1.pptx, radiological imaging of intra cranial calcification.
Presentation1.pptx, radiological imaging of intra cranial calcification.Presentation1.pptx, radiological imaging of intra cranial calcification.
Presentation1.pptx, radiological imaging of intra cranial calcification.Abdellah Nazeer
 
Neuroradiology case presentation
Neuroradiology case presentationNeuroradiology case presentation
Neuroradiology case presentationVamshi Medico
 
Demyelinating diseases of CNS
Demyelinating diseases of CNSDemyelinating diseases of CNS
Demyelinating diseases of CNSAnkita Sain
 
radiologyofdemyelinatingdiseasesmbs-170105191815.pptx
radiologyofdemyelinatingdiseasesmbs-170105191815.pptxradiologyofdemyelinatingdiseasesmbs-170105191815.pptx
radiologyofdemyelinatingdiseasesmbs-170105191815.pptxShubham661884
 
Presentation1 140429171809-phpapp02
Presentation1 140429171809-phpapp02Presentation1 140429171809-phpapp02
Presentation1 140429171809-phpapp02Dr.Abdollah Albraidi
 
Imaging in white matter disorders gt
Imaging in white matter disorders gtImaging in white matter disorders gt
Imaging in white matter disorders gtGobardhan Thapa
 
Astrocytoma.ppt
Astrocytoma.pptAstrocytoma.ppt
Astrocytoma.pptvuanh1603
 
Congenital Anomalies Of Spine And Spinal Cord
Congenital Anomalies Of Spine And Spinal CordCongenital Anomalies Of Spine And Spinal Cord
Congenital Anomalies Of Spine And Spinal CordRoshan Valentine
 
MRI evaluation of developing brain and its role in congenital brain malformat...
MRI evaluation of developing brain and its role in congenital brain malformat...MRI evaluation of developing brain and its role in congenital brain malformat...
MRI evaluation of developing brain and its role in congenital brain malformat...Shaurya Agarwal
 

Ähnlich wie paedriatic White matter diseases (20)

Inherited white matter diseases
Inherited white matter diseasesInherited white matter diseases
Inherited white matter diseases
 
Myelination disorders
Myelination disordersMyelination disorders
Myelination disorders
 
Myelination disorders
Myelination disordersMyelination disorders
Myelination disorders
 
Imaging of demyelinating diseases final
Imaging of demyelinating diseases finalImaging of demyelinating diseases final
Imaging of demyelinating diseases final
 
Demyelinating and inflammatory diseases
Demyelinating and inflammatory diseasesDemyelinating and inflammatory diseases
Demyelinating and inflammatory diseases
 
Extensive gray and white matter abnormality of wilson's disease.Radiological ...
Extensive gray and white matter abnormality of wilson's disease.Radiological ...Extensive gray and white matter abnormality of wilson's disease.Radiological ...
Extensive gray and white matter abnormality of wilson's disease.Radiological ...
 
Neurorad 2
Neurorad 2Neurorad 2
Neurorad 2
 
Demyelinating diseases
Demyelinating diseasesDemyelinating diseases
Demyelinating diseases
 
multiple sclerosis imaging...by dr.renuks
multiple sclerosis imaging...by dr.renuksmultiple sclerosis imaging...by dr.renuks
multiple sclerosis imaging...by dr.renuks
 
Case record...Cortical dysplasia
Case record...Cortical dysplasiaCase record...Cortical dysplasia
Case record...Cortical dysplasia
 
Cortical dysplasia and epilepsy
Cortical dysplasia and epilepsyCortical dysplasia and epilepsy
Cortical dysplasia and epilepsy
 
Presentation1.pptx, radiological imaging of intra cranial calcification.
Presentation1.pptx, radiological imaging of intra cranial calcification.Presentation1.pptx, radiological imaging of intra cranial calcification.
Presentation1.pptx, radiological imaging of intra cranial calcification.
 
Neuroradiology case presentation
Neuroradiology case presentationNeuroradiology case presentation
Neuroradiology case presentation
 
Demyelinating diseases of CNS
Demyelinating diseases of CNSDemyelinating diseases of CNS
Demyelinating diseases of CNS
 
radiologyofdemyelinatingdiseasesmbs-170105191815.pptx
radiologyofdemyelinatingdiseasesmbs-170105191815.pptxradiologyofdemyelinatingdiseasesmbs-170105191815.pptx
radiologyofdemyelinatingdiseasesmbs-170105191815.pptx
 
Presentation1 140429171809-phpapp02
Presentation1 140429171809-phpapp02Presentation1 140429171809-phpapp02
Presentation1 140429171809-phpapp02
 
Imaging in white matter disorders gt
Imaging in white matter disorders gtImaging in white matter disorders gt
Imaging in white matter disorders gt
 
Astrocytoma.ppt
Astrocytoma.pptAstrocytoma.ppt
Astrocytoma.ppt
 
Congenital Anomalies Of Spine And Spinal Cord
Congenital Anomalies Of Spine And Spinal CordCongenital Anomalies Of Spine And Spinal Cord
Congenital Anomalies Of Spine And Spinal Cord
 
MRI evaluation of developing brain and its role in congenital brain malformat...
MRI evaluation of developing brain and its role in congenital brain malformat...MRI evaluation of developing brain and its role in congenital brain malformat...
MRI evaluation of developing brain and its role in congenital brain malformat...
 

Kürzlich hochgeladen

GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)Areesha Ahmad
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencySheetal Arora
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PPRINCE C P
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)Areesha Ahmad
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSSLeenakshiTyagi
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPirithiRaju
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 

Kürzlich hochgeladen (20)

GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSS
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 

paedriatic White matter diseases

  • 1.
  • 2. Imaging of Pediatric White Matter Diseases Dr Tayyaba Niazi PGR 4 SIMS
  • 3. NORMAL MYELINATION After normal myelination in utero, myelination of the neonatal brain is far from complete. It does not reach maturity until 2 years or so. It correlates very closely to developmental milestones . The progression of myelination is predictable and abides by a few simple general rules; myelination progresses from: 1. central to peripheral 2. caudal to rostral 3. dorsal to ventral 4. sensory then motor
  • 4.
  • 5. White matter diseases are traditionally divided into two categories: • Dysmyelinating diseases • Demyelinating diseases • Hypomyelinating diseases Dysmyelinating diseases - also known as leukodystrophies, result from an inherited enzyme deficiency that causes abnormal formation, destruction, or turnover of myelin. Demyelinating diseases - involve destruction of intrinsically normal myelin. Hypomyelinating diseases - the WM may partially myelinate but never myelinates completely.
  • 7. I Lysosomal storage disease Disorder that primarily affect white matter (Leukodystrophies).
  • 8. TYPES 1. late infantile, 2. juvenile, and 3. adult. • The most common type is late infantile metachromatic leukodystrophy, in children between 12 and 18 months of age and is characterized by motor signs of peripheral neuropathy followed by deterioration in intellect, speech, and coordination. • Within 2 years of onset, gait disturbance, quadriplegia, blindness, and decerebrate posturing may be seen. Death occurs 6 months to 4 years after onset of symptoms
  • 9.
  • 10. Imaging Features: • At T2-weighted MR imaging, metachromatic leukodystrophy manifests as symmetric confluent areas of high signal intensity in the periventricular white matter with sparing of the subcortical U fibers . • Islands of normal myelin around medullary veins in the WM may produce a striking "tiger" or "leopard" pattern with linear hypointensities in a sea of confluent hyperintensity. No enhancement is seen on T1 C+. • The corpus callosum, internal capsule, and corticospinal tracts are also frequently involved. • The cerebellar white matter may appear hyperintense at T2-weighted MR imaging.
  • 11. Metachromatic leukodystrophy. (a) T2-weighted MR image demonstrates bilateral confluent areas of high signal intensity in the periventricular white matter. Note the classic sparing of the sub-cortical U fibers (arrowheads). (b) Contrast material– enhanced MR image shows lack of enhancement in the demyelinated white matter, a finding that is characteristic of metachromatic leukodystrophy.
  • 12.
  • 13. Metachromatic leukodystrophy. (a) T2-weighted MR image shows numerous linear tubular structures with low signal intensity in a radiating (“tigroid”) pattern within the demyelinated deep white matter. (b) T2-weighted MR image shows a punctate (leopard skin) pat-tern in the demyelinated centrum semiovale, a finding that suggests sparing of perivascular white matter. (c) On a contrast-enhanced T1-weighted MR image, the tigroid pattern seen in a appears as numerous punctate foci of enhancement (arrows) within the demyelinated white matter, which is unenhanced and has low signal intensity (leopard skin pattern).
  • 14. Metachromatic leukodystrophy with involvement of the corticospinal tract. T2-weighted MR image shows bilateral high-signal-intensity areas in the periventricular white matter with posterior predominance. The corpus callosum is also involved (arrows). T2-weighted MR image obtained at a lower level shows involvement of the descending pyramidal tracts of the medulla (arrows) and deep cerebellar white matter.
  • 15. Krabbe Disease: An autosomal recessive disorder caused by a deficiency of galactocerebroside -galactosidase, an enzyme that degrades cerebroside, a normal constituent of myelin. . The diagnosis is made by demonstrating a deficiency of the enzyme in peripheral blood leukocytes.
  • 16. Clinical presentation: • Infantile, late infantile, juvenile, and adult forms are recognized. • The infantile form is the most common and manifests as hyperirritability, increased muscle tone, fever, and developmental arrest and regression. • Disease progression is characterized by cognitive decline, myoclonus and opisthotonus, and nystagmus. • Typically, Krabbe disease is rapidly progressive and fatal.
  • 17. CT brain: • CT performed during the initial stage of the disease may demonstrate symmetric high- attenuation foci in the thalami, caudate nuclei, corona radiata, posterior limbs of the internal capsule, and brainstem.
  • 18. Krabbe Disease: Hyperdense thalami and brain atrophy in frontal region:
  • 19. Krabbe Disease:CT findings in a 4-month-old boy with early-infantile GLD.The series demonstrates the hyperdensities in the primary myelination zones: brain stem,cerebellum, posterior limb of the internal capsule, thalamus, and central part of the corona radiata. At this stage the CT appearance is almost diagnostic, and more characteristic than the MRI findings.
  • 20.
  • 21. Axial T2 weighted images show bilateral parietal, occipital, deep gray matter and cerebellar white matter hyperintensities with spared subcortical white matter.
  • 22. Mucopolysaccharidosis: A deficiency of the various lysosomal enzymes involved in the degradation of glycosaminoglycans. • Brain imaging is usually performed when hydrocephalus or spinal cord compression is suspected. • CT and MR imaging usually reveal delayed myelination, atrophy, varying degrees of hydrocephalus, and white matter changes. • As the disease progresses, the lesions become larger and more diffuse, reflecting the development of infarcts and demyelination.
  • 23. • The major features of Mucopolysacchroidosis are • Macrocephaly, • Enlarged perivascular spaces, A striking sieve-like cribriform appearance in the posterior cerebral WM. • Pachymeningopathy.
  • 24. Mucopolysaccharidosis in a 4-year-old boy with Hurler disease.
  • 25. A patient with MPS II at 21 years of age, Brain T2-weighted axial MR image demonstrating WM, mainly found in the retrotrigonal area of the brain, and cribriform changes in both periventricular and subcortical white matter. Note also the enlarged ventricles and cortical sulci in the frontal lobe.
  • 27.
  • 28. • The subcortical white matter is relatively spared in the early stage but often becomes involved in the later stages. • The affected cerebral white matter typically has three different zones.  The central or inner zone appears moderately hypointense at T1-weighted MR imaging and markedly hyperintense at T2-weighted imaging. This zone corresponds to irreversible gliosis and scarring.  The intermediate zone represents active inflammation and breakdown in the blood-brain barrier. At T2-weighted MR imaging, this zone may appear isointense or slightly hypointense and readily enhances after intravenous administration of contrast material .  The peripheral or outer zone represents the leading edge of active demyelination; it appears moderately hyperintense at T2-weighted MR imaging and demonstrates no enhancement . • Atypical cases with unilateral or predominantly frontal lobe involvement may occur .
  • 29.
  • 30. NECT scans demonstrate hypodensity in the corpus callosum splenium and WM around the atria and occipital horns of the lateral ventricles. Calcification in the affected WM is common.
  • 31.
  • 32. ALD in a 5-year- old boy
  • 33. ALD with preferential involvement of the internal capsule,descending pyramidal tract,cerebellar white matter,(a.b) C. Bilateral enhancement of internal capsule.
  • 34. Atypical ALD T2-weighted MR image shows involvement predominantly of the frontal lobe white matter, genu of the corpus callosum, and anterior limbs of the internal capsule (arrows). Gadolinium-enhanced T1-weighted MR image shows linear enhancement within the involved white matter and the anterior limbs of the internal capsule (arrows).
  • 35. Zellweger Syndrome Zellweger syndrome, or cerebrohepatorenal syndrome, is an autosomal recessive disorder caused by multiple enzyme defects and characterized by liver dysfunction with jaundice, marked mental retardation, weakness, hypotonia, and craniofacial dysmorphism . It may lead to death in early childhood. The severity of disease varies and is determined by the degree of peroxisomal activity. MR imaging : diffuse demyelination with abnormal gyration that is most severe in the perisylvian region. The pattern of gyral abnormality is similar to that seen in polymicrogyria or pachygyria. Subependymal germinolytic cysts are common finding.
  • 36. Zellweger syndrome in a 5-month-old girl T2-weighted MR image shows extensive areas of diffuse high signal intensity in the white matter. The gyri are broad, the sulci are shallow, and there is incomplete branching of the subcortical white matter, findings that suggest a migration anomaly with pachygyria. On a T1-weighted MR image, the white matter abnormalities demonstrate low signal intensity
  • 38. Diseases Caused by Mitochondrial Dysfunction
  • 39. MELAS Syndrome (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes) • Patients with MELAS syndrome usually appear healthy at birth with normal early development, then exhibit delayed growth, episodic vomiting, seizures, and recurrent cerebral injuries resembling stroke. • These stroke like events may give rise to either permanent or reversible deficits.
  • 40. Multiple infarcts involving multiple vascular territories. Atrophy MRI chronic infarcts • involving multiple vascular territories • may be either symmetrical or asymmetrical • parieto-occipital and parieto-temporal (most common) acute infarcts • swollen gyri with increased T2 signal • subcortical white matter involved • increased signal on DWI (T2 shine through) with little if any change on ADC: thought to represent vasogenic rather than cytotoxic oedema 3
  • 41. MELAS syndrome in a 10-year-old boy with migrating infarction.
  • 42. Sequential MR images of a female patient with MELAS at ages 8 and 13 years. A, T2-weighted coronal image during an acute stroke like episode shows parasagittal bilateral hyperintense lesions (arrows) at the age of 8 years. B, T2-weighted coronal image 2 months later shows that lesions have almost entirely resolved. Cerebellar atrophy is evident. C, T2-weighted axial image 5 years later, during a prolonged seizure, shows a new hyperintense lesion in the left parietooccipital region (arrow).
  • 43. Leighs Disease • Leigh disease, or subacute necrotizing encephalomyelopathy, is an inherited, progressive, neurodegenerative disease of infancy or early childhood with variable course and prognosis . • Affected infants and children typically present with hypotonia, psychomotor deterioration, ataxia, ophthalmoplegia, ptosis, dystonia, and swallowing difficulties.  Typical MR imaging findings include symmetric putaminal involvement, which may be associated with abnormalities of the caudate nuclei, globus pallidi, thalami, and brainstem and, less frequently, of the cerebral cortex (Fig 13).  The cerebral white matter is rarely affected.  Enhancement may be seen at MR imaging and may correspond to the onset of acute necrosis.
  • 44. • Leighs disease show hypodensities in bilateral putamens and globus pallidus.
  • 46. LEIGHS DISEASE Axial FLAIR images show hyperintense lesions in midbrain and pons posteriorly.
  • 47. Canavan Disease Canavan disease, or spongiform leukodystrophy, is an autosomal recessive disorder caused by a deficiency of N-acetylaspartylase, which results in an accumulation of N- acetylaspartic acid in the urine, plasma, and brain. It usually manifests in early infancy as hypotonia followed by spasticity, cortical blindness, and macrocephaly. Canavan disease is a rapidly progressive illness with a mean survival time of 3 years. Definite diagnosis usually requires brain biopsy or autopsy.
  • 48. • T1-weighted MR imaging symmetric areas of homogeneous, diffuse low signal intensity , whereas T2-weighted , homogeneous high signal intensity throughout the white matter. • The subcortical U fibers are preferentially affected early in the course of the disease. • In rapidly progressive cases, the internal and external capsules are involved, and the cerebellar white matter is usually affected as well. • As the disease progresses, atrophy becomes conspicuous.
  • 49. Canavan disease in a 6-month-old boy with macrocephaly T2-weighted MR image shows extensive high-signal-intensity areas throughout the white matter, resulting in gyral expansion and cortical thinning. Striking demyelination of the subcortical U fibers is also noted. T1-weighted MR image shows demyelinated white matter with low signal intensity.
  • 50. CANAVAN DISEASE Axial T2 weighted image shows high signal in white matter typically a diffuse bilateral cerebral involvement and sub cortical U fibres.
  • 51. Alexander Disease • Alexander disease, or fibrinoid leukodystrophy, is characterized by massive deposition of Rosenthal fibers in the subependymal, subpial, and perivascular regions (Fig 16b) (37). • Three clinical subgroups are recognized. • The infantile subgroup is characterized by early onset of macrocephaly, psychomotor retardation, and seizure. Death occurs within 2–3 years. Definite diagnosis usually requires brain biopsy or autopsy. • In the juvenile subgroup, onset 7 and 14 years of age. Progressive bulbar symptoms with spasticity are common. • In the adult subgroup, onset between the 2nd and 7th decades. The symptoms and disease course can be indistinguishable from those of classic multiple sclerosis in the adult subgroup.
  • 52. • Involvement of frontal lobes and subcortical white matter and hyperintensity at T2w image. • Enhancement near the tips of the frontal horns early in the disease course . • These hyperintense areas progress posteriorly to the parietal white matter and internal and external capsules . • In the late stages of the disease, cysts may develop in affected regions of the brain.
  • 53. Alexander disease in a 5-year-old boy with macrocephaly
  • 56.
  • 57. BILATERAL HYPERDENSE THALAMI ON CT BILATERAL ABNORMAL SIGNAL INTENSITY IN THALAMI ON MRI,HYPO ON T2w Krabbe disease
  • 58.
  • 59. T2w hyperinsities in peri trigonal and occipital region,with contrast enhancement after injecting contrast. Adrenoleukodystrophy
  • 60.
  • 61. Bilateral T1w hypointensity and T2w hyperintensity of lentiform nuclei leighs disease
  • 62.
  • 63. T2w hyperintensities in frontal lobes bilateral Alaxander disease
  • 64.
  • 65. T2w hyperintensities in bilateral periventricular region with tigroid appearance Metachromatic leukodystrophy
  • 66.
  • 67. T2w hyperintensity throughout white matter, macrocephaly. CANAVAN disease
  • 68. Conclusions There are many different white matter diseases, each of which has distinctive features. MR imaging is highly sensitive in determining the presence and assessing the severity of underlying white matter abnormalities. Although the findings are often non-specific, systematic analysis of the finer details of disease involvement may permit a narrower differential diagnosis, which the clinician can then further refine with knowledge of patient history, clinical testing, and metabolic analysis. MR imaging has also been extensively used to monitor the natural progression of various white matter disorders and the response to therapy.

Hinweis der Redaktion

  1. T2-weighted MR image shows bilateral high-signal-intensity areas in the periventricular white matter with posterior predominance. The corpus callosum is also involved (arrows). T2-weighted MR image obtained at a lower level shows involvement of the descending pyramidal tracts of the medulla (arrows) and deep cerebellar white matter.
  2. T1-weighted MR image shows multiple well-defined areas of low signal intensity in the central and subcortical white matter. T2-weighted MR image demonstrates multiple well-defined areas of high signal intensity in the deep and subcortical white matter.
  3. Brain T2-weighted axial MR image demonstrating WMA, mainly found in the retrotrigonal area of the brain, and cribriform changes in both periventricular and subcortical white matter. Note also the enlarged ventricles and cortical sulci in the frontal lobe.
  4. T2-weighted MR image shows symmetric confluent demyelination in the peritrigonal white matter and the corpus callosum. On a T1-weighted MR image, the peritrigonal lesions appear hypointense. Gadolinium-enhanced T1-weighted MR image reveals a characteristic enhancement pattern in the intermediate zone (arrows) representing active demyelination and inflammation. ALD involving the corpus callosum splenium. T2-weighted MR image shows the corpus callosum splenium with diffuse high signal intensity (arrows). No abnormality of the periventricular white matter is seen.
  5. (a, b) T2-weighted MR images show demyelination of the internal capsule, descending pyramidal tract (arrows in a, long arrows in b), and cerebellar deep white matter (short arrows in b). (c) Gadolinium-enhanced T1-weighted MR image shows bilateral enhancement of the internal capsule and descending pyramidal tracts (arrows).
  6. T2-weighted MR image shows involvement predominantly of the frontal lobe white matter, genu of the corpus callosum, and anterior limbs of the internal capsule (arrows). Gadolinium-enhanced T1-weighted MR image shows linear enhancement within the involved white matter and the anterior limbs of the internal capsule (arrows).
  7. T2-weighted MR image shows extensive areas of diffuse high signal intensity in the white matter. The gyri are broad, the sulci are shallow, and there is incomplete branching of the subcortical white matter, findings that suggest a migration anomaly with pachygyria. On a T1-weighted MR image, the white matter abnormalities demonstrate low signal intensity.
  8. MELAS: mitochondrial encephalopathy with lactic acidosis and stroke-like episodes
  9. Follow-up MR images may show resolution and sub-sequent reappearance of the abnormal areas. increased signal intensity due to T2 prolongation effects (so-called “T2 shine-through effect”).
  10. Initial T2-weighted MR image shows a high-signal-intensity lesion in the left occipital lobe (arrows). Prominent cortical sulci are seen in the right occipital lobe, a finding that suggests cortical atrophy. On a contrast-enhanced T1-weighted MR image, the lesion demonstrates no enhancement. Follow-up MR image obtained 15 months later shows another lesion in the left temporal area (arrowheads).
  11. A, T2-weighted coronal image during an acute stroke like episode shows parasagittal bilateral hyperintense lesions (arrows) at the age of 8 years. B, T2-weighted coronal image 2 months later shows that lesions have almost entirely resolved. Cerebellar atrophy is evident. C, T2-weighted axial image 5 years later, during a prolonged seizure, shows a new hyperintense lesion in the left parietooccipital region (arrow).
  12. Leigh disease in a 2-year-old boy. T2-weighted MR image shows bilateral high-signal-intensity areas in the putamen and globus pallidus (arrows). On a T1-weighted MR image, the lesions demonstrate low signal intensity (arrows).
  13. T2-weighted MR image shows symmetric demyelination in the frontal lobe white matter. The internal and external capsules and parietal white matter are also involved. T2 weighted MR image shows symmetric demyelination in frontal lobe white matter.