SlideShare ist ein Scribd-Unternehmen logo
1 von 40
Downloaden Sie, um offline zu lesen
Non millimeter-Wave
(mmWave) 5G
@3g4gUK
©3G4G
Before we start
If you don’t understand frequency &
spectrum. Watch our most popular
Tutorial
©3G4G
Too many articles equate 5G to millimeter-
Waves (mmWave)
©3G4G
Too many articles equate 5G to millimeter-
Waves (mmWave)
But that’s simply not true
©3G4G
©3G4G
Electromagnetic Spectrum covers Electromagnetic Waves with frequencies ranging from below
1 hertz to above 1025 hertz
©3G4G
The Radio Spectrum is part of spectrum from 3Hz to 3000GHz (3 THz)
©3G4G
5G is only looking at frequencies from 450
MHz to 52.6 GHz
©3G4G
5G is only looking at frequencies from 450
MHz to 52.6 GHz
3GPP has devided 5G frequencies in 2 parts:
• Frequency Range 1 (FR1): 450 MHz – 7.125 GHz
• Frequency Range 2 (FR2): 24.25 GHz – 52.6 GHz
©3G4G
Technically mmWave starts from 30 GHz
©3G4G
Technically mmWave starts from 30 GHz
But people refer to all frequencies in FR2
as mmWave
©3G4G
0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz
FR1: 450 MHz – 7.125 GHz
Non-mmWave 5G
©3G4G
0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz
FR1: 450 MHz – 7.125 GHz FR2: 24.25 GHz – 52.6 GHz
Non-mmWave 5G mmWave 5G
Popular Frequency bands for different Technologies
©3G4G
0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz
2G, 3G, 4G
0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz
5G FR1 (450 MHz – 7.125 GHz) 5G FR2 (24.25 GHz – 52.6 GHz)
Popular Frequency bands for different Technologies
©3G4G
0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz
2G, 3G, 4G
Non millimeter wave 5G Millimeter wave 5G
0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz
5G FR1 (450 MHz – 7.125 GHz) 5G FR2 (24.25 GHz – 52.6 GHz)
Popular Frequency bands for different Technologies
©3G4G
0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz
2G, 3G, 4G
Non millimeter wave 5G Millimeter wave 5G
0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz
2.4GHz Wi-Fi,
Bluetooth, etc.
5GHz Wi-Fi
Up to 6GHz 802.11ax
5G FR1 (450 MHz – 7.125 GHz) 5G FR2 (24.25 GHz – 52.6 GHz)
802.11be EHT (1 GHz – 7.125 GHz)
Popular Frequency bands for different Technologies
©3G4G
0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz
2G, 3G, 4G
Non millimeter wave 5G Millimeter wave 5G
0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz
2.4GHz Wi-Fi,
Bluetooth, etc.
5GHz Wi-Fi
WiGig – 60GHz Wi-Fi
Up to 6GHz 802.11ax
5G FR1 (450 MHz – 7.125 GHz) 5G FR2 (24.25 GHz – 52.6 GHz)
802.11be EHT (1 GHz – 7.125 GHz) 802.11ad / 802.11ay
(57.24 GHz – 70.20 GHz)
Summary: Popular Frequency bands for different Technologies
©3G4G
0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz
Millimeter wave 5G
2.4GHz Wi-Fi,
Bluetooth, etc.
5GHz Wi-Fi
WiGig – 60GHz Wi-Fi
Up to 6GHz 802.11ax
5G FR1 (450 MHz – 7.125 GHz)
5G FR2 (24.25 GHz – 52.6 GHz)
802.11be EHT (1 GHz – 7.125 GHz)
802.11ad / 802.11ay
(57.24 GHz – 70.20 GHz)
2G 2G/4G3G 4G
Non-mmWave5Gnon-mmWave 5G
10 GHz0 GHz
5G Needs Different Frequency Bands
©3G4G
Coverage Layer
Sub-1GHz
Capacity Layer
1GHz – 7.125GHz
High Throughput Layers
24.25GHz – 52.6GHz
5G Needs Different Frequency Bands
©3G4G
Coverage Layer
Sub-1GHz
Capacity Layer
1GHz – 7.125GHz
High Throughput Layers
24.25GHz – 52.6GHz
Non-mmWave 5G
mmWave 5G
Non-mmWave 5G
Importance of Frequency selection
©3G4G
2.1GHz 900MHz
Higher frequency
means faster
decay
Importance of Frequency selection
©3G4G
2.1GHz 900MHz
Higher frequency
means faster
decay
Lower frequency means
more number of users in a
given cell
Importance of Frequency selection
©3G4G
2.1GHz 900MHz
Higher frequency
means faster
decay
Lower frequency means
more number of users in a
given cell
Higher frequency gets
reflected from walls and
have poor penetration
Lower frequency gets
attenuated from walls but
still penetrates
Most Popular 5G Frequency Bands
©3G4G
600MHz (2x35MHz)
24.25-24.45GHz
24.75-25.25GHz
27.5-28.35GHz
700MHz (2x30 MHz) 3.4–3.8GHz 24.5-27.5GHz
3.4–3.8GHz 26GHz
3.4–3.8GHz 26GHz
3.46–3.8GHz 26GHz
3.6–3.8GHz
3.3–3.6GHz 4.8–5GHz 24.5-27.5GHz 37.5-42.5GHz
3.4–3.7GHz 26.5-29.5GHz
4.4–4.9GHz 26.5-28.5GHz
3.4–3.7GHz 39GHz
3.6–4.2GHz
64-71GHz
37-37.6GHz
37.6-40GHz
47.2-48.2GHz
5.9–6.4GHz
5.9–7.1GHz
600MHz (2x35MHz) 27.5-28.35GHz 64-71GHz
37-37.6GHz
37.6-40GHz
24.25-27.5GHz
26.5-27.5GHz
3.55- 3.7-
3.7GHz 4.2GHz
3.55-3.7 GHz
700MHz (2x30 MHz)
700MHz (2x30 MHz)
700MHz (2x30 MHz)
700MHz (2x30 MHz)
5GHz4GHz3GHz<1GHz 24-28GHz 37-40GHz 64-71GHz
3.45-
2.5GHz (LTE B41) 3.55GHz
Source: Qualcomm
Licensed
Unlicensed/shared
Existing band
New 5G band
Red highlights frequencies not approved for ITU study
Most Popular 5G Frequency Bands
©3G4G
600MHz (2x35MHz)
24.25-24.45GHz
24.75-25.25GHz
27.5-28.35GHz
700MHz (2x30 MHz) 3.4–3.8GHz 24.5-27.5GHz
3.4–3.8GHz 26GHz
3.4–3.8GHz 26GHz
3.46–3.8GHz 26GHz
3.6–3.8GHz
3.3–3.6GHz 4.8–5GHz 24.5-27.5GHz 37.5-42.5GHz
3.4–3.7GHz 26.5-29.5GHz
4.4–4.9GHz 26.5-28.5GHz
3.4–3.7GHz 39GHz
3.6–4.2GHz
64-71GHz
37-37.6GHz
37.6-40GHz
47.2-48.2GHz
5.9–6.4GHz
5.9–7.1GHz
600MHz (2x35MHz) 27.5-28.35GHz 64-71GHz
37-37.6GHz
37.6-40GHz
24.25-27.5GHz
26.5-27.5GHz
3.55- 3.7-
3.7GHz 4.2GHz
3.55-3.7 GHz
700MHz (2x30 MHz)
700MHz (2x30 MHz)
700MHz (2x30 MHz)
700MHz (2x30 MHz)
5GHz4GHz3GHz<1GHz 24-28GHz 37-40GHz 64-71GHz
3.45-
2.5GHz (LTE B41) 3.55GHz
Source: Qualcomm
Licensed
Unlicensed/shared
Existing band
New 5G band
Red highlights frequencies not approved for ITU study
Non-mmWave 5G
Coverage Layer
Most Popular 5G Frequency Bands
©3G4G
600MHz (2x35MHz)
24.25-24.45GHz
24.75-25.25GHz
27.5-28.35GHz
700MHz (2x30 MHz) 3.4–3.8GHz 24.5-27.5GHz
3.4–3.8GHz 26GHz
3.4–3.8GHz 26GHz
3.46–3.8GHz 26GHz
3.6–3.8GHz
3.3–3.6GHz 4.8–5GHz 24.5-27.5GHz 37.5-42.5GHz
3.4–3.7GHz 26.5-29.5GHz
4.4–4.9GHz 26.5-28.5GHz
3.4–3.7GHz 39GHz
3.6–4.2GHz
64-71GHz
37-37.6GHz
37.6-40GHz
47.2-48.2GHz
5.9–6.4GHz
5.9–7.1GHz
600MHz (2x35MHz) 27.5-28.35GHz 64-71GHz
37-37.6GHz
37.6-40GHz
24.25-27.5GHz
26.5-27.5GHz
3.55- 3.7-
3.7GHz 4.2GHz
3.55-3.7 GHz
700MHz (2x30 MHz)
700MHz (2x30 MHz)
700MHz (2x30 MHz)
700MHz (2x30 MHz)
5GHz4GHz3GHz<1GHz 24-28GHz 37-40GHz 64-71GHz
3.45-
2.5GHz (LTE B41) 3.55GHz
Source: Qualcomm
Licensed
Unlicensed/shared
Existing band
New 5G band
Red highlights frequencies not approved for ITU study
Non-mmWave 5G
Capacity Layer
Most Popular 5G Frequency Bands
©3G4G
600MHz (2x35MHz)
24.25-24.45GHz
24.75-25.25GHz
27.5-28.35GHz
700MHz (2x30 MHz) 3.4–3.8GHz 24.5-27.5GHz
3.4–3.8GHz 26GHz
3.4–3.8GHz 26GHz
3.46–3.8GHz 26GHz
3.6–3.8GHz
3.3–3.6GHz 4.8–5GHz 24.5-27.5GHz 37.5-42.5GHz
3.4–3.7GHz 26.5-29.5GHz
4.4–4.9GHz 26.5-28.5GHz
3.4–3.7GHz 39GHz
3.6–4.2GHz
64-71GHz
37-37.6GHz
37.6-40GHz
47.2-48.2GHz
5.9–6.4GHz
5.9–7.1GHz
600MHz (2x35MHz) 27.5-28.35GHz 64-71GHz
37-37.6GHz
37.6-40GHz
24.25-27.5GHz
26.5-27.5GHz
3.55- 3.7-
3.7GHz 4.2GHz
3.55-3.7 GHz
700MHz (2x30 MHz)
700MHz (2x30 MHz)
700MHz (2x30 MHz)
700MHz (2x30 MHz)
5GHz4GHz3GHz<1GHz 24-28GHz 37-40GHz 64-71GHz
3.45-
2.5GHz (LTE B41) 3.55GHz
Source: Qualcomm
Licensed
Unlicensed/shared
Existing band
New 5G band
Red highlights frequencies not approved for ITU study
mmWave 5G
High-Throughput Layer
©3G4G
Most 5G Deployments are Non-mmWave
5G
©3G4G
Most 5G Deployments are Non-mmWave
5G
Let’s look at examples
UK: Only non-mmWave 5G right now
©3G4G
0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz
FR1: 450 MHz – 7.125 GHz FR2: 24.25 GHz – 52.6 GHz
Non-mmWave 5G mmWave 5G
USA: Mix of mmWave & non-mmWave
©3G4G
0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz
FR1: 450 MHz – 7.125 GHz FR2: 24.25 GHz – 52.6 GHz
Non-mmWave 5G mmWave 5G
Switzerland: Only non-mmWave 5G right now
©3G4G
0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz
FR1: 450 MHz – 7.125 GHz FR2: 24.25 GHz – 52.6 GHz
Non-mmWave 5G mmWave 5G
Italy: Both non-mmWave & mmWave 5G
©3G4G
0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz
FR1: 450 MHz – 7.125 GHz FR2: 24.25 GHz – 52.6 GHz
Non-mmWave 5G mmWave 5G
Finland: Only non-mmWave 5G right now
©3G4G
0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz
FR1: 450 MHz – 7.125 GHz FR2: 24.25 GHz – 52.6 GHz
Non-mmWave 5G mmWave 5G
South Korea: Both non-mmWave & mmWave 5G
©3G4G
0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz
FR1: 450 MHz – 7.125 GHz FR2: 24.25 GHz – 52.6 GHz
Non-mmWave 5G mmWave 5G
Japan: Both non-mmWave & mmWave 5G
©3G4G
0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz
FR1: 450 MHz – 7.125 GHz FR2: 24.25 GHz – 52.6 GHz
Non-mmWave 5G mmWave 5G
Australia: Only non-mmWave 5G right now
©3G4G
0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz
FR1: 450 MHz – 7.125 GHz FR2: 24.25 GHz – 52.6 GHz
Non-mmWave 5G mmWave 5G
©3G4G
In Summary: Most 5G Deployments Today
are Non-mmWave 5G
©3G4G
In Summary: Most 5G Deployments Today
are Non-mmWave 5G
And mmWave 5G will Only be Available in
Dense Areas, not Everywhere
Thank You
To learn more, visit:
3G4G Website – http://www.3g4g.co.uk/
3G4G Blog – http://blog.3g4g.co.uk/
3G4G Small Cells Blog – http://smallcells.3g4g.co.uk/
Operator Watch - http://operatorwatch.3g4g.co.uk/
Follow us on Twitter: https://twitter.com/3g4gUK
Follow us on Facebook: https://www.facebook.com/3g4gUK/
Follow us on Linkedin: https://www.linkedin.com/company/3g4g
Follow us on Slideshare: https://www.slideshare.net/3G4GLtd
Follow us on Youtube: https://www.youtube.com/3G4G5G
©3G4G

Weitere ähnliche Inhalte

Was ist angesagt?

4G to 5G Evolution
4G to 5G Evolution4G to 5G Evolution
4G to 5G EvolutionManoj Singh
 
5G RAN fundamentals
5G RAN fundamentals5G RAN fundamentals
5G RAN fundamentalsRavi Sharma
 
Intermediate: 5G Network Architecture Options (Updated)
Intermediate: 5G Network Architecture Options (Updated)Intermediate: 5G Network Architecture Options (Updated)
Intermediate: 5G Network Architecture Options (Updated)3G4G
 
Transforming Private 5G Networks
Transforming Private 5G NetworksTransforming Private 5G Networks
Transforming Private 5G Networksinside-BigData.com
 
Intermediate: 5G Applications Architecture - A look at Application Functions ...
Intermediate: 5G Applications Architecture - A look at Application Functions ...Intermediate: 5G Applications Architecture - A look at Application Functions ...
Intermediate: 5G Applications Architecture - A look at Application Functions ...3G4G
 
6G Training Course Part 1: Introduction
6G Training Course Part 1: Introduction6G Training Course Part 1: Introduction
6G Training Course Part 1: Introduction3G4G
 
Beginners: Different Types of RAN Architectures - Distributed, Centralized & ...
Beginners: Different Types of RAN Architectures - Distributed, Centralized & ...Beginners: Different Types of RAN Architectures - Distributed, Centralized & ...
Beginners: Different Types of RAN Architectures - Distributed, Centralized & ...3G4G
 
Accelerating our 5G future: a first look at 3GPP Rel-17 and beyond
Accelerating our 5G future: a first look at 3GPP Rel-17 and beyondAccelerating our 5G future: a first look at 3GPP Rel-17 and beyond
Accelerating our 5G future: a first look at 3GPP Rel-17 and beyondQualcomm Research
 
5G NR: Key features and enhancements
5G NR: Key features and enhancements5G NR: Key features and enhancements
5G NR: Key features and enhancements3G4G
 
Beginners: Non Terrestrial Networks (NTN)
Beginners: Non Terrestrial Networks (NTN)Beginners: Non Terrestrial Networks (NTN)
Beginners: Non Terrestrial Networks (NTN)3G4G
 
5G physical layer
5G physical layer 5G physical layer
5G physical layer Ali Nikfal
 
Advanced: 5G Service Based Architecture (SBA)
Advanced: 5G Service Based Architecture (SBA)Advanced: 5G Service Based Architecture (SBA)
Advanced: 5G Service Based Architecture (SBA)3G4G
 
5 g nr (new radio)overview
5 g nr (new radio)overview5 g nr (new radio)overview
5 g nr (new radio)overviewBraj Kishor
 
5G and Open Reference Platforms
5G and Open Reference Platforms5G and Open Reference Platforms
5G and Open Reference PlatformsMichelle Holley
 
Beginners: Introduction to 5G Reduced Capability (RedCap) Devices
Beginners: Introduction to 5G Reduced Capability (RedCap) DevicesBeginners: Introduction to 5G Reduced Capability (RedCap) Devices
Beginners: Introduction to 5G Reduced Capability (RedCap) Devices3G4G
 
5G Network Architecture Options
5G Network Architecture Options5G Network Architecture Options
5G Network Architecture Options3G4G
 
Introduction to 5G
Introduction to 5GIntroduction to 5G
Introduction to 5GAli Nikfal
 
Qualcomm 5g-vision-presentation
Qualcomm 5g-vision-presentationQualcomm 5g-vision-presentation
Qualcomm 5g-vision-presentationYali Wang
 
Propelling 5G forward: a closer look at 3GPP Release-16
Propelling 5G forward: a closer look at 3GPP Release-16Propelling 5G forward: a closer look at 3GPP Release-16
Propelling 5G forward: a closer look at 3GPP Release-16Qualcomm Research
 
Part 8: 5G Spectrum - 5G for Absolute Beginners
Part 8: 5G Spectrum - 5G for Absolute BeginnersPart 8: 5G Spectrum - 5G for Absolute Beginners
Part 8: 5G Spectrum - 5G for Absolute Beginners3G4G
 

Was ist angesagt? (20)

4G to 5G Evolution
4G to 5G Evolution4G to 5G Evolution
4G to 5G Evolution
 
5G RAN fundamentals
5G RAN fundamentals5G RAN fundamentals
5G RAN fundamentals
 
Intermediate: 5G Network Architecture Options (Updated)
Intermediate: 5G Network Architecture Options (Updated)Intermediate: 5G Network Architecture Options (Updated)
Intermediate: 5G Network Architecture Options (Updated)
 
Transforming Private 5G Networks
Transforming Private 5G NetworksTransforming Private 5G Networks
Transforming Private 5G Networks
 
Intermediate: 5G Applications Architecture - A look at Application Functions ...
Intermediate: 5G Applications Architecture - A look at Application Functions ...Intermediate: 5G Applications Architecture - A look at Application Functions ...
Intermediate: 5G Applications Architecture - A look at Application Functions ...
 
6G Training Course Part 1: Introduction
6G Training Course Part 1: Introduction6G Training Course Part 1: Introduction
6G Training Course Part 1: Introduction
 
Beginners: Different Types of RAN Architectures - Distributed, Centralized & ...
Beginners: Different Types of RAN Architectures - Distributed, Centralized & ...Beginners: Different Types of RAN Architectures - Distributed, Centralized & ...
Beginners: Different Types of RAN Architectures - Distributed, Centralized & ...
 
Accelerating our 5G future: a first look at 3GPP Rel-17 and beyond
Accelerating our 5G future: a first look at 3GPP Rel-17 and beyondAccelerating our 5G future: a first look at 3GPP Rel-17 and beyond
Accelerating our 5G future: a first look at 3GPP Rel-17 and beyond
 
5G NR: Key features and enhancements
5G NR: Key features and enhancements5G NR: Key features and enhancements
5G NR: Key features and enhancements
 
Beginners: Non Terrestrial Networks (NTN)
Beginners: Non Terrestrial Networks (NTN)Beginners: Non Terrestrial Networks (NTN)
Beginners: Non Terrestrial Networks (NTN)
 
5G physical layer
5G physical layer 5G physical layer
5G physical layer
 
Advanced: 5G Service Based Architecture (SBA)
Advanced: 5G Service Based Architecture (SBA)Advanced: 5G Service Based Architecture (SBA)
Advanced: 5G Service Based Architecture (SBA)
 
5 g nr (new radio)overview
5 g nr (new radio)overview5 g nr (new radio)overview
5 g nr (new radio)overview
 
5G and Open Reference Platforms
5G and Open Reference Platforms5G and Open Reference Platforms
5G and Open Reference Platforms
 
Beginners: Introduction to 5G Reduced Capability (RedCap) Devices
Beginners: Introduction to 5G Reduced Capability (RedCap) DevicesBeginners: Introduction to 5G Reduced Capability (RedCap) Devices
Beginners: Introduction to 5G Reduced Capability (RedCap) Devices
 
5G Network Architecture Options
5G Network Architecture Options5G Network Architecture Options
5G Network Architecture Options
 
Introduction to 5G
Introduction to 5GIntroduction to 5G
Introduction to 5G
 
Qualcomm 5g-vision-presentation
Qualcomm 5g-vision-presentationQualcomm 5g-vision-presentation
Qualcomm 5g-vision-presentation
 
Propelling 5G forward: a closer look at 3GPP Release-16
Propelling 5G forward: a closer look at 3GPP Release-16Propelling 5G forward: a closer look at 3GPP Release-16
Propelling 5G forward: a closer look at 3GPP Release-16
 
Part 8: 5G Spectrum - 5G for Absolute Beginners
Part 8: 5G Spectrum - 5G for Absolute BeginnersPart 8: 5G Spectrum - 5G for Absolute Beginners
Part 8: 5G Spectrum - 5G for Absolute Beginners
 

Ähnlich wie Misc: Non millimeter Wave (mmWave) 5G

Basics0345gspectrumlong 190605151820
Basics0345gspectrumlong 190605151820Basics0345gspectrumlong 190605151820
Basics0345gspectrumlong 190605151820Sumit Dutt
 
Beginners: 5G Spectrum - Short Version
Beginners: 5G Spectrum - Short VersionBeginners: 5G Spectrum - Short Version
Beginners: 5G Spectrum - Short Version3G4G
 
BSN 5G Pathway Presentation January 2019
BSN 5G Pathway Presentation January 2019BSN 5G Pathway Presentation January 2019
BSN 5G Pathway Presentation January 2019Maureen Donovan
 
Different Types of Backhaul
Different Types of BackhaulDifferent Types of Backhaul
Different Types of Backhaul3G4G
 
ETSI mWT ISG
ETSI mWT ISGETSI mWT ISG
ETSI mWT ISGtechUK
 
01 5 g-nr_introduction_190205
01 5 g-nr_introduction_19020501 5 g-nr_introduction_190205
01 5 g-nr_introduction_190205Muntazir Mehdi
 
Overview of standardisation status and 3GPP technology evolution trend
Overview of standardisation status and 3GPP technology evolution trendOverview of standardisation status and 3GPP technology evolution trend
Overview of standardisation status and 3GPP technology evolution trend3G4G
 
Overview of standardisation status and 3GPP technology evolution trend
Overview of standardisation status and 3GPP technology evolution trendOverview of standardisation status and 3GPP technology evolution trend
Overview of standardisation status and 3GPP technology evolution trendSylvia Lu
 
Small Cell Backhaul Technology
Small Cell Backhaul TechnologySmall Cell Backhaul Technology
Small Cell Backhaul TechnologyAviat Networks
 
5G Demystified; the what, when and where
5G Demystified; the what, when and where5G Demystified; the what, when and where
5G Demystified; the what, when and where3G4G
 
5G Interview Questions: 50 Questions on Spectrum
5G Interview Questions: 50 Questions on Spectrum5G Interview Questions: 50 Questions on Spectrum
5G Interview Questions: 50 Questions on Spectrum3G4G
 
Get Inspired By Beijer's Wireless Solution - Wireless Brochure 2016
Get Inspired By Beijer's Wireless Solution - Wireless Brochure 2016Get Inspired By Beijer's Wireless Solution - Wireless Brochure 2016
Get Inspired By Beijer's Wireless Solution - Wireless Brochure 2016Jiunn-Jer Sun
 
Opinion: What is “Real 5G”? (and “Real 4G”?)
Opinion: What is “Real 5G”? (and “Real 4G”?)Opinion: What is “Real 5G”? (and “Real 4G”?)
Opinion: What is “Real 5G”? (and “Real 4G”?)3G4G
 
powerpoint_presentation_-_making_5g_nr_a_reality_february_2020_web.pptx
powerpoint_presentation_-_making_5g_nr_a_reality_february_2020_web.pptxpowerpoint_presentation_-_making_5g_nr_a_reality_february_2020_web.pptx
powerpoint_presentation_-_making_5g_nr_a_reality_february_2020_web.pptxsemua
 
Gigabit Wi-Fi 802.11AC In Depth
Gigabit Wi-Fi 802.11AC In DepthGigabit Wi-Fi 802.11AC In Depth
Gigabit Wi-Fi 802.11AC In DepthTũi Wichets
 

Ähnlich wie Misc: Non millimeter Wave (mmWave) 5G (20)

Basics0345gspectrumlong 190605151820
Basics0345gspectrumlong 190605151820Basics0345gspectrumlong 190605151820
Basics0345gspectrumlong 190605151820
 
Beginners: 5G Spectrum - Short Version
Beginners: 5G Spectrum - Short VersionBeginners: 5G Spectrum - Short Version
Beginners: 5G Spectrum - Short Version
 
Gsma presentation
Gsma presentationGsma presentation
Gsma presentation
 
BSN 5G Pathway Presentation January 2019
BSN 5G Pathway Presentation January 2019BSN 5G Pathway Presentation January 2019
BSN 5G Pathway Presentation January 2019
 
Different Types of Backhaul
Different Types of BackhaulDifferent Types of Backhaul
Different Types of Backhaul
 
Datenblatt neo
Datenblatt neoDatenblatt neo
Datenblatt neo
 
ETSI mWT ISG
ETSI mWT ISGETSI mWT ISG
ETSI mWT ISG
 
01 5 g-nr_introduction_190205
01 5 g-nr_introduction_19020501 5 g-nr_introduction_190205
01 5 g-nr_introduction_190205
 
5G Readiness
5G Readiness5G Readiness
5G Readiness
 
Overview of standardisation status and 3GPP technology evolution trend
Overview of standardisation status and 3GPP technology evolution trendOverview of standardisation status and 3GPP technology evolution trend
Overview of standardisation status and 3GPP technology evolution trend
 
Overview of standardisation status and 3GPP technology evolution trend
Overview of standardisation status and 3GPP technology evolution trendOverview of standardisation status and 3GPP technology evolution trend
Overview of standardisation status and 3GPP technology evolution trend
 
Small Cell Backhaul Technology
Small Cell Backhaul TechnologySmall Cell Backhaul Technology
Small Cell Backhaul Technology
 
5G Demystified; the what, when and where
5G Demystified; the what, when and where5G Demystified; the what, when and where
5G Demystified; the what, when and where
 
5G Interview Questions: 50 Questions on Spectrum
5G Interview Questions: 50 Questions on Spectrum5G Interview Questions: 50 Questions on Spectrum
5G Interview Questions: 50 Questions on Spectrum
 
Get Inspired By Beijer's Wireless Solution - Wireless Brochure 2016
Get Inspired By Beijer's Wireless Solution - Wireless Brochure 2016Get Inspired By Beijer's Wireless Solution - Wireless Brochure 2016
Get Inspired By Beijer's Wireless Solution - Wireless Brochure 2016
 
Opinion: What is “Real 5G”? (and “Real 4G”?)
Opinion: What is “Real 5G”? (and “Real 4G”?)Opinion: What is “Real 5G”? (and “Real 4G”?)
Opinion: What is “Real 5G”? (and “Real 4G”?)
 
powerpoint_presentation_-_making_5g_nr_a_reality_february_2020_web.pptx
powerpoint_presentation_-_making_5g_nr_a_reality_february_2020_web.pptxpowerpoint_presentation_-_making_5g_nr_a_reality_february_2020_web.pptx
powerpoint_presentation_-_making_5g_nr_a_reality_february_2020_web.pptx
 
Outdoor ap datasheet c78-737416
Outdoor ap datasheet c78-737416Outdoor ap datasheet c78-737416
Outdoor ap datasheet c78-737416
 
Gigabit Wi-Fi 802.11AC In Depth
Gigabit Wi-Fi 802.11AC In DepthGigabit Wi-Fi 802.11AC In Depth
Gigabit Wi-Fi 802.11AC In Depth
 
Gigabit wifi 802.11 ac in depth_peter thornycroft
Gigabit wifi 802.11 ac in depth_peter thornycroftGigabit wifi 802.11 ac in depth_peter thornycroft
Gigabit wifi 802.11 ac in depth_peter thornycroft
 

Mehr von 3G4G

TechKnowledge Technology Stories - Part 3: Satellites - Our Friends In The Sk...
TechKnowledge Technology Stories - Part 3: Satellites - Our Friends In The Sk...TechKnowledge Technology Stories - Part 3: Satellites - Our Friends In The Sk...
TechKnowledge Technology Stories - Part 3: Satellites - Our Friends In The Sk...3G4G
 
Misc: What are No Mobile Coverage Zones called?
Misc: What are No Mobile Coverage Zones called?Misc: What are No Mobile Coverage Zones called?
Misc: What are No Mobile Coverage Zones called?3G4G
 
TechKnowledge Technology Stories - Part 2: Connecting Everything Everywhere…
TechKnowledge Technology Stories - Part 2: Connecting Everything Everywhere…TechKnowledge Technology Stories - Part 2: Connecting Everything Everywhere…
TechKnowledge Technology Stories - Part 2: Connecting Everything Everywhere…3G4G
 
TechKnowledge Technology Stories - Part 1: Smaller, Faster, Cheaper and More…
TechKnowledge Technology Stories - Part 1: Smaller, Faster, Cheaper and More…TechKnowledge Technology Stories - Part 1: Smaller, Faster, Cheaper and More…
TechKnowledge Technology Stories - Part 1: Smaller, Faster, Cheaper and More…3G4G
 
Beginners: An Quick Introduction to 3GPP
Beginners: An Quick Introduction to 3GPPBeginners: An Quick Introduction to 3GPP
Beginners: An Quick Introduction to 3GPP3G4G
 
Misc: Mobile Technology and Healthcare
Misc: Mobile Technology and HealthcareMisc: Mobile Technology and Healthcare
Misc: Mobile Technology and Healthcare3G4G
 
Should we stop the shutdown of 2G/3G to save lives??
Should we stop the shutdown of 2G/3G to save lives??Should we stop the shutdown of 2G/3G to save lives??
Should we stop the shutdown of 2G/3G to save lives??3G4G
 
Opinion – 5G Reality Check: Speeds
Opinion – 5G Reality Check: SpeedsOpinion – 5G Reality Check: Speeds
Opinion – 5G Reality Check: Speeds3G4G
 
Technology Introduction Series: Edge Computing tutorial.pdf
Technology Introduction Series: Edge Computing tutorial.pdfTechnology Introduction Series: Edge Computing tutorial.pdf
Technology Introduction Series: Edge Computing tutorial.pdf3G4G
 
6G: Potential Use Cases and Enabling Technologies
6G: Potential Use Cases and Enabling Technologies6G: Potential Use Cases and Enabling Technologies
6G: Potential Use Cases and Enabling Technologies3G4G
 
3GPP SON Series: SON Management in HetNets and Enhanced ICIC (eICIC)
3GPP SON Series: SON Management in HetNets and Enhanced ICIC (eICIC)3GPP SON Series: SON Management in HetNets and Enhanced ICIC (eICIC)
3GPP SON Series: SON Management in HetNets and Enhanced ICIC (eICIC)3G4G
 
3GPP SON Series: Energy Savings (ES)
3GPP SON Series: Energy Savings (ES)3GPP SON Series: Energy Savings (ES)
3GPP SON Series: Energy Savings (ES)3G4G
 
3GPP SON Series: Cell Outage Detection and Compensation (COD & COC)
3GPP SON Series: Cell Outage Detection and Compensation (COD & COC)3GPP SON Series: Cell Outage Detection and Compensation (COD & COC)
3GPP SON Series: Cell Outage Detection and Compensation (COD & COC)3G4G
 
3GPP SON Series: Minimization of Drive Testing (MDT)
3GPP SON Series: Minimization of Drive Testing (MDT)3GPP SON Series: Minimization of Drive Testing (MDT)
3GPP SON Series: Minimization of Drive Testing (MDT)3G4G
 
3GPP SON Series: Coverage and Capacity Optimization (CCO)
3GPP SON Series: Coverage and Capacity Optimization (CCO)3GPP SON Series: Coverage and Capacity Optimization (CCO)
3GPP SON Series: Coverage and Capacity Optimization (CCO)3G4G
 
3GPP SON Series: SON in 3GPP Release-10 – Self-healing
3GPP SON Series: SON in 3GPP Release-10 – Self-healing3GPP SON Series: SON in 3GPP Release-10 – Self-healing
3GPP SON Series: SON in 3GPP Release-10 – Self-healing3G4G
 
3GPP SON Series: RACH Optimization
3GPP SON Series: RACH Optimization3GPP SON Series: RACH Optimization
3GPP SON Series: RACH Optimization3G4G
 
3GPP SON Series: Mobility Robustness Optimization (MRO)
3GPP SON Series: Mobility Robustness Optimization (MRO)3GPP SON Series: Mobility Robustness Optimization (MRO)
3GPP SON Series: Mobility Robustness Optimization (MRO)3G4G
 
3GPP SON Series: SON in 3GPP Release-9 – Self-optimization
3GPP SON Series: SON in 3GPP Release-9 – Self-optimization3GPP SON Series: SON in 3GPP Release-9 – Self-optimization
3GPP SON Series: SON in 3GPP Release-9 – Self-optimization3G4G
 
Beginners: Energy Consumption in Mobile Networks - RAN Power Saving Schemes
Beginners: Energy Consumption in Mobile Networks - RAN Power Saving SchemesBeginners: Energy Consumption in Mobile Networks - RAN Power Saving Schemes
Beginners: Energy Consumption in Mobile Networks - RAN Power Saving Schemes3G4G
 

Mehr von 3G4G (20)

TechKnowledge Technology Stories - Part 3: Satellites - Our Friends In The Sk...
TechKnowledge Technology Stories - Part 3: Satellites - Our Friends In The Sk...TechKnowledge Technology Stories - Part 3: Satellites - Our Friends In The Sk...
TechKnowledge Technology Stories - Part 3: Satellites - Our Friends In The Sk...
 
Misc: What are No Mobile Coverage Zones called?
Misc: What are No Mobile Coverage Zones called?Misc: What are No Mobile Coverage Zones called?
Misc: What are No Mobile Coverage Zones called?
 
TechKnowledge Technology Stories - Part 2: Connecting Everything Everywhere…
TechKnowledge Technology Stories - Part 2: Connecting Everything Everywhere…TechKnowledge Technology Stories - Part 2: Connecting Everything Everywhere…
TechKnowledge Technology Stories - Part 2: Connecting Everything Everywhere…
 
TechKnowledge Technology Stories - Part 1: Smaller, Faster, Cheaper and More…
TechKnowledge Technology Stories - Part 1: Smaller, Faster, Cheaper and More…TechKnowledge Technology Stories - Part 1: Smaller, Faster, Cheaper and More…
TechKnowledge Technology Stories - Part 1: Smaller, Faster, Cheaper and More…
 
Beginners: An Quick Introduction to 3GPP
Beginners: An Quick Introduction to 3GPPBeginners: An Quick Introduction to 3GPP
Beginners: An Quick Introduction to 3GPP
 
Misc: Mobile Technology and Healthcare
Misc: Mobile Technology and HealthcareMisc: Mobile Technology and Healthcare
Misc: Mobile Technology and Healthcare
 
Should we stop the shutdown of 2G/3G to save lives??
Should we stop the shutdown of 2G/3G to save lives??Should we stop the shutdown of 2G/3G to save lives??
Should we stop the shutdown of 2G/3G to save lives??
 
Opinion – 5G Reality Check: Speeds
Opinion – 5G Reality Check: SpeedsOpinion – 5G Reality Check: Speeds
Opinion – 5G Reality Check: Speeds
 
Technology Introduction Series: Edge Computing tutorial.pdf
Technology Introduction Series: Edge Computing tutorial.pdfTechnology Introduction Series: Edge Computing tutorial.pdf
Technology Introduction Series: Edge Computing tutorial.pdf
 
6G: Potential Use Cases and Enabling Technologies
6G: Potential Use Cases and Enabling Technologies6G: Potential Use Cases and Enabling Technologies
6G: Potential Use Cases and Enabling Technologies
 
3GPP SON Series: SON Management in HetNets and Enhanced ICIC (eICIC)
3GPP SON Series: SON Management in HetNets and Enhanced ICIC (eICIC)3GPP SON Series: SON Management in HetNets and Enhanced ICIC (eICIC)
3GPP SON Series: SON Management in HetNets and Enhanced ICIC (eICIC)
 
3GPP SON Series: Energy Savings (ES)
3GPP SON Series: Energy Savings (ES)3GPP SON Series: Energy Savings (ES)
3GPP SON Series: Energy Savings (ES)
 
3GPP SON Series: Cell Outage Detection and Compensation (COD & COC)
3GPP SON Series: Cell Outage Detection and Compensation (COD & COC)3GPP SON Series: Cell Outage Detection and Compensation (COD & COC)
3GPP SON Series: Cell Outage Detection and Compensation (COD & COC)
 
3GPP SON Series: Minimization of Drive Testing (MDT)
3GPP SON Series: Minimization of Drive Testing (MDT)3GPP SON Series: Minimization of Drive Testing (MDT)
3GPP SON Series: Minimization of Drive Testing (MDT)
 
3GPP SON Series: Coverage and Capacity Optimization (CCO)
3GPP SON Series: Coverage and Capacity Optimization (CCO)3GPP SON Series: Coverage and Capacity Optimization (CCO)
3GPP SON Series: Coverage and Capacity Optimization (CCO)
 
3GPP SON Series: SON in 3GPP Release-10 – Self-healing
3GPP SON Series: SON in 3GPP Release-10 – Self-healing3GPP SON Series: SON in 3GPP Release-10 – Self-healing
3GPP SON Series: SON in 3GPP Release-10 – Self-healing
 
3GPP SON Series: RACH Optimization
3GPP SON Series: RACH Optimization3GPP SON Series: RACH Optimization
3GPP SON Series: RACH Optimization
 
3GPP SON Series: Mobility Robustness Optimization (MRO)
3GPP SON Series: Mobility Robustness Optimization (MRO)3GPP SON Series: Mobility Robustness Optimization (MRO)
3GPP SON Series: Mobility Robustness Optimization (MRO)
 
3GPP SON Series: SON in 3GPP Release-9 – Self-optimization
3GPP SON Series: SON in 3GPP Release-9 – Self-optimization3GPP SON Series: SON in 3GPP Release-9 – Self-optimization
3GPP SON Series: SON in 3GPP Release-9 – Self-optimization
 
Beginners: Energy Consumption in Mobile Networks - RAN Power Saving Schemes
Beginners: Energy Consumption in Mobile Networks - RAN Power Saving SchemesBeginners: Energy Consumption in Mobile Networks - RAN Power Saving Schemes
Beginners: Energy Consumption in Mobile Networks - RAN Power Saving Schemes
 

Kürzlich hochgeladen

Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfOrbitshub
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyKhushali Kathiriya
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontologyjohnbeverley2021
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDropbox
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...apidays
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesrafiqahmad00786416
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingEdi Saputra
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businesspanagenda
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...apidays
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc
 
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot ModelMcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot ModelDeepika Singh
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Orbitshub
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobeapidays
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Zilliz
 

Kürzlich hochgeladen (20)

Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot ModelMcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering Developers
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)
 

Misc: Non millimeter Wave (mmWave) 5G

  • 2. ©3G4G Before we start If you don’t understand frequency & spectrum. Watch our most popular Tutorial
  • 3. ©3G4G Too many articles equate 5G to millimeter- Waves (mmWave)
  • 4. ©3G4G Too many articles equate 5G to millimeter- Waves (mmWave) But that’s simply not true
  • 6. ©3G4G Electromagnetic Spectrum covers Electromagnetic Waves with frequencies ranging from below 1 hertz to above 1025 hertz
  • 7. ©3G4G The Radio Spectrum is part of spectrum from 3Hz to 3000GHz (3 THz)
  • 8. ©3G4G 5G is only looking at frequencies from 450 MHz to 52.6 GHz
  • 9. ©3G4G 5G is only looking at frequencies from 450 MHz to 52.6 GHz 3GPP has devided 5G frequencies in 2 parts: • Frequency Range 1 (FR1): 450 MHz – 7.125 GHz • Frequency Range 2 (FR2): 24.25 GHz – 52.6 GHz
  • 11. ©3G4G Technically mmWave starts from 30 GHz But people refer to all frequencies in FR2 as mmWave
  • 12. ©3G4G 0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz FR1: 450 MHz – 7.125 GHz Non-mmWave 5G
  • 13. ©3G4G 0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz FR1: 450 MHz – 7.125 GHz FR2: 24.25 GHz – 52.6 GHz Non-mmWave 5G mmWave 5G
  • 14. Popular Frequency bands for different Technologies ©3G4G 0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz 2G, 3G, 4G 0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz 5G FR1 (450 MHz – 7.125 GHz) 5G FR2 (24.25 GHz – 52.6 GHz)
  • 15. Popular Frequency bands for different Technologies ©3G4G 0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz 2G, 3G, 4G Non millimeter wave 5G Millimeter wave 5G 0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz 5G FR1 (450 MHz – 7.125 GHz) 5G FR2 (24.25 GHz – 52.6 GHz)
  • 16. Popular Frequency bands for different Technologies ©3G4G 0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz 2G, 3G, 4G Non millimeter wave 5G Millimeter wave 5G 0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz 2.4GHz Wi-Fi, Bluetooth, etc. 5GHz Wi-Fi Up to 6GHz 802.11ax 5G FR1 (450 MHz – 7.125 GHz) 5G FR2 (24.25 GHz – 52.6 GHz) 802.11be EHT (1 GHz – 7.125 GHz)
  • 17. Popular Frequency bands for different Technologies ©3G4G 0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz 2G, 3G, 4G Non millimeter wave 5G Millimeter wave 5G 0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz 2.4GHz Wi-Fi, Bluetooth, etc. 5GHz Wi-Fi WiGig – 60GHz Wi-Fi Up to 6GHz 802.11ax 5G FR1 (450 MHz – 7.125 GHz) 5G FR2 (24.25 GHz – 52.6 GHz) 802.11be EHT (1 GHz – 7.125 GHz) 802.11ad / 802.11ay (57.24 GHz – 70.20 GHz)
  • 18. Summary: Popular Frequency bands for different Technologies ©3G4G 0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz Millimeter wave 5G 2.4GHz Wi-Fi, Bluetooth, etc. 5GHz Wi-Fi WiGig – 60GHz Wi-Fi Up to 6GHz 802.11ax 5G FR1 (450 MHz – 7.125 GHz) 5G FR2 (24.25 GHz – 52.6 GHz) 802.11be EHT (1 GHz – 7.125 GHz) 802.11ad / 802.11ay (57.24 GHz – 70.20 GHz) 2G 2G/4G3G 4G Non-mmWave5Gnon-mmWave 5G 10 GHz0 GHz
  • 19. 5G Needs Different Frequency Bands ©3G4G Coverage Layer Sub-1GHz Capacity Layer 1GHz – 7.125GHz High Throughput Layers 24.25GHz – 52.6GHz
  • 20. 5G Needs Different Frequency Bands ©3G4G Coverage Layer Sub-1GHz Capacity Layer 1GHz – 7.125GHz High Throughput Layers 24.25GHz – 52.6GHz Non-mmWave 5G mmWave 5G Non-mmWave 5G
  • 21. Importance of Frequency selection ©3G4G 2.1GHz 900MHz Higher frequency means faster decay
  • 22. Importance of Frequency selection ©3G4G 2.1GHz 900MHz Higher frequency means faster decay Lower frequency means more number of users in a given cell
  • 23. Importance of Frequency selection ©3G4G 2.1GHz 900MHz Higher frequency means faster decay Lower frequency means more number of users in a given cell Higher frequency gets reflected from walls and have poor penetration Lower frequency gets attenuated from walls but still penetrates
  • 24. Most Popular 5G Frequency Bands ©3G4G 600MHz (2x35MHz) 24.25-24.45GHz 24.75-25.25GHz 27.5-28.35GHz 700MHz (2x30 MHz) 3.4–3.8GHz 24.5-27.5GHz 3.4–3.8GHz 26GHz 3.4–3.8GHz 26GHz 3.46–3.8GHz 26GHz 3.6–3.8GHz 3.3–3.6GHz 4.8–5GHz 24.5-27.5GHz 37.5-42.5GHz 3.4–3.7GHz 26.5-29.5GHz 4.4–4.9GHz 26.5-28.5GHz 3.4–3.7GHz 39GHz 3.6–4.2GHz 64-71GHz 37-37.6GHz 37.6-40GHz 47.2-48.2GHz 5.9–6.4GHz 5.9–7.1GHz 600MHz (2x35MHz) 27.5-28.35GHz 64-71GHz 37-37.6GHz 37.6-40GHz 24.25-27.5GHz 26.5-27.5GHz 3.55- 3.7- 3.7GHz 4.2GHz 3.55-3.7 GHz 700MHz (2x30 MHz) 700MHz (2x30 MHz) 700MHz (2x30 MHz) 700MHz (2x30 MHz) 5GHz4GHz3GHz<1GHz 24-28GHz 37-40GHz 64-71GHz 3.45- 2.5GHz (LTE B41) 3.55GHz Source: Qualcomm Licensed Unlicensed/shared Existing band New 5G band Red highlights frequencies not approved for ITU study
  • 25. Most Popular 5G Frequency Bands ©3G4G 600MHz (2x35MHz) 24.25-24.45GHz 24.75-25.25GHz 27.5-28.35GHz 700MHz (2x30 MHz) 3.4–3.8GHz 24.5-27.5GHz 3.4–3.8GHz 26GHz 3.4–3.8GHz 26GHz 3.46–3.8GHz 26GHz 3.6–3.8GHz 3.3–3.6GHz 4.8–5GHz 24.5-27.5GHz 37.5-42.5GHz 3.4–3.7GHz 26.5-29.5GHz 4.4–4.9GHz 26.5-28.5GHz 3.4–3.7GHz 39GHz 3.6–4.2GHz 64-71GHz 37-37.6GHz 37.6-40GHz 47.2-48.2GHz 5.9–6.4GHz 5.9–7.1GHz 600MHz (2x35MHz) 27.5-28.35GHz 64-71GHz 37-37.6GHz 37.6-40GHz 24.25-27.5GHz 26.5-27.5GHz 3.55- 3.7- 3.7GHz 4.2GHz 3.55-3.7 GHz 700MHz (2x30 MHz) 700MHz (2x30 MHz) 700MHz (2x30 MHz) 700MHz (2x30 MHz) 5GHz4GHz3GHz<1GHz 24-28GHz 37-40GHz 64-71GHz 3.45- 2.5GHz (LTE B41) 3.55GHz Source: Qualcomm Licensed Unlicensed/shared Existing band New 5G band Red highlights frequencies not approved for ITU study Non-mmWave 5G Coverage Layer
  • 26. Most Popular 5G Frequency Bands ©3G4G 600MHz (2x35MHz) 24.25-24.45GHz 24.75-25.25GHz 27.5-28.35GHz 700MHz (2x30 MHz) 3.4–3.8GHz 24.5-27.5GHz 3.4–3.8GHz 26GHz 3.4–3.8GHz 26GHz 3.46–3.8GHz 26GHz 3.6–3.8GHz 3.3–3.6GHz 4.8–5GHz 24.5-27.5GHz 37.5-42.5GHz 3.4–3.7GHz 26.5-29.5GHz 4.4–4.9GHz 26.5-28.5GHz 3.4–3.7GHz 39GHz 3.6–4.2GHz 64-71GHz 37-37.6GHz 37.6-40GHz 47.2-48.2GHz 5.9–6.4GHz 5.9–7.1GHz 600MHz (2x35MHz) 27.5-28.35GHz 64-71GHz 37-37.6GHz 37.6-40GHz 24.25-27.5GHz 26.5-27.5GHz 3.55- 3.7- 3.7GHz 4.2GHz 3.55-3.7 GHz 700MHz (2x30 MHz) 700MHz (2x30 MHz) 700MHz (2x30 MHz) 700MHz (2x30 MHz) 5GHz4GHz3GHz<1GHz 24-28GHz 37-40GHz 64-71GHz 3.45- 2.5GHz (LTE B41) 3.55GHz Source: Qualcomm Licensed Unlicensed/shared Existing band New 5G band Red highlights frequencies not approved for ITU study Non-mmWave 5G Capacity Layer
  • 27. Most Popular 5G Frequency Bands ©3G4G 600MHz (2x35MHz) 24.25-24.45GHz 24.75-25.25GHz 27.5-28.35GHz 700MHz (2x30 MHz) 3.4–3.8GHz 24.5-27.5GHz 3.4–3.8GHz 26GHz 3.4–3.8GHz 26GHz 3.46–3.8GHz 26GHz 3.6–3.8GHz 3.3–3.6GHz 4.8–5GHz 24.5-27.5GHz 37.5-42.5GHz 3.4–3.7GHz 26.5-29.5GHz 4.4–4.9GHz 26.5-28.5GHz 3.4–3.7GHz 39GHz 3.6–4.2GHz 64-71GHz 37-37.6GHz 37.6-40GHz 47.2-48.2GHz 5.9–6.4GHz 5.9–7.1GHz 600MHz (2x35MHz) 27.5-28.35GHz 64-71GHz 37-37.6GHz 37.6-40GHz 24.25-27.5GHz 26.5-27.5GHz 3.55- 3.7- 3.7GHz 4.2GHz 3.55-3.7 GHz 700MHz (2x30 MHz) 700MHz (2x30 MHz) 700MHz (2x30 MHz) 700MHz (2x30 MHz) 5GHz4GHz3GHz<1GHz 24-28GHz 37-40GHz 64-71GHz 3.45- 2.5GHz (LTE B41) 3.55GHz Source: Qualcomm Licensed Unlicensed/shared Existing band New 5G band Red highlights frequencies not approved for ITU study mmWave 5G High-Throughput Layer
  • 28. ©3G4G Most 5G Deployments are Non-mmWave 5G
  • 29. ©3G4G Most 5G Deployments are Non-mmWave 5G Let’s look at examples
  • 30. UK: Only non-mmWave 5G right now ©3G4G 0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz FR1: 450 MHz – 7.125 GHz FR2: 24.25 GHz – 52.6 GHz Non-mmWave 5G mmWave 5G
  • 31. USA: Mix of mmWave & non-mmWave ©3G4G 0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz FR1: 450 MHz – 7.125 GHz FR2: 24.25 GHz – 52.6 GHz Non-mmWave 5G mmWave 5G
  • 32. Switzerland: Only non-mmWave 5G right now ©3G4G 0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz FR1: 450 MHz – 7.125 GHz FR2: 24.25 GHz – 52.6 GHz Non-mmWave 5G mmWave 5G
  • 33. Italy: Both non-mmWave & mmWave 5G ©3G4G 0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz FR1: 450 MHz – 7.125 GHz FR2: 24.25 GHz – 52.6 GHz Non-mmWave 5G mmWave 5G
  • 34. Finland: Only non-mmWave 5G right now ©3G4G 0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz FR1: 450 MHz – 7.125 GHz FR2: 24.25 GHz – 52.6 GHz Non-mmWave 5G mmWave 5G
  • 35. South Korea: Both non-mmWave & mmWave 5G ©3G4G 0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz FR1: 450 MHz – 7.125 GHz FR2: 24.25 GHz – 52.6 GHz Non-mmWave 5G mmWave 5G
  • 36. Japan: Both non-mmWave & mmWave 5G ©3G4G 0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz FR1: 450 MHz – 7.125 GHz FR2: 24.25 GHz – 52.6 GHz Non-mmWave 5G mmWave 5G
  • 37. Australia: Only non-mmWave 5G right now ©3G4G 0 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz FR1: 450 MHz – 7.125 GHz FR2: 24.25 GHz – 52.6 GHz Non-mmWave 5G mmWave 5G
  • 38. ©3G4G In Summary: Most 5G Deployments Today are Non-mmWave 5G
  • 39. ©3G4G In Summary: Most 5G Deployments Today are Non-mmWave 5G And mmWave 5G will Only be Available in Dense Areas, not Everywhere
  • 40. Thank You To learn more, visit: 3G4G Website – http://www.3g4g.co.uk/ 3G4G Blog – http://blog.3g4g.co.uk/ 3G4G Small Cells Blog – http://smallcells.3g4g.co.uk/ Operator Watch - http://operatorwatch.3g4g.co.uk/ Follow us on Twitter: https://twitter.com/3g4gUK Follow us on Facebook: https://www.facebook.com/3g4gUK/ Follow us on Linkedin: https://www.linkedin.com/company/3g4g Follow us on Slideshare: https://www.slideshare.net/3G4GLtd Follow us on Youtube: https://www.youtube.com/3G4G5G ©3G4G