SlideShare ist ein Scribd-Unternehmen logo
1 von 31
Downloaden Sie, um offline zu lesen
3D Bravais Lattices, Lattice Planes and the
Reciprocal Lattice
Shyue Ping Ong
Department of NanoEngineering
University of California, San Diego
Readings
¡Chapter 3 of Structure of Materials
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
Brief Recap
¡Concepts of symmetry – translational and
rotational
¡Lattice vectors and parameters
¡Derivation of the five 2D Bravais nets
¡Definition of unit cells
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
Derivation of 3D Bravais lattices
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
¡ Following the same general principle as 2D Bravais nets,
we consider possible values for the six lattice parameters
¡ All 3D crystal systems can be derived by adding an
additional vector to existing an 2D crystal system
a = Length of a
b = Length of b
c = Length of c
α = Angle between b and c
β = Angle between a and c
γ = Angle between a and b
a,b,c,α,β,γ{ }
Conventional for Crystallographic Axes
¡ Always right-handed
¡ c lattice vector is usually the direction of highest rotational
symmetry (if unique)
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
a.(b×c) > 0
a
b
c
Triclinic lattice
¡ No special conditions
¡ Lowest symmetry (no rotational
symmetry at all)
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
a ≠ b ≠ c
α ≠ β ≠γ
Example: K2Cr2O7
{7.574Å, 7.632Å, 13.661Å, 95.374°,
97.483°, 90.955°}
Monoclinic lattice
¡ What symmetry does the
monoclinic lattice have? (hint:
think of the relationship with a
particular 2D net)
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
α =γ = 90°
β ≠ 90° Example: Monoclinic sulfur
{10.668Å 10.690Å 10.816Å, 90°, 95.637°, 90°}
Hexagonal lattice
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
a = b
α = β = 90°
γ =120°
Example: ZnO
{3.25Å, 3.25Å, 5.21Å, 90°, 90°, 120°}
Rhombohedral/Trigonal lattice
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
a = b = c
α = β =γ ≠ 90°
Example: CaCO3
{6.36Å, 6.36Å, 6.36Å, 46.1°, 46.1°, 46.1°}
Note: All rhombohedral cells
can be represented in a
hexagonal setting
Orthorhombic lattice
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
α = β =γ = 90°
Example: BaSO4
{8.87Å, 5.54Å, 7.15Å, 90°, 90°, 90°}
Tetragonal lattice
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
a = b ≠ c
α = β =γ = 90°
Example: SnO2
{3.784Å, 3.784Å 9.514Å, 90°, 90°, 90°}
Cubic lattice
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
a = b = c
α = β =γ = 90°
Example: CsCl
{4.115Å, 4.115Å, 4.115Å, 90°, 90°, 90°}
File formats and Viewing Software for
Crystals
¡ VESTA (Visualization for Electronic and STructural
Analysis)
¡ Open-source 3D visualization program for structural models,
volumetric data such as electron/nuclear densities, and crystal
morphologies.
¡ Create lattice planes, calculate atomic distances, etc.
¡ Download at http://jp-minerals.org/vesta/en/.
¡ Main supported file formats used in NANO106
¡ Crystallographic information file (CIF) for crystals
¡ XYZ files for molecules (mainly for demonstration of point group
symmetries)
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
Where to get Crystal Structures
¡Inorganic Crystal Database (ICSD)
¡ http://icsd.fiz-karlsruhe.de
¡The Materials Project
¡ https://www.materialsproject.org/
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
Demo
NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 2
3D crystal systems
¡ The lattices you have seen thus far are all primitive and corresponds
to the seven 3D crystal systems.
¡ The 3D crystal systems can be ranked according to their symmetry.
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
Distort along [001]
direction.
Distort along [111]
direction to make
all angles ≠ 90.
Make all lengths
unequal butone lattice
vector perpendicular to
other two Make all angles
unequal
Distort along
[100] or [010].
Decreasing
symmetry
Make one angle ≠
90.
Make lengths unequal
and all angles = 90.
The 7 3D Crystal Systems and
Primitive Lattices
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
Adding new lattice nodes
¡ Remember how we derived the additional centered
rectangular net by adding a node to the primitive
rectangular net?
¡ In 3D, there are five possible locations where an
additional node can be placed:
¡ In the center of the cell at (½, ½, ½) [Body centering, denoted by
the symbol I]
¡ At the center of all faces of the cell at (½, ½, 0), (½, 0, ½), (0, ½, ½)
[Face centering, denoted by the symbol F]
¡ At the center of one of the faces at (½, ½, 0) or (½, 0, ½) or (0, ½,
½) [Base centering, denoted by the symbols A, B or C,
depending on whether the additional node is on the b-c, a-c or
a-b base planes respectively.]
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
Generating additional 3D lattices
¡ We now apply all five node placements (I, F, A, B, and C) to all seven
primitive 3D lattices (35 possibilities).
¡ Not all node placements are compatible with all primitive 3D lattices,
and some do not result in a new lattice.
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
Example: Tetragonal lattice
• Analogous to the 2D square net, C-
centering does not result in a new
lattice.
• A or B centering can be redefined into
monoclinic cell.
• The I node placement result in a new
tetragonal lattice.
• F-centering does not result in a new
lattice (problem set exercise)
The 14 3D Bravais Lattices
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
P: primitive
C: C-centered
I: body-centered
F: face-centered
(upper case for 3D)
a: triclinic (anorthic)
m: monoclinic
o: orthorhombic
t: tetragonal
h: hexagonal
c: cubic
3D unit cells
¡ Infinite number of unit cells for all 3D lattices
¡ Always possible to define primitive unit cells for non-primitive lattices,
though the full symmetry may not be retained.
¡ The Wigner-Seitz cell is similarly defined for 3D.
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
Conventional cF cell Primitive unit cell Wigner-Seitz cell
Crystallographic
Calculations
NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 2
Readings
¡Chapter 4 of Structure of Materials
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
Positions and Directions in Lattices
¡Recall that the lattice vectors form a basis for 3D
space, i.e., any point in 3D space can be
represented as a linear combination of the lattice
vectors
¡We then denote the coordinates as (u, v, w)
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
ua + vb+ wc
Calculating Distances in Lattices
¡Consider the (1, 1, 1) points in two lattices, one
cubic and another triclinic. What is the distance
from the origin (0, 0, 0) to (1, 1, 1)?
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
Calculating Distances in Lattices
a) Effectively a Cartesian frame. From Pythagoras’ Theorem, we can calculate the
distance as
b) We can convert this to a Cartesian frame by multiplying by the basis vectors,
and then calculating the distance
Though this is a perfectly valid approach, we will introduce an alternative, general
method of calculating distances using what is known as a metric tensor (for now,
just think of this as a 3x3 matrix, we will get into a more formal definition of a tensor
later)
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
d = a2
+ a2
+ a2
= a 3
d = 1a +1b+1c
Derivation of the Metric Tensor
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
Blackboard
Using the metric tensor in dot products
¡By an extension of the previous derivation, we
can see that a dot product in crystal coordinates
can be computed as:
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
x.y = pT
gq
Form of the metric tensor
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
¡How can we write the metric tensor in terms of
the lattice parameters?
¡What is the special form of the metric tensor for a
hexagonal lattice? What about the orthorhombic
and tetragonal lattices?
Blackboard
Metric Tensors for the 7 Crystal
Systems
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
gtriclinic =
a2
abcosγ accosβ
abcosγ b2
bccosα
accosβ bccosα c2
⎛
⎝
⎜
⎜
⎜
⎞
⎠
⎟
⎟
⎟
,gmonoclinic =
a2
0 accosβ
0 b2
0
accosβ 0 c2
⎛
⎝
⎜
⎜
⎜
⎞
⎠
⎟
⎟
⎟
gorthorhombic =
a2
0 0
0 b2
0
0 0 c2
⎛
⎝
⎜
⎜
⎜
⎞
⎠
⎟
⎟
⎟
,gtetragonal =
a2
0 0
0 a2
0
0 0 c2
⎛
⎝
⎜
⎜
⎜
⎞
⎠
⎟
⎟
⎟
,gcubic =
a2
0 0
0 a2
0
0 0 a2
⎛
⎝
⎜
⎜
⎜
⎞
⎠
⎟
⎟
⎟
ghexagonal =
a2
−
a2
2
0
−
a2
2
a2
0
0 0 c2
⎛
⎝
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎞
⎠
⎟
⎟
⎟
⎟
⎟
⎟
⎟
,grhombohedral =
a2
a2
cosα a2
cosα
a2
cosα a2
a2
cosα
a2
cosα a2
cosα a2
⎛
⎝
⎜
⎜
⎜
⎞
⎠
⎟
⎟
⎟
Example
¡ You have a orthorhombic lattice with lattice parameters {4,
6, 8, 90, 90, 90}.
¡ What is the length of a vector from the origin to (0.5, 0.5, 0.5)?
¡ You have two atoms P and Q at locations (0.2, 0.2, 0.2) and (0.4,
0.5, 0.6) respectively. What is the distance between them? What is
the angle between them and the origin, i.e., the angle POQ?
NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
Blackboard example

Weitere ähnliche Inhalte

Was ist angesagt?

Was ist angesagt? (20)

mossbauer spectroscopy.ppt
mossbauer spectroscopy.pptmossbauer spectroscopy.ppt
mossbauer spectroscopy.ppt
 
Zeeman and Stark Effect
Zeeman and Stark EffectZeeman and Stark Effect
Zeeman and Stark Effect
 
Cyclic voltammetry
Cyclic voltammetryCyclic voltammetry
Cyclic voltammetry
 
Conformation and Conformation Analysis of Alkanes and Cycloalkanes
Conformation and Conformation Analysis of Alkanes and CycloalkanesConformation and Conformation Analysis of Alkanes and Cycloalkanes
Conformation and Conformation Analysis of Alkanes and Cycloalkanes
 
M.Sc. 2D NMR.pptx
M.Sc. 2D NMR.pptxM.Sc. 2D NMR.pptx
M.Sc. 2D NMR.pptx
 
Lecture 21
Lecture 21Lecture 21
Lecture 21
 
UCSD NANO106 - 04 - Symmetry in Crystallography
UCSD NANO106 - 04 - Symmetry in CrystallographyUCSD NANO106 - 04 - Symmetry in Crystallography
UCSD NANO106 - 04 - Symmetry in Crystallography
 
Born-Oppenheimer approximation.pptx
Born-Oppenheimer approximation.pptxBorn-Oppenheimer approximation.pptx
Born-Oppenheimer approximation.pptx
 
Chapter 4 optical properties of phonons
Chapter 4   optical properties of phononsChapter 4   optical properties of phonons
Chapter 4 optical properties of phonons
 
Group theory - Part -1
Group theory - Part -1Group theory - Part -1
Group theory - Part -1
 
Growth of single crystals
Growth of  single crystalsGrowth of  single crystals
Growth of single crystals
 
THE HARTREE FOCK METHOD
THE HARTREE FOCK METHODTHE HARTREE FOCK METHOD
THE HARTREE FOCK METHOD
 
nuclear shell model.pptx
nuclear shell model.pptxnuclear shell model.pptx
nuclear shell model.pptx
 
Mossbauer spectroscopy
Mossbauer spectroscopyMossbauer spectroscopy
Mossbauer spectroscopy
 
Miller indices
Miller indicesMiller indices
Miller indices
 
bloch.pdf
bloch.pdfbloch.pdf
bloch.pdf
 
Statics presentation ppt(1)
Statics presentation ppt(1)Statics presentation ppt(1)
Statics presentation ppt(1)
 
Xps
XpsXps
Xps
 
Resonance raman spectoscopy
Resonance raman spectoscopyResonance raman spectoscopy
Resonance raman spectoscopy
 
WALSH DIAGRAM- SEMINAR TOPIC
WALSH DIAGRAM- SEMINAR TOPICWALSH DIAGRAM- SEMINAR TOPIC
WALSH DIAGRAM- SEMINAR TOPIC
 

Andere mochten auch

UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...University of California, San Diego
 
UCSD NANO106 - 08 - Principal Directions and Representation Quadrics
UCSD NANO106 - 08 - Principal Directions and Representation QuadricsUCSD NANO106 - 08 - Principal Directions and Representation Quadrics
UCSD NANO106 - 08 - Principal Directions and Representation QuadricsUniversity of California, San Diego
 
UCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal Structures
UCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal StructuresUCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal Structures
UCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal StructuresUniversity of California, San Diego
 
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...University of California, San Diego
 
972 B3102005 Cullity Chapter 2
972 B3102005 Cullity Chapter 2972 B3102005 Cullity Chapter 2
972 B3102005 Cullity Chapter 2praying1
 
Stress Tensor & Rotation Tensor
Stress Tensor & Rotation TensorStress Tensor & Rotation Tensor
Stress Tensor & Rotation TensorJongsu "Liam" Kim
 
FireWorks workflow software
FireWorks workflow softwareFireWorks workflow software
FireWorks workflow softwareAnubhav Jain
 
The Materials Project: overview and infrastructure
The Materials Project: overview and infrastructureThe Materials Project: overview and infrastructure
The Materials Project: overview and infrastructureAnubhav Jain
 
Matrix and Tensor Tools for Computer Vision
Matrix and Tensor Tools for Computer VisionMatrix and Tensor Tools for Computer Vision
Matrix and Tensor Tools for Computer VisionActiveEon
 

Andere mochten auch (18)

UCSD NANO106 - 05 - Group Symmetry and the 32 Point Groups
UCSD NANO106 - 05 - Group Symmetry and the 32 Point GroupsUCSD NANO106 - 05 - Group Symmetry and the 32 Point Groups
UCSD NANO106 - 05 - Group Symmetry and the 32 Point Groups
 
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
 
UCSD NANO106 - 07 - Material properties and tensors
UCSD NANO106 - 07 - Material properties and tensorsUCSD NANO106 - 07 - Material properties and tensors
UCSD NANO106 - 07 - Material properties and tensors
 
UCSD NANO106 - 08 - Principal Directions and Representation Quadrics
UCSD NANO106 - 08 - Principal Directions and Representation QuadricsUCSD NANO106 - 08 - Principal Directions and Representation Quadrics
UCSD NANO106 - 08 - Principal Directions and Representation Quadrics
 
UCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal Structures
UCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal StructuresUCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal Structures
UCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal Structures
 
UCSD NANO106 - 09 - Piezoelectricity and Elasticity
UCSD NANO106 - 09 - Piezoelectricity and ElasticityUCSD NANO106 - 09 - Piezoelectricity and Elasticity
UCSD NANO106 - 09 - Piezoelectricity and Elasticity
 
UCSD NANO106 - 10 - Bonding in Materials
UCSD NANO106 - 10 - Bonding in MaterialsUCSD NANO106 - 10 - Bonding in Materials
UCSD NANO106 - 10 - Bonding in Materials
 
UCSD NANO106 - 11 - X-rays and their interaction with matter
UCSD NANO106 - 11 - X-rays and their interaction with matterUCSD NANO106 - 11 - X-rays and their interaction with matter
UCSD NANO106 - 11 - X-rays and their interaction with matter
 
UCSD NANO106 - 12 - X-ray diffraction
UCSD NANO106 - 12 - X-ray diffractionUCSD NANO106 - 12 - X-ray diffraction
UCSD NANO106 - 12 - X-ray diffraction
 
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
 
972 B3102005 Cullity Chapter 2
972 B3102005 Cullity Chapter 2972 B3102005 Cullity Chapter 2
972 B3102005 Cullity Chapter 2
 
Stress Tensor & Rotation Tensor
Stress Tensor & Rotation TensorStress Tensor & Rotation Tensor
Stress Tensor & Rotation Tensor
 
MAVRL Workshop 2014 - Python Materials Genomics (pymatgen)
MAVRL Workshop 2014 - Python Materials Genomics (pymatgen)MAVRL Workshop 2014 - Python Materials Genomics (pymatgen)
MAVRL Workshop 2014 - Python Materials Genomics (pymatgen)
 
MAVRL Workshop 2014 - pymatgen-db & custodian
MAVRL Workshop 2014 - pymatgen-db & custodianMAVRL Workshop 2014 - pymatgen-db & custodian
MAVRL Workshop 2014 - pymatgen-db & custodian
 
FireWorks workflow software
FireWorks workflow softwareFireWorks workflow software
FireWorks workflow software
 
The Materials Project: overview and infrastructure
The Materials Project: overview and infrastructureThe Materials Project: overview and infrastructure
The Materials Project: overview and infrastructure
 
Matrix and Tensor Tools for Computer Vision
Matrix and Tensor Tools for Computer VisionMatrix and Tensor Tools for Computer Vision
Matrix and Tensor Tools for Computer Vision
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 

Ähnlich wie UCSD NANO106 - 02 - 3D Bravis Lattices and Lattice Computations

Xray diff pma
Xray diff pmaXray diff pma
Xray diff pmasadaf635
 
Mme 323 materials science week 3 - fundamental of crystallography
Mme 323 materials science   week 3 - fundamental of crystallographyMme 323 materials science   week 3 - fundamental of crystallography
Mme 323 materials science week 3 - fundamental of crystallographyAdhi Primartomo
 
Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"SEENET-MTP
 
Andrey V. Savchenko - Sequential Hierarchical Image Recognition based on the ...
Andrey V. Savchenko - Sequential Hierarchical Image Recognition based on the ...Andrey V. Savchenko - Sequential Hierarchical Image Recognition based on the ...
Andrey V. Savchenko - Sequential Hierarchical Image Recognition based on the ...AIST
 
2015 KPS autumn meeting
2015 KPS autumn meeting 2015 KPS autumn meeting
2015 KPS autumn meeting Heetae Kim
 
dokumen.tips_ucsd-nano106-05-group-symmetry-and-the-32-point-groups.pdf
dokumen.tips_ucsd-nano106-05-group-symmetry-and-the-32-point-groups.pdfdokumen.tips_ucsd-nano106-05-group-symmetry-and-the-32-point-groups.pdf
dokumen.tips_ucsd-nano106-05-group-symmetry-and-the-32-point-groups.pdflaboLCPM
 
XRD principle and application
XRD principle and applicationXRD principle and application
XRD principle and applicationTechef In
 
ismcgrenoble-poster-160906
ismcgrenoble-poster-160906ismcgrenoble-poster-160906
ismcgrenoble-poster-160906Mohit Dixit
 
Presentation IDETC
Presentation IDETCPresentation IDETC
Presentation IDETCXiao Wang
 
(PhD Dissertation Defense) Theoretical and Numerical Investigations on Crysta...
(PhD Dissertation Defense) Theoretical and Numerical Investigations on Crysta...(PhD Dissertation Defense) Theoretical and Numerical Investigations on Crysta...
(PhD Dissertation Defense) Theoretical and Numerical Investigations on Crysta...James D.B. Wang, PhD
 
Dissertation Defense
Dissertation DefenseDissertation Defense
Dissertation Defensejunkermeier
 
The Face of Nanomaterials: Insightful Classification Using Deep Learning - An...
The Face of Nanomaterials: Insightful Classification Using Deep Learning - An...The Face of Nanomaterials: Insightful Classification Using Deep Learning - An...
The Face of Nanomaterials: Insightful Classification Using Deep Learning - An...PyData
 
Vibration analysis of line continuum with new matrices of elastic and inertia...
Vibration analysis of line continuum with new matrices of elastic and inertia...Vibration analysis of line continuum with new matrices of elastic and inertia...
Vibration analysis of line continuum with new matrices of elastic and inertia...eSAT Publishing House
 

Ähnlich wie UCSD NANO106 - 02 - 3D Bravis Lattices and Lattice Computations (20)

Xray diff pma
Xray diff pmaXray diff pma
Xray diff pma
 
A_I_Structure.pdf
A_I_Structure.pdfA_I_Structure.pdf
A_I_Structure.pdf
 
Mme 323 materials science week 3 - fundamental of crystallography
Mme 323 materials science   week 3 - fundamental of crystallographyMme 323 materials science   week 3 - fundamental of crystallography
Mme 323 materials science week 3 - fundamental of crystallography
 
Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"
 
XRD_AG NPG.ppt
XRD_AG NPG.pptXRD_AG NPG.ppt
XRD_AG NPG.ppt
 
XRD_AG NPG.ppt
XRD_AG NPG.pptXRD_AG NPG.ppt
XRD_AG NPG.ppt
 
Crystallography.ppt
Crystallography.pptCrystallography.ppt
Crystallography.ppt
 
Seminor ansto-0730
Seminor ansto-0730Seminor ansto-0730
Seminor ansto-0730
 
Andrey V. Savchenko - Sequential Hierarchical Image Recognition based on the ...
Andrey V. Savchenko - Sequential Hierarchical Image Recognition based on the ...Andrey V. Savchenko - Sequential Hierarchical Image Recognition based on the ...
Andrey V. Savchenko - Sequential Hierarchical Image Recognition based on the ...
 
2015 KPS autumn meeting
2015 KPS autumn meeting 2015 KPS autumn meeting
2015 KPS autumn meeting
 
Lattices.ppt
Lattices.pptLattices.ppt
Lattices.ppt
 
X-Ray Topic.ppt
X-Ray Topic.pptX-Ray Topic.ppt
X-Ray Topic.ppt
 
dokumen.tips_ucsd-nano106-05-group-symmetry-and-the-32-point-groups.pdf
dokumen.tips_ucsd-nano106-05-group-symmetry-and-the-32-point-groups.pdfdokumen.tips_ucsd-nano106-05-group-symmetry-and-the-32-point-groups.pdf
dokumen.tips_ucsd-nano106-05-group-symmetry-and-the-32-point-groups.pdf
 
XRD principle and application
XRD principle and applicationXRD principle and application
XRD principle and application
 
ismcgrenoble-poster-160906
ismcgrenoble-poster-160906ismcgrenoble-poster-160906
ismcgrenoble-poster-160906
 
Presentation IDETC
Presentation IDETCPresentation IDETC
Presentation IDETC
 
(PhD Dissertation Defense) Theoretical and Numerical Investigations on Crysta...
(PhD Dissertation Defense) Theoretical and Numerical Investigations on Crysta...(PhD Dissertation Defense) Theoretical and Numerical Investigations on Crysta...
(PhD Dissertation Defense) Theoretical and Numerical Investigations on Crysta...
 
Dissertation Defense
Dissertation DefenseDissertation Defense
Dissertation Defense
 
The Face of Nanomaterials: Insightful Classification Using Deep Learning - An...
The Face of Nanomaterials: Insightful Classification Using Deep Learning - An...The Face of Nanomaterials: Insightful Classification Using Deep Learning - An...
The Face of Nanomaterials: Insightful Classification Using Deep Learning - An...
 
Vibration analysis of line continuum with new matrices of elastic and inertia...
Vibration analysis of line continuum with new matrices of elastic and inertia...Vibration analysis of line continuum with new matrices of elastic and inertia...
Vibration analysis of line continuum with new matrices of elastic and inertia...
 

Mehr von University of California, San Diego

NANO281 Lecture 01 - Introduction to Data Science in Materials Science
NANO281 Lecture 01 - Introduction to Data Science in Materials ScienceNANO281 Lecture 01 - Introduction to Data Science in Materials Science
NANO281 Lecture 01 - Introduction to Data Science in Materials ScienceUniversity of California, San Diego
 
NANO266 - Lecture 12 - High-throughput computational materials design
NANO266 - Lecture 12 - High-throughput computational materials designNANO266 - Lecture 12 - High-throughput computational materials design
NANO266 - Lecture 12 - High-throughput computational materials designUniversity of California, San Diego
 
The Materials Project Ecosystem - A Complete Software and Data Platform for M...
The Materials Project Ecosystem - A Complete Software and Data Platform for M...The Materials Project Ecosystem - A Complete Software and Data Platform for M...
The Materials Project Ecosystem - A Complete Software and Data Platform for M...University of California, San Diego
 
NANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical Modeling
NANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical ModelingNANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical Modeling
NANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical ModelingUniversity of California, San Diego
 

Mehr von University of California, San Diego (16)

A*STAR Webinar on The AI Revolution in Materials Science
A*STAR Webinar on The AI Revolution in Materials ScienceA*STAR Webinar on The AI Revolution in Materials Science
A*STAR Webinar on The AI Revolution in Materials Science
 
NANO281 Lecture 01 - Introduction to Data Science in Materials Science
NANO281 Lecture 01 - Introduction to Data Science in Materials ScienceNANO281 Lecture 01 - Introduction to Data Science in Materials Science
NANO281 Lecture 01 - Introduction to Data Science in Materials Science
 
NANO266 - Lecture 14 - Transition state modeling
NANO266 - Lecture 14 - Transition state modelingNANO266 - Lecture 14 - Transition state modeling
NANO266 - Lecture 14 - Transition state modeling
 
NANO266 - Lecture 13 - Ab initio molecular dyanmics
NANO266 - Lecture 13 - Ab initio molecular dyanmicsNANO266 - Lecture 13 - Ab initio molecular dyanmics
NANO266 - Lecture 13 - Ab initio molecular dyanmics
 
NANO266 - Lecture 12 - High-throughput computational materials design
NANO266 - Lecture 12 - High-throughput computational materials designNANO266 - Lecture 12 - High-throughput computational materials design
NANO266 - Lecture 12 - High-throughput computational materials design
 
NANO266 - Lecture 11 - Surfaces and Interfaces
NANO266 - Lecture 11 - Surfaces and InterfacesNANO266 - Lecture 11 - Surfaces and Interfaces
NANO266 - Lecture 11 - Surfaces and Interfaces
 
NANO266 - Lecture 10 - Temperature
NANO266 - Lecture 10 - TemperatureNANO266 - Lecture 10 - Temperature
NANO266 - Lecture 10 - Temperature
 
NANO266 - Lecture 9 - Tools of the Modeling Trade
NANO266 - Lecture 9 - Tools of the Modeling TradeNANO266 - Lecture 9 - Tools of the Modeling Trade
NANO266 - Lecture 9 - Tools of the Modeling Trade
 
NANO266 - Lecture 8 - Properties of Periodic Solids
NANO266 - Lecture 8 - Properties of Periodic SolidsNANO266 - Lecture 8 - Properties of Periodic Solids
NANO266 - Lecture 8 - Properties of Periodic Solids
 
NANO266 - Lecture 7 - QM Modeling of Periodic Structures
NANO266 - Lecture 7 - QM Modeling of Periodic StructuresNANO266 - Lecture 7 - QM Modeling of Periodic Structures
NANO266 - Lecture 7 - QM Modeling of Periodic Structures
 
The Materials Project Ecosystem - A Complete Software and Data Platform for M...
The Materials Project Ecosystem - A Complete Software and Data Platform for M...The Materials Project Ecosystem - A Complete Software and Data Platform for M...
The Materials Project Ecosystem - A Complete Software and Data Platform for M...
 
NANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical Modeling
NANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical ModelingNANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical Modeling
NANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical Modeling
 
NANO266 - Lecture 5 - Exchange-Correlation Functionals
NANO266 - Lecture 5 - Exchange-Correlation FunctionalsNANO266 - Lecture 5 - Exchange-Correlation Functionals
NANO266 - Lecture 5 - Exchange-Correlation Functionals
 
NANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFTNANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFT
 
NANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
NANO266 - Lecture 3 - Beyond the Hartree-Fock ApproximationNANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
NANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
 
NANO266 - Lecture 1 - Introduction to Quantum Mechanics
NANO266 - Lecture 1 - Introduction to Quantum MechanicsNANO266 - Lecture 1 - Introduction to Quantum Mechanics
NANO266 - Lecture 1 - Introduction to Quantum Mechanics
 

Kürzlich hochgeladen

Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)cama23
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxMaryGraceBautista27
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxCulture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxPoojaSen20
 
FILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinoFILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinojohnmickonozaleda
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 

Kürzlich hochgeladen (20)

Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptx
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxCulture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
 
FILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinoFILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipino
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 

UCSD NANO106 - 02 - 3D Bravis Lattices and Lattice Computations

  • 1. 3D Bravais Lattices, Lattice Planes and the Reciprocal Lattice Shyue Ping Ong Department of NanoEngineering University of California, San Diego
  • 2. Readings ¡Chapter 3 of Structure of Materials NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
  • 3. Brief Recap ¡Concepts of symmetry – translational and rotational ¡Lattice vectors and parameters ¡Derivation of the five 2D Bravais nets ¡Definition of unit cells NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
  • 4. Derivation of 3D Bravais lattices NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2 ¡ Following the same general principle as 2D Bravais nets, we consider possible values for the six lattice parameters ¡ All 3D crystal systems can be derived by adding an additional vector to existing an 2D crystal system a = Length of a b = Length of b c = Length of c α = Angle between b and c β = Angle between a and c γ = Angle between a and b a,b,c,α,β,γ{ }
  • 5. Conventional for Crystallographic Axes ¡ Always right-handed ¡ c lattice vector is usually the direction of highest rotational symmetry (if unique) NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2 a.(b×c) > 0 a b c
  • 6. Triclinic lattice ¡ No special conditions ¡ Lowest symmetry (no rotational symmetry at all) NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2 a ≠ b ≠ c α ≠ β ≠γ Example: K2Cr2O7 {7.574Å, 7.632Å, 13.661Å, 95.374°, 97.483°, 90.955°}
  • 7. Monoclinic lattice ¡ What symmetry does the monoclinic lattice have? (hint: think of the relationship with a particular 2D net) NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2 α =γ = 90° β ≠ 90° Example: Monoclinic sulfur {10.668Å 10.690Å 10.816Å, 90°, 95.637°, 90°}
  • 8. Hexagonal lattice NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2 a = b α = β = 90° γ =120° Example: ZnO {3.25Å, 3.25Å, 5.21Å, 90°, 90°, 120°}
  • 9. Rhombohedral/Trigonal lattice NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2 a = b = c α = β =γ ≠ 90° Example: CaCO3 {6.36Å, 6.36Å, 6.36Å, 46.1°, 46.1°, 46.1°} Note: All rhombohedral cells can be represented in a hexagonal setting
  • 10. Orthorhombic lattice NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2 α = β =γ = 90° Example: BaSO4 {8.87Å, 5.54Å, 7.15Å, 90°, 90°, 90°}
  • 11. Tetragonal lattice NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2 a = b ≠ c α = β =γ = 90° Example: SnO2 {3.784Å, 3.784Å 9.514Å, 90°, 90°, 90°}
  • 12. Cubic lattice NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2 a = b = c α = β =γ = 90° Example: CsCl {4.115Å, 4.115Å, 4.115Å, 90°, 90°, 90°}
  • 13. File formats and Viewing Software for Crystals ¡ VESTA (Visualization for Electronic and STructural Analysis) ¡ Open-source 3D visualization program for structural models, volumetric data such as electron/nuclear densities, and crystal morphologies. ¡ Create lattice planes, calculate atomic distances, etc. ¡ Download at http://jp-minerals.org/vesta/en/. ¡ Main supported file formats used in NANO106 ¡ Crystallographic information file (CIF) for crystals ¡ XYZ files for molecules (mainly for demonstration of point group symmetries) NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
  • 14. Where to get Crystal Structures ¡Inorganic Crystal Database (ICSD) ¡ http://icsd.fiz-karlsruhe.de ¡The Materials Project ¡ https://www.materialsproject.org/ NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
  • 15. Demo NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 2
  • 16. 3D crystal systems ¡ The lattices you have seen thus far are all primitive and corresponds to the seven 3D crystal systems. ¡ The 3D crystal systems can be ranked according to their symmetry. NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2 Distort along [001] direction. Distort along [111] direction to make all angles ≠ 90. Make all lengths unequal butone lattice vector perpendicular to other two Make all angles unequal Distort along [100] or [010]. Decreasing symmetry Make one angle ≠ 90. Make lengths unequal and all angles = 90.
  • 17. The 7 3D Crystal Systems and Primitive Lattices NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
  • 18. Adding new lattice nodes ¡ Remember how we derived the additional centered rectangular net by adding a node to the primitive rectangular net? ¡ In 3D, there are five possible locations where an additional node can be placed: ¡ In the center of the cell at (½, ½, ½) [Body centering, denoted by the symbol I] ¡ At the center of all faces of the cell at (½, ½, 0), (½, 0, ½), (0, ½, ½) [Face centering, denoted by the symbol F] ¡ At the center of one of the faces at (½, ½, 0) or (½, 0, ½) or (0, ½, ½) [Base centering, denoted by the symbols A, B or C, depending on whether the additional node is on the b-c, a-c or a-b base planes respectively.] NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
  • 19. Generating additional 3D lattices ¡ We now apply all five node placements (I, F, A, B, and C) to all seven primitive 3D lattices (35 possibilities). ¡ Not all node placements are compatible with all primitive 3D lattices, and some do not result in a new lattice. NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2 Example: Tetragonal lattice • Analogous to the 2D square net, C- centering does not result in a new lattice. • A or B centering can be redefined into monoclinic cell. • The I node placement result in a new tetragonal lattice. • F-centering does not result in a new lattice (problem set exercise)
  • 20. The 14 3D Bravais Lattices NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2 P: primitive C: C-centered I: body-centered F: face-centered (upper case for 3D) a: triclinic (anorthic) m: monoclinic o: orthorhombic t: tetragonal h: hexagonal c: cubic
  • 21. 3D unit cells ¡ Infinite number of unit cells for all 3D lattices ¡ Always possible to define primitive unit cells for non-primitive lattices, though the full symmetry may not be retained. ¡ The Wigner-Seitz cell is similarly defined for 3D. NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2 Conventional cF cell Primitive unit cell Wigner-Seitz cell
  • 22. Crystallographic Calculations NANO 106 - Crystallography of Materials by Shyue Ping Ong - Lecture 2
  • 23. Readings ¡Chapter 4 of Structure of Materials NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
  • 24. Positions and Directions in Lattices ¡Recall that the lattice vectors form a basis for 3D space, i.e., any point in 3D space can be represented as a linear combination of the lattice vectors ¡We then denote the coordinates as (u, v, w) NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2 ua + vb+ wc
  • 25. Calculating Distances in Lattices ¡Consider the (1, 1, 1) points in two lattices, one cubic and another triclinic. What is the distance from the origin (0, 0, 0) to (1, 1, 1)? NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2
  • 26. Calculating Distances in Lattices a) Effectively a Cartesian frame. From Pythagoras’ Theorem, we can calculate the distance as b) We can convert this to a Cartesian frame by multiplying by the basis vectors, and then calculating the distance Though this is a perfectly valid approach, we will introduce an alternative, general method of calculating distances using what is known as a metric tensor (for now, just think of this as a 3x3 matrix, we will get into a more formal definition of a tensor later) NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2 d = a2 + a2 + a2 = a 3 d = 1a +1b+1c
  • 27. Derivation of the Metric Tensor NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2 Blackboard
  • 28. Using the metric tensor in dot products ¡By an extension of the previous derivation, we can see that a dot product in crystal coordinates can be computed as: NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2 x.y = pT gq
  • 29. Form of the metric tensor NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2 ¡How can we write the metric tensor in terms of the lattice parameters? ¡What is the special form of the metric tensor for a hexagonal lattice? What about the orthorhombic and tetragonal lattices? Blackboard
  • 30. Metric Tensors for the 7 Crystal Systems NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2 gtriclinic = a2 abcosγ accosβ abcosγ b2 bccosα accosβ bccosα c2 ⎛ ⎝ ⎜ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ⎟ ,gmonoclinic = a2 0 accosβ 0 b2 0 accosβ 0 c2 ⎛ ⎝ ⎜ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ⎟ gorthorhombic = a2 0 0 0 b2 0 0 0 c2 ⎛ ⎝ ⎜ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ⎟ ,gtetragonal = a2 0 0 0 a2 0 0 0 c2 ⎛ ⎝ ⎜ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ⎟ ,gcubic = a2 0 0 0 a2 0 0 0 a2 ⎛ ⎝ ⎜ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ⎟ ghexagonal = a2 − a2 2 0 − a2 2 a2 0 0 0 c2 ⎛ ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ,grhombohedral = a2 a2 cosα a2 cosα a2 cosα a2 a2 cosα a2 cosα a2 cosα a2 ⎛ ⎝ ⎜ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ⎟
  • 31. Example ¡ You have a orthorhombic lattice with lattice parameters {4, 6, 8, 90, 90, 90}. ¡ What is the length of a vector from the origin to (0.5, 0.5, 0.5)? ¡ You have two atoms P and Q at locations (0.2, 0.2, 0.2) and (0.4, 0.5, 0.6) respectively. What is the distance between them? What is the angle between them and the origin, i.e., the angle POQ? NANO 106 - Crystallography ofMaterials by Shyue Ping Ong - Lecture 2 Blackboard example