SlideShare ist ein Scribd-Unternehmen logo
1 von 27
1
Spin Torque for DummiesSpin Torque for Dummies
Matt Pufall, Bill Rippard
Shehzu Kaka, Steve Russek, Tom Silva
National Institute of Standards and Technology,
Boulder, CO
J. A. Katine
Hitachi Global Storage Technologies
San Jose, CA
Mark Ablowitz, Mark Hoefer, Boaz Ilan
University of Colorado Applied Math Department
Boulder, CO
2
OutlineOutline
1) Spin dynamics
2) Magnetotransport
3) Spin momentum transfer
4) Spin torque nano-oscillators
3
But first… a puzzle!But first… a puzzle!
We start with a
polarized beam
of spin 1/2 Ag
ions…
… we pass the beam
through a magnetic
field gradient…
… and the beam
“diffracts” into two
beams, polarized
along the axis of
the magnetic field.
Q: What happened to the angular momentum in the original polarization direction???
(For more details, see Feynman’s Lectures on Physics, Vol. III, page 5-1)
The “Stern-Gerlach” experiment
… but
true!!!
Very
strange
…
H
4
Part 1: Spin dynamicsPart 1: Spin dynamics
5
Magnets are Gyroscopes!Magnets are Gyroscopes!
2
B
L
e
e
m
µ
γ = − = −
h
e-
r
v
z
2 B
s
µ
γ = −
h
For spin angular
momentum, extra
factor of 2 required.
“The gyromagnetic ratio”
L r p= ×
r r r
angular momentum
for atomic orbit:
L IAµ =
rr
magnetic moment
for atomic orbit:
( )2
ˆ
2
ev
r z
r
π
π
 
= − ÷
 
ˆ
2
evr
z= − ˆrmvz=
Classical model
for an atom:
2
e
evr
rm v
= −
z
L
zL
µ
γ B
6
Larmor EquationLarmor Equation
H
M
0T M Hµ= ×
r r r
T
dL
T
dt
=
r
r
L
µ
γ ≡
( )0
dM
T
dt
M H
γ
γµ
=
= ×
r
r
r r
(definition of torque) (gyromagnetic ratio)
Magnetic field exerts torque on magnetization.
Joseph Larmor
Magnets
make me
dizzy!
7
( )0
d
s
T
M M H
M
αµ
=
= × ×
r
r r r
damping torque
0
precession torquepT
M Hµ
=
= ×
r
r r
Landau & Lifshitz (1935):
( )
( )
0
0
p d
s
dM
T T T
dt
M H
M M H
M
γ γ
γ µ
α γ µ
= − = − +
= − ×
− × ×
r
r r r
r r
r r r
α = dimensionless
Landau-Lifshitz
damping parameter
Gyromagnetic precession with energy loss: TheGyromagnetic precession with energy loss: The
Landau-Lifshitz equationLandau-Lifshitz equation
L. Landau and E. Lifshitz, Physik. Z. Sowjetunion 8, 153-169 (1935).
H
Lev Landau
Damping
happens!!
Lev Landau
8
Part 2: Charge transport in magnetic heterostructuresPart 2: Charge transport in magnetic heterostructures
(Magneto-transport)(Magneto-transport)
9
Ferromagnetism in Conductors: Band StructureFerromagnetism in Conductors: Band Structure
D(E)
E
“s-p band”
EF
spin-up spin-down
D(E)
E
“d band”
EF
“majority” states
“minority” states
“Density of States”
“exchange splitting”
s-band states (l = 0) have higher mobility than d-band states (l = 2) in
conductors due to the much lower effective mass of the s-band.
Minority band electrons scatter more readily from the s-p band to the d-band
due to the availability of hole states in the minority d-band.
10
Spin-dependent conductivity in ferromagnetic metalsSpin-dependent conductivity in ferromagnetic metals
“majority
band”
“minority
band”
M
JJ
Conductivities in ferromagnetic conductors are
different for majority and minority spins.
In an “ideal” ferromagnetic conductor, the conductivity for minority spins is zero.
Analogy: Like water flowing through pipes. Large conductivity = big pipe, etc…
11
Concept: interfacial spin-dependent scatteringConcept: interfacial spin-dependent scattering
M
“Majority” spins are preferentially transmitted.
”Minority” spins are preferentially reflected.
Normal metal Ferromagnet
12
Concept: ferromagnets as spin polarizersConcept: ferromagnets as spin polarizers
M
“Majority” spins are preferentially transmitted.
Normal metalFerromagnet
Ferromagnetic conductors are relatively permeable for majority spins.
Conversely, they are impermeable for minority spins.
13
Concept: spin accumulationConcept: spin accumulation
∆M
z
I
( ) sM z M M= + ∆
Non-equilibrium spin polarization “accumulates” near interfaces of
ferromagnetic and non-magnetic conductors.
“spin
diffusion
length”
14
Part 3: Spin momentum transferPart 3: Spin momentum transfer
15
Non-collinear spin transmissionNon-collinear spin transmission
M
θ
What if the spin is neither in the majority band nor the minority band???
????
????
Is the spin reflected or is it transmitted?
Quantum mechanical probabilities:
( )( )
( )( )
2
2
1
Pr 1 cos
2
1
Pr 1 cos
2
A
B
θ
θ
 ↑ = = + 
 ↓ = = − 
= +A B
θ
Quantum mechanics of spin:
cos
2
sin
2
A
B
θ
θ
  
=  ÷
  

  =  ÷  
An arbitrary spin state
is a coherent
superposition of “up”
and “down” spins.
16
Spin Momentum Transfer: Small Current LimitSpin Momentum Transfer: Small Current Limit
θ
M
+ =
-δT
+
Tdamp
θ
MPolarizer: At low electron flux,
damping torque compensates
spin torque: Magnetization is
stable.
e-
θ
M Mf
; 1Tδ θ θµ
r
=+ =
δT
Electrons:
17
Spin Momentum Transfer: Large Current LimitSpin Momentum Transfer: Large Current Limit
δT is driven by spin accumulation in the Cu spacer.
Spin accumulation is proportional to current flowing
through the structure.
+ =
θ
M
+ =
δT
-δT
+
Tdamp
θ + δθ
M
Electrons:
Polarizer:
Spin torque exceeds
damping torque:
Polarizer reacts with
changing M. Torque
proportional to angle
θ: Unstable!Damping torque
18
Transverse torque via spin reorientation/reflectionTransverse torque via spin reorientation/reflection
Consider only reflection events...
For the electron:
( )
( )
( )
ˆ
ˆsin
2
ˆ ˆ ˆ
2
ˆ ˆ ˆ
2
transverse
transverse inc
inc
f
s
s s y
s
y
m m p
m m m
θ
∆
′∆ = −
′= −
= − × ×
= × ×
r
r r
r
h
h
h
θ
θ
transverses∆
r
incs
rrefs
r
AND
Consider only change in angular momentum
transverse to magnetization axis. (Equivalent to
assuming magnitude of M does not change.)
y′
x′
where
2
ˆ incp s=
r
h
θ ˆp
ˆm−
19
Newton’s Second LawNewton’s Second Law
( )ˆ ˆ ˆ
2
trans fs m m m∆ = × ×
hr
If…
…then…
( ) ( )ˆ ˆ ˆ
2
fM V m m mγ∆ = × ×
r h
…per electron.
For a flowing stream of electrons:
( )
( )( )2
ˆ ˆ ˆ
2
ˆ
2
f
f
s
m m m
dM I
dt V e
I
M M m
eM V
γ
γ
× ×   
= ÷  ÷
  
 
= × × ÷
 
hr
r rh
Total moment of
“free” magnetic
layer
Rate of electron
impingement on “free” layer
20
The Slonczewski Torque TermThe Slonczewski Torque Term
2
ˆ( )
2
Sloncewski f
s
J
T M M m
e M
ε
δ
= × ×
r r rh
J. Slonczewski, Journal of Magnetism and Magnetic Materials, vol. 159, page L1 (1996)
J M Mf
δ
efficiency* ~ 0.2 - 0.3
*Accounts for all those messy details:
Polarization of ferromagnet, band
structure mismatch at interface, spin
decoherence, etc…
21
The “FAQ Page”The “FAQ Page”
Q: What if the spin is transmitted through the “free” layer rather than reflected?
A: Doesn’t matter. Quantum mechanically, there is an amplitude for both transmission
and reflection, but only for spin along the axis of magnetization. The transverse
component of spin for the incident electrons is “lost” once the electron wavefunction is
split into the transmitted and reflected components. Conservation of angular momentum
dictates that the transverse component is transferred to the magnetic layer. This is a
purely quantum mechanical phenomenon: There is no classical analog!
Q: Don’t the reflected spins affect the spin accumulation in the spacer layer?
A: Yes, they do. There are several theories that take this “back-action” on the spin
accumulation into account. See J. C. Slonczewski, J. Magn. Magn. Mater. 247, 324
(2002); A. A. Kovalev, et al., Phys. Rev. B 66, 224424 (2002); J. Xiao, et al., Phys. Rev.
B 70, 172405 (2004); A. Fert, et al., J Magn. Magn. Mater. 69, 184406 (2004).
( )
0 1 0 1cos cos
q q
B B B B
ε θ
θ θ
+ −
= +
+ −
Tsmt
ε = constant
ε (θ )
22
Back to the puzzle…Back to the puzzle…
A: The quantum equivalent of a card trick. If a card “vanishes” magically from one deck,
it must reappear somewhere else. No mechanism for the transfer of angular momentum
need be invoked!
The “Stern-Gerlach” experiment, revisited.
Once the linear
momentum for the two
spin components is split,
the transverse angular
momentum is “released”
to do work on the
magnet system.
H
“Up” spin current
“Down” spin current
0xS =
1
2
xS = +
x
y
z
23
( )Larmor damp smt
dM
T T T
dt
γ= + +
r
r r r
0 eff
dM
M H
dt
γµ= ×
r
r r
Larmor term:
precession
My
Mz
Mx
M
Heff
Tsmt ≅ -Tdamp
J ~ 107
A/cm2
Slonczewski 1996
My
Mz
Mx
Mi
Mf
Heff
Damping term:
aligns M with H
0
2
( )eff
s
M M H
M
αγµ
− × ×
r r r
Precession
Heff
Spin Torque
Damping
M
Spin Torque Term
2
ˆ( )
2
B
f
s
Jg
M M m
e M
µ ε
δ
+ × ×
r r
Spin torque can
counteract damping
mf
Magnetodynamics: Three TorquesMagnetodynamics: Three Torques
24
How Can We See This?
Torque ∝ to current density: must have high current densities
to produce large torques
1 mm
10 µm
I = 0.1 MA≈
I = 10 A≈
100 nm I = 1 mA≈
We will use nanopillar and nanocontact structures
Typical wire
Size of a human hair
500 atoms across≈
X
Required Idc Possible
X
25
Part 4: Spin torque nano-oscillators
26
• Step DC current
• Measure DC R, microwave
power output
5 6 7 8 9
24.8
25.0
25.2
25.4
dV/dI(Ω)
Current (mA)
9.6 9.7 9.8 9.9 10.0
0.0
0.1
0.2
0.3
0.4
9 mA
8.5 mA8 mA
7.5 mA
7 mA
6.5 mA
6 mA
5.5 mA
Power(pW)
Frequency (GHz)
Devices are nanoscale
current-controlled
microwave oscillators
Au
Cu
“Fixed” layer
“Free” layer
~40 nm
0.7 T,
θ = 10o
θT = 300K
Nanocontact DynamicsNanocontact Dynamics
27
SummarySummary
Magnetization dynamics tutorial: Magnets are gyroscopes.
Magnetotransport tutorial: Magnets are spin filters.
Spin momentum transfer: Back action of spin polarized carriers on magnet.
Spin torque nano-oscillator: Spin torque compensates damping.
An excellent review article!!
M. D. Stiles and J. Miltat, “Spin Transfer Torque and Dynamics,”
Topics in Applied Physics 101, 225-308 (2006).

Weitere ähnliche Inhalte

Was ist angesagt?

Spintronics ( IEEE presentation )
Spintronics ( IEEE presentation )Spintronics ( IEEE presentation )
Spintronics ( IEEE presentation )SameerTripathi8
 
Giant magnetoresistance
Giant magnetoresistanceGiant magnetoresistance
Giant magnetoresistancejamilahmedawan
 
Spin valve transistor
Spin valve transistorSpin valve transistor
Spin valve transistorEeshan Mishra
 
Spintronics presentation
Spintronics presentationSpintronics presentation
Spintronics presentationRavisha Shringi
 
Spintronics Introduction (Basic)
Spintronics Introduction (Basic)Spintronics Introduction (Basic)
Spintronics Introduction (Basic)Hardik Patel
 
PLASMONS: A modern form of super particle waves
PLASMONS: A modern form of super particle wavesPLASMONS: A modern form of super particle waves
PLASMONS: A modern form of super particle wavesDHRUVIN PATEL
 
Giant magnetoresistance ppt
Giant magnetoresistance pptGiant magnetoresistance ppt
Giant magnetoresistance ppttedoado
 
Spintronics Introduction (BASIC)
Spintronics Introduction (BASIC)Spintronics Introduction (BASIC)
Spintronics Introduction (BASIC)Hardik Patel
 
Quantum transport in semiconductor nanostructures
Quantum transport in semiconductor nanostructuresQuantum transport in semiconductor nanostructures
Quantum transport in semiconductor nanostructuressamrat saurabh
 
magnetic materials (160760109010)
  magnetic materials (160760109010)  magnetic materials (160760109010)
magnetic materials (160760109010)Ronak Dhola
 

Was ist angesagt? (20)

Gmr
GmrGmr
Gmr
 
Spintronics ( IEEE presentation )
Spintronics ( IEEE presentation )Spintronics ( IEEE presentation )
Spintronics ( IEEE presentation )
 
Giant magnetoresistance
Giant magnetoresistanceGiant magnetoresistance
Giant magnetoresistance
 
Spin valve transistor
Spin valve transistorSpin valve transistor
Spin valve transistor
 
Spintronics
SpintronicsSpintronics
Spintronics
 
Spintronics presentation
Spintronics presentationSpintronics presentation
Spintronics presentation
 
Spintronics Introduction (Basic)
Spintronics Introduction (Basic)Spintronics Introduction (Basic)
Spintronics Introduction (Basic)
 
Spintronics ppt
Spintronics pptSpintronics ppt
Spintronics ppt
 
PLASMONS: A modern form of super particle waves
PLASMONS: A modern form of super particle wavesPLASMONS: A modern form of super particle waves
PLASMONS: A modern form of super particle waves
 
Diluted Magnetic Semiconductors
Diluted Magnetic SemiconductorsDiluted Magnetic Semiconductors
Diluted Magnetic Semiconductors
 
Giant magnetoresistance ppt
Giant magnetoresistance pptGiant magnetoresistance ppt
Giant magnetoresistance ppt
 
Theory of surface plasmon polaritons
Theory of surface plasmon polaritonsTheory of surface plasmon polaritons
Theory of surface plasmon polaritons
 
Spintronics
SpintronicsSpintronics
Spintronics
 
Hetero junction
Hetero junctionHetero junction
Hetero junction
 
Spintronics ppt
Spintronics pptSpintronics ppt
Spintronics ppt
 
22 magnetism3
22 magnetism322 magnetism3
22 magnetism3
 
Spintronics Introduction (BASIC)
Spintronics Introduction (BASIC)Spintronics Introduction (BASIC)
Spintronics Introduction (BASIC)
 
Quantum transport in semiconductor nanostructures
Quantum transport in semiconductor nanostructuresQuantum transport in semiconductor nanostructures
Quantum transport in semiconductor nanostructures
 
magnetic materials (160760109010)
  magnetic materials (160760109010)  magnetic materials (160760109010)
magnetic materials (160760109010)
 
Plasmons
PlasmonsPlasmons
Plasmons
 

Ähnlich wie Spin torque tutorial

Grade 12, U7 L10-Magnetic & E Fields
Grade 12, U7 L10-Magnetic & E Fields Grade 12, U7 L10-Magnetic & E Fields
Grade 12, U7 L10-Magnetic & E Fields gruszecki1
 
Relaxation in NMR
Relaxation in NMR Relaxation in NMR
Relaxation in NMR RM42
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)oriolespinal
 
Single Molecular Magnets: A very Basic Approach to Understand
Single Molecular Magnets: A very Basic Approach to UnderstandSingle Molecular Magnets: A very Basic Approach to Understand
Single Molecular Magnets: A very Basic Approach to UnderstandSubhamoy Saha
 
Quantum Nanomagetism
Quantum NanomagetismQuantum Nanomagetism
Quantum Nanomagetismoriolespinal
 
Quantum Nanomagnetism
Quantum  NanomagnetismQuantum  Nanomagnetism
Quantum Nanomagnetismoriolespinal
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)oriolespinal
 
Nanomagnetism columbia 2013
Nanomagnetism columbia 2013Nanomagnetism columbia 2013
Nanomagnetism columbia 2013oriolespinal
 
"Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate""Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate"Chad Orzel
 
Eema magnetic properties of materials
Eema magnetic properties of materialsEema magnetic properties of materials
Eema magnetic properties of materialsDebi Prasad Dash
 
Frustration and Low Dimenionality
Frustration and Low DimenionalityFrustration and Low Dimenionality
Frustration and Low DimenionalityRyutaro Okuma
 
Atomic structure
Atomic structureAtomic structure
Atomic structuresuresh gdvm
 
Overview Of Spintronics
Overview Of SpintronicsOverview Of Spintronics
Overview Of Spintronicschakuli259
 
Structure of atom plus one focus area notes
Structure of atom plus one focus area notesStructure of atom plus one focus area notes
Structure of atom plus one focus area notessaranyaHC1
 
Paramagnetismo Quântico - Introdução.pdf
Paramagnetismo Quântico - Introdução.pdfParamagnetismo Quântico - Introdução.pdf
Paramagnetismo Quântico - Introdução.pdfLeidianeLopes11
 
Raman Spectra 2nd ppt.pptx
Raman Spectra 2nd ppt.pptxRaman Spectra 2nd ppt.pptx
Raman Spectra 2nd ppt.pptxoviyaprabhu
 
Lecture 7 pseudogap
Lecture 7 pseudogapLecture 7 pseudogap
Lecture 7 pseudogapAllenHermann
 

Ähnlich wie Spin torque tutorial (20)

Mri
MriMri
Mri
 
Grade 12, U7 L10-Magnetic & E Fields
Grade 12, U7 L10-Magnetic & E Fields Grade 12, U7 L10-Magnetic & E Fields
Grade 12, U7 L10-Magnetic & E Fields
 
Relaxation in NMR
Relaxation in NMR Relaxation in NMR
Relaxation in NMR
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)
 
Single Molecular Magnets: A very Basic Approach to Understand
Single Molecular Magnets: A very Basic Approach to UnderstandSingle Molecular Magnets: A very Basic Approach to Understand
Single Molecular Magnets: A very Basic Approach to Understand
 
nmr
nmrnmr
nmr
 
Quantum Nanomagetism
Quantum NanomagetismQuantum Nanomagetism
Quantum Nanomagetism
 
Quantum Nanomagnetism
Quantum  NanomagnetismQuantum  Nanomagnetism
Quantum Nanomagnetism
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)
 
Nanomagnetism columbia 2013
Nanomagnetism columbia 2013Nanomagnetism columbia 2013
Nanomagnetism columbia 2013
 
"Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate""Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate"
 
Eema magnetic properties of materials
Eema magnetic properties of materialsEema magnetic properties of materials
Eema magnetic properties of materials
 
Frustration and Low Dimenionality
Frustration and Low DimenionalityFrustration and Low Dimenionality
Frustration and Low Dimenionality
 
Atomic structure
Atomic structureAtomic structure
Atomic structure
 
diffraction.pdf
diffraction.pdfdiffraction.pdf
diffraction.pdf
 
Overview Of Spintronics
Overview Of SpintronicsOverview Of Spintronics
Overview Of Spintronics
 
Structure of atom plus one focus area notes
Structure of atom plus one focus area notesStructure of atom plus one focus area notes
Structure of atom plus one focus area notes
 
Paramagnetismo Quântico - Introdução.pdf
Paramagnetismo Quântico - Introdução.pdfParamagnetismo Quântico - Introdução.pdf
Paramagnetismo Quântico - Introdução.pdf
 
Raman Spectra 2nd ppt.pptx
Raman Spectra 2nd ppt.pptxRaman Spectra 2nd ppt.pptx
Raman Spectra 2nd ppt.pptx
 
Lecture 7 pseudogap
Lecture 7 pseudogapLecture 7 pseudogap
Lecture 7 pseudogap
 

Kürzlich hochgeladen

data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxchumtiyababu
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxSCMS School of Architecture
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwaitjaanualu31
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxmaisarahman1
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationBhangaleSonal
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxJuliansyahHarahap1
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsvanyagupta248
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiessarkmank1
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadhamedmustafa094
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxSCMS School of Architecture
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdfKamal Acharya
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdfKamal Acharya
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...drmkjayanthikannan
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 

Kürzlich hochgeladen (20)

data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 

Spin torque tutorial

  • 1. 1 Spin Torque for DummiesSpin Torque for Dummies Matt Pufall, Bill Rippard Shehzu Kaka, Steve Russek, Tom Silva National Institute of Standards and Technology, Boulder, CO J. A. Katine Hitachi Global Storage Technologies San Jose, CA Mark Ablowitz, Mark Hoefer, Boaz Ilan University of Colorado Applied Math Department Boulder, CO
  • 2. 2 OutlineOutline 1) Spin dynamics 2) Magnetotransport 3) Spin momentum transfer 4) Spin torque nano-oscillators
  • 3. 3 But first… a puzzle!But first… a puzzle! We start with a polarized beam of spin 1/2 Ag ions… … we pass the beam through a magnetic field gradient… … and the beam “diffracts” into two beams, polarized along the axis of the magnetic field. Q: What happened to the angular momentum in the original polarization direction??? (For more details, see Feynman’s Lectures on Physics, Vol. III, page 5-1) The “Stern-Gerlach” experiment … but true!!! Very strange … H
  • 4. 4 Part 1: Spin dynamicsPart 1: Spin dynamics
  • 5. 5 Magnets are Gyroscopes!Magnets are Gyroscopes! 2 B L e e m µ γ = − = − h e- r v z 2 B s µ γ = − h For spin angular momentum, extra factor of 2 required. “The gyromagnetic ratio” L r p= × r r r angular momentum for atomic orbit: L IAµ = rr magnetic moment for atomic orbit: ( )2 ˆ 2 ev r z r π π   = − ÷   ˆ 2 evr z= − ˆrmvz= Classical model for an atom: 2 e evr rm v = − z L zL µ γ B
  • 6. 6 Larmor EquationLarmor Equation H M 0T M Hµ= × r r r T dL T dt = r r L µ γ ≡ ( )0 dM T dt M H γ γµ = = × r r r r (definition of torque) (gyromagnetic ratio) Magnetic field exerts torque on magnetization. Joseph Larmor Magnets make me dizzy!
  • 7. 7 ( )0 d s T M M H M αµ = = × × r r r r damping torque 0 precession torquepT M Hµ = = × r r r Landau & Lifshitz (1935): ( ) ( ) 0 0 p d s dM T T T dt M H M M H M γ γ γ µ α γ µ = − = − + = − × − × × r r r r r r r r r α = dimensionless Landau-Lifshitz damping parameter Gyromagnetic precession with energy loss: TheGyromagnetic precession with energy loss: The Landau-Lifshitz equationLandau-Lifshitz equation L. Landau and E. Lifshitz, Physik. Z. Sowjetunion 8, 153-169 (1935). H Lev Landau Damping happens!! Lev Landau
  • 8. 8 Part 2: Charge transport in magnetic heterostructuresPart 2: Charge transport in magnetic heterostructures (Magneto-transport)(Magneto-transport)
  • 9. 9 Ferromagnetism in Conductors: Band StructureFerromagnetism in Conductors: Band Structure D(E) E “s-p band” EF spin-up spin-down D(E) E “d band” EF “majority” states “minority” states “Density of States” “exchange splitting” s-band states (l = 0) have higher mobility than d-band states (l = 2) in conductors due to the much lower effective mass of the s-band. Minority band electrons scatter more readily from the s-p band to the d-band due to the availability of hole states in the minority d-band.
  • 10. 10 Spin-dependent conductivity in ferromagnetic metalsSpin-dependent conductivity in ferromagnetic metals “majority band” “minority band” M JJ Conductivities in ferromagnetic conductors are different for majority and minority spins. In an “ideal” ferromagnetic conductor, the conductivity for minority spins is zero. Analogy: Like water flowing through pipes. Large conductivity = big pipe, etc…
  • 11. 11 Concept: interfacial spin-dependent scatteringConcept: interfacial spin-dependent scattering M “Majority” spins are preferentially transmitted. ”Minority” spins are preferentially reflected. Normal metal Ferromagnet
  • 12. 12 Concept: ferromagnets as spin polarizersConcept: ferromagnets as spin polarizers M “Majority” spins are preferentially transmitted. Normal metalFerromagnet Ferromagnetic conductors are relatively permeable for majority spins. Conversely, they are impermeable for minority spins.
  • 13. 13 Concept: spin accumulationConcept: spin accumulation ∆M z I ( ) sM z M M= + ∆ Non-equilibrium spin polarization “accumulates” near interfaces of ferromagnetic and non-magnetic conductors. “spin diffusion length”
  • 14. 14 Part 3: Spin momentum transferPart 3: Spin momentum transfer
  • 15. 15 Non-collinear spin transmissionNon-collinear spin transmission M θ What if the spin is neither in the majority band nor the minority band??? ???? ???? Is the spin reflected or is it transmitted? Quantum mechanical probabilities: ( )( ) ( )( ) 2 2 1 Pr 1 cos 2 1 Pr 1 cos 2 A B θ θ  ↑ = = +   ↓ = = −  = +A B θ Quantum mechanics of spin: cos 2 sin 2 A B θ θ    =  ÷       =  ÷   An arbitrary spin state is a coherent superposition of “up” and “down” spins.
  • 16. 16 Spin Momentum Transfer: Small Current LimitSpin Momentum Transfer: Small Current Limit θ M + = -δT + Tdamp θ MPolarizer: At low electron flux, damping torque compensates spin torque: Magnetization is stable. e- θ M Mf ; 1Tδ θ θµ r =+ = δT Electrons:
  • 17. 17 Spin Momentum Transfer: Large Current LimitSpin Momentum Transfer: Large Current Limit δT is driven by spin accumulation in the Cu spacer. Spin accumulation is proportional to current flowing through the structure. + = θ M + = δT -δT + Tdamp θ + δθ M Electrons: Polarizer: Spin torque exceeds damping torque: Polarizer reacts with changing M. Torque proportional to angle θ: Unstable!Damping torque
  • 18. 18 Transverse torque via spin reorientation/reflectionTransverse torque via spin reorientation/reflection Consider only reflection events... For the electron: ( ) ( ) ( ) ˆ ˆsin 2 ˆ ˆ ˆ 2 ˆ ˆ ˆ 2 transverse transverse inc inc f s s s y s y m m p m m m θ ∆ ′∆ = − ′= − = − × × = × × r r r r h h h θ θ transverses∆ r incs rrefs r AND Consider only change in angular momentum transverse to magnetization axis. (Equivalent to assuming magnitude of M does not change.) y′ x′ where 2 ˆ incp s= r h θ ˆp ˆm−
  • 19. 19 Newton’s Second LawNewton’s Second Law ( )ˆ ˆ ˆ 2 trans fs m m m∆ = × × hr If… …then… ( ) ( )ˆ ˆ ˆ 2 fM V m m mγ∆ = × × r h …per electron. For a flowing stream of electrons: ( ) ( )( )2 ˆ ˆ ˆ 2 ˆ 2 f f s m m m dM I dt V e I M M m eM V γ γ × ×    = ÷  ÷      = × × ÷   hr r rh Total moment of “free” magnetic layer Rate of electron impingement on “free” layer
  • 20. 20 The Slonczewski Torque TermThe Slonczewski Torque Term 2 ˆ( ) 2 Sloncewski f s J T M M m e M ε δ = × × r r rh J. Slonczewski, Journal of Magnetism and Magnetic Materials, vol. 159, page L1 (1996) J M Mf δ efficiency* ~ 0.2 - 0.3 *Accounts for all those messy details: Polarization of ferromagnet, band structure mismatch at interface, spin decoherence, etc…
  • 21. 21 The “FAQ Page”The “FAQ Page” Q: What if the spin is transmitted through the “free” layer rather than reflected? A: Doesn’t matter. Quantum mechanically, there is an amplitude for both transmission and reflection, but only for spin along the axis of magnetization. The transverse component of spin for the incident electrons is “lost” once the electron wavefunction is split into the transmitted and reflected components. Conservation of angular momentum dictates that the transverse component is transferred to the magnetic layer. This is a purely quantum mechanical phenomenon: There is no classical analog! Q: Don’t the reflected spins affect the spin accumulation in the spacer layer? A: Yes, they do. There are several theories that take this “back-action” on the spin accumulation into account. See J. C. Slonczewski, J. Magn. Magn. Mater. 247, 324 (2002); A. A. Kovalev, et al., Phys. Rev. B 66, 224424 (2002); J. Xiao, et al., Phys. Rev. B 70, 172405 (2004); A. Fert, et al., J Magn. Magn. Mater. 69, 184406 (2004). ( ) 0 1 0 1cos cos q q B B B B ε θ θ θ + − = + + − Tsmt ε = constant ε (θ )
  • 22. 22 Back to the puzzle…Back to the puzzle… A: The quantum equivalent of a card trick. If a card “vanishes” magically from one deck, it must reappear somewhere else. No mechanism for the transfer of angular momentum need be invoked! The “Stern-Gerlach” experiment, revisited. Once the linear momentum for the two spin components is split, the transverse angular momentum is “released” to do work on the magnet system. H “Up” spin current “Down” spin current 0xS = 1 2 xS = + x y z
  • 23. 23 ( )Larmor damp smt dM T T T dt γ= + + r r r r 0 eff dM M H dt γµ= × r r r Larmor term: precession My Mz Mx M Heff Tsmt ≅ -Tdamp J ~ 107 A/cm2 Slonczewski 1996 My Mz Mx Mi Mf Heff Damping term: aligns M with H 0 2 ( )eff s M M H M αγµ − × × r r r Precession Heff Spin Torque Damping M Spin Torque Term 2 ˆ( ) 2 B f s Jg M M m e M µ ε δ + × × r r Spin torque can counteract damping mf Magnetodynamics: Three TorquesMagnetodynamics: Three Torques
  • 24. 24 How Can We See This? Torque ∝ to current density: must have high current densities to produce large torques 1 mm 10 µm I = 0.1 MA≈ I = 10 A≈ 100 nm I = 1 mA≈ We will use nanopillar and nanocontact structures Typical wire Size of a human hair 500 atoms across≈ X Required Idc Possible X
  • 25. 25 Part 4: Spin torque nano-oscillators
  • 26. 26 • Step DC current • Measure DC R, microwave power output 5 6 7 8 9 24.8 25.0 25.2 25.4 dV/dI(Ω) Current (mA) 9.6 9.7 9.8 9.9 10.0 0.0 0.1 0.2 0.3 0.4 9 mA 8.5 mA8 mA 7.5 mA 7 mA 6.5 mA 6 mA 5.5 mA Power(pW) Frequency (GHz) Devices are nanoscale current-controlled microwave oscillators Au Cu “Fixed” layer “Free” layer ~40 nm 0.7 T, θ = 10o θT = 300K Nanocontact DynamicsNanocontact Dynamics
  • 27. 27 SummarySummary Magnetization dynamics tutorial: Magnets are gyroscopes. Magnetotransport tutorial: Magnets are spin filters. Spin momentum transfer: Back action of spin polarized carriers on magnet. Spin torque nano-oscillator: Spin torque compensates damping. An excellent review article!! M. D. Stiles and J. Miltat, “Spin Transfer Torque and Dynamics,” Topics in Applied Physics 101, 225-308 (2006).

Hinweis der Redaktion

  1. Larger font
  2. Clean up the arrows.