SlideShare ist ein Scribd-Unternehmen logo
1 von 4
Downloaden Sie, um offline zu lesen
8.4 Seepage Calculation from a Flow Net 205
definition of flow and equipotential lines for flow in the permeable soil layer around the
row of sheet piles shown in Figure 8.1 (for kx ϭ kz ϭ k).
A combination of a number of flow lines and equipotential lines is called a flow net.
As mentioned in the introduction, flow nets are constructed for the calculation of ground-
water flow and the evaluation of heads in the media. To complete the graphic construc-
tion of a flow net, one must draw the flow and equipotential lines in such a way that
1. The equipotential lines intersect the flow lines at right angles.
2. The flow elements formed are approximate squares.
Figure 8.3b shows an example of a completed flow net. One more example of flow net
in isotropic permeable layer are given in Figure 8.4. In these figures, Nf is the number of flow
channels in the flow net, and Nd is the number of potential drops (defined later in this chapter).
Drawing a flow net takes several trials. While constructing the flow net, keep the
boundary conditions in mind. For the flow net shown in Figure 8.3b, the following four
boundary conditions apply:
Condition 1: The upstream and downstream surfaces of the permeable layer (lines
ab and de) are equipotential lines.
Condition 2: Because ab and de are equipotential lines, all the flow lines intersect
them at right angles.
Condition 3: The boundary of the impervious layer—that is, line fg—is a flow line,
and so is the surface of the impervious sheet pile, line acd.
Condition 4: The equipotential lines intersect acd and fg at right angles.
Toe filter
kx ϭ kz ϭ k
Nf ϭ 5
Nd ϭ 9
H1
H2
H
Figure 8.4 Flow net under a dam with toe filter
8.4 Seepage Calculation from a Flow Net
In any flow net, the strip between any two adjacent flow lines is called a flow channel.
Figure 8.5 shows a flow channel with the equipotential lines forming square elements. Let
h1, h2, h3, h4, . . ., hn be the piezometric levels corresponding to the equipotential lines. The
rate of seepage through the flow channel per unit length (perpendicular to the vertical sec-
tion through the permeable layer) can be calculated as follows. Because there is no flow
across the flow lines,
(8.17)¢q1 ϭ ¢q2 ϭ ¢q3 ϭ p ϭ ¢q
206 Chapter 8: Seepage
From Darcy’s law, the flow rate is equal to kiA. Thus, Eq. (8.17) can be written as
(8.18)
Eq. (8.18) shows that if the flow elements are drawn as approximate squares, the drop in
the piezometric level between any two adjacent equipotential lines is the same. This is
called the potential drop. Thus,
(8.19)
and
(8.20)
In Figure 8.3b, for any flow channel, H ϭ H1 Ϫ H2 and Nd ϭ 6.
If the number of flow channels in a flow net is equal to Nf , the total rate of flow
through all the channels per unit length can be given by
(8.21)
Although drawing square elements for a flow net is convenient, it is not always nec-
essary. Alternatively, one can draw a rectangular mesh for a flow channel, as shown in
Figure 8.6, provided that the width-to-length ratios for all the rectangular elements in the
flow net are the same. In this case, Eq. (8.18) for rate of flow through the channel can be
modified to
(8.22)
If b1/l1 ϭ b2/l2 ϭ b3/l3 n (i.e., the elements are not square), Eqs. (8.20) and
(8.21) can be modified to
(8.23)¢q ϭ kHa
n
Nd
b
ϭ p ϭ
¢q ϭ ka
h1 Ϫ h2
l1
bb1 ϭ ka
h2 Ϫ h3
l2
bb2 ϭ ka
h3 Ϫ h4
l3
bb3 ϭ p
q ϭ k
HNf
Nd
Nd ϭ number of potential drops
where H ϭ head difference between the upstream and downstream sides
¢q ϭ k
H
Nd
h1 Ϫ h2 ϭ h2 Ϫ h3 ϭ h3 Ϫ h4 ϭ p ϭ
H
Nd
¢q ϭ ka
h1 Ϫ h2
l1
bl1 ϭ ka
h2 Ϫ h3
l2
bl2 ϭ ka
h3 Ϫ h4
l3
bl3 ϭ p
h1
h2
h3 h4
⌬q
l3
l2
l1
⌬q
⌬q2
⌬q3
⌬q1
l3
l2
l1
Figure 8.5 Seepage through a flow
channel with square elements
8.4 Seepage Calculation from a Flow Net 207
h1
h2
h3 h4
⌬q
l3
l2
l1
⌬q
⌬q2
⌬q3
⌬q1
b3
b2
b1
Figure 8.6 Seepage through a flow
channel with rectangular elements
and
(8.24)
Figure 8.7 shows a flow net for seepage around a single row of sheet piles. Note that
flow channels 1 and 2 have square elements. Hence, the rate of flow through these two
channels can be obtained from Eq. (8.20):
However, flow channel 3 has rectangular elements. These elements have a width-to-length
ratio of about 0.38; hence, from Eq. (8.23)
¢q3 ϭ
k
Nd
H10.382
¢q1 ϩ ¢q2 ϭ
k
Nd
H ϩ
k
Nd
H ϭ
2kH
Nd
q ϭ kHa
Nf
Nd
bn
Impervious layer
Water level
Water table
5 m
Flow channel 1 ϭ 1
l
b
Flow channel 2 ϭ 1
l
b
Ground surface
Scale
Flow channel 3
l
b
1
0.38
Ϸ
5.6 m
2.2 m
a 4.1 m
d c
H
e
b
Figure 8.7 Flow net for seepage around a single row of sheet piles
So, the total rate of seepage can be given as
(8.25)q ϭ ¢q1 ϩ ¢q2 ϩ ¢q3 ϭ 2.38
kH
Nd
Example 8.2
A flow net for flow around a single row of sheet piles in a permeable soil layer is shown
in Figure 8.7. Given that kx ϭ kz ϭ k ϭ 5 ϫ 10Ϫ3
cm/sec, determine
a. How high (above the ground surface) the water will rise if piezometers are
placed at points a and b.
b. The total rate of seepage through the permeable layer per unit length
c. The approximate average hydraulic gradient at c.
Solution
Part a
From Figure 8.7, we have Nd ϭ 6, H1 ϭ 5.6 m, and H2 ϭ 2.2 m. So the head loss of
each potential drop is
At point a, we have gone through one potential drop. So the water in the piezome-
ter will rise to an elevation of
(5.6 Ϫ 0.567) ϭ 5.033 m above the ground surface
At point b, we have five potential drops. So the water in the piezometer will rise
to an elevation of
[5.6 Ϫ (5)(0.567)] ϭ 2.765 m above the ground surface
Part b
From Eq. (8.25),
Part c
The average hydraulic gradient at c can be given as
(Note: The average length of flow has been scaled.) ■
i ϭ
head loss
average length of flow between d and e
ϭ
¢H
¢L
ϭ
0.567m
4.1m
ϭ 0.138
ϭ 6.74 ϫ 10Ϫ5
m3
/sec/m
q ϭ 2.38
k1H1 Ϫ H2 2
Nd
ϭ
12.38215 ϫ 10Ϫ5
m/sec215.6 Ϫ 2.22
6
¢H ϭ
H1 Ϫ H2
Nd
ϭ
5.6 Ϫ 2.2
6
ϭ 0.567m
208 Chapter 8: Seepage

Weitere ähnliche Inhalte

Was ist angesagt?

Liquid limit & plastic limit test
Liquid limit & plastic limit testLiquid limit & plastic limit test
Liquid limit & plastic limit testRaz Azad
 
Settlement of shallow foundation
Settlement of shallow foundationSettlement of shallow foundation
Settlement of shallow foundationLatif Hyder Wadho
 
Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Muhammad Irfan
 
Geotechnical Engineering-I [Lec #27: Flow Nets]
Geotechnical Engineering-I [Lec #27: Flow Nets]Geotechnical Engineering-I [Lec #27: Flow Nets]
Geotechnical Engineering-I [Lec #27: Flow Nets]Muhammad Irfan
 
Permeability test.pdf
Permeability test.pdfPermeability test.pdf
Permeability test.pdfNatalie Ulza
 
DETERMINATION OF UNCONFINED COMPRESSIVE STRENGTH OF SOIL
DETERMINATION OF UNCONFINED COMPRESSIVE STRENGTH OF SOILDETERMINATION OF UNCONFINED COMPRESSIVE STRENGTH OF SOIL
DETERMINATION OF UNCONFINED COMPRESSIVE STRENGTH OF SOILJaptyesh Singh
 
Consolidation settlement
Consolidation settlementConsolidation settlement
Consolidation settlementParth Joshi
 
TERZAGHI’S BEARING CAPACITY THEORY
TERZAGHI’S BEARING CAPACITY THEORYTERZAGHI’S BEARING CAPACITY THEORY
TERZAGHI’S BEARING CAPACITY THEORYSANJEEV Wazir
 
Laboratory soil compaction test
Laboratory soil compaction testLaboratory soil compaction test
Laboratory soil compaction testAtul Hajong
 
Unconfined compression test
Unconfined compression testUnconfined compression test
Unconfined compression testNatalie Ulza
 
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]Muhammad Irfan
 
Geotechnical Engineering-I [Lec #21: Consolidation Problems]
Geotechnical Engineering-I [Lec #21: Consolidation Problems]Geotechnical Engineering-I [Lec #21: Consolidation Problems]
Geotechnical Engineering-I [Lec #21: Consolidation Problems]Muhammad Irfan
 
Class 5 Permeability Test ( Geotechnical Engineering )
Class 5   Permeability Test ( Geotechnical Engineering )Class 5   Permeability Test ( Geotechnical Engineering )
Class 5 Permeability Test ( Geotechnical Engineering )Hossam Shafiq I
 

Was ist angesagt? (20)

Atterberg
AtterbergAtterberg
Atterberg
 
Liquid limit & plastic limit test
Liquid limit & plastic limit testLiquid limit & plastic limit test
Liquid limit & plastic limit test
 
Settlement of shallow foundation
Settlement of shallow foundationSettlement of shallow foundation
Settlement of shallow foundation
 
Geotech2.pptx
Geotech2.pptxGeotech2.pptx
Geotech2.pptx
 
Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]
 
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
 
Geotechnical Engineering-I [Lec #27: Flow Nets]
Geotechnical Engineering-I [Lec #27: Flow Nets]Geotechnical Engineering-I [Lec #27: Flow Nets]
Geotechnical Engineering-I [Lec #27: Flow Nets]
 
Permeability test.pdf
Permeability test.pdfPermeability test.pdf
Permeability test.pdf
 
Chapter 11
Chapter 11Chapter 11
Chapter 11
 
DETERMINATION OF UNCONFINED COMPRESSIVE STRENGTH OF SOIL
DETERMINATION OF UNCONFINED COMPRESSIVE STRENGTH OF SOILDETERMINATION OF UNCONFINED COMPRESSIVE STRENGTH OF SOIL
DETERMINATION OF UNCONFINED COMPRESSIVE STRENGTH OF SOIL
 
Consolidation settlement
Consolidation settlementConsolidation settlement
Consolidation settlement
 
Consolidation
ConsolidationConsolidation
Consolidation
 
TERZAGHI’S BEARING CAPACITY THEORY
TERZAGHI’S BEARING CAPACITY THEORYTERZAGHI’S BEARING CAPACITY THEORY
TERZAGHI’S BEARING CAPACITY THEORY
 
Laboratory soil compaction test
Laboratory soil compaction testLaboratory soil compaction test
Laboratory soil compaction test
 
Unconfined compression test
Unconfined compression testUnconfined compression test
Unconfined compression test
 
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
 
Direct Shear Test
Direct Shear TestDirect Shear Test
Direct Shear Test
 
Geotechnical Engineering-I [Lec #21: Consolidation Problems]
Geotechnical Engineering-I [Lec #21: Consolidation Problems]Geotechnical Engineering-I [Lec #21: Consolidation Problems]
Geotechnical Engineering-I [Lec #21: Consolidation Problems]
 
4 permeability and seepage
4  permeability and seepage4  permeability and seepage
4 permeability and seepage
 
Class 5 Permeability Test ( Geotechnical Engineering )
Class 5   Permeability Test ( Geotechnical Engineering )Class 5   Permeability Test ( Geotechnical Engineering )
Class 5 Permeability Test ( Geotechnical Engineering )
 

Ähnlich wie Geotechnical Engineering-I [Lec #27A: Flow Calculation From Flow Nets]

SoilMech_Ch10_Flow_Nets-1.pdf
SoilMech_Ch10_Flow_Nets-1.pdfSoilMech_Ch10_Flow_Nets-1.pdf
SoilMech_Ch10_Flow_Nets-1.pdftonyfrank17
 
17. seepage through anisotropic soil (1)
17. seepage through anisotropic soil (1)17. seepage through anisotropic soil (1)
17. seepage through anisotropic soil (1)KingshukMukherjee10
 
17. seepage through anisotropic soil
17. seepage through anisotropic soil17. seepage through anisotropic soil
17. seepage through anisotropic soilKingshukMukherjee10
 
CH2 Hydraulics and hydrology of HP.pptx
CH2 Hydraulics and hydrology of HP.pptxCH2 Hydraulics and hydrology of HP.pptx
CH2 Hydraulics and hydrology of HP.pptxDawit Girma
 
Drainage Engineering (Flow Nets)
Drainage Engineering (Flow Nets)Drainage Engineering (Flow Nets)
Drainage Engineering (Flow Nets)Latif Hyder Wadho
 
Calculation of Fluid Dynamic for Wind Flow around Reinforced Concrete Walls
Calculation of Fluid Dynamic for Wind Flow around Reinforced Concrete WallsCalculation of Fluid Dynamic for Wind Flow around Reinforced Concrete Walls
Calculation of Fluid Dynamic for Wind Flow around Reinforced Concrete WallsIJERA Editor
 
Seepage through an earth dam
Seepage through an earth damSeepage through an earth dam
Seepage through an earth damMan Xp
 
23Network FlowsAuthor Arthur M. Hobbs, Department of .docx
23Network FlowsAuthor Arthur M. Hobbs, Department of .docx23Network FlowsAuthor Arthur M. Hobbs, Department of .docx
23Network FlowsAuthor Arthur M. Hobbs, Department of .docxeugeniadean34240
 
Flow around a bent duct theory
Flow around a bent duct theoryFlow around a bent duct theory
Flow around a bent duct theoryGaurav Vaibhav
 
Cofferdam design-optimization
Cofferdam design-optimizationCofferdam design-optimization
Cofferdam design-optimizationS K SHUKLA
 
soil mechanics and its behaviour andPermeability in Stratified Soil Layers
soil mechanics and its behaviour andPermeability in Stratified Soil Layerssoil mechanics and its behaviour andPermeability in Stratified Soil Layers
soil mechanics and its behaviour andPermeability in Stratified Soil LayersFanastic
 
Flow net in anisotropic soils
Flow net in anisotropic soilsFlow net in anisotropic soils
Flow net in anisotropic soilsMadhuReddy163523
 
Experiment10
Experiment10Experiment10
Experiment10john
 
F141097 f64ac4df8b2e7519e726966d9
F141097 f64ac4df8b2e7519e726966d9F141097 f64ac4df8b2e7519e726966d9
F141097 f64ac4df8b2e7519e726966d9Lanja Modda
 
Computation of Hydrodynamic Characteristics of Ships using CFD
Computation of Hydrodynamic Characteristics of Ships using CFDComputation of Hydrodynamic Characteristics of Ships using CFD
Computation of Hydrodynamic Characteristics of Ships using CFDNabila Naz
 

Ähnlich wie Geotechnical Engineering-I [Lec #27A: Flow Calculation From Flow Nets] (20)

SoilMech_Ch10_Flow_Nets-1.pdf
SoilMech_Ch10_Flow_Nets-1.pdfSoilMech_Ch10_Flow_Nets-1.pdf
SoilMech_Ch10_Flow_Nets-1.pdf
 
17. seepage through anisotropic soil (1)
17. seepage through anisotropic soil (1)17. seepage through anisotropic soil (1)
17. seepage through anisotropic soil (1)
 
17. seepage through anisotropic soil
17. seepage through anisotropic soil17. seepage through anisotropic soil
17. seepage through anisotropic soil
 
CH2 Hydraulics and hydrology of HP.pptx
CH2 Hydraulics and hydrology of HP.pptxCH2 Hydraulics and hydrology of HP.pptx
CH2 Hydraulics and hydrology of HP.pptx
 
Unit4 kvv
Unit4 kvvUnit4 kvv
Unit4 kvv
 
Flow in pipes
Flow in pipesFlow in pipes
Flow in pipes
 
Drainage Engineering (Flow Nets)
Drainage Engineering (Flow Nets)Drainage Engineering (Flow Nets)
Drainage Engineering (Flow Nets)
 
Calculation of Fluid Dynamic for Wind Flow around Reinforced Concrete Walls
Calculation of Fluid Dynamic for Wind Flow around Reinforced Concrete WallsCalculation of Fluid Dynamic for Wind Flow around Reinforced Concrete Walls
Calculation of Fluid Dynamic for Wind Flow around Reinforced Concrete Walls
 
Seepage through an earth dam
Seepage through an earth damSeepage through an earth dam
Seepage through an earth dam
 
23Network FlowsAuthor Arthur M. Hobbs, Department of .docx
23Network FlowsAuthor Arthur M. Hobbs, Department of .docx23Network FlowsAuthor Arthur M. Hobbs, Department of .docx
23Network FlowsAuthor Arthur M. Hobbs, Department of .docx
 
M4l02
M4l02M4l02
M4l02
 
Flow around a bent duct theory
Flow around a bent duct theoryFlow around a bent duct theory
Flow around a bent duct theory
 
Ch5_Flow.pdf
Ch5_Flow.pdfCh5_Flow.pdf
Ch5_Flow.pdf
 
Cofferdam design-optimization
Cofferdam design-optimizationCofferdam design-optimization
Cofferdam design-optimization
 
soil mechanics and its behaviour andPermeability in Stratified Soil Layers
soil mechanics and its behaviour andPermeability in Stratified Soil Layerssoil mechanics and its behaviour andPermeability in Stratified Soil Layers
soil mechanics and its behaviour andPermeability in Stratified Soil Layers
 
Flow net in anisotropic soils
Flow net in anisotropic soilsFlow net in anisotropic soils
Flow net in anisotropic soils
 
Ch 3.pdf
Ch 3.pdfCh 3.pdf
Ch 3.pdf
 
Experiment10
Experiment10Experiment10
Experiment10
 
F141097 f64ac4df8b2e7519e726966d9
F141097 f64ac4df8b2e7519e726966d9F141097 f64ac4df8b2e7519e726966d9
F141097 f64ac4df8b2e7519e726966d9
 
Computation of Hydrodynamic Characteristics of Ships using CFD
Computation of Hydrodynamic Characteristics of Ships using CFDComputation of Hydrodynamic Characteristics of Ships using CFD
Computation of Hydrodynamic Characteristics of Ships using CFD
 

Mehr von Muhammad Irfan

Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)Muhammad Irfan
 
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)Muhammad Irfan
 
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]Muhammad Irfan
 

Mehr von Muhammad Irfan (20)

Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
 
Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]
 
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
 
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
 
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
 
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
 
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
 
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
 
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
 
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
 
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
 
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
 
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
 
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
 
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
 
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
 
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
 
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
 
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
 
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
 

Kürzlich hochgeladen

Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringmulugeta48
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxfenichawla
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfRagavanV2
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...SUHANI PANDEY
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdfKamal Acharya
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueBhangaleSonal
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Standamitlee9823
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 

Kürzlich hochgeladen (20)

Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 

Geotechnical Engineering-I [Lec #27A: Flow Calculation From Flow Nets]

  • 1. 8.4 Seepage Calculation from a Flow Net 205 definition of flow and equipotential lines for flow in the permeable soil layer around the row of sheet piles shown in Figure 8.1 (for kx ϭ kz ϭ k). A combination of a number of flow lines and equipotential lines is called a flow net. As mentioned in the introduction, flow nets are constructed for the calculation of ground- water flow and the evaluation of heads in the media. To complete the graphic construc- tion of a flow net, one must draw the flow and equipotential lines in such a way that 1. The equipotential lines intersect the flow lines at right angles. 2. The flow elements formed are approximate squares. Figure 8.3b shows an example of a completed flow net. One more example of flow net in isotropic permeable layer are given in Figure 8.4. In these figures, Nf is the number of flow channels in the flow net, and Nd is the number of potential drops (defined later in this chapter). Drawing a flow net takes several trials. While constructing the flow net, keep the boundary conditions in mind. For the flow net shown in Figure 8.3b, the following four boundary conditions apply: Condition 1: The upstream and downstream surfaces of the permeable layer (lines ab and de) are equipotential lines. Condition 2: Because ab and de are equipotential lines, all the flow lines intersect them at right angles. Condition 3: The boundary of the impervious layer—that is, line fg—is a flow line, and so is the surface of the impervious sheet pile, line acd. Condition 4: The equipotential lines intersect acd and fg at right angles. Toe filter kx ϭ kz ϭ k Nf ϭ 5 Nd ϭ 9 H1 H2 H Figure 8.4 Flow net under a dam with toe filter 8.4 Seepage Calculation from a Flow Net In any flow net, the strip between any two adjacent flow lines is called a flow channel. Figure 8.5 shows a flow channel with the equipotential lines forming square elements. Let h1, h2, h3, h4, . . ., hn be the piezometric levels corresponding to the equipotential lines. The rate of seepage through the flow channel per unit length (perpendicular to the vertical sec- tion through the permeable layer) can be calculated as follows. Because there is no flow across the flow lines, (8.17)¢q1 ϭ ¢q2 ϭ ¢q3 ϭ p ϭ ¢q
  • 2. 206 Chapter 8: Seepage From Darcy’s law, the flow rate is equal to kiA. Thus, Eq. (8.17) can be written as (8.18) Eq. (8.18) shows that if the flow elements are drawn as approximate squares, the drop in the piezometric level between any two adjacent equipotential lines is the same. This is called the potential drop. Thus, (8.19) and (8.20) In Figure 8.3b, for any flow channel, H ϭ H1 Ϫ H2 and Nd ϭ 6. If the number of flow channels in a flow net is equal to Nf , the total rate of flow through all the channels per unit length can be given by (8.21) Although drawing square elements for a flow net is convenient, it is not always nec- essary. Alternatively, one can draw a rectangular mesh for a flow channel, as shown in Figure 8.6, provided that the width-to-length ratios for all the rectangular elements in the flow net are the same. In this case, Eq. (8.18) for rate of flow through the channel can be modified to (8.22) If b1/l1 ϭ b2/l2 ϭ b3/l3 n (i.e., the elements are not square), Eqs. (8.20) and (8.21) can be modified to (8.23)¢q ϭ kHa n Nd b ϭ p ϭ ¢q ϭ ka h1 Ϫ h2 l1 bb1 ϭ ka h2 Ϫ h3 l2 bb2 ϭ ka h3 Ϫ h4 l3 bb3 ϭ p q ϭ k HNf Nd Nd ϭ number of potential drops where H ϭ head difference between the upstream and downstream sides ¢q ϭ k H Nd h1 Ϫ h2 ϭ h2 Ϫ h3 ϭ h3 Ϫ h4 ϭ p ϭ H Nd ¢q ϭ ka h1 Ϫ h2 l1 bl1 ϭ ka h2 Ϫ h3 l2 bl2 ϭ ka h3 Ϫ h4 l3 bl3 ϭ p h1 h2 h3 h4 ⌬q l3 l2 l1 ⌬q ⌬q2 ⌬q3 ⌬q1 l3 l2 l1 Figure 8.5 Seepage through a flow channel with square elements
  • 3. 8.4 Seepage Calculation from a Flow Net 207 h1 h2 h3 h4 ⌬q l3 l2 l1 ⌬q ⌬q2 ⌬q3 ⌬q1 b3 b2 b1 Figure 8.6 Seepage through a flow channel with rectangular elements and (8.24) Figure 8.7 shows a flow net for seepage around a single row of sheet piles. Note that flow channels 1 and 2 have square elements. Hence, the rate of flow through these two channels can be obtained from Eq. (8.20): However, flow channel 3 has rectangular elements. These elements have a width-to-length ratio of about 0.38; hence, from Eq. (8.23) ¢q3 ϭ k Nd H10.382 ¢q1 ϩ ¢q2 ϭ k Nd H ϩ k Nd H ϭ 2kH Nd q ϭ kHa Nf Nd bn Impervious layer Water level Water table 5 m Flow channel 1 ϭ 1 l b Flow channel 2 ϭ 1 l b Ground surface Scale Flow channel 3 l b 1 0.38 Ϸ 5.6 m 2.2 m a 4.1 m d c H e b Figure 8.7 Flow net for seepage around a single row of sheet piles
  • 4. So, the total rate of seepage can be given as (8.25)q ϭ ¢q1 ϩ ¢q2 ϩ ¢q3 ϭ 2.38 kH Nd Example 8.2 A flow net for flow around a single row of sheet piles in a permeable soil layer is shown in Figure 8.7. Given that kx ϭ kz ϭ k ϭ 5 ϫ 10Ϫ3 cm/sec, determine a. How high (above the ground surface) the water will rise if piezometers are placed at points a and b. b. The total rate of seepage through the permeable layer per unit length c. The approximate average hydraulic gradient at c. Solution Part a From Figure 8.7, we have Nd ϭ 6, H1 ϭ 5.6 m, and H2 ϭ 2.2 m. So the head loss of each potential drop is At point a, we have gone through one potential drop. So the water in the piezome- ter will rise to an elevation of (5.6 Ϫ 0.567) ϭ 5.033 m above the ground surface At point b, we have five potential drops. So the water in the piezometer will rise to an elevation of [5.6 Ϫ (5)(0.567)] ϭ 2.765 m above the ground surface Part b From Eq. (8.25), Part c The average hydraulic gradient at c can be given as (Note: The average length of flow has been scaled.) ■ i ϭ head loss average length of flow between d and e ϭ ¢H ¢L ϭ 0.567m 4.1m ϭ 0.138 ϭ 6.74 ϫ 10Ϫ5 m3 /sec/m q ϭ 2.38 k1H1 Ϫ H2 2 Nd ϭ 12.38215 ϫ 10Ϫ5 m/sec215.6 Ϫ 2.22 6 ¢H ϭ H1 Ϫ H2 Nd ϭ 5.6 Ϫ 2.2 6 ϭ 0.567m 208 Chapter 8: Seepage