SlideShare ist ein Scribd-Unternehmen logo
1 von 30
Process Control
Course II
Lecture 5
The Controllers
Part II
1
By
Prof. Alaa Kareem Mohammed
2
Example 1
Consider the following closed system:
0
𝑋𝐿(s)
𝑄(s) 1
2𝑠 + 1
3
2𝑠 + 1
𝑦(s)
+
+
0
𝑦𝑠𝑝(s)
−
+
0.5 2
3
a. For a unit step change in XL , find the time constant 𝜏 of the closed loop, the final
value of response 𝑦(∞) and the offset. Sketch the response.
b. Repeat (a) for value of Kc = 1 and Kc = 2.
c. Conclude the effect of the controller gain Kc on the time constant 𝜏 and the offset.
d. Repeat (a and b) for unit step change in set point.(Homework)
‫البيتي‬ ‫الواجب‬ ‫حل‬
3
c. For the three values of controller gain Kc, the values of 𝜏 and offset are given in Table 2
𝐊𝐜 𝛕 𝐨𝐟𝐟𝐬𝐞𝐭
0.5 0.5 0.75
1 0.285 0.428
2 0.15 0.28
Table 2
From Table 2, we can conclude that:
∴ 𝝉 ∝
𝟏
𝑲𝒄
[𝐼𝑡 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑡𝑜 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝐾𝑐 for faster response]
𝒐𝒇𝒇𝒔𝒆𝒕 ∝
𝟏
𝑲𝒄
[𝐼𝑡 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑡𝑜 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝐾𝑐 for lower value of offset]
4
𝑡
𝐾𝑐 = 0.5
𝑦(𝑡)
0
𝐾𝑐 = 1
𝐾𝑐 = 2
𝑜𝑓𝑓𝑠𝑒𝑡1
𝑜𝑓𝑓𝑠𝑒𝑡2
𝑜𝑓𝑓𝑠𝑒𝑡3
0.75
0.428
0.28
5
d. Unit step change in set point 𝑦𝑠𝑝that means the loop is Servo.
Kc= 0.5
𝐺 𝑠 =
𝑦 𝑠
𝑦𝑠𝑝 𝑠
=
0.5 ∗ 2 ∗
1
2𝑠 + 1
1 + 0.5 ∗ 2 ∗
1
2𝑠 + 1
∗ 3
=
0.25
0.5𝑠 + 1
𝐓𝐢𝐦𝐞 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 τ = 0.5
𝑦𝑠𝑝 𝑠 =
1
𝑠
𝑦(𝑡) = ℒ−1
𝑦𝑠𝑝 𝑠 ∙ 𝐺 𝑠
𝑦 𝑡 = ℒ−1
1
𝑠
∗
0.25
0.5𝑠 + 1
𝑦 𝑡 = 0.25(1 − 𝑒−2𝑡
)
Final value of the response:
𝑦 ∞ = lim
𝑠→0
𝑠 ∗ 𝑦(𝑠) = lim
𝑠→0
𝑠 ∗ [
1
𝑠
∗
0.25
0.5𝑠 + 1
]
∴ 𝑦 ∞ = 0.25
0
𝑋𝐿(s)
𝑄(s) 1
2𝑠 + 1
3
2𝑠 + 1
𝑦(s)
+
+
0
𝑦𝑠𝑝(s)
−
+
0.5 2
3
6
Offset = ∆𝑦𝑠𝑝 − 𝑦 ∞ = 1 − 0.25 = 0.75
Offset= 0.75
∴ 𝑭𝒐𝒓 𝒌𝒄 = 𝟎. 𝟓 , 𝝉 = 𝟎. 𝟓 , 𝒐𝒇𝒇𝒔𝒆𝒕 = 𝟎. 𝟕𝟓
0.25
𝑡
Offset =0.75
∆ 𝑠𝑒𝑡 𝑝𝑜𝑖𝑛𝑡 1
0
F𝑖𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
This is the offset
in Servo loop
7
For 𝑲𝒄 = 𝟏
𝐺 𝑠 =
𝑦 𝑠
𝑋𝐿 𝑠
=
1 ∗ 2 ∗
1
2𝑠 + 1
1 + 1 ∗ 2 ∗
1
2𝑠 + 1
∗ 3
=
0.285
0.285𝑠 + 1
𝐓𝐢𝐦𝐞 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 τ = 0.285
𝑦𝑠𝑝 𝑠 =
1
𝑠
𝑦(𝑡) = ℒ−1
𝑦𝑠𝑝 𝑠 ∙ 𝐺 𝑠
𝑦 𝑡 = ℒ−1
1
𝑠
∗
0.285
0.285𝑠 + 1
𝑦 𝑡 = 0.285(1 − 𝑒−𝑡/0.285
)
Final value of the response:
𝑦 ∞ = lim
𝑠→0
𝑠 ∗ 𝑦 𝑠 = lim
𝑠→0
𝑠 ∗ [
1
𝑠
∗
0.285
0.285𝑠 + 1
]
𝑦 ∞ = 0.285
Offset= ∆𝑦𝑠𝑝 − 𝑦 ∞ = 1 − 0.285 = 0.715
∴ 𝑜𝑓𝑓𝑠𝑒𝑡 = 0.715
∴ 𝑭𝒐𝒓 𝑲𝒄 = 𝟏 , 𝝉 = 𝟎. 𝟐𝟖𝟓 , 𝒐𝒇𝒇𝒔𝒆𝒕 = 𝟎. 𝟕𝟏𝟓
0.285
𝑡
Offset = 0.715
∆ 𝑠𝑒𝑡 𝑝𝑜𝑖𝑛𝑡 1
0
F𝑖𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
8
For 𝒌𝒄 = 𝟐
𝐺 𝑠 =
𝑦 𝑠
𝑋𝐿 𝑠
=
2 ∗ 2 ∗
1
2𝑠 + 1
1 + 2 ∗ 2 ∗
1
2𝑠 + 1
∗ 3
=
0.3
0.15𝑠 + 1
𝐓𝐢𝐦𝐞 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 τ = 0.15
𝑦𝑠𝑝 𝑠 =
1
𝑠
𝑦(𝑡) = ℒ−1 𝑦𝑠𝑝 𝑠 ∙ 𝐺 𝑠
𝑦 𝑡 = ℒ−1
1
𝑠
∗
0.3
0.15𝑠 + 1
𝑦 𝑡 = 0.3 (1 − 𝑒−𝑡/0.15)
Final value of the response:
𝑦 ∞ = lim
𝑠→0
𝑠 ∗ 𝑦 𝑠 = lim
𝑠→0
𝑠 ∗ [
1
𝑠
∗
0.3
0.15𝑠 + 1
]
𝑦 ∞ = 0.3
Offset= ∆𝑦𝑠𝑝 − 𝑦 ∞ = 1 − 0.3 = 0.7
∴ 𝑜𝑓𝑓𝑠𝑒𝑡 = 0.7
∴ 𝑭𝒐𝒓 𝑲𝒄 = 𝟐 , 𝝉 = 𝟎. 𝟏𝟓 , 𝒐𝒇𝒇𝒔𝒆𝒕 = 𝟎. 𝟕
0.15
𝑡
Offset = 0.7
∆ 𝑠𝑒𝑡 𝑝𝑜𝑖𝑛𝑡 1
0
𝑓𝑖𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
9
K𝒄 𝝉 𝒐𝒇𝒇𝒔𝒆𝒕
0.5 0.5 0.75
1 0.285 0.715
2 0.15 0.7
Also we notice that:
𝜏 ∝
1
𝐾𝑐
𝑂𝑓𝑓𝑠𝑒𝑡 ∝
1
𝐾𝑐
10
𝑀
m, cp, T
TT
m, cp, 𝑇𝑖
𝑄
Tc
𝑇𝑠𝑝
Example 2
Consider the controlled heating tank that shown in Figure below. Given the following information:
Proportional controller 𝐺𝑐 𝑠 = 0.5
Measurement 𝐺𝑚 𝑠 = 3
Control valve 𝐺𝑣 𝑠 = 2
𝑚𝑐𝑝 = 10 𝑘𝑔/𝑘
𝑀𝑐𝑝 = 20 𝑘𝑔/𝑘
11
a. Find the final value of response (T) and the offset of the system for a unit step change in 𝑇𝑖.
b. Repeat (a) for values of 𝐾𝑐 = 1, 𝐾𝑐 = 2.
c. What is the relation between 𝐾𝑐 and offset and time constant of the system.
d. Find the final value of response and the offset of the system for a unit step change in
Set point 𝑇𝑠𝑝. (Homework) [ Ans.: 𝑻 ∞ = 𝟎. 𝟎𝟕𝟔𝟗, 𝒐𝒇𝒇𝒔𝒆𝒕 = 𝟎. 𝟗𝟐𝟑]
e. Repeat (d) for values of 𝐾𝑐 = 1, 𝐾𝑐 = 2. (Homework)[Ans.: for kc=1, 𝑻 ∞ = 𝟎. 𝟏𝟐𝟓, 𝒐𝒇𝒇𝒔𝒆𝒕 = 𝟎. 𝟖𝟕𝟓
Solution
𝑇 𝑠 = 𝑓 𝑇𝑖 𝑠 , 𝑄 𝑠
Heat balance
𝑚 𝑐𝑝 𝑇𝑖 + 𝑄 = 𝑚 𝑐𝑝 𝑇 + 𝑀 𝑐𝑝
𝑑𝑇
𝑑𝑡
𝑀𝑐𝑝
𝑚 𝑐𝑝
𝑑𝑇
𝑑𝑡
+ 𝑇 =
1
𝑚𝑐𝑝
𝑄 + 𝑇𝑖
for kc=2, 𝑻 ∞ = 𝟎. 𝟏𝟖𝟏𝟖, 𝒐𝒇𝒇𝒔𝒆𝒕 = 𝟎. 𝟖𝟏𝟖𝟐
12
𝑀𝑐𝑝
𝑚 𝑐𝑝
𝑑𝑇
𝑑𝑡
+ 𝑇 =
1
𝑚𝑐𝑝
𝑄 + 𝑇𝑖
𝜏
𝑑𝑇
𝑑𝑡
+ 𝑇 =
1
𝑚
𝑄 + 𝑇𝑖
𝜏𝑠 + 1 𝑇 𝑠 = 𝑘1𝑄 𝑠 + 𝑇𝑖 𝑠
𝑇 𝑠 =
𝑘1
𝜏𝑠 + 1
𝑄 𝑠 +
1
𝜏𝑠 + 1
𝑇𝑖 𝑠
Where 𝜏 =
20
10
= 2 , 𝑘1 =
1
10
= 0.1
∴ 𝑇 𝑠 =
0.1
2𝑠 + 1
𝑄 𝑠 +
1
2𝑠 + 1
𝑇𝑖 𝑠
𝐺𝑃
𝐺𝐿
13
The signal flow block diagram (SFBD) of the closed system is given in Figure below
0
𝑇𝑖(s)
0.1
2𝑠 + 1
1
2𝑠 + 1
𝑇(s)
+
+
𝟎
𝑇𝑠𝑝(s)
−
+
0.5
3
2
a. Unit step change in 𝑇𝑖that means the loop is regulator.
𝐾𝑐 = 0.5
𝑇 𝑠
𝑇𝑖 𝑠
=
1
2𝑠 + 1
1 + 0.5 ∗ 2 ∗
0.1
2𝑠 + 1
∗ 3
=
0.769
1.538𝑠 + 1
14
𝑇𝑖 𝑠 =
1
𝑠
𝑇(𝑡) = ℒ−1
𝑇𝑖 𝑠 ∙ 𝐺 𝑠
𝑇 𝑡 = ℒ−1
1
𝑠
∗
0.769
1.538𝑠 + 1
𝑇 𝑡 = 0.769 (1 − 𝑒−𝑡/1.538)
𝑂𝑓𝑓𝑠𝑒𝑡 = 𝑇 ∞ = lim
𝑠 →0
𝑠 ∗ 𝑇 𝑠 = lim
𝑠 →0
𝑠 ∗ [
1
𝑠
∗
0.769
1.538𝑠 + 1
]
∴ 𝑜𝑓𝑓𝑠𝑒𝑡 = 0.769
𝐹𝑜𝑟 𝐾𝑐 = 0.5 , 𝜏 = 1.538 , 𝑜𝑓𝑓𝑠𝑒𝑡 = 0.769
𝑇(𝑡)
𝑡
offset
0.769
0
15
𝑭𝒐𝒓 𝑲𝒄 = 𝟏
𝑇 𝑠
𝑇𝑖 𝑠
=
1
2𝑠 + 1
1 + 1 ∗ 2 ∗
0.1
2𝑠 + 1
∗ 3
=
0.625
1.25𝑠 + 1
𝑇𝑖 𝑠 =
1
𝑠
𝑇(𝑡) = ℒ−1
𝑇𝑖 𝑠 ∙ 𝐺 𝑠
𝑇 𝑡 = ℒ−1
1
𝑠
∗
0.625
1.25𝑠 + 1
𝑇 𝑡 = 0.625 (1 − 𝑒−𝑡/1.25
)
𝑂𝑓𝑓𝑠𝑒𝑡 = 𝑇 ∞ = lim
𝑠 →0
𝑠 ∗ 𝑇 𝑠 = lim
𝑠 →0
𝑠 ∗ [
1
𝑠
∗
0.625
1.25𝑠 + 1
]
𝑂𝑓𝑓𝑠𝑒𝑡 = 0.625
∴ 𝑭𝒐𝒓 𝑲𝒄 = 𝟏 , 𝝉 = 𝟏. 𝟐𝟓 , 𝒐𝒇𝒇𝒔𝒆𝒕 = 𝟎. 𝟔𝟐𝟓
𝑇(𝑡)
𝑡
offset
0.625
0
16
𝑭𝒐𝒓 𝑲𝒄 = 𝟐
𝑇 𝑠
𝑇𝑖 𝑠
=
1
2𝑠 + 1
1 + 2 ∗ 2 ∗
0.1
2𝑠 + 1
∗ 3
=
0.454
0.91𝑠 + 1
𝑇𝑖 𝑠 =
1
𝑠
𝑇(𝑡) = ℒ−1 𝑇𝑖 𝑠 ∙ 𝐺 𝑠
𝑇 𝑡 = ℒ−1
1
𝑠
∗
0.454
0.91𝑠 + 1
𝑇 𝑡 = 0.454 (1 − 𝑒−𝑡/0.91)
𝑂𝑓𝑓𝑠𝑒𝑡 = 𝑇 ∞ = lim
𝑠 →0
𝑠 ∗ 𝑇 𝑠 = lim
𝑠 →0
𝑠 ∗ [
1
𝑠
∗
0.454
0.91𝑠 + 1
]
𝑂𝑓𝑓𝑠𝑒𝑡 = 0.454
∴ 𝑭𝒐𝒓 𝑲𝒄 = 𝟐 , 𝝉 = 𝟎. 𝟗𝟏 , 𝒐𝒇𝒇𝒔𝒆𝒕 = 𝟎. 𝟒𝟓𝟒
𝑇(𝑡)
𝑡
offset
0.454
0
17
c. Now we can conclude the following
𝒌𝒄 𝝉 𝑶𝒇𝒇𝒔𝒆𝒕
0.5 1.538 0.769
1 1.25 0.625
2 0.91 0.454
We notice that:
 Increasing 𝐾𝑐will decrease the time constant of the closed
system (positive effect).
 Increasing 𝐾𝑐will decrease the value of offset (positive
effect).
∴ 𝜏 ∝
1
𝐾𝑐
𝑎𝑛𝑑 𝑂𝑓𝑓𝑠𝑒𝑡 ∝
1
𝐾𝑐
𝑡
0.769
0.454
0.625
𝑇
0
𝐾𝑐 = 𝑜. 5
𝐾𝑐 = 1
𝐾𝑐 = 2
18
𝑄𝑜
LT
𝑄𝑖
𝐻𝑠𝑝
LC
𝐻
Consider the liquid-level tank system shown in Figure below. Given the following data
Proportional controller 𝐺𝑐 𝑠 = 4
Measurement 𝐺𝑚 𝑠 = 2
Control valve 𝐺𝑣 𝑠 = 1
𝐴 = 1 𝑚2
Example 3
a. Draw the signal flow block diagram SFBD.
b. Find the transfer function for regulator loop.
c. For unit step change in 𝑄𝑜, calculate the response and the
offset, and sketch it.
19
Solution
Material balance
In = out +Accumulation
𝑄𝑖 = 𝑄0 + 𝐴
𝑑𝐻
𝑑𝑡
𝐴
𝑑𝐻
𝑑𝑡
= 𝑄𝑖 − 𝑄0
1 𝑠 𝐻 𝑠 = 𝑄𝑖 𝑠 − 𝑄𝑜 𝑠
𝐻 𝑠 =
1
𝑠
𝑄𝑖 𝑠 −
1
𝑠
𝑄𝑜 𝑠
b. Regular loop
𝐻 𝑠
𝑄𝑜 𝑠
=
−
1
𝑠
1 +
4 ∗ 2
𝑠
=
−
1
𝑠
𝑠 + 8
𝑠
=
−0 ∙ 125
0 ∙ 125 𝑠 + 1
0
𝑄𝑜(s)
1
𝑆
−
1
𝑆
𝐻(s)
+
0
𝐻𝑠𝑝(s)
−
+
4
2
1
+
20
c. 𝑄𝑖 𝑠 =
1
𝑠
𝐻 𝑠 = 𝑄𝑖 𝑠 ∗ (𝐺(𝑠)
𝐻 𝑡 = ℒ−1
1
𝑠
∗
−0 ∙ 125
0 ∙ 125 𝑠 + 1
= − 0 ∙ 125(1 − 𝑒−8𝑡)
𝐻 ∞ = −0 ∙ 125
Offset = 𝐻 ∞ = - 0.125
−0.125
offset= = - 0.125
0
H
21
Example 4
Two liquid level tanks are connected in series as shown in Figure below.
𝑞𝑜
𝑞𝑖
𝐻𝑠𝑝(𝑠)
𝐻1
𝑞2
𝐴1
𝐴2 𝐻2
𝑅2
𝑅1
LT
LC
𝑞1
Given the following data
Proportional controller 𝐺𝑐 𝑠 = 𝐾𝑐
Measurement 𝐺𝑚 𝑠 = 0.5
Control valve 𝐺𝑣 𝑠 = 0.5
𝐴1 = 𝐴2 = 2 𝑚2
𝑅1 = 𝑅2 = 0.5 (s/m2)
a. For open loop, find 𝐻2 𝑠 = 𝑓(𝑞𝑖 𝑠 , 𝑞2 𝑠 )
b. Sketch the SFBD for closed system.
c. For unit step change in 𝑞2, calculate the offset for 𝐾𝑐 = 10.
d. Repeat (c) for 𝐾𝑐 = 20 and 𝐾𝑐 = 40.
e. What is the effect of 𝐾𝑐 on values of time constant T ,
damping factor 𝛿 and the offset.
22
Solution
a. Material balance on tank 1
In = out +Accumulation
𝑞𝑖 = 𝑞1 + 𝐴1
𝑑𝐻1
𝑑𝑡
𝑞𝑖 =
𝐻1
𝑅1
+ 𝐴1
𝑑𝐻1
𝑑𝑡
𝜏1
𝑑𝐻1
𝑑𝑡
+ 𝐻1 = 𝑅1𝑞𝑖
𝜏1𝑠 + 1 𝐻1 𝑠 = 𝑅1𝑞𝑖 𝑠
𝐻1 𝑠 =
𝑅1
𝜏1𝑠 + 1
𝑞𝑖 𝑠 =
0 ∙ 5
𝑠 + 1
𝑞𝑖 𝑠 … … … … (∗)
Material balance on tank 2
𝑞1 + 𝑞2 = 𝑞𝑜 + 𝐴2
𝑑𝐻2
𝑑𝑡
23
𝐻1
𝑅1
+ 𝑞2 =
𝐻2
𝑅2
+ 𝐴2
𝑑𝐻2
𝑑𝑡
𝑅2𝐴2
𝑑𝐻2
𝑑𝑡
+ 𝐻2 =
𝐻1 𝑅2
𝑅1
+ 𝑞2𝑅2
𝜏2
𝑑𝐻2
𝑑𝑡
+ 𝐻2 =
𝐻1 𝑅2
𝑅1
+ 𝑞2𝑅2
(𝜏2𝑠 + 1) 𝐻2 𝑠 =
𝑅2
𝑅1
𝐻1 𝑠 + 𝑞2(𝑠)𝑅2
𝜏2 = 𝑅2𝐴2 = 1 ,
𝑅2
𝑅1
= 1
𝑠 + 1 𝐻2 𝑠 = 𝐻1 𝑠 + 0 ∙ 5 𝑞2(𝑠)
𝐻2 𝑠 =
1
𝑠 + 1
𝐻1 𝑠 +
0 ∙ 5
𝑠 + 1
𝑞2 𝑠 … … … … (∗∗)
Substitute Eq. (*) in (**) gives
𝐻2 𝑠 =
1
𝑠 + 1
0 ∙ 5
𝑠 + 1
𝑞𝑖 𝑠 +
0 ∙ 5
𝑠 + 1
𝑞2(𝑠)
𝐻2 𝑠 =
0 ∙ 5
(𝑠 + 1)2
𝑞𝑖 𝑠 +
0 ∙ 5
𝑠 + 1
𝑞2(𝑠)
𝐺𝑃
𝐺𝐿
𝑞𝑜
𝑞𝑖
𝐻𝑠𝑝(𝑠)
𝐻1
𝑞2
𝐴1
𝐴2 𝐻2
𝑅2
𝑅1
LT
LC
𝑞1
24
c. For unit step change in load
𝐾𝑐 = 10
𝐺 𝑠 =
𝐻2 𝑠
)
𝑞2(𝑠
=
0 ∙ 5
𝑠 + 1
1 +
10 ∗ 0 ∙ 5 ∗ 0 ∙ 5 ∗ 0.5
𝑠 + 1 2
=
0 ∙ 5
𝑠 + 1
)
𝑠 + 1 2 + 0 ∙ 125 (10
𝑠 + 1 2
=
0.22 𝑠 + 1
0.44𝑠2 + 0.88𝑠 + 1
∴ 𝐺(𝑠) =
0.22 𝑠 + 1
0.44𝑠2 + 0.88𝑠 + 1
0
𝑞2(s) 0.5
𝑆 + 1
𝐻2(s)
+
0
𝐻𝑠𝑝(s)
−
+
0.5
0.5
0.5
𝑆 + 1 2
𝐾𝑐
+
25
𝑇2 = 0.44, 𝑇 = 0.44 = 0.66
2𝛿𝑇 = 0.88 , 𝛿 = 0.66
𝑜𝑓𝑓𝑠𝑒𝑡 = 𝐻2 ∞ = lim
𝑠 →0
𝑠 ∗ 𝐻 𝑠
= lim
𝑠 →0
𝑠 ∗ [
1
𝑠
∗
0.22 𝑠 + 1
0.44𝑠2 + 0.88𝑠 + 1
]
𝑜𝑓𝑓𝑠𝑒𝑡 = 0.22
0
Offset = 0.22
0.22
𝐻2
𝑡
26
d. For 𝑲𝒄 = 𝟐𝟎
𝐻2 𝑠
𝑞2(𝑠)
=
0 ∙ 5
𝑠 + 1
1 +
20 ∗ 0 ∙ 5 ∗ 0 ∙ 5 ∗ 0.5
(𝑠 + 1)2
𝐺 𝑠 =
0.142 𝑠 + 1
0.285𝑠2 + 0.571𝑠 + 1
𝑇2 = 0.285, 𝑇 = 0.285 = 0.533
2𝛿𝑇 = 0.571 , 𝛿 = 0.535
𝑜𝑓𝑓𝑠𝑒𝑡 = 𝐻2 ∞ = lim
𝑠 →0
𝑠 ∗ 𝐻 𝑠
= lim
𝑠 →0
𝑠 ∗ [
1
𝑠
∗
0.142 𝑠 + 1
0.285𝑠2 + 0.571𝑠 + 1
]
𝑜𝑓𝑓𝑠𝑒𝑡 = 0.142
0
Offset = 0.142
0.142
𝐻2
𝑡
27
For 𝒌𝒄 = 𝟒𝟎
𝐻2 𝑠
𝑞2(𝑠)
=
0 ∙ 5
𝑠 + 1
1 +
0 ∙ 5 (40) ∗ 0 ∙ 5 ∗ 0 ∙ 5
(𝑠 + 1)2
G(s) =
0.083 𝑠 + 1
0.166𝑠2 + 0.33𝑠 + 1
𝑇2
= 0.166, 𝑇 = 0.166 = 0.407
2𝛿𝑇 = 0.33 , 𝛿 = 0.41
𝑜𝑓𝑓𝑠𝑒𝑡 = 𝐻2 ∞ = lim
𝑠 →0
𝑠 ∗ 𝐻 𝑠
= lim
𝑠 →0
𝑠 ∗ [
1
𝑠
∗
0.083 𝑠 + 1
0.166𝑠2 + 0.33𝑠 + 1
]
𝑜𝑓𝑓𝑠𝑒𝑡 = 0.083
0
Offset = 0.083
0.083
𝐻2
𝑡
28
e. We can summarize the obtained results in Table below.
Kc T δ offset
10 0.66 0.66 0.22
20 0.533 0.535 0.142
40 0.407 0.41 0.083
From the Table , we can conclude the following
𝑇 ∝
1
𝐾𝑐
, 𝛿 ∝
1
𝐾𝑐
, 𝑜𝑓𝑓𝑠𝑒𝑡 ∝
1
𝐾𝑐
So increasing the value of 𝑲𝒄 will lead to
i. Decreasing the value of time constant T. This is a positive effect, since the response of the system will be faster.
ii. Decreasing the value of damping coefficient 𝛿 . This is a negative effect because of decreasing the value of 𝛿 will increase
the value of overshoot and hence decreasing the stability of the system
iii. Decreasing the value of offset and this is a positive effect.
29
Advantages of Proportional Controller
Now let us discuss some advantages of the proportional controller.
1. It is cheap and easy to manufacture.
2. Slow response of the over damped system can be made faster with the help of these controllers.
Disadvantages of Proportional Controller
There are some serious disadvantages of these controllers and these are:
1. Due to the presence of these controllers, we get some offsets in the system.
2. Proportional controllers also increase the maximum overshoot of the system and hence make the
system less stable.
30

Weitere ähnliche Inhalte

Ähnlich wie lecture 5 courseII (6).pptx

High Bandwidth suspention modelling and Design LQR Full state Feedback Contro...
High Bandwidth suspention modelling and Design LQR Full state Feedback Contro...High Bandwidth suspention modelling and Design LQR Full state Feedback Contro...
High Bandwidth suspention modelling and Design LQR Full state Feedback Contro...
Idabagus Mahartana
 
EM_Tutorial_02_Solution.pdf
EM_Tutorial_02_Solution.pdfEM_Tutorial_02_Solution.pdf
EM_Tutorial_02_Solution.pdf
dharma raja`
 
Solutions_Manual_to_accompany_Applied_Nu.pdf
Solutions_Manual_to_accompany_Applied_Nu.pdfSolutions_Manual_to_accompany_Applied_Nu.pdf
Solutions_Manual_to_accompany_Applied_Nu.pdf
WaleedHussain30
 
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
JOAQUIN REA
 
12EE62R11_Final Presentation
12EE62R11_Final Presentation12EE62R11_Final Presentation
12EE62R11_Final Presentation
Amritesh Maitra
 
Max flows via electrical flows (long talk)
Max flows via electrical flows (long talk)Max flows via electrical flows (long talk)
Max flows via electrical flows (long talk)
Thatchaphol Saranurak
 

Ähnlich wie lecture 5 courseII (6).pptx (20)

Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007
 
High Bandwidth suspention modelling and Design LQR Full state Feedback Contro...
High Bandwidth suspention modelling and Design LQR Full state Feedback Contro...High Bandwidth suspention modelling and Design LQR Full state Feedback Contro...
High Bandwidth suspention modelling and Design LQR Full state Feedback Contro...
 
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdfSolucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
 
Mod 3.pptx
Mod 3.pptxMod 3.pptx
Mod 3.pptx
 
Matlab lab manual
Matlab lab manualMatlab lab manual
Matlab lab manual
 
EM_Tutorial_02_Solution.pdf
EM_Tutorial_02_Solution.pdfEM_Tutorial_02_Solution.pdf
EM_Tutorial_02_Solution.pdf
 
project designa.docx
project designa.docxproject designa.docx
project designa.docx
 
THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdf
THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdfTHE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdf
THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdf
 
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdfTHE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
 
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdfTHE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
 
State feedback example
State feedback exampleState feedback example
State feedback example
 
Solutions_Manual_to_accompany_Applied_Nu.pdf
Solutions_Manual_to_accompany_Applied_Nu.pdfSolutions_Manual_to_accompany_Applied_Nu.pdf
Solutions_Manual_to_accompany_Applied_Nu.pdf
 
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
 
control_5.pptx
control_5.pptxcontrol_5.pptx
control_5.pptx
 
Ejercicios resueltos en clase de fundaciones ayudante CALCULO DE ZAPATAS
Ejercicios resueltos en clase de fundaciones ayudante CALCULO DE ZAPATASEjercicios resueltos en clase de fundaciones ayudante CALCULO DE ZAPATAS
Ejercicios resueltos en clase de fundaciones ayudante CALCULO DE ZAPATAS
 
Regression Analysis.pptx
Regression Analysis.pptxRegression Analysis.pptx
Regression Analysis.pptx
 
Linear Control Hard-Disk Read/Write Controller Assignment
Linear Control Hard-Disk Read/Write Controller AssignmentLinear Control Hard-Disk Read/Write Controller Assignment
Linear Control Hard-Disk Read/Write Controller Assignment
 
Lecture 11
Lecture 11Lecture 11
Lecture 11
 
12EE62R11_Final Presentation
12EE62R11_Final Presentation12EE62R11_Final Presentation
12EE62R11_Final Presentation
 
Max flows via electrical flows (long talk)
Max flows via electrical flows (long talk)Max flows via electrical flows (long talk)
Max flows via electrical flows (long talk)
 

Kürzlich hochgeladen

Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
dharasingh5698
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
amitlee9823
 

Kürzlich hochgeladen (20)

Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 

lecture 5 courseII (6).pptx

  • 1. Process Control Course II Lecture 5 The Controllers Part II 1 By Prof. Alaa Kareem Mohammed
  • 2. 2 Example 1 Consider the following closed system: 0 𝑋𝐿(s) 𝑄(s) 1 2𝑠 + 1 3 2𝑠 + 1 𝑦(s) + + 0 𝑦𝑠𝑝(s) − + 0.5 2 3 a. For a unit step change in XL , find the time constant 𝜏 of the closed loop, the final value of response 𝑦(∞) and the offset. Sketch the response. b. Repeat (a) for value of Kc = 1 and Kc = 2. c. Conclude the effect of the controller gain Kc on the time constant 𝜏 and the offset. d. Repeat (a and b) for unit step change in set point.(Homework) ‫البيتي‬ ‫الواجب‬ ‫حل‬
  • 3. 3 c. For the three values of controller gain Kc, the values of 𝜏 and offset are given in Table 2 𝐊𝐜 𝛕 𝐨𝐟𝐟𝐬𝐞𝐭 0.5 0.5 0.75 1 0.285 0.428 2 0.15 0.28 Table 2 From Table 2, we can conclude that: ∴ 𝝉 ∝ 𝟏 𝑲𝒄 [𝐼𝑡 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑡𝑜 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝐾𝑐 for faster response] 𝒐𝒇𝒇𝒔𝒆𝒕 ∝ 𝟏 𝑲𝒄 [𝐼𝑡 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑡𝑜 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝐾𝑐 for lower value of offset]
  • 4. 4 𝑡 𝐾𝑐 = 0.5 𝑦(𝑡) 0 𝐾𝑐 = 1 𝐾𝑐 = 2 𝑜𝑓𝑓𝑠𝑒𝑡1 𝑜𝑓𝑓𝑠𝑒𝑡2 𝑜𝑓𝑓𝑠𝑒𝑡3 0.75 0.428 0.28
  • 5. 5 d. Unit step change in set point 𝑦𝑠𝑝that means the loop is Servo. Kc= 0.5 𝐺 𝑠 = 𝑦 𝑠 𝑦𝑠𝑝 𝑠 = 0.5 ∗ 2 ∗ 1 2𝑠 + 1 1 + 0.5 ∗ 2 ∗ 1 2𝑠 + 1 ∗ 3 = 0.25 0.5𝑠 + 1 𝐓𝐢𝐦𝐞 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 τ = 0.5 𝑦𝑠𝑝 𝑠 = 1 𝑠 𝑦(𝑡) = ℒ−1 𝑦𝑠𝑝 𝑠 ∙ 𝐺 𝑠 𝑦 𝑡 = ℒ−1 1 𝑠 ∗ 0.25 0.5𝑠 + 1 𝑦 𝑡 = 0.25(1 − 𝑒−2𝑡 ) Final value of the response: 𝑦 ∞ = lim 𝑠→0 𝑠 ∗ 𝑦(𝑠) = lim 𝑠→0 𝑠 ∗ [ 1 𝑠 ∗ 0.25 0.5𝑠 + 1 ] ∴ 𝑦 ∞ = 0.25 0 𝑋𝐿(s) 𝑄(s) 1 2𝑠 + 1 3 2𝑠 + 1 𝑦(s) + + 0 𝑦𝑠𝑝(s) − + 0.5 2 3
  • 6. 6 Offset = ∆𝑦𝑠𝑝 − 𝑦 ∞ = 1 − 0.25 = 0.75 Offset= 0.75 ∴ 𝑭𝒐𝒓 𝒌𝒄 = 𝟎. 𝟓 , 𝝉 = 𝟎. 𝟓 , 𝒐𝒇𝒇𝒔𝒆𝒕 = 𝟎. 𝟕𝟓 0.25 𝑡 Offset =0.75 ∆ 𝑠𝑒𝑡 𝑝𝑜𝑖𝑛𝑡 1 0 F𝑖𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 This is the offset in Servo loop
  • 7. 7 For 𝑲𝒄 = 𝟏 𝐺 𝑠 = 𝑦 𝑠 𝑋𝐿 𝑠 = 1 ∗ 2 ∗ 1 2𝑠 + 1 1 + 1 ∗ 2 ∗ 1 2𝑠 + 1 ∗ 3 = 0.285 0.285𝑠 + 1 𝐓𝐢𝐦𝐞 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 τ = 0.285 𝑦𝑠𝑝 𝑠 = 1 𝑠 𝑦(𝑡) = ℒ−1 𝑦𝑠𝑝 𝑠 ∙ 𝐺 𝑠 𝑦 𝑡 = ℒ−1 1 𝑠 ∗ 0.285 0.285𝑠 + 1 𝑦 𝑡 = 0.285(1 − 𝑒−𝑡/0.285 ) Final value of the response: 𝑦 ∞ = lim 𝑠→0 𝑠 ∗ 𝑦 𝑠 = lim 𝑠→0 𝑠 ∗ [ 1 𝑠 ∗ 0.285 0.285𝑠 + 1 ] 𝑦 ∞ = 0.285 Offset= ∆𝑦𝑠𝑝 − 𝑦 ∞ = 1 − 0.285 = 0.715 ∴ 𝑜𝑓𝑓𝑠𝑒𝑡 = 0.715 ∴ 𝑭𝒐𝒓 𝑲𝒄 = 𝟏 , 𝝉 = 𝟎. 𝟐𝟖𝟓 , 𝒐𝒇𝒇𝒔𝒆𝒕 = 𝟎. 𝟕𝟏𝟓 0.285 𝑡 Offset = 0.715 ∆ 𝑠𝑒𝑡 𝑝𝑜𝑖𝑛𝑡 1 0 F𝑖𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
  • 8. 8 For 𝒌𝒄 = 𝟐 𝐺 𝑠 = 𝑦 𝑠 𝑋𝐿 𝑠 = 2 ∗ 2 ∗ 1 2𝑠 + 1 1 + 2 ∗ 2 ∗ 1 2𝑠 + 1 ∗ 3 = 0.3 0.15𝑠 + 1 𝐓𝐢𝐦𝐞 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 τ = 0.15 𝑦𝑠𝑝 𝑠 = 1 𝑠 𝑦(𝑡) = ℒ−1 𝑦𝑠𝑝 𝑠 ∙ 𝐺 𝑠 𝑦 𝑡 = ℒ−1 1 𝑠 ∗ 0.3 0.15𝑠 + 1 𝑦 𝑡 = 0.3 (1 − 𝑒−𝑡/0.15) Final value of the response: 𝑦 ∞ = lim 𝑠→0 𝑠 ∗ 𝑦 𝑠 = lim 𝑠→0 𝑠 ∗ [ 1 𝑠 ∗ 0.3 0.15𝑠 + 1 ] 𝑦 ∞ = 0.3 Offset= ∆𝑦𝑠𝑝 − 𝑦 ∞ = 1 − 0.3 = 0.7 ∴ 𝑜𝑓𝑓𝑠𝑒𝑡 = 0.7 ∴ 𝑭𝒐𝒓 𝑲𝒄 = 𝟐 , 𝝉 = 𝟎. 𝟏𝟓 , 𝒐𝒇𝒇𝒔𝒆𝒕 = 𝟎. 𝟕 0.15 𝑡 Offset = 0.7 ∆ 𝑠𝑒𝑡 𝑝𝑜𝑖𝑛𝑡 1 0 𝑓𝑖𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
  • 9. 9 K𝒄 𝝉 𝒐𝒇𝒇𝒔𝒆𝒕 0.5 0.5 0.75 1 0.285 0.715 2 0.15 0.7 Also we notice that: 𝜏 ∝ 1 𝐾𝑐 𝑂𝑓𝑓𝑠𝑒𝑡 ∝ 1 𝐾𝑐
  • 10. 10 𝑀 m, cp, T TT m, cp, 𝑇𝑖 𝑄 Tc 𝑇𝑠𝑝 Example 2 Consider the controlled heating tank that shown in Figure below. Given the following information: Proportional controller 𝐺𝑐 𝑠 = 0.5 Measurement 𝐺𝑚 𝑠 = 3 Control valve 𝐺𝑣 𝑠 = 2 𝑚𝑐𝑝 = 10 𝑘𝑔/𝑘 𝑀𝑐𝑝 = 20 𝑘𝑔/𝑘
  • 11. 11 a. Find the final value of response (T) and the offset of the system for a unit step change in 𝑇𝑖. b. Repeat (a) for values of 𝐾𝑐 = 1, 𝐾𝑐 = 2. c. What is the relation between 𝐾𝑐 and offset and time constant of the system. d. Find the final value of response and the offset of the system for a unit step change in Set point 𝑇𝑠𝑝. (Homework) [ Ans.: 𝑻 ∞ = 𝟎. 𝟎𝟕𝟔𝟗, 𝒐𝒇𝒇𝒔𝒆𝒕 = 𝟎. 𝟗𝟐𝟑] e. Repeat (d) for values of 𝐾𝑐 = 1, 𝐾𝑐 = 2. (Homework)[Ans.: for kc=1, 𝑻 ∞ = 𝟎. 𝟏𝟐𝟓, 𝒐𝒇𝒇𝒔𝒆𝒕 = 𝟎. 𝟖𝟕𝟓 Solution 𝑇 𝑠 = 𝑓 𝑇𝑖 𝑠 , 𝑄 𝑠 Heat balance 𝑚 𝑐𝑝 𝑇𝑖 + 𝑄 = 𝑚 𝑐𝑝 𝑇 + 𝑀 𝑐𝑝 𝑑𝑇 𝑑𝑡 𝑀𝑐𝑝 𝑚 𝑐𝑝 𝑑𝑇 𝑑𝑡 + 𝑇 = 1 𝑚𝑐𝑝 𝑄 + 𝑇𝑖 for kc=2, 𝑻 ∞ = 𝟎. 𝟏𝟖𝟏𝟖, 𝒐𝒇𝒇𝒔𝒆𝒕 = 𝟎. 𝟖𝟏𝟖𝟐
  • 12. 12 𝑀𝑐𝑝 𝑚 𝑐𝑝 𝑑𝑇 𝑑𝑡 + 𝑇 = 1 𝑚𝑐𝑝 𝑄 + 𝑇𝑖 𝜏 𝑑𝑇 𝑑𝑡 + 𝑇 = 1 𝑚 𝑄 + 𝑇𝑖 𝜏𝑠 + 1 𝑇 𝑠 = 𝑘1𝑄 𝑠 + 𝑇𝑖 𝑠 𝑇 𝑠 = 𝑘1 𝜏𝑠 + 1 𝑄 𝑠 + 1 𝜏𝑠 + 1 𝑇𝑖 𝑠 Where 𝜏 = 20 10 = 2 , 𝑘1 = 1 10 = 0.1 ∴ 𝑇 𝑠 = 0.1 2𝑠 + 1 𝑄 𝑠 + 1 2𝑠 + 1 𝑇𝑖 𝑠 𝐺𝑃 𝐺𝐿
  • 13. 13 The signal flow block diagram (SFBD) of the closed system is given in Figure below 0 𝑇𝑖(s) 0.1 2𝑠 + 1 1 2𝑠 + 1 𝑇(s) + + 𝟎 𝑇𝑠𝑝(s) − + 0.5 3 2 a. Unit step change in 𝑇𝑖that means the loop is regulator. 𝐾𝑐 = 0.5 𝑇 𝑠 𝑇𝑖 𝑠 = 1 2𝑠 + 1 1 + 0.5 ∗ 2 ∗ 0.1 2𝑠 + 1 ∗ 3 = 0.769 1.538𝑠 + 1
  • 14. 14 𝑇𝑖 𝑠 = 1 𝑠 𝑇(𝑡) = ℒ−1 𝑇𝑖 𝑠 ∙ 𝐺 𝑠 𝑇 𝑡 = ℒ−1 1 𝑠 ∗ 0.769 1.538𝑠 + 1 𝑇 𝑡 = 0.769 (1 − 𝑒−𝑡/1.538) 𝑂𝑓𝑓𝑠𝑒𝑡 = 𝑇 ∞ = lim 𝑠 →0 𝑠 ∗ 𝑇 𝑠 = lim 𝑠 →0 𝑠 ∗ [ 1 𝑠 ∗ 0.769 1.538𝑠 + 1 ] ∴ 𝑜𝑓𝑓𝑠𝑒𝑡 = 0.769 𝐹𝑜𝑟 𝐾𝑐 = 0.5 , 𝜏 = 1.538 , 𝑜𝑓𝑓𝑠𝑒𝑡 = 0.769 𝑇(𝑡) 𝑡 offset 0.769 0
  • 15. 15 𝑭𝒐𝒓 𝑲𝒄 = 𝟏 𝑇 𝑠 𝑇𝑖 𝑠 = 1 2𝑠 + 1 1 + 1 ∗ 2 ∗ 0.1 2𝑠 + 1 ∗ 3 = 0.625 1.25𝑠 + 1 𝑇𝑖 𝑠 = 1 𝑠 𝑇(𝑡) = ℒ−1 𝑇𝑖 𝑠 ∙ 𝐺 𝑠 𝑇 𝑡 = ℒ−1 1 𝑠 ∗ 0.625 1.25𝑠 + 1 𝑇 𝑡 = 0.625 (1 − 𝑒−𝑡/1.25 ) 𝑂𝑓𝑓𝑠𝑒𝑡 = 𝑇 ∞ = lim 𝑠 →0 𝑠 ∗ 𝑇 𝑠 = lim 𝑠 →0 𝑠 ∗ [ 1 𝑠 ∗ 0.625 1.25𝑠 + 1 ] 𝑂𝑓𝑓𝑠𝑒𝑡 = 0.625 ∴ 𝑭𝒐𝒓 𝑲𝒄 = 𝟏 , 𝝉 = 𝟏. 𝟐𝟓 , 𝒐𝒇𝒇𝒔𝒆𝒕 = 𝟎. 𝟔𝟐𝟓 𝑇(𝑡) 𝑡 offset 0.625 0
  • 16. 16 𝑭𝒐𝒓 𝑲𝒄 = 𝟐 𝑇 𝑠 𝑇𝑖 𝑠 = 1 2𝑠 + 1 1 + 2 ∗ 2 ∗ 0.1 2𝑠 + 1 ∗ 3 = 0.454 0.91𝑠 + 1 𝑇𝑖 𝑠 = 1 𝑠 𝑇(𝑡) = ℒ−1 𝑇𝑖 𝑠 ∙ 𝐺 𝑠 𝑇 𝑡 = ℒ−1 1 𝑠 ∗ 0.454 0.91𝑠 + 1 𝑇 𝑡 = 0.454 (1 − 𝑒−𝑡/0.91) 𝑂𝑓𝑓𝑠𝑒𝑡 = 𝑇 ∞ = lim 𝑠 →0 𝑠 ∗ 𝑇 𝑠 = lim 𝑠 →0 𝑠 ∗ [ 1 𝑠 ∗ 0.454 0.91𝑠 + 1 ] 𝑂𝑓𝑓𝑠𝑒𝑡 = 0.454 ∴ 𝑭𝒐𝒓 𝑲𝒄 = 𝟐 , 𝝉 = 𝟎. 𝟗𝟏 , 𝒐𝒇𝒇𝒔𝒆𝒕 = 𝟎. 𝟒𝟓𝟒 𝑇(𝑡) 𝑡 offset 0.454 0
  • 17. 17 c. Now we can conclude the following 𝒌𝒄 𝝉 𝑶𝒇𝒇𝒔𝒆𝒕 0.5 1.538 0.769 1 1.25 0.625 2 0.91 0.454 We notice that:  Increasing 𝐾𝑐will decrease the time constant of the closed system (positive effect).  Increasing 𝐾𝑐will decrease the value of offset (positive effect). ∴ 𝜏 ∝ 1 𝐾𝑐 𝑎𝑛𝑑 𝑂𝑓𝑓𝑠𝑒𝑡 ∝ 1 𝐾𝑐 𝑡 0.769 0.454 0.625 𝑇 0 𝐾𝑐 = 𝑜. 5 𝐾𝑐 = 1 𝐾𝑐 = 2
  • 18. 18 𝑄𝑜 LT 𝑄𝑖 𝐻𝑠𝑝 LC 𝐻 Consider the liquid-level tank system shown in Figure below. Given the following data Proportional controller 𝐺𝑐 𝑠 = 4 Measurement 𝐺𝑚 𝑠 = 2 Control valve 𝐺𝑣 𝑠 = 1 𝐴 = 1 𝑚2 Example 3 a. Draw the signal flow block diagram SFBD. b. Find the transfer function for regulator loop. c. For unit step change in 𝑄𝑜, calculate the response and the offset, and sketch it.
  • 19. 19 Solution Material balance In = out +Accumulation 𝑄𝑖 = 𝑄0 + 𝐴 𝑑𝐻 𝑑𝑡 𝐴 𝑑𝐻 𝑑𝑡 = 𝑄𝑖 − 𝑄0 1 𝑠 𝐻 𝑠 = 𝑄𝑖 𝑠 − 𝑄𝑜 𝑠 𝐻 𝑠 = 1 𝑠 𝑄𝑖 𝑠 − 1 𝑠 𝑄𝑜 𝑠 b. Regular loop 𝐻 𝑠 𝑄𝑜 𝑠 = − 1 𝑠 1 + 4 ∗ 2 𝑠 = − 1 𝑠 𝑠 + 8 𝑠 = −0 ∙ 125 0 ∙ 125 𝑠 + 1 0 𝑄𝑜(s) 1 𝑆 − 1 𝑆 𝐻(s) + 0 𝐻𝑠𝑝(s) − + 4 2 1 +
  • 20. 20 c. 𝑄𝑖 𝑠 = 1 𝑠 𝐻 𝑠 = 𝑄𝑖 𝑠 ∗ (𝐺(𝑠) 𝐻 𝑡 = ℒ−1 1 𝑠 ∗ −0 ∙ 125 0 ∙ 125 𝑠 + 1 = − 0 ∙ 125(1 − 𝑒−8𝑡) 𝐻 ∞ = −0 ∙ 125 Offset = 𝐻 ∞ = - 0.125 −0.125 offset= = - 0.125 0 H
  • 21. 21 Example 4 Two liquid level tanks are connected in series as shown in Figure below. 𝑞𝑜 𝑞𝑖 𝐻𝑠𝑝(𝑠) 𝐻1 𝑞2 𝐴1 𝐴2 𝐻2 𝑅2 𝑅1 LT LC 𝑞1 Given the following data Proportional controller 𝐺𝑐 𝑠 = 𝐾𝑐 Measurement 𝐺𝑚 𝑠 = 0.5 Control valve 𝐺𝑣 𝑠 = 0.5 𝐴1 = 𝐴2 = 2 𝑚2 𝑅1 = 𝑅2 = 0.5 (s/m2) a. For open loop, find 𝐻2 𝑠 = 𝑓(𝑞𝑖 𝑠 , 𝑞2 𝑠 ) b. Sketch the SFBD for closed system. c. For unit step change in 𝑞2, calculate the offset for 𝐾𝑐 = 10. d. Repeat (c) for 𝐾𝑐 = 20 and 𝐾𝑐 = 40. e. What is the effect of 𝐾𝑐 on values of time constant T , damping factor 𝛿 and the offset.
  • 22. 22 Solution a. Material balance on tank 1 In = out +Accumulation 𝑞𝑖 = 𝑞1 + 𝐴1 𝑑𝐻1 𝑑𝑡 𝑞𝑖 = 𝐻1 𝑅1 + 𝐴1 𝑑𝐻1 𝑑𝑡 𝜏1 𝑑𝐻1 𝑑𝑡 + 𝐻1 = 𝑅1𝑞𝑖 𝜏1𝑠 + 1 𝐻1 𝑠 = 𝑅1𝑞𝑖 𝑠 𝐻1 𝑠 = 𝑅1 𝜏1𝑠 + 1 𝑞𝑖 𝑠 = 0 ∙ 5 𝑠 + 1 𝑞𝑖 𝑠 … … … … (∗) Material balance on tank 2 𝑞1 + 𝑞2 = 𝑞𝑜 + 𝐴2 𝑑𝐻2 𝑑𝑡
  • 23. 23 𝐻1 𝑅1 + 𝑞2 = 𝐻2 𝑅2 + 𝐴2 𝑑𝐻2 𝑑𝑡 𝑅2𝐴2 𝑑𝐻2 𝑑𝑡 + 𝐻2 = 𝐻1 𝑅2 𝑅1 + 𝑞2𝑅2 𝜏2 𝑑𝐻2 𝑑𝑡 + 𝐻2 = 𝐻1 𝑅2 𝑅1 + 𝑞2𝑅2 (𝜏2𝑠 + 1) 𝐻2 𝑠 = 𝑅2 𝑅1 𝐻1 𝑠 + 𝑞2(𝑠)𝑅2 𝜏2 = 𝑅2𝐴2 = 1 , 𝑅2 𝑅1 = 1 𝑠 + 1 𝐻2 𝑠 = 𝐻1 𝑠 + 0 ∙ 5 𝑞2(𝑠) 𝐻2 𝑠 = 1 𝑠 + 1 𝐻1 𝑠 + 0 ∙ 5 𝑠 + 1 𝑞2 𝑠 … … … … (∗∗) Substitute Eq. (*) in (**) gives 𝐻2 𝑠 = 1 𝑠 + 1 0 ∙ 5 𝑠 + 1 𝑞𝑖 𝑠 + 0 ∙ 5 𝑠 + 1 𝑞2(𝑠) 𝐻2 𝑠 = 0 ∙ 5 (𝑠 + 1)2 𝑞𝑖 𝑠 + 0 ∙ 5 𝑠 + 1 𝑞2(𝑠) 𝐺𝑃 𝐺𝐿 𝑞𝑜 𝑞𝑖 𝐻𝑠𝑝(𝑠) 𝐻1 𝑞2 𝐴1 𝐴2 𝐻2 𝑅2 𝑅1 LT LC 𝑞1
  • 24. 24 c. For unit step change in load 𝐾𝑐 = 10 𝐺 𝑠 = 𝐻2 𝑠 ) 𝑞2(𝑠 = 0 ∙ 5 𝑠 + 1 1 + 10 ∗ 0 ∙ 5 ∗ 0 ∙ 5 ∗ 0.5 𝑠 + 1 2 = 0 ∙ 5 𝑠 + 1 ) 𝑠 + 1 2 + 0 ∙ 125 (10 𝑠 + 1 2 = 0.22 𝑠 + 1 0.44𝑠2 + 0.88𝑠 + 1 ∴ 𝐺(𝑠) = 0.22 𝑠 + 1 0.44𝑠2 + 0.88𝑠 + 1 0 𝑞2(s) 0.5 𝑆 + 1 𝐻2(s) + 0 𝐻𝑠𝑝(s) − + 0.5 0.5 0.5 𝑆 + 1 2 𝐾𝑐 +
  • 25. 25 𝑇2 = 0.44, 𝑇 = 0.44 = 0.66 2𝛿𝑇 = 0.88 , 𝛿 = 0.66 𝑜𝑓𝑓𝑠𝑒𝑡 = 𝐻2 ∞ = lim 𝑠 →0 𝑠 ∗ 𝐻 𝑠 = lim 𝑠 →0 𝑠 ∗ [ 1 𝑠 ∗ 0.22 𝑠 + 1 0.44𝑠2 + 0.88𝑠 + 1 ] 𝑜𝑓𝑓𝑠𝑒𝑡 = 0.22 0 Offset = 0.22 0.22 𝐻2 𝑡
  • 26. 26 d. For 𝑲𝒄 = 𝟐𝟎 𝐻2 𝑠 𝑞2(𝑠) = 0 ∙ 5 𝑠 + 1 1 + 20 ∗ 0 ∙ 5 ∗ 0 ∙ 5 ∗ 0.5 (𝑠 + 1)2 𝐺 𝑠 = 0.142 𝑠 + 1 0.285𝑠2 + 0.571𝑠 + 1 𝑇2 = 0.285, 𝑇 = 0.285 = 0.533 2𝛿𝑇 = 0.571 , 𝛿 = 0.535 𝑜𝑓𝑓𝑠𝑒𝑡 = 𝐻2 ∞ = lim 𝑠 →0 𝑠 ∗ 𝐻 𝑠 = lim 𝑠 →0 𝑠 ∗ [ 1 𝑠 ∗ 0.142 𝑠 + 1 0.285𝑠2 + 0.571𝑠 + 1 ] 𝑜𝑓𝑓𝑠𝑒𝑡 = 0.142 0 Offset = 0.142 0.142 𝐻2 𝑡
  • 27. 27 For 𝒌𝒄 = 𝟒𝟎 𝐻2 𝑠 𝑞2(𝑠) = 0 ∙ 5 𝑠 + 1 1 + 0 ∙ 5 (40) ∗ 0 ∙ 5 ∗ 0 ∙ 5 (𝑠 + 1)2 G(s) = 0.083 𝑠 + 1 0.166𝑠2 + 0.33𝑠 + 1 𝑇2 = 0.166, 𝑇 = 0.166 = 0.407 2𝛿𝑇 = 0.33 , 𝛿 = 0.41 𝑜𝑓𝑓𝑠𝑒𝑡 = 𝐻2 ∞ = lim 𝑠 →0 𝑠 ∗ 𝐻 𝑠 = lim 𝑠 →0 𝑠 ∗ [ 1 𝑠 ∗ 0.083 𝑠 + 1 0.166𝑠2 + 0.33𝑠 + 1 ] 𝑜𝑓𝑓𝑠𝑒𝑡 = 0.083 0 Offset = 0.083 0.083 𝐻2 𝑡
  • 28. 28 e. We can summarize the obtained results in Table below. Kc T δ offset 10 0.66 0.66 0.22 20 0.533 0.535 0.142 40 0.407 0.41 0.083 From the Table , we can conclude the following 𝑇 ∝ 1 𝐾𝑐 , 𝛿 ∝ 1 𝐾𝑐 , 𝑜𝑓𝑓𝑠𝑒𝑡 ∝ 1 𝐾𝑐 So increasing the value of 𝑲𝒄 will lead to i. Decreasing the value of time constant T. This is a positive effect, since the response of the system will be faster. ii. Decreasing the value of damping coefficient 𝛿 . This is a negative effect because of decreasing the value of 𝛿 will increase the value of overshoot and hence decreasing the stability of the system iii. Decreasing the value of offset and this is a positive effect.
  • 29. 29 Advantages of Proportional Controller Now let us discuss some advantages of the proportional controller. 1. It is cheap and easy to manufacture. 2. Slow response of the over damped system can be made faster with the help of these controllers. Disadvantages of Proportional Controller There are some serious disadvantages of these controllers and these are: 1. Due to the presence of these controllers, we get some offsets in the system. 2. Proportional controllers also increase the maximum overshoot of the system and hence make the system less stable.
  • 30. 30