SlideShare ist ein Scribd-Unternehmen logo
1 von 16
Ejemplos de péndulo simple y de  masa de resorte Presentado por: Stefannymolina  Estefanydiaz
introducción El péndulo simple es un sistema de sencilla funcionalidad y que consta de una masa colgada a un extremo de un hilo muy fino, el cual esta sujeto a una superficie inmóvil. La fundamentación de este aparato radica principalmente en la capacidad de relacionar sus componentes físicos con los factores de interacción externa, como lo es la gravedad. Este tipo de mecanismo es de mucha aplicabilidad en la vida del ser humano, entre ellos es importante destacar: un reloj de péndulo, una grúa de demolición, un pendiente, etc. Aunque su estructura y condiciones de ejecución no son exactamente iguales a las de un péndulo simple, son tal vez los ejemplos más ilustrados de este fundamento físico.
Objetivo General Analizar que es un péndulo simple y como es su funcionamiento Específicos Comprobar como actúa un péndulo según las características del movimiento que represente Determinar los factores que condicionan el accionar de un péndulo simple y de un sistema masa resorte Estudiar las diferencias entre estos dos sistemas pendulares (péndulo simple y el sistema masa resorte)
Péndulo simple
Ej:Cierto péndulo simple tiene en la tierra un período de 2s ¿Cuál sería su período en la superficie de la luna, donde g = 1.7 m.s-2. T tierra = 2 s T luna = ? g luna = 1,7 m/s ² T Tierra = 2.π.√L/g L = g.(T/2.π) ² L = g.(T/2.π) ² = 9,8.(2/2.π) ² = 0,992 m T Luna = 2.π.√L/g
Ej:Determina la longitud de un pendulo simple cuyo periodo es exactamente 1s en un punto donde g=9,8m/s° Datos: T=1 G=9,8m/s° L=? T = 2.π.√L/g L = g.(T/2.π) ² L = 9,8.(1/2.π) ² = 0,248 m
Ej:Un péndulo simple de 4m de longitud oscila con amplitud de 0.2m. a) Calcúlese la velocidad del péndulo en el punto más bajo de la trayectoria. b) Calcúlese la aceleración en los extremos de su trayectoria. a) A = 0,2 m. L = 4 m. vm = √k/m.A; el en péndulo simple se considera que: vm = √m.g/(L/m).A vm = √g/L.A vm = √9,8/4.0,2 vm = 0,313 m/s b) a máximo = k.A/m; aplicando para el péndulo se obtiene: a máximo = g.A/L a máximo = 9,8.0,2/4 = 0,49 m/s ²
Ej:El péndulo de un reloj consiste en una barra delgada de acero, de coeficiente de dilatación lineal 1'27.10-5 ºC-1 , con una masa en su extremo inferior. El reloj va en hora a 20ºC. ¿ Atrasará o adelantará a 40ºC ? Si el reloj va en hora a 20ºC quiere decir que el período del péndulo es 1 segundo, por lo que su longitud será:. T = 2.p . ( L / g )1/2          L =  g . T2 /(4.p2) = 9'81 .1 /(4.p2) = 0'2485 m Si la temperatura aumenta, la barra se dilata, aumenta de longitud por lo que el período aumenta, tarda más en cada oscilación; el reloj se atrasa. La longitud a 40ºC será: L' = L.(1 + a . Dt) = 0'2485.(1 + 1'27.10-5 .(40 - 20) = 0,2485631 m y el nuevo período será: T' = 2.p . ( L' / g )1/2 = 2.p .  ( 0,2485631 / 9'81)1/2 = 1,0001467 seg
Ej:¿Cuál es la variación Δt del período de un péndulo simple cuando la aceleración de la gravedad g varía en Δg?. Indicación: El nuevo período t + Δt se obtiene sustituyendo g por g + Δg: t + Δt = 2.π.√L/(g + Δg) Para obtener una expresión aproximada, desarróllese el factor (g + Δg)-1/2 utilizando el teorema del binomio y considerando sólo los dos primeros términos: (g + Δg)-1/2 = g- 1/2 - ½ g -3/2Δg + ... Los otros términos contienen potencias más altas de Δg y son muy pequeños cuando Δg es pequeño. Δt = ? t + Δt = 2.π.√L/(g + Δg) (g + Δg)-1/2 = g1/2 - ½ g -3/2. Δg + ...
Masa Resorte
Ej:Una masa de 100 kg. Suspendida de una alambre cuya longitud natural to es de 4m, lo alarga 0,004m. La sección transversal del alambre, que se puede suponer constante, es 0,1 cm ². a) Si se desplaza la carga hacia abajo una pequeña distancia y se abandona a sí misma, determínese a que frecuencia vibrará. b) Calcúlense el módulo de Young del alambre. m = 100 kg l0 = 4 m Δl = 0,004 m A = 0,1 cm ² a) k = m.g/l k = 100 kg.(9,8 m/s ²)/0,004 m k = 245000 kg.s-2 f = (1/2.π).√k/m f = (1/2.π).√245000/100 f = 7,87 Hz b) Y = F.l0 /A.Δl F = k.x F = 245000.0,004 F = 980 kg.m.s-2 Y = 980*4/0,004.10-5 Y = 98.1010
Ej: Una fuerza de 30N estira 15 cm un resorte vertical. a) ¿Qué masa ha de suspenderse del resorte para que el sistema oscile con un período de (π /4) s. b) Si la amplitud del movimiento es de 5 cm, ¿dónde está el cuerpo y en que dirección se mueve (π /12) s después de haber sobrepasado la posición de equilibrio, dirigiéndose hacia abajo?. c) ¿Qué fuerza ejerce el resorte sobre el cuerpo cuando está 3 cm por debajo de la posición de equilibrio y moviéndose hacia arriba?. F = 30 N A = 15 cm = 0,15 m a) T = π.s/4 m = ? F = k.x k = F/x k = 30/0,15 = 200 N.m-1 T = 2.π.√m/k m = k.(T/2.π) ² m = 200.[(π /4)/(2.π)] ² = 3,12 kg b) A = 5 cm = 0,05 m x = ? t = π s/12 x = 5.cos.8t se tiene que: x = 5.cos (8.π /12) = 4,33 cm v = -40.sin.8t v = -20 cm/s; esto nos da a conocer que el cuerpo se está moviendo hacia el centro, desde abajo hacia arriba. c) Tenemos que cuando está 3 cm debajo de la posición de equilibrio la fuerza es: F = -k.x F = -6N; pero como se necesita la fuerza total que es: FT = Feq + F; entonces: FT = m.g + F FT = 3,125.9,8 + 6 FT = 36,6 N
Ej:Un cuerpo de 100g de masa cuelga de un largo resorte helicoidal. Cuando se tira de él 10 cm por debajo de su posición de equilibrio y se abandona a sí mismo, oscila con un período de 2 s. a) ¿Cuál es su velocidad al pasar por la posición de equilibrio?. b) ¿Cuál es su aceleración cuando se encuentra 5 cm por encima de la posición de equilibrio?. c) Si se está moviendo hacia arriba. ¿Cuánto tiempo tarda en desplazarse desde un punto situado 5 cm por debajo de su posición de equilibrio a otro situado 5 cm por encima de ella?. d) ¿Cuánto se acortará el resorte si se quita el cuerpo?. a) m = 100 g x = 10 cm T = 2 s V máximo = ω .A ω = 2.π /T ω = π V máximo = π.10 V máximo = 31,4 cm/s b) a = ω ².x a = π ².5 a = 49,34 cm/s ²
Ej:Un cuerpo de 5 kg de masa cuelga de un resorte y oscila con un período de 0,5s. ¿Cuánto se acortará el resorte al quitar el cuerpo?. m = 5 kg T = 0,5 s k = ω ².m k = (2.π /T) ².m k = (2.π /0,5) ².5 k = 789,56 x = m.g/k x = 5.9,8/789,56 x = 0,062 m c) X = A.cos ω .t cosω.t = x/A ω.t = arccos (x/A) t = arccos (x/A)/ ω t = arccos (5/10)/ π t = 0,333 s d) m.g = k.x x = m.g/k k = ω ².m k = π ².100 x = 100.980/(100.π ²) x = 99,3 cm Se acortaría los 9,33 cm, que para casos de cálculo se toma como si estuviéramos partiendo desde x = 0 que es la posición de equilibrio.
Ej:Una masa m oscila en el extremo de un resorte vertical con una frecuencia de 1 Hz y una amplitud de 5 cm. Cuando se añade otra masa de 300 g, la frecuencia de oscilación es de 0,5 Hz. Determine:a) El valor de la masa m y de la constante recuperadora del resorte.b) El valor de la amplitud de oscilación en el segundo caso si la energía mecánica del sistema es la misma en ambos casos. Aplicando la ley de Newton y la ley de Hooke: m . a = - k .x                a = - (k/m). x   que es la ecuación de un M.A.S. de frecuencia angular:       w = (k/m)1/2  Cuando la masa m está oscilando sola:      w1 = (k/m)1/2 = 2. p.F1               (k/m)1/2 = 2. p .1 Cuando se añaden 0'3 kg :  w2 = (k/m2)1/2 = 2. p .F2             [k/(m + 0'3)]1/2 = 2. p . 0'5 Dividiendo ambas ecuaciones: [ (m + 0'3) / m ]1/2 = 2            m = 0'3 / 3 = 0'1 Kg = 100 gramos y    k = m . (2. p .1)2 = 0'1. 4. p2 = 3'95 N/m La Energía mecánica total de un oscilador armónico es proporcional al cuadrado  de la amplitud y de la constante del resorte. Si en ambos casos el muelle es el mismo y la energía es la misma, entonces la amplitud debe ser la misma. E = k . A2 / 2           A1 = A2 = 5 cm
conclusión Después de haber realizado las mediciones y cálculos respectivos con respecto al péndulo simple y su relación con la longitud, ángulo y masa se ha llegado a las siguientes conclusiones: El período de un péndulo sólo depende de la longitud de la cuerda y el valor de la gravedad (la gravedad varia en los planetas y satélites naturales).  Debido a que el período es independiente de la masa, podemos decir entonces que todos los péndulos simples de igual longitud en el mismo sitio oscilan con períodos iguales.  A mayor longitud de cuerda mayor período.

Weitere ähnliche Inhalte

Was ist angesagt?

Informe Ley de Boyle
Informe Ley de BoyleInforme Ley de Boyle
Informe Ley de BoyleRobert Roca
 
Sistema críticamente amortiguado
Sistema críticamente amortiguadoSistema críticamente amortiguado
Sistema críticamente amortiguadojosemanuelaz77
 
Entropía, Desigualdad de Clausius y Procesos Adiabáticos
Entropía, Desigualdad de Clausius y Procesos AdiabáticosEntropía, Desigualdad de Clausius y Procesos Adiabáticos
Entropía, Desigualdad de Clausius y Procesos AdiabáticosJuan Jose Cabrera
 
236984390 problemas-resueltos-estatica-equilibrio (1)
236984390 problemas-resueltos-estatica-equilibrio (1)236984390 problemas-resueltos-estatica-equilibrio (1)
236984390 problemas-resueltos-estatica-equilibrio (1)Franklin1504
 
Pendulo fisico y torsion
Pendulo fisico y torsionPendulo fisico y torsion
Pendulo fisico y torsionDavidBarrios66
 
PROBLEMAS 2DA CONDICION DE EQUILIBRIO
PROBLEMAS 2DA CONDICION DE EQUILIBRIOPROBLEMAS 2DA CONDICION DE EQUILIBRIO
PROBLEMAS 2DA CONDICION DE EQUILIBRIOTorimat Cordova
 
Informe de laboratorio- Movimiento armonico simple
Informe de laboratorio- Movimiento armonico simpleInforme de laboratorio- Movimiento armonico simple
Informe de laboratorio- Movimiento armonico simpleJesu Nuñez
 
Física serway capítulo 2 problemas resueltos
Física serway capítulo 2   problemas resueltosFísica serway capítulo 2   problemas resueltos
Física serway capítulo 2 problemas resueltosJorge Rojas
 
Temperatura, presión, análisis dimensional e interpolación
Temperatura, presión, análisis dimensional e interpolaciónTemperatura, presión, análisis dimensional e interpolación
Temperatura, presión, análisis dimensional e interpolaciónMario Yovera Reyes
 
Seminario de la semana 4 . Potencial eléctrico
Seminario de la semana 4 . Potencial eléctricoSeminario de la semana 4 . Potencial eléctrico
Seminario de la semana 4 . Potencial eléctricoYuri Milachay
 
Problemas resueltos-cap-5-fisica-serway2
Problemas resueltos-cap-5-fisica-serway2Problemas resueltos-cap-5-fisica-serway2
Problemas resueltos-cap-5-fisica-serway2Luis Ajanel
 

Was ist angesagt? (20)

Informe Ley de Boyle
Informe Ley de BoyleInforme Ley de Boyle
Informe Ley de Boyle
 
Sistema críticamente amortiguado
Sistema críticamente amortiguadoSistema críticamente amortiguado
Sistema críticamente amortiguado
 
Las ondas
Las ondasLas ondas
Las ondas
 
Semana 1 elasticidad
Semana 1 elasticidadSemana 1 elasticidad
Semana 1 elasticidad
 
Laboratorio rozamiento
Laboratorio rozamientoLaboratorio rozamiento
Laboratorio rozamiento
 
Formulario fluidos
Formulario fluidosFormulario fluidos
Formulario fluidos
 
Entropía, Desigualdad de Clausius y Procesos Adiabáticos
Entropía, Desigualdad de Clausius y Procesos AdiabáticosEntropía, Desigualdad de Clausius y Procesos Adiabáticos
Entropía, Desigualdad de Clausius y Procesos Adiabáticos
 
236984390 problemas-resueltos-estatica-equilibrio (1)
236984390 problemas-resueltos-estatica-equilibrio (1)236984390 problemas-resueltos-estatica-equilibrio (1)
236984390 problemas-resueltos-estatica-equilibrio (1)
 
Ejercicio 2 2 4
Ejercicio 2 2 4Ejercicio 2 2 4
Ejercicio 2 2 4
 
Pendulo fisico y torsion
Pendulo fisico y torsionPendulo fisico y torsion
Pendulo fisico y torsion
 
PROBLEMAS 2DA CONDICION DE EQUILIBRIO
PROBLEMAS 2DA CONDICION DE EQUILIBRIOPROBLEMAS 2DA CONDICION DE EQUILIBRIO
PROBLEMAS 2DA CONDICION DE EQUILIBRIO
 
Informe de laboratorio- Movimiento armonico simple
Informe de laboratorio- Movimiento armonico simpleInforme de laboratorio- Movimiento armonico simple
Informe de laboratorio- Movimiento armonico simple
 
Física serway capítulo 2 problemas resueltos
Física serway capítulo 2   problemas resueltosFísica serway capítulo 2   problemas resueltos
Física serway capítulo 2 problemas resueltos
 
Temperatura, presión, análisis dimensional e interpolación
Temperatura, presión, análisis dimensional e interpolaciónTemperatura, presión, análisis dimensional e interpolación
Temperatura, presión, análisis dimensional e interpolación
 
3 diagrama de moody
3  diagrama de moody3  diagrama de moody
3 diagrama de moody
 
Dinamica semana 4 - 5
Dinamica   semana 4 - 5Dinamica   semana 4 - 5
Dinamica semana 4 - 5
 
Eter2 u2 a2_magr
Eter2 u2 a2_magrEter2 u2 a2_magr
Eter2 u2 a2_magr
 
Ley de enfriamiento de newton
Ley de enfriamiento de newtonLey de enfriamiento de newton
Ley de enfriamiento de newton
 
Seminario de la semana 4 . Potencial eléctrico
Seminario de la semana 4 . Potencial eléctricoSeminario de la semana 4 . Potencial eléctrico
Seminario de la semana 4 . Potencial eléctrico
 
Problemas resueltos-cap-5-fisica-serway2
Problemas resueltos-cap-5-fisica-serway2Problemas resueltos-cap-5-fisica-serway2
Problemas resueltos-cap-5-fisica-serway2
 

Ähnlich wie Péndulo simple y masa resorte: ejemplos y cálculos

Pendulo simple y masa resorte
Pendulo simple y masa resortePendulo simple y masa resorte
Pendulo simple y masa resorteLBPS
 
Movimiento Armónico Simple (M.A.S)
Movimiento Armónico Simple (M.A.S)Movimiento Armónico Simple (M.A.S)
Movimiento Armónico Simple (M.A.S)icano7
 
Ejercicios fisica
Ejercicios fisicaEjercicios fisica
Ejercicios fisicacristalcat
 
Fuerza ejercicios soluciones
Fuerza ejercicios solucionesFuerza ejercicios soluciones
Fuerza ejercicios solucionesroberto902
 
Power Point Energìa Elàstica
Power Point Energìa ElàsticaPower Point Energìa Elàstica
Power Point Energìa ElàsticaEladio Jaime
 
ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.S
ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.SELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.S
ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.SBrayer Yepez
 
Fisica pendulo simple
Fisica pendulo simpleFisica pendulo simple
Fisica pendulo simpleanayliceth
 
Iv bim. 2do. año fisi. - guia nº 2 - movimiento armónico s
Iv bim. 2do. año   fisi. - guia nº 2 - movimiento armónico sIv bim. 2do. año   fisi. - guia nº 2 - movimiento armónico s
Iv bim. 2do. año fisi. - guia nº 2 - movimiento armónico scristian alcantara
 
Fuerza ejercicios soluciones
Fuerza ejercicios solucionesFuerza ejercicios soluciones
Fuerza ejercicios solucionesRodolfo Oyarce
 
Movimiento armonico simple y péndulo
Movimiento armonico simple y pénduloMovimiento armonico simple y péndulo
Movimiento armonico simple y pénduloChristian Ryuzaki
 
Tippens fisica 7e_diapositivas_11b
Tippens fisica 7e_diapositivas_11bTippens fisica 7e_diapositivas_11b
Tippens fisica 7e_diapositivas_11bRobert
 
Problemas de aplicacin de la segunda ley de newton
Problemas de aplicacin de la segunda ley de newtonProblemas de aplicacin de la segunda ley de newton
Problemas de aplicacin de la segunda ley de newtonSanty Diaz
 

Ähnlich wie Péndulo simple y masa resorte: ejemplos y cálculos (20)

Pendulo simple y masa resorte
Pendulo simple y masa resortePendulo simple y masa resorte
Pendulo simple y masa resorte
 
Movimiento Armónico Simple (M.A.S)
Movimiento Armónico Simple (M.A.S)Movimiento Armónico Simple (M.A.S)
Movimiento Armónico Simple (M.A.S)
 
Ejercicios fisica
Ejercicios fisicaEjercicios fisica
Ejercicios fisica
 
Mas
MasMas
Mas
 
Fisica i-b1 mas ondas
Fisica i-b1 mas ondasFisica i-b1 mas ondas
Fisica i-b1 mas ondas
 
Resortes
ResortesResortes
Resortes
 
Fuerza ejercicios soluciones
Fuerza ejercicios solucionesFuerza ejercicios soluciones
Fuerza ejercicios soluciones
 
Fisica
FisicaFisica
Fisica
 
Power Point Energìa Elàstica
Power Point Energìa ElàsticaPower Point Energìa Elàstica
Power Point Energìa Elàstica
 
ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.S
ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.SELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.S
ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.S
 
Fisica pendulo simple
Fisica pendulo simpleFisica pendulo simple
Fisica pendulo simple
 
Vibracion la flaca
Vibracion la flacaVibracion la flaca
Vibracion la flaca
 
Iv bim. 2do. año fisi. - guia nº 2 - movimiento armónico s
Iv bim. 2do. año   fisi. - guia nº 2 - movimiento armónico sIv bim. 2do. año   fisi. - guia nº 2 - movimiento armónico s
Iv bim. 2do. año fisi. - guia nº 2 - movimiento armónico s
 
Fuerza ejercicios soluciones
Fuerza ejercicios solucionesFuerza ejercicios soluciones
Fuerza ejercicios soluciones
 
Movimiento armonico simple y péndulo
Movimiento armonico simple y pénduloMovimiento armonico simple y péndulo
Movimiento armonico simple y péndulo
 
Tippens fisica 7e_diapositivas_11b
Tippens fisica 7e_diapositivas_11bTippens fisica 7e_diapositivas_11b
Tippens fisica 7e_diapositivas_11b
 
E13 dinamica
E13 dinamicaE13 dinamica
E13 dinamica
 
Dinamica
DinamicaDinamica
Dinamica
 
Problemas de aplicacin de la segunda ley de newton
Problemas de aplicacin de la segunda ley de newtonProblemas de aplicacin de la segunda ley de newton
Problemas de aplicacin de la segunda ley de newton
 
Tema 1
Tema 1Tema 1
Tema 1
 

Mehr von estefany

Muestras sin valor comercial
Muestras sin valor comercialMuestras sin valor comercial
Muestras sin valor comercialestefany
 
Agencias de aduanas
Agencias de aduanas  Agencias de aduanas
Agencias de aduanas estefany
 
Outsourcing y Benchmarking
Outsourcing y BenchmarkingOutsourcing y Benchmarking
Outsourcing y Benchmarkingestefany
 
Proteccion pbip
Proteccion pbip Proteccion pbip
Proteccion pbip estefany
 
Rfid (identificacion por radiofrecuencia
Rfid (identificacion por radiofrecuencia Rfid (identificacion por radiofrecuencia
Rfid (identificacion por radiofrecuencia estefany
 
Exportacion de menajes
Exportacion de menajes Exportacion de menajes
Exportacion de menajes estefany
 
Proteccion de manos
Proteccion de manos Proteccion de manos
Proteccion de manos estefany
 
Trafico postal y envíos urgentes
Trafico postal y envíos urgentesTrafico postal y envíos urgentes
Trafico postal y envíos urgentesestefany
 
Santa mrta
Santa mrtaSanta mrta
Santa mrtaestefany
 

Mehr von estefany (10)

Muestras sin valor comercial
Muestras sin valor comercialMuestras sin valor comercial
Muestras sin valor comercial
 
Agencias de aduanas
Agencias de aduanas  Agencias de aduanas
Agencias de aduanas
 
Outsourcing y Benchmarking
Outsourcing y BenchmarkingOutsourcing y Benchmarking
Outsourcing y Benchmarking
 
Proteccion pbip
Proteccion pbip Proteccion pbip
Proteccion pbip
 
Rfid (identificacion por radiofrecuencia
Rfid (identificacion por radiofrecuencia Rfid (identificacion por radiofrecuencia
Rfid (identificacion por radiofrecuencia
 
Exportacion de menajes
Exportacion de menajes Exportacion de menajes
Exportacion de menajes
 
Proteccion de manos
Proteccion de manos Proteccion de manos
Proteccion de manos
 
Trafico postal y envíos urgentes
Trafico postal y envíos urgentesTrafico postal y envíos urgentes
Trafico postal y envíos urgentes
 
Efy
EfyEfy
Efy
 
Santa mrta
Santa mrtaSanta mrta
Santa mrta
 

Kürzlich hochgeladen

proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñotapirjackluis
 
Imperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperioImperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperiomiralbaipiales2016
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dstEphaniiie
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Lourdes Feria
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesYanirisBarcelDelaHoz
 
plande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdfplande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdfenelcielosiempre
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMarjorie Burga
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAEl Fortí
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónLourdes Feria
 
plan de capacitacion docente AIP 2024 clllll.pdf
plan de capacitacion docente  AIP 2024          clllll.pdfplan de capacitacion docente  AIP 2024          clllll.pdf
plan de capacitacion docente AIP 2024 clllll.pdfenelcielosiempre
 
Estrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptxEstrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptxdkmeza
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosJonathanCovena1
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Carlos Muñoz
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaDecaunlz
 
Valoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVValoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVGiustinoAdesso1
 
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática4    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática4    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptxdeimerhdz21
 

Kürzlich hochgeladen (20)

proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
 
Imperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperioImperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperio
 
Medición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptxMedición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptx
 
Unidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la InvestigaciónUnidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la Investigación
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes d
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonables
 
plande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdfplande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdf
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
plan de capacitacion docente AIP 2024 clllll.pdf
plan de capacitacion docente  AIP 2024          clllll.pdfplan de capacitacion docente  AIP 2024          clllll.pdf
plan de capacitacion docente AIP 2024 clllll.pdf
 
Estrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptxEstrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptx
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativa
 
Presentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza MultigradoPresentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza Multigrado
 
Valoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVValoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCV
 
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática4    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática4    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptx
 

Péndulo simple y masa resorte: ejemplos y cálculos

  • 1. Ejemplos de péndulo simple y de masa de resorte Presentado por: Stefannymolina Estefanydiaz
  • 2. introducción El péndulo simple es un sistema de sencilla funcionalidad y que consta de una masa colgada a un extremo de un hilo muy fino, el cual esta sujeto a una superficie inmóvil. La fundamentación de este aparato radica principalmente en la capacidad de relacionar sus componentes físicos con los factores de interacción externa, como lo es la gravedad. Este tipo de mecanismo es de mucha aplicabilidad en la vida del ser humano, entre ellos es importante destacar: un reloj de péndulo, una grúa de demolición, un pendiente, etc. Aunque su estructura y condiciones de ejecución no son exactamente iguales a las de un péndulo simple, son tal vez los ejemplos más ilustrados de este fundamento físico.
  • 3. Objetivo General Analizar que es un péndulo simple y como es su funcionamiento Específicos Comprobar como actúa un péndulo según las características del movimiento que represente Determinar los factores que condicionan el accionar de un péndulo simple y de un sistema masa resorte Estudiar las diferencias entre estos dos sistemas pendulares (péndulo simple y el sistema masa resorte)
  • 5. Ej:Cierto péndulo simple tiene en la tierra un período de 2s ¿Cuál sería su período en la superficie de la luna, donde g = 1.7 m.s-2. T tierra = 2 s T luna = ? g luna = 1,7 m/s ² T Tierra = 2.π.√L/g L = g.(T/2.π) ² L = g.(T/2.π) ² = 9,8.(2/2.π) ² = 0,992 m T Luna = 2.π.√L/g
  • 6. Ej:Determina la longitud de un pendulo simple cuyo periodo es exactamente 1s en un punto donde g=9,8m/s° Datos: T=1 G=9,8m/s° L=? T = 2.π.√L/g L = g.(T/2.π) ² L = 9,8.(1/2.π) ² = 0,248 m
  • 7. Ej:Un péndulo simple de 4m de longitud oscila con amplitud de 0.2m. a) Calcúlese la velocidad del péndulo en el punto más bajo de la trayectoria. b) Calcúlese la aceleración en los extremos de su trayectoria. a) A = 0,2 m. L = 4 m. vm = √k/m.A; el en péndulo simple se considera que: vm = √m.g/(L/m).A vm = √g/L.A vm = √9,8/4.0,2 vm = 0,313 m/s b) a máximo = k.A/m; aplicando para el péndulo se obtiene: a máximo = g.A/L a máximo = 9,8.0,2/4 = 0,49 m/s ²
  • 8. Ej:El péndulo de un reloj consiste en una barra delgada de acero, de coeficiente de dilatación lineal 1'27.10-5 ºC-1 , con una masa en su extremo inferior. El reloj va en hora a 20ºC. ¿ Atrasará o adelantará a 40ºC ? Si el reloj va en hora a 20ºC quiere decir que el período del péndulo es 1 segundo, por lo que su longitud será:. T = 2.p . ( L / g )1/2         L =  g . T2 /(4.p2) = 9'81 .1 /(4.p2) = 0'2485 m Si la temperatura aumenta, la barra se dilata, aumenta de longitud por lo que el período aumenta, tarda más en cada oscilación; el reloj se atrasa. La longitud a 40ºC será: L' = L.(1 + a . Dt) = 0'2485.(1 + 1'27.10-5 .(40 - 20) = 0,2485631 m y el nuevo período será: T' = 2.p . ( L' / g )1/2 = 2.p . ( 0,2485631 / 9'81)1/2 = 1,0001467 seg
  • 9. Ej:¿Cuál es la variación Δt del período de un péndulo simple cuando la aceleración de la gravedad g varía en Δg?. Indicación: El nuevo período t + Δt se obtiene sustituyendo g por g + Δg: t + Δt = 2.π.√L/(g + Δg) Para obtener una expresión aproximada, desarróllese el factor (g + Δg)-1/2 utilizando el teorema del binomio y considerando sólo los dos primeros términos: (g + Δg)-1/2 = g- 1/2 - ½ g -3/2Δg + ... Los otros términos contienen potencias más altas de Δg y son muy pequeños cuando Δg es pequeño. Δt = ? t + Δt = 2.π.√L/(g + Δg) (g + Δg)-1/2 = g1/2 - ½ g -3/2. Δg + ...
  • 11. Ej:Una masa de 100 kg. Suspendida de una alambre cuya longitud natural to es de 4m, lo alarga 0,004m. La sección transversal del alambre, que se puede suponer constante, es 0,1 cm ². a) Si se desplaza la carga hacia abajo una pequeña distancia y se abandona a sí misma, determínese a que frecuencia vibrará. b) Calcúlense el módulo de Young del alambre. m = 100 kg l0 = 4 m Δl = 0,004 m A = 0,1 cm ² a) k = m.g/l k = 100 kg.(9,8 m/s ²)/0,004 m k = 245000 kg.s-2 f = (1/2.π).√k/m f = (1/2.π).√245000/100 f = 7,87 Hz b) Y = F.l0 /A.Δl F = k.x F = 245000.0,004 F = 980 kg.m.s-2 Y = 980*4/0,004.10-5 Y = 98.1010
  • 12. Ej: Una fuerza de 30N estira 15 cm un resorte vertical. a) ¿Qué masa ha de suspenderse del resorte para que el sistema oscile con un período de (π /4) s. b) Si la amplitud del movimiento es de 5 cm, ¿dónde está el cuerpo y en que dirección se mueve (π /12) s después de haber sobrepasado la posición de equilibrio, dirigiéndose hacia abajo?. c) ¿Qué fuerza ejerce el resorte sobre el cuerpo cuando está 3 cm por debajo de la posición de equilibrio y moviéndose hacia arriba?. F = 30 N A = 15 cm = 0,15 m a) T = π.s/4 m = ? F = k.x k = F/x k = 30/0,15 = 200 N.m-1 T = 2.π.√m/k m = k.(T/2.π) ² m = 200.[(π /4)/(2.π)] ² = 3,12 kg b) A = 5 cm = 0,05 m x = ? t = π s/12 x = 5.cos.8t se tiene que: x = 5.cos (8.π /12) = 4,33 cm v = -40.sin.8t v = -20 cm/s; esto nos da a conocer que el cuerpo se está moviendo hacia el centro, desde abajo hacia arriba. c) Tenemos que cuando está 3 cm debajo de la posición de equilibrio la fuerza es: F = -k.x F = -6N; pero como se necesita la fuerza total que es: FT = Feq + F; entonces: FT = m.g + F FT = 3,125.9,8 + 6 FT = 36,6 N
  • 13. Ej:Un cuerpo de 100g de masa cuelga de un largo resorte helicoidal. Cuando se tira de él 10 cm por debajo de su posición de equilibrio y se abandona a sí mismo, oscila con un período de 2 s. a) ¿Cuál es su velocidad al pasar por la posición de equilibrio?. b) ¿Cuál es su aceleración cuando se encuentra 5 cm por encima de la posición de equilibrio?. c) Si se está moviendo hacia arriba. ¿Cuánto tiempo tarda en desplazarse desde un punto situado 5 cm por debajo de su posición de equilibrio a otro situado 5 cm por encima de ella?. d) ¿Cuánto se acortará el resorte si se quita el cuerpo?. a) m = 100 g x = 10 cm T = 2 s V máximo = ω .A ω = 2.π /T ω = π V máximo = π.10 V máximo = 31,4 cm/s b) a = ω ².x a = π ².5 a = 49,34 cm/s ²
  • 14. Ej:Un cuerpo de 5 kg de masa cuelga de un resorte y oscila con un período de 0,5s. ¿Cuánto se acortará el resorte al quitar el cuerpo?. m = 5 kg T = 0,5 s k = ω ².m k = (2.π /T) ².m k = (2.π /0,5) ².5 k = 789,56 x = m.g/k x = 5.9,8/789,56 x = 0,062 m c) X = A.cos ω .t cosω.t = x/A ω.t = arccos (x/A) t = arccos (x/A)/ ω t = arccos (5/10)/ π t = 0,333 s d) m.g = k.x x = m.g/k k = ω ².m k = π ².100 x = 100.980/(100.π ²) x = 99,3 cm Se acortaría los 9,33 cm, que para casos de cálculo se toma como si estuviéramos partiendo desde x = 0 que es la posición de equilibrio.
  • 15. Ej:Una masa m oscila en el extremo de un resorte vertical con una frecuencia de 1 Hz y una amplitud de 5 cm. Cuando se añade otra masa de 300 g, la frecuencia de oscilación es de 0,5 Hz. Determine:a) El valor de la masa m y de la constante recuperadora del resorte.b) El valor de la amplitud de oscilación en el segundo caso si la energía mecánica del sistema es la misma en ambos casos. Aplicando la ley de Newton y la ley de Hooke: m . a = - k .x                a = - (k/m). x  que es la ecuación de un M.A.S. de frecuencia angular:  w = (k/m)1/2  Cuando la masa m está oscilando sola:  w1 = (k/m)1/2 = 2. p.F1          (k/m)1/2 = 2. p .1 Cuando se añaden 0'3 kg :  w2 = (k/m2)1/2 = 2. p .F2            [k/(m + 0'3)]1/2 = 2. p . 0'5 Dividiendo ambas ecuaciones: [ (m + 0'3) / m ]1/2 = 2           m = 0'3 / 3 = 0'1 Kg = 100 gramos y    k = m . (2. p .1)2 = 0'1. 4. p2 = 3'95 N/m La Energía mecánica total de un oscilador armónico es proporcional al cuadrado  de la amplitud y de la constante del resorte. Si en ambos casos el muelle es el mismo y la energía es la misma, entonces la amplitud debe ser la misma. E = k . A2 / 2           A1 = A2 = 5 cm
  • 16. conclusión Después de haber realizado las mediciones y cálculos respectivos con respecto al péndulo simple y su relación con la longitud, ángulo y masa se ha llegado a las siguientes conclusiones: El período de un péndulo sólo depende de la longitud de la cuerda y el valor de la gravedad (la gravedad varia en los planetas y satélites naturales). Debido a que el período es independiente de la masa, podemos decir entonces que todos los péndulos simples de igual longitud en el mismo sitio oscilan con períodos iguales. A mayor longitud de cuerda mayor período.