SlideShare ist ein Scribd-Unternehmen logo
1 von 49
Superconductors and Vortices at Radio Frequency Magnetic Fields Ernst Helmut Brandt Max Planck Institute for Metals Research, Stuttgart ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]," Thin films and new ideas for pushing the limits of  RF Superconductivity "   Legnaro National Laboratories of the ISTITUTO NAZIONALE DI FISICA NUCLEARE in Legnaro (Padova) ITALY,  October 4-6, 2010
Superconductivity Zero DC resistivity Kamerlingh-Onnes 1911 Nobel prize 1913 Perfect diamagnetism Meissner 1933 T c   ->
YBa 2 Cu 3 O 7- δ Bi 2 Sr 2 CaCu 2 O 8 39K Jan 2001   MgB 2 Discovery  of superconductors Liquid He 4.2K  ->
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Vortices:  Phenomenological Theories !
[object Object],[object Object],[object Object],[object Object],magnetic field lines flux lines currents
[object Object],[object Object],[object Object],[object Object],Abrikosov 28 Sept 2003
Alexei Abrikosov  Vitalii Ginzburg  Anthony Leggett Physics  Nobel  Prize  2003 Lev Landau 10 Dec 2003 Stockholm
Grigorii  Volovik Richard Klemm Boris Shklovskii George Crabtree Ernst Helmut Brandt Boris Altshuler Lev Gor'kov David Bishop Alexei Abrikosov David Nelson Michael Tinkham Phil W. Anderson Valerii Vinokur Igor' Dzyaloshinskii David Khmel'nitskii Abrikosov‘s 70th Birthday Symposium, 6 Nov 1998 in Argonne
Abrikosov‘s 80th Birthday Symposium, 8 Nov 2008 in Argonne   Tony Leggett Alexei Abrikosov
Decoration of flux-line lattice  U.Essmann, H.Träuble 1968  MPI MF Nb ,  T = 4 K disk 1mm thick, 4 mm  ø  B a = 985 G,  a =170 nm D.Bishop, P.Gammel 1987  AT&T Bell Labs  YBCO ,  T = 77 K  Ba = 20 G,  a = 1200 nm similar: L.Ya.Vinnikov, ISSP Moscow G.J.Dolan,  IBM NY  electron microscope
Type-I  supercond.  Tantalum  disk 33  μ m thick, 4 mm diameter, B a = 58 mT, T=1.2 K Type-II  supercond.  Niobium  disk  40  μ m thick, 4 mm diameter, B a = 74 mT, T=1.2 K Optical microscope, looks like Type-I Same Niobium disk  but Electron microscope shows vortices 0.1 mm 0.1 mm 1  μ m Essmann  1968  and Review:  EHB + U.Essmann, phys.stat.sol.b 144, 13 (1987)
Decoration of a square disk 5 x 5 x 1 mm 3  of  high-purity polycrystalline Nb , T=1.2 K, in  increasing B a  =1100 Gauss.  Fingers of vortex lattice penetrate . When the edge barrier  is overcome, single vortices or  droplets  of vortex lattice jump to the center. (U.Essmann)
Vortex-vortex interaction, schematic originates when Fourier trans.  deviates from V(k) ~ 1/(1+k 2 λ 2 ) and for BCS from Eilenberger method London, GL repulsion attraction
jump  B 0 EHB, Phys. Lett. 51A, 39 (1975);  phys. stat. sol.(b) 77, 105 (1976) H c2 -> κ 1 (T) slope -> κ 2 (T) H c1 -> κ 3 (T)
Auer Auer and Ullmaier,  PRB 7, 136 (1973) with many refs.  and phase diagram TaN N << 1 cylinder    = 0.665 T C  = 4.38 K Domains with vortex  lattice Type II / 1 vortex attraction B 0 vortex lattice Type II / 2 vortex repulsion
examples: Nb, TaN, PbIn, PbTl B a - M Theor.   –T phase diagram : Ulf Klein, JLTP 69, 1 (1987) Exp.al.: Auer+Ullmaier 1973 sphere long cylinder
Isolated vortex  (B = 0)  Vortex lattice:  B = B 0  and 4B 0 vortex spacing:   a = 4 λ  and 2 λ   Bulk superconductor Ginzburg-Landau theory  EHB,  PRL 78, 2208 (1997) Abrikosov solution near B c2 :  stream lines = contours of | ψ |2 and B
Magnetization curves of Type-II superconductors Shear modulus  c 66 (B,  κ  ) of triangular vortex lattice c 66 -M Ginzburg-Landau theory EHB, PRL 78, 2208 (1997) B C1 B C2
Isolated vortex in  film London theory Carneiro+EHB, PRB (2000) Vortex lattice in  film Ginzburg-Landau theory EHB, PRB 71, 14521 (2005) bulk film sc  film vac
Magnetic field lines in films  of  thicknesses  d /  λ  = 4, 2, 1, 0.5 for B/B c2 =0.04,  κ =1.4 4 λ λ 2 λ λ /2
Pearl   vortex in an infinite thin film 1. Vortex in ideal screening thin infinite film ( London depth  = 0 ) 2. Vortex in infinite thin film with 2D penetration depth  >  d film vortex Magnetic field Circulating sheet current J(r)  Force between two vortices Interaction potential = -V´(r) 3D 2D
EHB, PRB 79, 13526 (2009) J.Pearl, APL 5, 65 (1964) exact Pearl potential analytic approximation:
Interaction of one vortex with a vortex pair = stream function g of this vortex pair = inverse matrix K ij  for fixed index j EHB,  PRB 2005  peak: ~ ln(2.27 Λ  / r)
Vortex-vortex interaction for  one vortex in center of square film :  numerical V num  divided by Pearl potential V Pearl  for infinite film V/V = 1 V/V = 0
Pinning of flux lines Types of pins: ●   preciptates:  Ti in NbTi  ->   best sc wires ●   point defects, dislocations, grain boundaries ●  YBa 2 Cu 3 O 7-  δ :   twin boundaries, CuO 2  layers,  oxygen vacancies Experiment: ●   critical current density j c  = max. loss-free j  ●   irreversible magnetization curves ●  ac resistivity and susceptibility Theory: ●  summation of random pinning forces ->   maximum volume pinning force j c B ●   thermally activated depinning ●   electromagnetic response ●  width  ~  j c H  H c2 - M ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  Lorentz force B  х  j  -> -> FL pin
magnetization force 20 Jan 1989
Levitation of YBCO superconductor above  and  below  magnets at 77 K 5   cm Levitation  Suspension  FeNd magnets YBCO
Importance of geometry Bean model parallel geometry long cylinder or slab Bean model perpendicular geometry thin disk or strip analytical solution: Mikheenko + Kuzovlev 1993:  disk EHB+Indenbom+Forkl 1993:  strip B a j J J B a J c B J B a B a r r B B j j j c r r r r B a
equation of motion for current density: EHB, PRB (1996) Long bar A  ║J║E║z Thick disk A  ║J║E║ φ Example integrate over time invert matrix! sc as nonlinear conductor approx.: B= μ 0 H, H c1 =0 J x B a , y z J r B a B a -M
Flux penetration into disk in increasing field field- and current-free core ideal screening Meissner  state + + + _ _ _ 0 B a
Same disk in decreasing magnetic field B a no more flux- and current-free zone _ _ + + + + _ _ _ + + _ + _ remanent state B a =0 B a
YBCO film 0.8  μ m,  50 K increasing field Magneto-optics Indenbom + Schuster 1995 Theory EHB PRB 1995 Thin sc rectangle in perpendicular field stream lines of current contours of mag. induction ideal Meissner state  B = 0   B = 0   Bean state | J | = const
Thin films and platelets in perp.  mag.  field, SQUIDs EHB,  PRB 2005  2D penetr. depth Λ = λ 2 /d
Vortex pair in thin films with slit and hole current stream lines
Dissipation by moving vortices (Free flux flow.  Hall effect and pinning disregarded) Lorentz force on vortex: Lorentz force density: Vortex velocity: Induced electric field: Flux-flow resistivity: Where does dissipation come from? 1. Electric field induced by vortex motion inside and outside the normal core Bardeen + Stephen, PR 140, A1197 (1965) 2. Relaxation of order parameter near vortex core in motion,  time Tinkham, PRL 13, 804 (1964)  ( both terms are  ~  equal )  3. Computation from time-dep. GL theory:  Hu + Thompson, PRB 6, 110 (1972)   B c2 B Exper.  and L+O B+S Is comparable to normal resistvity ->  dissipation is very large !
Note:   Vortex  motion  is crucial for dissipation.  Rigidly pinned vortices do not dissipate energy.  However, elastically pinned  vortices in a RF field can  oscillate: Force balance on vortex:  Lorentz force   J x B RF (u = vortex displacement .  At frequencies the viscose drag force dominates, pinning becomes negligible, and  dissipation occurs.  Gittleman and Rosenblum, PRL 16, 734 (1968)   E x | Ψ | 2 order parameter moving vortex core relaxing order parameter v v
Penetration of vortices,  Ginzburg-Landau Theory Lower critical field: Thermodyn. critical field: Upper critical field: Good fit to numerics: Vortex magnetic field: Modified Bessel fct: Vortex core radius: Vortex self energy: Vortex interaction:
Penetration of first vortex 1. Vortex parallel to planar surface:   Bean + Livingston, PRL 12, 14 (1964) Gibbs free energy of one  vortex in supercond. half  space in applied field B a   Interaction with image Interaction with field B a G( ∞ )   Penetration field: This holds for large  κ .  For  small  κ  < 2  numerics is needed. numerics required ! H c H c1
2. Vortex half-loop penetrates: Self energy: Interaction with H a : Surface current: Penetration field: 3. Penetration at corners: Self energy: Interaction with H a : Surface current: Penetration field: for 90 o H a 4. Similar:  Rough surface,  H p  << H c vortex  half loop image vortex super- conductor vacuum R vacuum H a sc R H a vortices
Bar 2a X 2a in  perpendicular H a  tilted by 45 o H a Field  lines near corner λ  = a / 10 current density  j(x,y) log  j(x,y)  x/a y/a y/a y/a x/a x/a λ large j(,y)
5. Ideal diamagnet, corner with angle  α   : H  ~ 1/ r 1/3 Near corner of angle  α   the magnetic field diverges as  H  ~ 1/ r β ,  β  = ( π  –  α )/(2 π  -  α ) H  ~ 1/ r 1/2 cylinder sphere ellipsoid rectangle a 2a b 2b H/H a  = 2 H/H a  = 3 H/H a   ≈  (a/b) 1/2 H/H a  = a/b Magnetic field  H  at the equator of: (strip or disk) b << a b << a Large thin film in tilted mag. field: perpendicular component  penetrates  in form of a vortex lattice H a vacuum H a sc r α α  =  π   α  = 0
Irreversible magnetization of  pin-free  superconductors  due to geometrical edge barrier for flux penetration   Magnetic field lines in pin-free  superconducting slab and strip EHB, PRB 60, 11939 (1999) b/a=2 flux-free core flux-free zone b/a=0.3 b/a=0.3 b/a=2 Magn. curves of pin-free disks + cylinders ellipsoid is reversible!
Radio frequency response of superconductors DC currents in superconductors are loss-free ( if no vortices have penetrated ),  but AC currents have losses  ~   ω 2  since the acceleration of Cooper pairs generates an electric field  E  ~   ω  that moves the normal electrons (=  excitations, quasiparticles ). 1. Two-Fluid Model  (  M.Tinkham, Superconductivity, 1996, p.37  ) Eq. of motion  for  both normal and superconducting electrons: total  current density: super  currents: normal  currents: complex conductivity:
dissipative part: inductive part: London equation: Normal conductors: parallel R and L: crossover frequency: power dissipated/vol : London depth  λ skin depth power dissipated/area: general skin depth: absorbed / incid. power:
2. Microscopic theory   (  Abrikosov, Gorkov, Khalatnikov 1959  Mattis, Bardeen 1958;  Kulik 1998  ) Dissipative part: Inductive part: Quality factor: For computation of strong coupling + pure superconductors (bulk Nb) see R. Brinkmann, K. Scharnberg et al.,  TESLA-Report 200-07,  March 2000: Nb at 2K:  R s = 20 n Ω  at 1.3 GHz,  ≈ 1  μΩ  at 100 - 600 GHz,  but sharp step to  15 m Ω   at  f = 2 Δ /h = 750 GHz (pair breaking), above this R s  ≈   15 m Ω   ≈ const  When purity incr.,  l ↑,  σ 1 ↑ but  λ ↓
Summary ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
10 Dec 2003 Stockholm  Princess Madeleine  Alexei Abrikosov
Electrodynamics of Superconductors exposed to high frequency fields Ernst Helmut Brandt Max Planck Institute for Metals Research, Stuttgart ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],&quot; Thin films applied to Superconducting RF:Pushing the limits of RF Superconductivity &quot;   Legnaro National Laboratories of the ISTITUTO NAZIONALE DI FISICA NUCLEARE in Legnaro (Padova) ITALY,  October 9-12, 2006
Summary ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Weitere ähnliche Inhalte

Was ist angesagt?

Lecture 5 josephson effects
Lecture 5 josephson effectsLecture 5 josephson effects
Lecture 5 josephson effects
AllenHermann
 
Nanomagnetism, Javier Tejada
Nanomagnetism, Javier TejadaNanomagnetism, Javier Tejada
Nanomagnetism, Javier Tejada
oriolespinal
 
MBE Growth and Characterization of 2D TMDs & Room-Temperature NDR in 2D Heter...
MBE Growth and Characterization of 2D TMDs & Room-Temperature NDR in 2D Heter...MBE Growth and Characterization of 2D TMDs & Room-Temperature NDR in 2D Heter...
MBE Growth and Characterization of 2D TMDs & Room-Temperature NDR in 2D Heter...
Amritesh Rai
 

Was ist angesagt? (20)

Superconductors
SuperconductorsSuperconductors
Superconductors
 
SINGLE ELECTRON TRANSISTORS
SINGLE ELECTRON TRANSISTORSSINGLE ELECTRON TRANSISTORS
SINGLE ELECTRON TRANSISTORS
 
Lecture 5 josephson effects
Lecture 5 josephson effectsLecture 5 josephson effects
Lecture 5 josephson effects
 
Gmr
GmrGmr
Gmr
 
Quantum Theory of Spin and Anomalous Hall effects in Graphene
Quantum Theory of Spin and Anomalous Hall effects in Graphene Quantum Theory of Spin and Anomalous Hall effects in Graphene
Quantum Theory of Spin and Anomalous Hall effects in Graphene
 
Superconductivity
Superconductivity Superconductivity
Superconductivity
 
Introduction to High temperature superconductors
Introduction to High temperature superconductorsIntroduction to High temperature superconductors
Introduction to High temperature superconductors
 
Single Electron Transistor(SET)
Single Electron Transistor(SET)Single Electron Transistor(SET)
Single Electron Transistor(SET)
 
Nanomagnetism, Javier Tejada
Nanomagnetism, Javier TejadaNanomagnetism, Javier Tejada
Nanomagnetism, Javier Tejada
 
Giant magnetoresistance and their applications
Giant magnetoresistance and their applicationsGiant magnetoresistance and their applications
Giant magnetoresistance and their applications
 
superconductivity
 superconductivity superconductivity
superconductivity
 
Introduction to superconductivity
Introduction to superconductivityIntroduction to superconductivity
Introduction to superconductivity
 
Photon counting and statistics of light
Photon counting and statistics of lightPhoton counting and statistics of light
Photon counting and statistics of light
 
Squids
SquidsSquids
Squids
 
Superconductivity
SuperconductivitySuperconductivity
Superconductivity
 
Giant magnetoresistance
Giant magnetoresistanceGiant magnetoresistance
Giant magnetoresistance
 
Superconductivity by varun yashoda dabhade ppt
Superconductivity by varun yashoda dabhade pptSuperconductivity by varun yashoda dabhade ppt
Superconductivity by varun yashoda dabhade ppt
 
MBE Growth and Characterization of 2D TMDs & Room-Temperature NDR in 2D Heter...
MBE Growth and Characterization of 2D TMDs & Room-Temperature NDR in 2D Heter...MBE Growth and Characterization of 2D TMDs & Room-Temperature NDR in 2D Heter...
MBE Growth and Characterization of 2D TMDs & Room-Temperature NDR in 2D Heter...
 
Brewster's angle
Brewster's angleBrewster's angle
Brewster's angle
 
SUPERCONDUCTIVITY With GRAPHICS
SUPERCONDUCTIVITY With GRAPHICSSUPERCONDUCTIVITY With GRAPHICS
SUPERCONDUCTIVITY With GRAPHICS
 

Andere mochten auch

Superconductivity
SuperconductivitySuperconductivity
Superconductivity
ad1729
 
Advanced lock in amplifier for detection of phase transitions in liquid crystals
Advanced lock in amplifier for detection of phase transitions in liquid crystalsAdvanced lock in amplifier for detection of phase transitions in liquid crystals
Advanced lock in amplifier for detection of phase transitions in liquid crystals
IAEME Publication
 
Algorithms for Sparse Signal Recovery in Compressed Sensing
Algorithms for Sparse Signal Recovery in Compressed SensingAlgorithms for Sparse Signal Recovery in Compressed Sensing
Algorithms for Sparse Signal Recovery in Compressed Sensing
Aqib Ejaz
 
Fundamental Limits of Recovering Tree Sparse Vectors from Noisy Linear Measur...
Fundamental Limits of Recovering Tree Sparse Vectors from Noisy Linear Measur...Fundamental Limits of Recovering Tree Sparse Vectors from Noisy Linear Measur...
Fundamental Limits of Recovering Tree Sparse Vectors from Noisy Linear Measur...
sonix022
 
Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet SuperconductorsBroken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Jorge Quintanilla
 
Superconductivity
SuperconductivitySuperconductivity
Superconductivity
ilmyong
 
Dgk ahmedabad - presentation - superconductors - 04.11.2011
Dgk   ahmedabad - presentation - superconductors - 04.11.2011Dgk   ahmedabad - presentation - superconductors - 04.11.2011
Dgk ahmedabad - presentation - superconductors - 04.11.2011
Mazhar Laliwala
 

Andere mochten auch (20)

Alex gurevich maximum screening fields and the optimum parameters of superc...
Alex gurevich   maximum screening fields and the optimum parameters of superc...Alex gurevich   maximum screening fields and the optimum parameters of superc...
Alex gurevich maximum screening fields and the optimum parameters of superc...
 
Superconductivity of materials
Superconductivity of materialsSuperconductivity of materials
Superconductivity of materials
 
Superconductivity
SuperconductivitySuperconductivity
Superconductivity
 
Superconductors
SuperconductorsSuperconductors
Superconductors
 
Super Conductivity
Super ConductivitySuper Conductivity
Super Conductivity
 
Advanced lock in amplifier for detection of phase transitions in liquid crystals
Advanced lock in amplifier for detection of phase transitions in liquid crystalsAdvanced lock in amplifier for detection of phase transitions in liquid crystals
Advanced lock in amplifier for detection of phase transitions in liquid crystals
 
Time Series Analysis:Basic Stochastic Signal Recovery
Time Series Analysis:Basic Stochastic Signal RecoveryTime Series Analysis:Basic Stochastic Signal Recovery
Time Series Analysis:Basic Stochastic Signal Recovery
 
Algorithms for Sparse Signal Recovery in Compressed Sensing
Algorithms for Sparse Signal Recovery in Compressed SensingAlgorithms for Sparse Signal Recovery in Compressed Sensing
Algorithms for Sparse Signal Recovery in Compressed Sensing
 
Fundamental Limits of Recovering Tree Sparse Vectors from Noisy Linear Measur...
Fundamental Limits of Recovering Tree Sparse Vectors from Noisy Linear Measur...Fundamental Limits of Recovering Tree Sparse Vectors from Noisy Linear Measur...
Fundamental Limits of Recovering Tree Sparse Vectors from Noisy Linear Measur...
 
Rightsizing Open Source Software Identification
Rightsizing Open Source Software IdentificationRightsizing Open Source Software Identification
Rightsizing Open Source Software Identification
 
Signals and noise
Signals and noiseSignals and noise
Signals and noise
 
Signals and noise
Signals and noiseSignals and noise
Signals and noise
 
Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet SuperconductorsBroken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
 
Superconductivity
SuperconductivitySuperconductivity
Superconductivity
 
Superconductivity
SuperconductivitySuperconductivity
Superconductivity
 
Introduction to compressive sensing
Introduction to compressive sensingIntroduction to compressive sensing
Introduction to compressive sensing
 
Dgk ahmedabad - presentation - superconductors - 04.11.2011
Dgk   ahmedabad - presentation - superconductors - 04.11.2011Dgk   ahmedabad - presentation - superconductors - 04.11.2011
Dgk ahmedabad - presentation - superconductors - 04.11.2011
 
Superconductors presentation
Superconductors presentationSuperconductors presentation
Superconductors presentation
 
Superconductors And their Applications
Superconductors And their ApplicationsSuperconductors And their Applications
Superconductors And their Applications
 
CH 8 _ M A Islam_Superconductors
CH 8 _ M A Islam_SuperconductorsCH 8 _ M A Islam_Superconductors
CH 8 _ M A Islam_Superconductors
 

Ähnlich wie Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fields

PhD work on Graphene Transistor
PhD work on Graphene TransistorPhD work on Graphene Transistor
PhD work on Graphene Transistor
Southern University and A&M College - Baton Rouge
 
Crystal structure analysis
Crystal structure analysisCrystal structure analysis
Crystal structure analysis
zoelfalia
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)
oriolespinal
 
Cbse class 12 physics sample paper 02 (for 2014)
Cbse class 12 physics sample paper 02 (for 2014)Cbse class 12 physics sample paper 02 (for 2014)
Cbse class 12 physics sample paper 02 (for 2014)
mycbseguide
 
Nanomagnetism columbia 2013
Nanomagnetism columbia 2013Nanomagnetism columbia 2013
Nanomagnetism columbia 2013
oriolespinal
 

Ähnlich wie Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fields (20)

PhD work on Graphene Transistor
PhD work on Graphene TransistorPhD work on Graphene Transistor
PhD work on Graphene Transistor
 
Crystal structure analysis
Crystal structure analysisCrystal structure analysis
Crystal structure analysis
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)
 
Non-linear optics by means of dynamical Berry phase
Non-linear optics  by means of  dynamical Berry phaseNon-linear optics  by means of  dynamical Berry phase
Non-linear optics by means of dynamical Berry phase
 
AFMC Physics 2010
AFMC Physics  2010AFMC Physics  2010
AFMC Physics 2010
 
lezione_3.ppt
lezione_3.pptlezione_3.ppt
lezione_3.ppt
 
photonic crystal.pptx
photonic crystal.pptxphotonic crystal.pptx
photonic crystal.pptx
 
Cbse class 12 physics sample paper 02 (for 2014)
Cbse class 12 physics sample paper 02 (for 2014)Cbse class 12 physics sample paper 02 (for 2014)
Cbse class 12 physics sample paper 02 (for 2014)
 
Amperes_Law.ppt
Amperes_Law.pptAmperes_Law.ppt
Amperes_Law.ppt
 
Nanomagnetism columbia 2013
Nanomagnetism columbia 2013Nanomagnetism columbia 2013
Nanomagnetism columbia 2013
 
Jay amrit kapitza resistance at niobiumsuperfluid he interfaces
Jay amrit   kapitza resistance at niobiumsuperfluid he interfacesJay amrit   kapitza resistance at niobiumsuperfluid he interfaces
Jay amrit kapitza resistance at niobiumsuperfluid he interfaces
 
Ab-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear opticsAb-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear optics
 
Superconductivity
Superconductivity Superconductivity
Superconductivity
 
Cosmology with the 21cm line
Cosmology with the 21cm lineCosmology with the 21cm line
Cosmology with the 21cm line
 
Search for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole MomentSearch for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole Moment
 
"Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate""Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate"
 
Figotin Bath 2005
Figotin Bath 2005Figotin Bath 2005
Figotin Bath 2005
 
Surface crack detection using flanged parallel-plate waveguide
Surface crack detection using flanged parallel-plate waveguideSurface crack detection using flanged parallel-plate waveguide
Surface crack detection using flanged parallel-plate waveguide
 
A thermodynamic cycle for the solar cell
A thermodynamic cycle for the solar cellA thermodynamic cycle for the solar cell
A thermodynamic cycle for the solar cell
 
Lecture 21 applications of moving charge in magnetic field
Lecture 21   applications of moving charge in magnetic fieldLecture 21   applications of moving charge in magnetic field
Lecture 21 applications of moving charge in magnetic field
 

Mehr von thinfilmsworkshop

3 ej fccrf legnaro 2014-10-06
3   ej fccrf legnaro 2014-10-063   ej fccrf legnaro 2014-10-06
3 ej fccrf legnaro 2014-10-06
thinfilmsworkshop
 
Tesi Bachelor Debastiani
Tesi Bachelor DebastianiTesi Bachelor Debastiani
Tesi Bachelor Debastiani
thinfilmsworkshop
 
Tesi Bachelor Giovanni Vergari
Tesi Bachelor Giovanni VergariTesi Bachelor Giovanni Vergari
Tesi Bachelor Giovanni Vergari
thinfilmsworkshop
 
Tesi master Ram Khrishna Thakur
Tesi master Ram Khrishna ThakurTesi master Ram Khrishna Thakur
Tesi master Ram Khrishna Thakur
thinfilmsworkshop
 
Tesi master Goulong yu
Tesi master Goulong yuTesi master Goulong yu
Tesi master Goulong yu
thinfilmsworkshop
 
Tesi magistrale Akaberi Nazkhatoon
Tesi magistrale Akaberi NazkhatoonTesi magistrale Akaberi Nazkhatoon
Tesi magistrale Akaberi Nazkhatoon
thinfilmsworkshop
 
Tesi PhD Zhang Yan
Tesi PhD  Zhang YanTesi PhD  Zhang Yan
Tesi PhD Zhang Yan
thinfilmsworkshop
 
Tesi Master Diego Tonini
Tesi Master Diego ToniniTesi Master Diego Tonini
Tesi Master Diego Tonini
thinfilmsworkshop
 
Tesi Master Giorgio Keppel
Tesi Master Giorgio KeppelTesi Master Giorgio Keppel
Tesi Master Giorgio Keppel
thinfilmsworkshop
 

Mehr von thinfilmsworkshop (20)

V. Palmieri - Superconducting resonant cavities
V. Palmieri - Superconducting resonant cavitiesV. Palmieri - Superconducting resonant cavities
V. Palmieri - Superconducting resonant cavities
 
V. Palmieri - The classical superconductivity
V. Palmieri - The classical superconductivityV. Palmieri - The classical superconductivity
V. Palmieri - The classical superconductivity
 
Motori superconduttivi 2
Motori superconduttivi 2Motori superconduttivi 2
Motori superconduttivi 2
 
Motori superconduttivi 1
Motori superconduttivi 1Motori superconduttivi 1
Motori superconduttivi 1
 
3 ej fccrf legnaro 2014-10-06
3   ej fccrf legnaro 2014-10-063   ej fccrf legnaro 2014-10-06
3 ej fccrf legnaro 2014-10-06
 
Tesi Master Andrea Camacho Romero
Tesi Master Andrea Camacho RomeroTesi Master Andrea Camacho Romero
Tesi Master Andrea Camacho Romero
 
Tesi Bachelor Debastiani
Tesi Bachelor DebastianiTesi Bachelor Debastiani
Tesi Bachelor Debastiani
 
Tesi Bachelor Giovanni Vergari
Tesi Bachelor Giovanni VergariTesi Bachelor Giovanni Vergari
Tesi Bachelor Giovanni Vergari
 
Tesi master Ram Khrishna Thakur
Tesi master Ram Khrishna ThakurTesi master Ram Khrishna Thakur
Tesi master Ram Khrishna Thakur
 
Tesi master Goulong yu
Tesi master Goulong yuTesi master Goulong yu
Tesi master Goulong yu
 
Tesi magistrale Akaberi Nazkhatoon
Tesi magistrale Akaberi NazkhatoonTesi magistrale Akaberi Nazkhatoon
Tesi magistrale Akaberi Nazkhatoon
 
Tesi master Acosta Gabriela
Tesi master Acosta GabrielaTesi master Acosta Gabriela
Tesi master Acosta Gabriela
 
Tesi PhD Zhang Yan
Tesi PhD  Zhang YanTesi PhD  Zhang Yan
Tesi PhD Zhang Yan
 
Tesi federico della ricca
Tesi federico della riccaTesi federico della ricca
Tesi federico della ricca
 
Tesi Master Zambotto Dino
Tesi Master Zambotto Dino Tesi Master Zambotto Dino
Tesi Master Zambotto Dino
 
Tesi master Vanessa Rampazzo
Tesi master Vanessa Rampazzo Tesi master Vanessa Rampazzo
Tesi master Vanessa Rampazzo
 
Tesi master Paolo Modanese
Tesi master Paolo ModaneseTesi master Paolo Modanese
Tesi master Paolo Modanese
 
Tesi Master Diego Tonini
Tesi Master Diego ToniniTesi Master Diego Tonini
Tesi Master Diego Tonini
 
Tesi Master Giorgio Keppel
Tesi Master Giorgio KeppelTesi Master Giorgio Keppel
Tesi Master Giorgio Keppel
 
Tes master Tommaso Cavallin
Tes master Tommaso CavallinTes master Tommaso Cavallin
Tes master Tommaso Cavallin
 

Kürzlich hochgeladen

Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
WSO2
 

Kürzlich hochgeladen (20)

2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot ModelNavi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
A Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source MilvusA Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source Milvus
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 

Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fields

  • 1.
  • 2. Superconductivity Zero DC resistivity Kamerlingh-Onnes 1911 Nobel prize 1913 Perfect diamagnetism Meissner 1933 T c ->
  • 3. YBa 2 Cu 3 O 7- δ Bi 2 Sr 2 CaCu 2 O 8 39K Jan 2001 MgB 2 Discovery of superconductors Liquid He 4.2K ->
  • 4.
  • 5.
  • 6.
  • 7. Alexei Abrikosov Vitalii Ginzburg Anthony Leggett Physics Nobel Prize 2003 Lev Landau 10 Dec 2003 Stockholm
  • 8. Grigorii Volovik Richard Klemm Boris Shklovskii George Crabtree Ernst Helmut Brandt Boris Altshuler Lev Gor'kov David Bishop Alexei Abrikosov David Nelson Michael Tinkham Phil W. Anderson Valerii Vinokur Igor' Dzyaloshinskii David Khmel'nitskii Abrikosov‘s 70th Birthday Symposium, 6 Nov 1998 in Argonne
  • 9. Abrikosov‘s 80th Birthday Symposium, 8 Nov 2008 in Argonne Tony Leggett Alexei Abrikosov
  • 10. Decoration of flux-line lattice U.Essmann, H.Träuble 1968 MPI MF Nb , T = 4 K disk 1mm thick, 4 mm ø B a = 985 G, a =170 nm D.Bishop, P.Gammel 1987 AT&T Bell Labs YBCO , T = 77 K Ba = 20 G, a = 1200 nm similar: L.Ya.Vinnikov, ISSP Moscow G.J.Dolan, IBM NY electron microscope
  • 11. Type-I supercond. Tantalum disk 33 μ m thick, 4 mm diameter, B a = 58 mT, T=1.2 K Type-II supercond. Niobium disk 40 μ m thick, 4 mm diameter, B a = 74 mT, T=1.2 K Optical microscope, looks like Type-I Same Niobium disk but Electron microscope shows vortices 0.1 mm 0.1 mm 1 μ m Essmann 1968 and Review: EHB + U.Essmann, phys.stat.sol.b 144, 13 (1987)
  • 12. Decoration of a square disk 5 x 5 x 1 mm 3 of high-purity polycrystalline Nb , T=1.2 K, in increasing B a =1100 Gauss. Fingers of vortex lattice penetrate . When the edge barrier is overcome, single vortices or droplets of vortex lattice jump to the center. (U.Essmann)
  • 13. Vortex-vortex interaction, schematic originates when Fourier trans. deviates from V(k) ~ 1/(1+k 2 λ 2 ) and for BCS from Eilenberger method London, GL repulsion attraction
  • 14. jump B 0 EHB, Phys. Lett. 51A, 39 (1975); phys. stat. sol.(b) 77, 105 (1976) H c2 -> κ 1 (T) slope -> κ 2 (T) H c1 -> κ 3 (T)
  • 15. Auer Auer and Ullmaier, PRB 7, 136 (1973) with many refs. and phase diagram TaN N << 1 cylinder  = 0.665 T C = 4.38 K Domains with vortex lattice Type II / 1 vortex attraction B 0 vortex lattice Type II / 2 vortex repulsion
  • 16. examples: Nb, TaN, PbIn, PbTl B a - M Theor.  –T phase diagram : Ulf Klein, JLTP 69, 1 (1987) Exp.al.: Auer+Ullmaier 1973 sphere long cylinder
  • 17. Isolated vortex (B = 0) Vortex lattice: B = B 0 and 4B 0 vortex spacing: a = 4 λ and 2 λ Bulk superconductor Ginzburg-Landau theory EHB, PRL 78, 2208 (1997) Abrikosov solution near B c2 : stream lines = contours of | ψ |2 and B
  • 18. Magnetization curves of Type-II superconductors Shear modulus c 66 (B, κ ) of triangular vortex lattice c 66 -M Ginzburg-Landau theory EHB, PRL 78, 2208 (1997) B C1 B C2
  • 19. Isolated vortex in film London theory Carneiro+EHB, PRB (2000) Vortex lattice in film Ginzburg-Landau theory EHB, PRB 71, 14521 (2005) bulk film sc film vac
  • 20. Magnetic field lines in films of thicknesses d / λ = 4, 2, 1, 0.5 for B/B c2 =0.04, κ =1.4 4 λ λ 2 λ λ /2
  • 21. Pearl vortex in an infinite thin film 1. Vortex in ideal screening thin infinite film ( London depth = 0 ) 2. Vortex in infinite thin film with 2D penetration depth > d film vortex Magnetic field Circulating sheet current J(r) Force between two vortices Interaction potential = -V´(r) 3D 2D
  • 22. EHB, PRB 79, 13526 (2009) J.Pearl, APL 5, 65 (1964) exact Pearl potential analytic approximation:
  • 23. Interaction of one vortex with a vortex pair = stream function g of this vortex pair = inverse matrix K ij for fixed index j EHB, PRB 2005 peak: ~ ln(2.27 Λ / r)
  • 24. Vortex-vortex interaction for one vortex in center of square film : numerical V num divided by Pearl potential V Pearl for infinite film V/V = 1 V/V = 0
  • 25. Pinning of flux lines Types of pins: ● preciptates: Ti in NbTi -> best sc wires ● point defects, dislocations, grain boundaries ● YBa 2 Cu 3 O 7- δ : twin boundaries, CuO 2 layers, oxygen vacancies Experiment: ● critical current density j c = max. loss-free j ● irreversible magnetization curves ● ac resistivity and susceptibility Theory: ● summation of random pinning forces -> maximum volume pinning force j c B ● thermally activated depinning ● electromagnetic response ● width ~ j c H H c2 - M ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● Lorentz force B х j -> -> FL pin
  • 27. Levitation of YBCO superconductor above and below magnets at 77 K 5 cm Levitation Suspension FeNd magnets YBCO
  • 28. Importance of geometry Bean model parallel geometry long cylinder or slab Bean model perpendicular geometry thin disk or strip analytical solution: Mikheenko + Kuzovlev 1993: disk EHB+Indenbom+Forkl 1993: strip B a j J J B a J c B J B a B a r r B B j j j c r r r r B a
  • 29. equation of motion for current density: EHB, PRB (1996) Long bar A ║J║E║z Thick disk A ║J║E║ φ Example integrate over time invert matrix! sc as nonlinear conductor approx.: B= μ 0 H, H c1 =0 J x B a , y z J r B a B a -M
  • 30. Flux penetration into disk in increasing field field- and current-free core ideal screening Meissner state + + + _ _ _ 0 B a
  • 31. Same disk in decreasing magnetic field B a no more flux- and current-free zone _ _ + + + + _ _ _ + + _ + _ remanent state B a =0 B a
  • 32. YBCO film 0.8 μ m, 50 K increasing field Magneto-optics Indenbom + Schuster 1995 Theory EHB PRB 1995 Thin sc rectangle in perpendicular field stream lines of current contours of mag. induction ideal Meissner state B = 0 B = 0 Bean state | J | = const
  • 33. Thin films and platelets in perp. mag. field, SQUIDs EHB, PRB 2005 2D penetr. depth Λ = λ 2 /d
  • 34. Vortex pair in thin films with slit and hole current stream lines
  • 35. Dissipation by moving vortices (Free flux flow. Hall effect and pinning disregarded) Lorentz force on vortex: Lorentz force density: Vortex velocity: Induced electric field: Flux-flow resistivity: Where does dissipation come from? 1. Electric field induced by vortex motion inside and outside the normal core Bardeen + Stephen, PR 140, A1197 (1965) 2. Relaxation of order parameter near vortex core in motion, time Tinkham, PRL 13, 804 (1964) ( both terms are ~ equal ) 3. Computation from time-dep. GL theory: Hu + Thompson, PRB 6, 110 (1972) B c2 B Exper. and L+O B+S Is comparable to normal resistvity -> dissipation is very large !
  • 36. Note: Vortex motion is crucial for dissipation. Rigidly pinned vortices do not dissipate energy. However, elastically pinned vortices in a RF field can oscillate: Force balance on vortex: Lorentz force J x B RF (u = vortex displacement . At frequencies the viscose drag force dominates, pinning becomes negligible, and dissipation occurs. Gittleman and Rosenblum, PRL 16, 734 (1968) E x | Ψ | 2 order parameter moving vortex core relaxing order parameter v v
  • 37. Penetration of vortices, Ginzburg-Landau Theory Lower critical field: Thermodyn. critical field: Upper critical field: Good fit to numerics: Vortex magnetic field: Modified Bessel fct: Vortex core radius: Vortex self energy: Vortex interaction:
  • 38. Penetration of first vortex 1. Vortex parallel to planar surface: Bean + Livingston, PRL 12, 14 (1964) Gibbs free energy of one vortex in supercond. half space in applied field B a Interaction with image Interaction with field B a G( ∞ ) Penetration field: This holds for large κ . For small κ < 2 numerics is needed. numerics required ! H c H c1
  • 39. 2. Vortex half-loop penetrates: Self energy: Interaction with H a : Surface current: Penetration field: 3. Penetration at corners: Self energy: Interaction with H a : Surface current: Penetration field: for 90 o H a 4. Similar: Rough surface, H p << H c vortex half loop image vortex super- conductor vacuum R vacuum H a sc R H a vortices
  • 40. Bar 2a X 2a in perpendicular H a tilted by 45 o H a Field lines near corner λ = a / 10 current density j(x,y) log j(x,y) x/a y/a y/a y/a x/a x/a λ large j(,y)
  • 41. 5. Ideal diamagnet, corner with angle α : H ~ 1/ r 1/3 Near corner of angle α the magnetic field diverges as H ~ 1/ r β , β = ( π – α )/(2 π - α ) H ~ 1/ r 1/2 cylinder sphere ellipsoid rectangle a 2a b 2b H/H a = 2 H/H a = 3 H/H a ≈ (a/b) 1/2 H/H a = a/b Magnetic field H at the equator of: (strip or disk) b << a b << a Large thin film in tilted mag. field: perpendicular component penetrates in form of a vortex lattice H a vacuum H a sc r α α = π α = 0
  • 42. Irreversible magnetization of pin-free superconductors due to geometrical edge barrier for flux penetration Magnetic field lines in pin-free superconducting slab and strip EHB, PRB 60, 11939 (1999) b/a=2 flux-free core flux-free zone b/a=0.3 b/a=0.3 b/a=2 Magn. curves of pin-free disks + cylinders ellipsoid is reversible!
  • 43. Radio frequency response of superconductors DC currents in superconductors are loss-free ( if no vortices have penetrated ), but AC currents have losses ~ ω 2 since the acceleration of Cooper pairs generates an electric field E ~ ω that moves the normal electrons (= excitations, quasiparticles ). 1. Two-Fluid Model ( M.Tinkham, Superconductivity, 1996, p.37 ) Eq. of motion for both normal and superconducting electrons: total current density: super currents: normal currents: complex conductivity:
  • 44. dissipative part: inductive part: London equation: Normal conductors: parallel R and L: crossover frequency: power dissipated/vol : London depth λ skin depth power dissipated/area: general skin depth: absorbed / incid. power:
  • 45. 2. Microscopic theory ( Abrikosov, Gorkov, Khalatnikov 1959 Mattis, Bardeen 1958; Kulik 1998 ) Dissipative part: Inductive part: Quality factor: For computation of strong coupling + pure superconductors (bulk Nb) see R. Brinkmann, K. Scharnberg et al., TESLA-Report 200-07, March 2000: Nb at 2K: R s = 20 n Ω at 1.3 GHz, ≈ 1 μΩ at 100 - 600 GHz, but sharp step to 15 m Ω at f = 2 Δ /h = 750 GHz (pair breaking), above this R s ≈ 15 m Ω ≈ const When purity incr., l ↑, σ 1 ↑ but λ ↓
  • 46.
  • 47. 10 Dec 2003 Stockholm Princess Madeleine Alexei Abrikosov
  • 48.
  • 49.