SlideShare ist ein Scribd-Unternehmen logo
1 von 33
Determinação da razão entre a carga
  elementar e a massa eletrônica


                    BRENNO GUSTAVO BARBOSA
                   THIAGO SCHIAVO MOSQUEIRO


                         RELATÓRIO
                         14/03/2008
História da descoberta

    Em redor de 1890, a pesquisa

                                     Exemplo atual: o raio que produz
    sobre raios, como feixes de
                                      imagens (em monitores e televisões)
    luz ou partículas, estava em
                                      é um feixe de partículas... ou ondas?
    moda, com a descoberta do
    raio X e da radiação natural.    J. J. Thomson e Walter Kaufmann
                                      interessaram-se por estes estudos e
                                      trabalharam em experimentos, por
                                      volta de 1897, de deflexão de tais
                                      raios.

                                     Seus resultados foram importantes
                                      para determinar a existência de uma
                                      partícula fundamental: o elétron.

                                     A razão e/m (carga elementar e
                                      massa do elétron)       foi,   assim,
                                      determinada.
História da descoberta

    Houve,     no    entanto, três

                                            Primeiro: Thompson observou que
    experimentos mais importantes
                                             não há como separar as cargas
    que demarcaram claramente o              negativas dos raios catódicos sem
    raciocínio de Thompson.                  destrui-los.

                                            Segundo: Thompson observou (de
                                             forma conclusiva e adversa aos
                                             experimentos anteriores aos dele)
                                             que o raio catódico é defletido por
                                             um campo elétrico, e sua deflexão
    Note que com estes experimentos


                                             comporta-se como se o raio
    não é possível afirmar a existência
                                             apresentasse uma carga negativa.
    do elétron, bem como obter o valor
    numérico para a carga elementar ou
                                            Terceiro: Thompson determinou
    a massa eletrônica. Mas Thompson         qual deveria ser a razão entre a
    pôde afirmar que ou a carga destas       carga dessas partículas e suas
    partículas é excessivamente alta, ou     massas.
    sua massa é excessivamente baixa.
Uma proposta teórica
Proposta

    Propomos o estudo de uma partícula,


    carregada com a carga elementar e e
                                            Podemos     começar com
    com massa m, movendo-se em um
                                             parte da força de Lorentz.
    plano perpendicular à direção de um
                                                        
    campo      magnético     B  uniforme
                                                 F     q0v B
    existente em tal região.
Proposta

    Propomos o estudo de uma partícula,


    carregada com a carga elementar e e
                                               Podemos         começar com
    com massa m, movendo-se em um
                                                    parte da força de Lorentz.
    plano perpendicular à direção de um
                                                               
    campo      magnético     B  uniforme
                                                        F     q0v B
    existente em tal região.


                                                                v2
                                        e    2V
                     2
      e         2Vr                                           m        evB
                                            B2 R2               R
                                        m
          0,7162 0 N 2 I 2 R 2
                  2
      m


                                                                        mv 2
                                              0 NI            U   eV
                                    B   0,716
                                                                         2
                                               r
Proposta

    Propomos o estudo de uma partícula,


    carregada com a carga elementar e e
                                                Podemos         começar com
    com massa m, movendo-se em um
                                                     parte da força de Lorentz.
    plano perpendicular à direção de um
                                                                
    campo      magnético     B  uniforme
                                                         F     q0v B
    existente em tal região.


                                                                 v2
                                         e    2V
                      2
      e          2Vr                                           m        evB
                                             B2 R2               R
                                         m
           0,7162 0 N 2 I 2 R 2
                   2
      m
    Temos assim a razão entre
    a carga elementar e a
                                                                         mv 2
                                               0 NI
    massa da partícula (e/m).
                                                               U   eV
                                     B   0,716
                                                                          2
                                                r
Porém, como poderíamos medir
  o raio da órbita eletrônica?

  NESTA NOSSA PROPOSTA, DEVERÍAMOS SER
     CAPAZES DE MEDIR O RAIO ORBITAL
   ELETRÔNICO, DESCRITO AO FIXARMOS O
   CAMPO MAGNÉTICO. PORÉM, NÃO É UMA
  TAREFA SIMPLES OBSERVAR A TRAJETÓRIA
             DE UM ELÉTRON.
Observando a trajetória eletrônica


                          Se o elétron estiver em um
 O elétron aproxima-
                           meio, como uma emulsão
 se do átomo. Ao
                           de hidrogênio, em que
 passar, o excita.         pode ionizar os átomos
                           em seu redor, então
                           observaremos luz sendo
                           emitida dos pontos pelos
                           quais o elétron passou em
                           algum momento.
Observando a trajetória eletrônica


                              Se o elétron estiver em um
 Após  sua passagem,
                               meio, como uma emulsão
 há a emissão de ondas
                               de hidrogênio, em que
 eletromagnéticas.             pode ionizar os átomos
                               em seu redor, então
                               observaremos luz sendo
                               emitida dos pontos pelos
                               quais o elétron passou em
                               algum momento.
Observando a trajetória eletrônica
 E assim ocorrerá em muitos dos átomos por que os elétrons
  passarem. Assim, temos uma idéia do percurso eletrônico. Como
  as dimensões atômicas são muito pequenas, enquanto que o raio,
  para os parâmetros propostos, deve ser da ordem de metros, o
  caminho que veremos com a luz dos átomos ionizados será,
  praticamente, contínuo.
Um experimento para a teoria
Descrição do experimento

 Elétrons,   oriundos de um filamento
  aquecido, são acelerados e colimados,
  formando um estreito feixe. Os elétrons
  com energia cinética suficientemente alta
  colidem com os átomos de hidrogênio,
  mantidos à baixa pressão, presentes no
  tubo (b). Uma fração desses átomos será
  ionizada. Este rastro de átomos
  ionizados denuncia a trajetória do
  feixe, influenciado ainda pela orientação
  do tubo com respeito às bobinas de
  Helmholtz (a).
 Precisamos medir, além das grandezas
  referentes ao campo magnético, o raio da
  trajetória helicoidal do elétron.
Descrição do experimento

                                                    Começamos com os seguintes ajustes
                                                

                                                    usando a fonte (d):
                                                        Voltagem de aceleração: de 150V a
                                                        300V.
                                                        Aquecimento do filamento: 6,3V, 1A.
                                                    Esperaremos ~1min para o aquecimento
                                                

                                                    apropriado do filamento.
                                                    Após estes procedimentos, acionamos as
                                                

                                                    fontes para o tubo, focalizando o rastro do
                                                    feixe eletrônico.
                                                    Após isto, realizamos algumas medidas
                                                

                                                    para o raio orbital em função da tensão
                                                    de aceleração.
                                                    Para finalizar, realizamos medidas do raio
                                                

                                                    orbital como função da corrente que
                                                    percorre a espira.
                   Corrente para controlarmos
Potencial de
                   a intensidade do campo
aceleração.
                   magnético.
Os experimentos...

 Foi possível determinar, partindo de uma situação hipotética, a razão
  entre a carga elementar e a massa eletrônica (em). A partir do
  experimento proposto e da dedução realizada, vamos inspecionar
  algumas características entre a dedução e a ocorrência. Dividimos
  nossa investigação em duas fases. Esperamos, naturalmente, que seus
  resultados coincidam.

     Parte A: obter a razão em a partir do
     coeficiente angular da melhor reta ajustada
     ao gráfico que relaciona o raio orbital com o
     potencial de aceleração (R x V).
     Parte B: obter a razão em a partir do
     coeficiente angular da melhor reta ajustada
     ao gráfico que relaciona o raio orbital com a
     corrente que alimenta as espiras (R x I).
Os experimentos modificados

 Consideramos que a montagem
  proposta não resultaria em
  dados decisivos (precisos).
 Propomos      então      algumas
  mudanças na montagem da
  prática.
Os experimentos modificados

 Consideramos que a montagem
  proposta não resultaria em
  dados decisivos (precisos).
 Propomos       então     algumas
  mudanças na montagem da
  prática.
 Sugerimos a inclusão de um
  trilho que sustente algum
  aparelho para observação que,
  garantidamente,              nos
  proporcione um ângulo reto com
  respeito à régua.
Os experimentos modificados

 Consideramos que a montagem
  proposta não resultaria em
  dados decisivos (precisos).
 Propomos       então     algumas
  mudanças na montagem da
  prática.
 Sugerimos a inclusão de um
  trilho que sustente algum
  aparelho para observação que,
  garantidamente,              nos
  proporcione um ângulo reto com
  respeito à régua.
 Modificamos a ligação referente
  ao voltímetro para medição
  correta da tensão de aceleração
  dos elétrons.
Determinação da razão RV
Determinação da relação RV


                     Primeiramente, fixamos
                      o    campo      magnético
                      atuante sobre a ampola:
                       I = (1.500 ± 0.001)A

                     Feito     isso,    fomos
                      lentamente variando a
                      tensão de aceleração,
                      partindo de 150V a
                      300V. Lembrando a
                      equação deduzida para a
                      razão em, sabemos que
                      um gráfico R(V) deveria
                      apresentar-se como uma
                      parábola.
Dados colhidos para RV
 Tensão      Raio orbital   Quadrado   Erro         em
(V, ±0.1)    (m, ±0.001)      (m²)     (m²)        (Ckg)
  160           0.041        0.0017    0.0004   (1.8 ± .6)10¹¹
  170           0.042        0.0018    0.0004   (1.7 ± .5)10¹¹
  180           0.043        0.0018    0.0004   (1.8 ± .5)10¹¹
  190           0.045        0.0020    0.0005   (1.5 ± .3)10¹¹
  200           0.046        0.0021    0.0005   (1.6 ± .4)10¹¹
  210           0.047        0.0022    0.0005   (1.7 ± .4)10¹¹
  220           0.048        0.0023    0.0005   (1.8 ± .4)10¹¹
  230           0.049        0.0024    0.0005   (1.8 ± .3)10¹¹
  250           0.050        0.0025    0.0005   (1.6 ± .3)10¹¹
  260           0.051        0.0026    0.0005   (1.7 ± .3)10¹¹
  270           0.052        0.0027    0.0005   (1.7 ± .3)10¹¹
  280           0.053        0.0028    0.0005   (1.8 ± .3)10¹¹
  290           0.054        0.0029    0.0005   (1.7 ± .3)10¹¹
  300           0.055        0.0030    0.0006   (1.8 ± .3)10¹¹
Regressão linear




 Bastou então utilizar uma regressão linear para obter
 o coeficiente angular da melhor reta:
                    A = (1.041 ± 0.0003)e-5
                
Determinação da razão...

 Com este coeficiente angular em mãos, é fácil
 determinar a razão em. Usando a equação
 deduzida, sabemos que
                               2r 2
           R2                              V   AV .
                                       e
                           2    2     22
                   0,716            NI
                                0
                                       m
 Realizando assim os cálculos, chegamos ao
 seguinte valor.
             (1.759± 0.003)e(11) Ckg.
Determinação o coeficiente IR
Determinação do coeficiente IR


                    Primeiramente,      fixamos   a
                     aceleração com que os elétrons
                     entram na ampola:
                      V = (200 ± 0.1)V

                    Com isso, variamos a corrente,
                     partindo de 1.300 A até 1.900A,
                     limitados tanto pela precisão
                     do instrumento, como pelas
                     características do material da
                     bobina. Para correntes muito
                     baixas, a órbita sai da ampola,
                     tornando a sua medição
                     impraticável. Para correntes
                     altas, há a possibilidade de
                     danificarmos as espiras.
Dados colhidos para IR



 Corrente     Raio orbital   Quadrado   Erro         em
(A, ±0.001)   (m, ±0.001)      (m²)     (m²)        (Ckg)
   1.300         0.053        0.0028    0.0005   (1.8±0.4)10¹¹
   1.400         0.050        0.0025    0.0005   (1.8±0.4)10¹¹
   1.500         0.046        0.0021    0.0005   (1.6±0.3)10¹¹
   1.600         0.043        0.0018    0.0004   (1.6±0.3)10¹¹
   1.700         0.040        0.0016    0.0004   (1.6±0.3)10¹¹
   1.800         0.038        0.0014    0.0004   (1.6±0.3)10¹¹
   1.900         0.036        0.0013    0.0004   (1.6±0.3)10¹¹
Determinação da razão...

 De forma semelhante, fomos capazes de obter o
 coeficiente angular da melhor reta que reúne os
 pontos medidos.
               (0.0044, 0.0001) Ckg.

 Realizando assim os cálculos, chegamos ao
 seguinte valor.

                (1.9± 0.4)e(11) Ckg.
Conclusões e palavras finais...
Comparação dos resultados.
 Visivelmente,   os resultados do
                                         O experimento B apresentou as
  experimento A foram mais precisos e
                                          seguintes deficiências:
  exatos. O experimento B apresentou-
  se, além de mais impreciso, mais
                                            impossibilidade de coleção de
  inexato.
                                             maior quantidade de pontos.
 Podemos relacionar alguns motivos à
  essa falha. Muitos dos fatores
                                            o erro relacionado à medida da
  propostos dependem do campo
                                             corrente fornece ao resultado
  magnético aplicado à ampola. O
                                             final um erro relacionado ao
  experimento A também dependia
                                             inverso do quadrado de uma
  deste campo. No entanto, o
                                             medida.
  experimento B depende unicamente
  da variação deste parâmetro. Já o
                                            o campo magnético na região
  experimento A está ligado a apenas
                                             em que a ampola está
  um valor e direção de campo
  magnético, sendo assim o erro              localizada não pode ser
  aplicado seria apenas um. O erro           considerado uniforme para os
  relacionado ao experimento B deste         valores de corrente utilizados.
  campo é totalmente imprevisível.
Conclusão

 A relação entre carga elementar e
  massa   eletrônica   foi   medida
  como

    (1.759± 0.003)10¹¹ Ckg.

 O resultado esperado para esta
  razão é fornecido pelo CODATA,
  medido em 2006, como

    1.758820150(44)10¹¹ C/kg

 Consideramos     um resultado
  satisfatório e uma contribuição
  importante aos conhecimentos
  do laboratório.
Bibliografia e dados.

 Bibliografia:
                                           Experimento   realizado   em
      J. R. Reitz, F. J. Milford, R. W.
  
                                            07/03/2008.
      Christy,      Foundaticns      of
      Eletromagnetic            Theory,    Todos os gráficos foram
      Addilson-Wesley, New York 3th
                                            gerados e manipulados com a
      ed. 1980 (Biblioteca IFSC 530.141
                                            ajuda do software livre
      R 379f3).
                                            gnuplot.
      T. B. Brown, The Lloyd Willian
  
      Taylor Manual of Advanced            Cálculos   realizados    com
      Undergraduate Experiments in          scripts gerados, por nós
      Physics, Addilson-Wesley, New
                                            mesmos,     na     linguagem
      York 1959.
                                            python, já preparados para
      M. R. Wehr & J. A. Richards, Jr.
  
                                            manipular corretamente erros
      Physics of the Atom, Addilson-
                                            e arredondamentos.
      Wesley, New York, 1960.

Weitere ähnliche Inhalte

Was ist angesagt?

Aula de EDO - Lei do Resfriamento de Newton
Aula de EDO - Lei do Resfriamento de NewtonAula de EDO - Lei do Resfriamento de Newton
Aula de EDO - Lei do Resfriamento de NewtonCristiane Petry Lima
 
Relatório de Física - Atuação Eletrostática
Relatório de Física - Atuação EletrostáticaRelatório de Física - Atuação Eletrostática
Relatório de Física - Atuação EletrostáticaVictor Said
 
Aula 16: Exercícios
Aula 16: ExercíciosAula 16: Exercícios
Aula 16: ExercíciosAdriano Silva
 
Aula 11: A barreira de potencial
Aula 11: A barreira de potencialAula 11: A barreira de potencial
Aula 11: A barreira de potencialAdriano Silva
 
Aula 14: O poço de potencial infinito
Aula 14: O poço de potencial infinitoAula 14: O poço de potencial infinito
Aula 14: O poço de potencial infinitoAdriano Silva
 
Relatório de carga e descarga de capacitores
Relatório de carga e descarga de capacitoresRelatório de carga e descarga de capacitores
Relatório de carga e descarga de capacitoresAnderson Totimura
 
Potencial Elétrico - Conteúdo vinculado ao blog http://fisicanoenem.blog...
Potencial Elétrico - Conteúdo vinculado ao blog      http://fisicanoenem.blog...Potencial Elétrico - Conteúdo vinculado ao blog      http://fisicanoenem.blog...
Potencial Elétrico - Conteúdo vinculado ao blog http://fisicanoenem.blog...Rodrigo Penna
 
Questoes resolvidas de termodinmica
Questoes resolvidas de termodinmicaQuestoes resolvidas de termodinmica
Questoes resolvidas de termodinmicasjfnet
 
Aula 19: O operador momento angular
Aula 19: O operador momento angularAula 19: O operador momento angular
Aula 19: O operador momento angularAdriano Silva
 
Demonstração da equação de schrodinger
Demonstração da equação de schrodingerDemonstração da equação de schrodinger
Demonstração da equação de schrodingerRayane Sodré
 
Aula 4 - Modelo Atômico de Bohr
Aula 4 - Modelo Atômico de BohrAula 4 - Modelo Atômico de Bohr
Aula 4 - Modelo Atômico de BohrNewton Silva
 
Física: Indução Magnética - Faraday
Física: Indução Magnética -  FaradayFísica: Indução Magnética -  Faraday
Física: Indução Magnética - FaradayLoiane Groner
 
Termodinâmica resolvido
Termodinâmica resolvidoTermodinâmica resolvido
Termodinâmica resolvidoflavio moura
 
Exercícios resolvidos sobre entropia e 2º lei termodinamica
Exercícios resolvidos sobre entropia e 2º lei termodinamicaExercícios resolvidos sobre entropia e 2º lei termodinamica
Exercícios resolvidos sobre entropia e 2º lei termodinamicaMarcelo Leite Matias
 
Relatório pilhas e eletrólise
Relatório pilhas e eletrólise Relatório pilhas e eletrólise
Relatório pilhas e eletrólise Railane Freitas
 
Relatório de física resistência e resistividade
Relatório de física   resistência e resistividadeRelatório de física   resistência e resistividade
Relatório de física resistência e resistividadeVictor Said
 

Was ist angesagt? (20)

Aula de EDO - Lei do Resfriamento de Newton
Aula de EDO - Lei do Resfriamento de NewtonAula de EDO - Lei do Resfriamento de Newton
Aula de EDO - Lei do Resfriamento de Newton
 
Fórmulas de Eletromagnetismo
Fórmulas de EletromagnetismoFórmulas de Eletromagnetismo
Fórmulas de Eletromagnetismo
 
Relatório de física 3 lei de ohm
Relatório de física 3  lei de ohmRelatório de física 3  lei de ohm
Relatório de física 3 lei de ohm
 
Relatório de Física - Atuação Eletrostática
Relatório de Física - Atuação EletrostáticaRelatório de Física - Atuação Eletrostática
Relatório de Física - Atuação Eletrostática
 
Aula 16: Exercícios
Aula 16: ExercíciosAula 16: Exercícios
Aula 16: Exercícios
 
Aula 11: A barreira de potencial
Aula 11: A barreira de potencialAula 11: A barreira de potencial
Aula 11: A barreira de potencial
 
Força magnética
Força magnéticaForça magnética
Força magnética
 
Aula 14: O poço de potencial infinito
Aula 14: O poço de potencial infinitoAula 14: O poço de potencial infinito
Aula 14: O poço de potencial infinito
 
Relatório de carga e descarga de capacitores
Relatório de carga e descarga de capacitoresRelatório de carga e descarga de capacitores
Relatório de carga e descarga de capacitores
 
Potencial Elétrico - Conteúdo vinculado ao blog http://fisicanoenem.blog...
Potencial Elétrico - Conteúdo vinculado ao blog      http://fisicanoenem.blog...Potencial Elétrico - Conteúdo vinculado ao blog      http://fisicanoenem.blog...
Potencial Elétrico - Conteúdo vinculado ao blog http://fisicanoenem.blog...
 
Questoes resolvidas de termodinmica
Questoes resolvidas de termodinmicaQuestoes resolvidas de termodinmica
Questoes resolvidas de termodinmica
 
Aula 19: O operador momento angular
Aula 19: O operador momento angularAula 19: O operador momento angular
Aula 19: O operador momento angular
 
Demonstração da equação de schrodinger
Demonstração da equação de schrodingerDemonstração da equação de schrodinger
Demonstração da equação de schrodinger
 
Aula 4 - Modelo Atômico de Bohr
Aula 4 - Modelo Atômico de BohrAula 4 - Modelo Atômico de Bohr
Aula 4 - Modelo Atômico de Bohr
 
Física: Indução Magnética - Faraday
Física: Indução Magnética -  FaradayFísica: Indução Magnética -  Faraday
Física: Indução Magnética - Faraday
 
Campo elétrico
Campo elétricoCampo elétrico
Campo elétrico
 
Termodinâmica resolvido
Termodinâmica resolvidoTermodinâmica resolvido
Termodinâmica resolvido
 
Exercícios resolvidos sobre entropia e 2º lei termodinamica
Exercícios resolvidos sobre entropia e 2º lei termodinamicaExercícios resolvidos sobre entropia e 2º lei termodinamica
Exercícios resolvidos sobre entropia e 2º lei termodinamica
 
Relatório pilhas e eletrólise
Relatório pilhas e eletrólise Relatório pilhas e eletrólise
Relatório pilhas e eletrólise
 
Relatório de física resistência e resistividade
Relatório de física   resistência e resistividadeRelatório de física   resistência e resistividade
Relatório de física resistência e resistividade
 

Andere mochten auch

Andere mochten auch (14)

Razao de carga - Detonações
Razao de carga - DetonaçõesRazao de carga - Detonações
Razao de carga - Detonações
 
Evolução sobre os modelos atómicos
Evolução sobre os modelos atómicosEvolução sobre os modelos atómicos
Evolução sobre os modelos atómicos
 
Determinação da carga elementar
Determinação da  carga elementarDeterminação da  carga elementar
Determinação da carga elementar
 
Carga elétrica
Carga elétricaCarga elétrica
Carga elétrica
 
A ImportâNcia Da Atividade FíSica Para A SaúDe
A ImportâNcia Da Atividade FíSica Para A SaúDeA ImportâNcia Da Atividade FíSica Para A SaúDe
A ImportâNcia Da Atividade FíSica Para A SaúDe
 
Cargas e processos de eletrização
Cargas e processos de eletrizaçãoCargas e processos de eletrização
Cargas e processos de eletrização
 
Trabalho de fisica
Trabalho de fisicaTrabalho de fisica
Trabalho de fisica
 
Cargas elétricas
Cargas elétricasCargas elétricas
Cargas elétricas
 
Importância exercício físico
Importância exercício físicoImportância exercício físico
Importância exercício físico
 
9 ano leis de newton
9 ano leis de newton9 ano leis de newton
9 ano leis de newton
 
O átomo
O átomoO átomo
O átomo
 
Leis de Newton
Leis de NewtonLeis de Newton
Leis de Newton
 
Modelos atomicos 9ano
Modelos atomicos 9anoModelos atomicos 9ano
Modelos atomicos 9ano
 
Átomos
ÁtomosÁtomos
Átomos
 

Ähnlich wie Determinação Da Razão Entre Carga Elementar E Massa Eletrônica

Fisica 3 exercicios gabarito 31
Fisica 3 exercicios gabarito 31Fisica 3 exercicios gabarito 31
Fisica 3 exercicios gabarito 31comentada
 
Lista de eletromagnetismo
Lista de eletromagnetismoLista de eletromagnetismo
Lista de eletromagnetismorafaelpalota
 
Lista de eletromagnetismo
Lista de eletromagnetismoLista de eletromagnetismo
Lista de eletromagnetismorafaelpalota
 
Aula 1 - Turma Inf./Ele.
Aula 1 - Turma Inf./Ele.Aula 1 - Turma Inf./Ele.
Aula 1 - Turma Inf./Ele.albertaratri
 
Lista 01 lei-de_coulomb-111
Lista 01 lei-de_coulomb-111Lista 01 lei-de_coulomb-111
Lista 01 lei-de_coulomb-111iagolirapassos
 
Exame unificado de física 2011 2 solution
Exame unificado de física 2011 2  solutionExame unificado de física 2011 2  solution
Exame unificado de física 2011 2 solution17535069649
 
Exame unificado de física 2011 2 solution
Exame unificado de física 2011 2  solutionExame unificado de física 2011 2  solution
Exame unificado de física 2011 2 solutionMarcosPacheco65
 
Fisica 3 exercicios gabarito 29
Fisica 3 exercicios gabarito 29Fisica 3 exercicios gabarito 29
Fisica 3 exercicios gabarito 29comentada
 
Aula-14-F328-1S-2014.pdf
Aula-14-F328-1S-2014.pdfAula-14-F328-1S-2014.pdf
Aula-14-F328-1S-2014.pdfJLSantana3
 
Corrente eletrica e_campo_magnetico
Corrente eletrica e_campo_magneticoCorrente eletrica e_campo_magnetico
Corrente eletrica e_campo_magneticorafaelpalota
 
Lista 3 - Potencial Elétrico
Lista 3 - Potencial ElétricoLista 3 - Potencial Elétrico
Lista 3 - Potencial ElétricoGustavo Mendonça
 
Magnetismo 2020.pptx
Magnetismo 2020.pptxMagnetismo 2020.pptx
Magnetismo 2020.pptxLuizCsar13
 
Fisica 3 exercicios gabarito 30
Fisica 3 exercicios gabarito 30Fisica 3 exercicios gabarito 30
Fisica 3 exercicios gabarito 30comentada
 

Ähnlich wie Determinação Da Razão Entre Carga Elementar E Massa Eletrônica (20)

Fisica 3 exercicios gabarito 31
Fisica 3 exercicios gabarito 31Fisica 3 exercicios gabarito 31
Fisica 3 exercicios gabarito 31
 
Lista de eletromagnetismo
Lista de eletromagnetismoLista de eletromagnetismo
Lista de eletromagnetismo
 
Lista de eletromagnetismo
Lista de eletromagnetismoLista de eletromagnetismo
Lista de eletromagnetismo
 
Aula 1 - Turma Inf./Ele.
Aula 1 - Turma Inf./Ele.Aula 1 - Turma Inf./Ele.
Aula 1 - Turma Inf./Ele.
 
Difração de Elétrons
Difração de ElétronsDifração de Elétrons
Difração de Elétrons
 
2862949
28629492862949
2862949
 
2862949
28629492862949
2862949
 
Postulados de bohr
Postulados de bohrPostulados de bohr
Postulados de bohr
 
Lista 01 lei-de_coulomb-111
Lista 01 lei-de_coulomb-111Lista 01 lei-de_coulomb-111
Lista 01 lei-de_coulomb-111
 
Exame unificado de física 2011 2 solution
Exame unificado de física 2011 2  solutionExame unificado de física 2011 2  solution
Exame unificado de física 2011 2 solution
 
Exame unificado de física 2011 2 solution
Exame unificado de física 2011 2  solutionExame unificado de física 2011 2  solution
Exame unificado de física 2011 2 solution
 
Fisica 3 exercicios gabarito 29
Fisica 3 exercicios gabarito 29Fisica 3 exercicios gabarito 29
Fisica 3 exercicios gabarito 29
 
Aula-14-F328-1S-2014.pdf
Aula-14-F328-1S-2014.pdfAula-14-F328-1S-2014.pdf
Aula-14-F328-1S-2014.pdf
 
Lista 2 - Campo Elétrico
Lista 2 - Campo ElétricoLista 2 - Campo Elétrico
Lista 2 - Campo Elétrico
 
Corrente eletrica e_campo_magnetico
Corrente eletrica e_campo_magneticoCorrente eletrica e_campo_magnetico
Corrente eletrica e_campo_magnetico
 
Eletro relat - brett
Eletro relat - brettEletro relat - brett
Eletro relat - brett
 
Covest 2008 provas completas - 2ª fase
Covest 2008 provas completas - 2ª faseCovest 2008 provas completas - 2ª fase
Covest 2008 provas completas - 2ª fase
 
Lista 3 - Potencial Elétrico
Lista 3 - Potencial ElétricoLista 3 - Potencial Elétrico
Lista 3 - Potencial Elétrico
 
Magnetismo 2020.pptx
Magnetismo 2020.pptxMagnetismo 2020.pptx
Magnetismo 2020.pptx
 
Fisica 3 exercicios gabarito 30
Fisica 3 exercicios gabarito 30Fisica 3 exercicios gabarito 30
Fisica 3 exercicios gabarito 30
 

Mehr von Thiago Mosqueiro

Os Perfis dos Cientistas de Dados nos Estados Unidos
Os Perfis dos Cientistas de Dados nos Estados UnidosOs Perfis dos Cientistas de Dados nos Estados Unidos
Os Perfis dos Cientistas de Dados nos Estados UnidosThiago Mosqueiro
 
Non-parametric Change Point Detection for Spike Trains
Non-parametric Change Point Detection for Spike TrainsNon-parametric Change Point Detection for Spike Trains
Non-parametric Change Point Detection for Spike TrainsThiago Mosqueiro
 
[SIFSC] LaTeX para teses e dissertações
[SIFSC] LaTeX para teses e dissertações[SIFSC] LaTeX para teses e dissertações
[SIFSC] LaTeX para teses e dissertaçõesThiago Mosqueiro
 
Information Dynamics in KC model
Information Dynamics in KC modelInformation Dynamics in KC model
Information Dynamics in KC modelThiago Mosqueiro
 
Classical inference in/for physics
Classical inference in/for physicsClassical inference in/for physics
Classical inference in/for physicsThiago Mosqueiro
 
Orbitais Atômicos do Ponto de Vista de Simetrias
Orbitais Atômicos do Ponto de Vista de SimetriasOrbitais Atômicos do Ponto de Vista de Simetrias
Orbitais Atômicos do Ponto de Vista de SimetriasThiago Mosqueiro
 
Flutuações e Estatísticas: Estudo sobre o Decaimento Radioativo
Flutuações e Estatísticas: Estudo sobre o Decaimento RadioativoFlutuações e Estatísticas: Estudo sobre o Decaimento Radioativo
Flutuações e Estatísticas: Estudo sobre o Decaimento RadioativoThiago Mosqueiro
 
Efeito terminônico em tubo
Efeito terminônico em tuboEfeito terminônico em tubo
Efeito terminônico em tuboThiago Mosqueiro
 
O Experimento de Franck Hertz
O Experimento de Franck HertzO Experimento de Franck Hertz
O Experimento de Franck HertzThiago Mosqueiro
 

Mehr von Thiago Mosqueiro (10)

Os Perfis dos Cientistas de Dados nos Estados Unidos
Os Perfis dos Cientistas de Dados nos Estados UnidosOs Perfis dos Cientistas de Dados nos Estados Unidos
Os Perfis dos Cientistas de Dados nos Estados Unidos
 
Non-parametric Change Point Detection for Spike Trains
Non-parametric Change Point Detection for Spike TrainsNon-parametric Change Point Detection for Spike Trains
Non-parametric Change Point Detection for Spike Trains
 
[SIFSC] LaTeX para teses e dissertações
[SIFSC] LaTeX para teses e dissertações[SIFSC] LaTeX para teses e dissertações
[SIFSC] LaTeX para teses e dissertações
 
Information Dynamics in KC model
Information Dynamics in KC modelInformation Dynamics in KC model
Information Dynamics in KC model
 
Classical inference in/for physics
Classical inference in/for physicsClassical inference in/for physics
Classical inference in/for physics
 
Orbitais Atômicos do Ponto de Vista de Simetrias
Orbitais Atômicos do Ponto de Vista de SimetriasOrbitais Atômicos do Ponto de Vista de Simetrias
Orbitais Atômicos do Ponto de Vista de Simetrias
 
Fedora 11 Release Party
Fedora 11 Release PartyFedora 11 Release Party
Fedora 11 Release Party
 
Flutuações e Estatísticas: Estudo sobre o Decaimento Radioativo
Flutuações e Estatísticas: Estudo sobre o Decaimento RadioativoFlutuações e Estatísticas: Estudo sobre o Decaimento Radioativo
Flutuações e Estatísticas: Estudo sobre o Decaimento Radioativo
 
Efeito terminônico em tubo
Efeito terminônico em tuboEfeito terminônico em tubo
Efeito terminônico em tubo
 
O Experimento de Franck Hertz
O Experimento de Franck HertzO Experimento de Franck Hertz
O Experimento de Franck Hertz
 

Kürzlich hochgeladen

Jogo de Rimas - Para impressão em pdf a ser usado para crianças
Jogo de Rimas - Para impressão em pdf a ser usado para criançasJogo de Rimas - Para impressão em pdf a ser usado para crianças
Jogo de Rimas - Para impressão em pdf a ser usado para criançasSocorro Machado
 
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...HELENO FAVACHO
 
Apresentação em Powerpoint do Bioma Catinga.pptx
Apresentação em Powerpoint do Bioma Catinga.pptxApresentação em Powerpoint do Bioma Catinga.pptx
Apresentação em Powerpoint do Bioma Catinga.pptxLusGlissonGud
 
apostila projeto de vida 2 ano ensino médio
apostila projeto de vida 2 ano ensino médioapostila projeto de vida 2 ano ensino médio
apostila projeto de vida 2 ano ensino médiorosenilrucks
 
PROJETO DE EXTENSÃO I - Radiologia Tecnologia
PROJETO DE EXTENSÃO I - Radiologia TecnologiaPROJETO DE EXTENSÃO I - Radiologia Tecnologia
PROJETO DE EXTENSÃO I - Radiologia TecnologiaHELENO FAVACHO
 
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEMPRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEMHELENO FAVACHO
 
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIAPROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIAHELENO FAVACHO
 
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdfRecomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdfFrancisco Márcio Bezerra Oliveira
 
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdfPROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdfHELENO FAVACHO
 
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptxTeoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptxTailsonSantos1
 
Construção (C)erta - Nós Propomos! Sertã
Construção (C)erta - Nós Propomos! SertãConstrução (C)erta - Nós Propomos! Sertã
Construção (C)erta - Nós Propomos! SertãIlda Bicacro
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...azulassessoria9
 
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdfProjeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdfHELENO FAVACHO
 
Revolução russa e mexicana. Slides explicativos e atividades
Revolução russa e mexicana. Slides explicativos e atividadesRevolução russa e mexicana. Slides explicativos e atividades
Revolução russa e mexicana. Slides explicativos e atividadesFabianeMartins35
 
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...IsabelPereira2010
 
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptxSlides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptxLuizHenriquedeAlmeid6
 
Reta Final - CNU - Gestão Governamental - Prof. Stefan Fantini.pdf
Reta Final - CNU - Gestão Governamental - Prof. Stefan Fantini.pdfReta Final - CNU - Gestão Governamental - Prof. Stefan Fantini.pdf
Reta Final - CNU - Gestão Governamental - Prof. Stefan Fantini.pdfWagnerCamposCEA
 
Slide - EBD ADEB 2024 Licao 02 2Trim.pptx
Slide - EBD ADEB 2024 Licao 02 2Trim.pptxSlide - EBD ADEB 2024 Licao 02 2Trim.pptx
Slide - EBD ADEB 2024 Licao 02 2Trim.pptxedelon1
 
Atividade - Letra da música Esperando na Janela.
Atividade -  Letra da música Esperando na Janela.Atividade -  Letra da música Esperando na Janela.
Atividade - Letra da música Esperando na Janela.Mary Alvarenga
 

Kürzlich hochgeladen (20)

Jogo de Rimas - Para impressão em pdf a ser usado para crianças
Jogo de Rimas - Para impressão em pdf a ser usado para criançasJogo de Rimas - Para impressão em pdf a ser usado para crianças
Jogo de Rimas - Para impressão em pdf a ser usado para crianças
 
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
 
Apresentação em Powerpoint do Bioma Catinga.pptx
Apresentação em Powerpoint do Bioma Catinga.pptxApresentação em Powerpoint do Bioma Catinga.pptx
Apresentação em Powerpoint do Bioma Catinga.pptx
 
apostila projeto de vida 2 ano ensino médio
apostila projeto de vida 2 ano ensino médioapostila projeto de vida 2 ano ensino médio
apostila projeto de vida 2 ano ensino médio
 
PROJETO DE EXTENSÃO I - Radiologia Tecnologia
PROJETO DE EXTENSÃO I - Radiologia TecnologiaPROJETO DE EXTENSÃO I - Radiologia Tecnologia
PROJETO DE EXTENSÃO I - Radiologia Tecnologia
 
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEMPRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
 
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIAPROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
 
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdfRecomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
 
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdfPROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
 
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptxTeoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
 
Construção (C)erta - Nós Propomos! Sertã
Construção (C)erta - Nós Propomos! SertãConstrução (C)erta - Nós Propomos! Sertã
Construção (C)erta - Nós Propomos! Sertã
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
 
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdfProjeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
 
Aula sobre o Imperialismo Europeu no século XIX
Aula sobre o Imperialismo Europeu no século XIXAula sobre o Imperialismo Europeu no século XIX
Aula sobre o Imperialismo Europeu no século XIX
 
Revolução russa e mexicana. Slides explicativos e atividades
Revolução russa e mexicana. Slides explicativos e atividadesRevolução russa e mexicana. Slides explicativos e atividades
Revolução russa e mexicana. Slides explicativos e atividades
 
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
 
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptxSlides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
 
Reta Final - CNU - Gestão Governamental - Prof. Stefan Fantini.pdf
Reta Final - CNU - Gestão Governamental - Prof. Stefan Fantini.pdfReta Final - CNU - Gestão Governamental - Prof. Stefan Fantini.pdf
Reta Final - CNU - Gestão Governamental - Prof. Stefan Fantini.pdf
 
Slide - EBD ADEB 2024 Licao 02 2Trim.pptx
Slide - EBD ADEB 2024 Licao 02 2Trim.pptxSlide - EBD ADEB 2024 Licao 02 2Trim.pptx
Slide - EBD ADEB 2024 Licao 02 2Trim.pptx
 
Atividade - Letra da música Esperando na Janela.
Atividade -  Letra da música Esperando na Janela.Atividade -  Letra da música Esperando na Janela.
Atividade - Letra da música Esperando na Janela.
 

Determinação Da Razão Entre Carga Elementar E Massa Eletrônica

  • 1. Determinação da razão entre a carga elementar e a massa eletrônica BRENNO GUSTAVO BARBOSA THIAGO SCHIAVO MOSQUEIRO RELATÓRIO 14/03/2008
  • 2. História da descoberta Em redor de 1890, a pesquisa   Exemplo atual: o raio que produz sobre raios, como feixes de imagens (em monitores e televisões) luz ou partículas, estava em é um feixe de partículas... ou ondas? moda, com a descoberta do raio X e da radiação natural.  J. J. Thomson e Walter Kaufmann interessaram-se por estes estudos e trabalharam em experimentos, por volta de 1897, de deflexão de tais raios.  Seus resultados foram importantes para determinar a existência de uma partícula fundamental: o elétron.  A razão e/m (carga elementar e massa do elétron) foi, assim, determinada.
  • 3. História da descoberta Houve, no entanto, três   Primeiro: Thompson observou que experimentos mais importantes não há como separar as cargas que demarcaram claramente o negativas dos raios catódicos sem raciocínio de Thompson. destrui-los.  Segundo: Thompson observou (de forma conclusiva e adversa aos experimentos anteriores aos dele) que o raio catódico é defletido por um campo elétrico, e sua deflexão Note que com estes experimentos  comporta-se como se o raio não é possível afirmar a existência apresentasse uma carga negativa. do elétron, bem como obter o valor numérico para a carga elementar ou  Terceiro: Thompson determinou a massa eletrônica. Mas Thompson qual deveria ser a razão entre a pôde afirmar que ou a carga destas carga dessas partículas e suas partículas é excessivamente alta, ou massas. sua massa é excessivamente baixa.
  • 5. Proposta Propomos o estudo de uma partícula,  carregada com a carga elementar e e  Podemos começar com com massa m, movendo-se em um parte da força de Lorentz. plano perpendicular à direção de um   campo magnético B uniforme F q0v B existente em tal região.
  • 6. Proposta Propomos o estudo de uma partícula,  carregada com a carga elementar e e  Podemos começar com com massa m, movendo-se em um parte da força de Lorentz. plano perpendicular à direção de um   campo magnético B uniforme F q0v B existente em tal região. v2 e 2V 2 e 2Vr m evB B2 R2 R m 0,7162 0 N 2 I 2 R 2 2 m mv 2 0 NI U eV B 0,716 2 r
  • 7. Proposta Propomos o estudo de uma partícula,  carregada com a carga elementar e e  Podemos começar com com massa m, movendo-se em um parte da força de Lorentz. plano perpendicular à direção de um   campo magnético B uniforme F q0v B existente em tal região. v2 e 2V 2 e 2Vr m evB B2 R2 R m 0,7162 0 N 2 I 2 R 2 2 m Temos assim a razão entre a carga elementar e a mv 2 0 NI massa da partícula (e/m). U eV B 0,716 2 r
  • 8. Porém, como poderíamos medir o raio da órbita eletrônica? NESTA NOSSA PROPOSTA, DEVERÍAMOS SER CAPAZES DE MEDIR O RAIO ORBITAL ELETRÔNICO, DESCRITO AO FIXARMOS O CAMPO MAGNÉTICO. PORÉM, NÃO É UMA TAREFA SIMPLES OBSERVAR A TRAJETÓRIA DE UM ELÉTRON.
  • 9. Observando a trajetória eletrônica  Se o elétron estiver em um  O elétron aproxima- meio, como uma emulsão se do átomo. Ao de hidrogênio, em que passar, o excita. pode ionizar os átomos em seu redor, então observaremos luz sendo emitida dos pontos pelos quais o elétron passou em algum momento.
  • 10. Observando a trajetória eletrônica  Se o elétron estiver em um  Após sua passagem, meio, como uma emulsão há a emissão de ondas de hidrogênio, em que eletromagnéticas. pode ionizar os átomos em seu redor, então observaremos luz sendo emitida dos pontos pelos quais o elétron passou em algum momento.
  • 11. Observando a trajetória eletrônica  E assim ocorrerá em muitos dos átomos por que os elétrons passarem. Assim, temos uma idéia do percurso eletrônico. Como as dimensões atômicas são muito pequenas, enquanto que o raio, para os parâmetros propostos, deve ser da ordem de metros, o caminho que veremos com a luz dos átomos ionizados será, praticamente, contínuo.
  • 13. Descrição do experimento  Elétrons, oriundos de um filamento aquecido, são acelerados e colimados, formando um estreito feixe. Os elétrons com energia cinética suficientemente alta colidem com os átomos de hidrogênio, mantidos à baixa pressão, presentes no tubo (b). Uma fração desses átomos será ionizada. Este rastro de átomos ionizados denuncia a trajetória do feixe, influenciado ainda pela orientação do tubo com respeito às bobinas de Helmholtz (a).  Precisamos medir, além das grandezas referentes ao campo magnético, o raio da trajetória helicoidal do elétron.
  • 14. Descrição do experimento Começamos com os seguintes ajustes  usando a fonte (d): Voltagem de aceleração: de 150V a 300V. Aquecimento do filamento: 6,3V, 1A. Esperaremos ~1min para o aquecimento  apropriado do filamento. Após estes procedimentos, acionamos as  fontes para o tubo, focalizando o rastro do feixe eletrônico. Após isto, realizamos algumas medidas  para o raio orbital em função da tensão de aceleração. Para finalizar, realizamos medidas do raio  orbital como função da corrente que percorre a espira. Corrente para controlarmos Potencial de a intensidade do campo aceleração. magnético.
  • 15. Os experimentos...  Foi possível determinar, partindo de uma situação hipotética, a razão entre a carga elementar e a massa eletrônica (em). A partir do experimento proposto e da dedução realizada, vamos inspecionar algumas características entre a dedução e a ocorrência. Dividimos nossa investigação em duas fases. Esperamos, naturalmente, que seus resultados coincidam. Parte A: obter a razão em a partir do coeficiente angular da melhor reta ajustada ao gráfico que relaciona o raio orbital com o potencial de aceleração (R x V). Parte B: obter a razão em a partir do coeficiente angular da melhor reta ajustada ao gráfico que relaciona o raio orbital com a corrente que alimenta as espiras (R x I).
  • 16. Os experimentos modificados  Consideramos que a montagem proposta não resultaria em dados decisivos (precisos).  Propomos então algumas mudanças na montagem da prática.
  • 17. Os experimentos modificados  Consideramos que a montagem proposta não resultaria em dados decisivos (precisos).  Propomos então algumas mudanças na montagem da prática.  Sugerimos a inclusão de um trilho que sustente algum aparelho para observação que, garantidamente, nos proporcione um ângulo reto com respeito à régua.
  • 18. Os experimentos modificados  Consideramos que a montagem proposta não resultaria em dados decisivos (precisos).  Propomos então algumas mudanças na montagem da prática.  Sugerimos a inclusão de um trilho que sustente algum aparelho para observação que, garantidamente, nos proporcione um ângulo reto com respeito à régua.  Modificamos a ligação referente ao voltímetro para medição correta da tensão de aceleração dos elétrons.
  • 20. Determinação da relação RV  Primeiramente, fixamos o campo magnético atuante sobre a ampola:  I = (1.500 ± 0.001)A  Feito isso, fomos lentamente variando a tensão de aceleração, partindo de 150V a 300V. Lembrando a equação deduzida para a razão em, sabemos que um gráfico R(V) deveria apresentar-se como uma parábola.
  • 21.
  • 22. Dados colhidos para RV Tensão Raio orbital Quadrado Erro em (V, ±0.1) (m, ±0.001) (m²) (m²) (Ckg) 160 0.041 0.0017 0.0004 (1.8 ± .6)10¹¹ 170 0.042 0.0018 0.0004 (1.7 ± .5)10¹¹ 180 0.043 0.0018 0.0004 (1.8 ± .5)10¹¹ 190 0.045 0.0020 0.0005 (1.5 ± .3)10¹¹ 200 0.046 0.0021 0.0005 (1.6 ± .4)10¹¹ 210 0.047 0.0022 0.0005 (1.7 ± .4)10¹¹ 220 0.048 0.0023 0.0005 (1.8 ± .4)10¹¹ 230 0.049 0.0024 0.0005 (1.8 ± .3)10¹¹ 250 0.050 0.0025 0.0005 (1.6 ± .3)10¹¹ 260 0.051 0.0026 0.0005 (1.7 ± .3)10¹¹ 270 0.052 0.0027 0.0005 (1.7 ± .3)10¹¹ 280 0.053 0.0028 0.0005 (1.8 ± .3)10¹¹ 290 0.054 0.0029 0.0005 (1.7 ± .3)10¹¹ 300 0.055 0.0030 0.0006 (1.8 ± .3)10¹¹
  • 23. Regressão linear  Bastou então utilizar uma regressão linear para obter o coeficiente angular da melhor reta: A = (1.041 ± 0.0003)e-5 
  • 24. Determinação da razão...  Com este coeficiente angular em mãos, é fácil determinar a razão em. Usando a equação deduzida, sabemos que 2r 2 R2 V AV . e 2 2 22 0,716 NI 0 m  Realizando assim os cálculos, chegamos ao seguinte valor.  (1.759± 0.003)e(11) Ckg.
  • 26. Determinação do coeficiente IR  Primeiramente, fixamos a aceleração com que os elétrons entram na ampola:  V = (200 ± 0.1)V  Com isso, variamos a corrente, partindo de 1.300 A até 1.900A, limitados tanto pela precisão do instrumento, como pelas características do material da bobina. Para correntes muito baixas, a órbita sai da ampola, tornando a sua medição impraticável. Para correntes altas, há a possibilidade de danificarmos as espiras.
  • 27.
  • 28. Dados colhidos para IR Corrente Raio orbital Quadrado Erro em (A, ±0.001) (m, ±0.001) (m²) (m²) (Ckg) 1.300 0.053 0.0028 0.0005 (1.8±0.4)10¹¹ 1.400 0.050 0.0025 0.0005 (1.8±0.4)10¹¹ 1.500 0.046 0.0021 0.0005 (1.6±0.3)10¹¹ 1.600 0.043 0.0018 0.0004 (1.6±0.3)10¹¹ 1.700 0.040 0.0016 0.0004 (1.6±0.3)10¹¹ 1.800 0.038 0.0014 0.0004 (1.6±0.3)10¹¹ 1.900 0.036 0.0013 0.0004 (1.6±0.3)10¹¹
  • 29. Determinação da razão...  De forma semelhante, fomos capazes de obter o coeficiente angular da melhor reta que reúne os pontos medidos.  (0.0044, 0.0001) Ckg.  Realizando assim os cálculos, chegamos ao seguinte valor.  (1.9± 0.4)e(11) Ckg.
  • 31. Comparação dos resultados.  Visivelmente, os resultados do  O experimento B apresentou as experimento A foram mais precisos e seguintes deficiências: exatos. O experimento B apresentou- se, além de mais impreciso, mais  impossibilidade de coleção de inexato. maior quantidade de pontos.  Podemos relacionar alguns motivos à essa falha. Muitos dos fatores  o erro relacionado à medida da propostos dependem do campo corrente fornece ao resultado magnético aplicado à ampola. O final um erro relacionado ao experimento A também dependia inverso do quadrado de uma deste campo. No entanto, o medida. experimento B depende unicamente da variação deste parâmetro. Já o  o campo magnético na região experimento A está ligado a apenas em que a ampola está um valor e direção de campo magnético, sendo assim o erro localizada não pode ser aplicado seria apenas um. O erro considerado uniforme para os relacionado ao experimento B deste valores de corrente utilizados. campo é totalmente imprevisível.
  • 32. Conclusão  A relação entre carga elementar e massa eletrônica foi medida como  (1.759± 0.003)10¹¹ Ckg.  O resultado esperado para esta razão é fornecido pelo CODATA, medido em 2006, como  1.758820150(44)10¹¹ C/kg  Consideramos um resultado satisfatório e uma contribuição importante aos conhecimentos do laboratório.
  • 33. Bibliografia e dados.  Bibliografia:  Experimento realizado em J. R. Reitz, F. J. Milford, R. W.  07/03/2008. Christy, Foundaticns of Eletromagnetic Theory,  Todos os gráficos foram Addilson-Wesley, New York 3th gerados e manipulados com a ed. 1980 (Biblioteca IFSC 530.141 ajuda do software livre R 379f3). gnuplot. T. B. Brown, The Lloyd Willian  Taylor Manual of Advanced  Cálculos realizados com Undergraduate Experiments in scripts gerados, por nós Physics, Addilson-Wesley, New mesmos, na linguagem York 1959. python, já preparados para M. R. Wehr & J. A. Richards, Jr.  manipular corretamente erros Physics of the Atom, Addilson- e arredondamentos. Wesley, New York, 1960.