SlideShare ist ein Scribd-Unternehmen logo
1 von 35
RENEE CONDORI APAZA, JULIO
VALDIVIA SILVA, Christopher P. McKay
A principal reason for studying planetary atmospheres is
to try to understand the origin and evolution of the
earth’s atmosphere. Of course, in trying to understand
the workings of our solar system or even the evolution
of the earth as a body, the earth’s atmosphere is
essentially irrelevant since its mass is negligible. For
that matter, the mass of the earth is only a small
fraction of the mass of the sun. So we are considering
a thin skin of gravitationally bound gas attached to a
speck of matter in a dynamic and, in the
past, violent, system. Therefore, it is a formidable
problem.
However, it is in that thin skin of gas and on that speck
of matter that we live, and therefore, it is interesting to
us.
It is also clear now that the earth’s gaseous envelope is
changing and has changed. In fact it is abundantly
clear that the present atmosphere barely resembles the
original residual gas left when the earth formed.
Because of this it is also important to study the other
atmospheres in the solar system, since they are either
different end states or in different stages of atmospheric
evolution. They may all have had roughly similar
materials as sources, but either these atmospheres are
on objects of a very different size or at a very different
distance from the sun. Since, we can not carry out
many experiments to see how the earth’s atmosphere is
evolving, Interpreting the data on other
atmospheres, given to us by Spacecraft and telescope
data, is crucial and is one goal of this theme.
Basic Properties of Atmospheres
Composition
Size
Equilibrium T
Scale Height
Adiabatic Lapse Role
Mixing in Troposphere
Radiation Absorption
Absorption Cross Section
Heating by Absorption
Chapman Layer
Ozone Production:
Stratosphere
Thermospheric Structure
Ionospheres
Green House Effect
Atmospheric Evolution
Water:
Venus, Earth, Mars
Loss by Escape
Isotope Ratios
CO2 cycle:
Earth, Venus, Mars
Atmospheric Circulation
Coriolis Effect
Local Circulation
Boundary Layer
Global Circulation
Zonal Belts
Cloud Formation
Topical Problems in Planetary
Atmospheres
Overview of Solar System
Type Name Mass Escape p T*
(eV/u) (bar) (K)
H/He Jupiter 318 18 128
Gas Balls Saturn 95 6.5 98
Uranus 14.5 2.3 56
Neptune 17.0 2.8 57
Terrestrial Venus 0.81 0.56 90 750
Earth 1 0.65 1 280
Mars 0.11 0.13 8mb 240
Titan 0.022 0.051 1.5 94
Triton 0.022 0.051 17b 38
Escaping Io 0.015 0.034 10nb 130
Europa 0.008 0.021 .02nb 120
Ganymede 0.024 0.024 .01nb 140
Enceladus 0.000013 0.00024 150?
Pluto 0.002 0.008 1b 36
Comets small ~0
Type Name Mass Escape p T*
(eV/u) (bar) (K)
Collisionless Mercury 0.053 0.093
Moon 0.012 0.029
Other moons
T*: for Jovian they are Teq ; for the terrestrial
they are mean surface temperatures; for icy
satellites they are the subsolar T
1eV = 1.16x104 K
1 bar = 105 Pa = 105 N/m2.
Molecular
Sun
H (H2) 0.86
He 0.14
O 0.0014
C 0.0008
Ne 0.0002
N 0.0004
Jupiter Saturn Uranus Neptune
H2 0.898 0.963 0.825 0.80
He 0.102 0.0325 0.152 0.19
CH4 0.003 0.0045 0.023 0.015
NH3 0.0026 0.0001 <10-7 <6x10-7
Molecular
Earth Venus Mars Titan
CO2 0.0031 0.965 0.953
N2 0.781 0.035 0.027 0.97
O2 0.209 0.00003 0.0013
CH4 0.00015 0.03
H2O* 0.01 <0.0002 0.0003
9Ar 0.009 ~0.0001 0.016 0.01?
*Variable
Pressure is the weight of a column of gas: force
per unit area
p = mg N (column density: N)
Thickness if frozen: Hs
p(bar) Hs(m) Ma/Mp
(10-5)
Mars 0.008 2 0.049
Earth 1 10 0.087
Titan 1.5 100 6.8
Venus 90 1000 9.7
How big might Mars atmosphere have been (in bars) based
on its size? How big might the earth’s have been?
p, T, n (density) Equation of State
Conservation of Species
Continuity Equation: Diffusion and Flow
Sources / Sinks: Volcanoes
Escape (top)
Condensation/ Reaction (surface)
Chemical Rate Equations
Conservation of Energy
Heat Equation: Conduction, Convection, Radiation
Sources: Sun and Internal
Sinks: Radiation to Space, Cooling to Surface
Radiation transport
Conservation of Momentum
Pressure Balance
Flow
Rotating: Coriolis
Atomic and Molecular Physics
Solar Radiation: Absorption and Emission
Heating; Cooling; Chemistry
Solar Wind: Aurora
Equilibrium Temperature
Heat In = Heat Out
or
Source (Sun) = Sink (IR Radiation to Space)
Planetary body with radius a it absorbs energy over
an area pa2
Cooling: IR radiation out
If the planetary body is rapidly rotating or has
winds
rapidly transporting energy, it radiates energy
from all of its area 4pa2
Fraction of radiation absorbed in atmosphere vs. wavelength
Principal absorbing species indicated
Source=Absorb
Area heat flux amount absorbed
pa2 x [F / Rsp
2] x [1-A]
A = Bond Albedo: total amount reflected
(Complicated)
Solar Flux 1AU: F =1370W/m2
Rsp= distance from sun to planet in AU
Loss=Emitted (ideal radiator)
Area radiated flux
4pa2 x T4
 = Stefan-Boltzman Constant= 5.67x10-8 J/(m2 K4 s)
Fig. Radiation/ Albedo
Bond Albedo, A, is
fraction of sunlight
reflected to space:
Surface, clouds, sc
attered
Set Equal
Heat In = Heat Out
Te = [ (F / Rsp
2) (1-A) / 4 ]1/4
Rsp A Te Ts
Mercury 0.39 0.11 435 440
Venus 0.72 0.77 227 750
Earth 1 0.3 256 280
Mars 1.52 0.15 216 240
Jupiter 5.2 0.58 98 134*
If the radiation was slow but evaporation was fast,
like in a comet, describe the loss term that would the
IR loss.
Fig. Sub T
Right hand
axis melting
point
Pressure vs. Altitude
Hydrostatic Law
Force Up = Force Down
p- A=area
---------------------------------------------
Draw forces Δz
---------------------------------------------
p+ mg = (ρ A Δz) g
Result:
Net Force= 0 = - (Δp A) - (ρ A Δz) g
where p = p-- - p+
dp/dz = - g
Now Use Ideal Gas Law
p = nkT (k=1.38 x 10-23 J/K) =kT/m
or
p = (R/Mr)T [Gas constant: R=Nak =8.3143 J/(K mole)
with Mr the mass in grams of a mole]
substitute for 
dp/dz = - p(mg/kT)= -p/H
H is an effect height=
Gravitational Force/ Thermal Energy
Same result for a ballistic atmosphere
Pressure vs. Altitude
p = po exp( - ∫ dz / H)
(assuming T constant)
p = po exp( - z / H)
or
Density vs. Altitude
 = 0 exp( - z / H)
Scale Height: H
H = kT/mg (or H = RT / Mr g)
Mr g(m/s2) Ts(K) H(km)
Venus CO2 44 8.88 750 16
Earth N2 ,O2 29 9.81 288 8.4
Mars CO2 44 3.73 240 12
Titan N2 , CH4 28 1.36 95 20
Jupiter H2 2 26.2 128 20
Note: did not use Te , used Ts for V,E,M
Pressure: p
p = weight of a column of gas (force per unit area)
1bar = 106 dyne/cm2=105 Pascal=0.987atmospheres
Pascal=N/m2 ; Torr=atmosphere/760= 1.33mbars
Venus 90 bars
Titan 1.5 bars
Earth 1 bar
Mars 0.008 bar
Column Density: N
p = m g N
Surface of earth: N  2.5 x 1025 molecules/cm2.
What would N be at the surface of Venus?
If the atmosphere froze (like on Triton),
how deep would it be?
n(solid N2)  2.5 x 1022 /cm3
N/n = 10m
PARTIAL PRESSURES
Lower Atmosphere
Mixing dominates: use m or Mr
Upper atmosphere
Diffusive separation
Partial Pressure (const T)
p =  pi(z) =  poi exp[ - z/Hi ]
Hi = kT/ mig
Fig. Density vs. z
Showing
Region where
gases
diffusively
separate
Convection Dominates  Adiabatic Lapse Rate
In the troposphere
Radiation Dominates  Greenhouse Effect
In the troposphere and stratosphere
Conduction Dominates  Thermal Conductivity
In the thermosphere
Fig. T vs. z
Shows layered
atmosphere
Radiation
Absorption
Indicated
Imagine gas moving up or down adiabatically: no
heat in or out of the volume
Energy = Internal energy + Work
dq = cvdT + p dV
(energy per mass of a volume of gas V = 1 / )
Adiabatic = no heat in or out: dq = 0
cv dT = - p dV
Ideal gas law [p = nkT = (R/Mr)T ]
pV = (R/Mr)T
Differentiate
p dV + dp V = (R/Mr) dT
or
cv dT = - (R/Mr) dT + V dp
(cv +R/Mr) dT = dp / 
cp (dT/dz) = (dp/dz) / 
Apply Hydrostatic Law
(dp/dz) = - g
(dT/dz) = -g / cp = - d
Heating at surface + Slow vertical motion.
T= [Ts - d z]
T falls off linearly with altitude
cp (erg/gm/K) d (deg/km)
Venus 8.3 x 106 11
Earth 1.0 x 107 10
Mars 8.3 x 106 4.5
Jupiter 1.3 x 108 20
cp = Cp / m = cv + (R/Mr)
= Cv + k
m
CvT = heat energy of a molecule
Atom = Cv = (3/2)k ; kinetic energy only
3-degrees of freedom each with k/2
N2: One would think that there are
6-degrees of freedom: 3 + 3
or 3 (CM) + 2 (ROT) + 1 (VIB)
Cv = 3k
But potential energy of internal vibrations
needed.
Cv  3.5 k = 4.8 x 10-16 ergs/K
1 mass unit = 1.66x 10-24 gm
cv  1.0 x 107 (ergs/gm/K)
fortuitous as Cp  3.5
Define  = Cp/Cv
Using the above  - 1 = k/Cv
or ( - 1) /  = k/ Cp = k/(mcp)
Now have p(z) with T dependence.
Use (dT/dz) = -g / cp and dp/dz = - ρ g and p = nkT
dp/p = - mgdz/kT = [m cp/k] dT/T = x dT/T
x = /(-1)
=cp/cv
1/x = ~0.2 for N2 ; ~0.17 for CO2 ; ~0 for large molecule
(~5/3, 7/3, 4/3 for mono, dia and ployatomic gases)
Solve and rearrange
(p/po) = (T/To)x
using T= [Ts - d z]
p(z) = po[1 - z/(xH)]x --> po exp(-z/H) for x small
 = T (po/p)1/x
Adiabatic  Entropy = Constant
Gas can move freely along constant  lines
Using dq = T dS where S is entropy
Can show S = cp ln + const
Things you should know
Te and how is it obtained
The average albedo
The hydrostatic law for an atmosphere
The atmospheric scale height
The adiabatic lapse rate
Potential Temperature
Planetary Atmospheres I

Weitere ähnliche Inhalte

Was ist angesagt?

Rapid growth of_seed_black_holes_in_the_early_universe_by_supra_exponential_a...
Rapid growth of_seed_black_holes_in_the_early_universe_by_supra_exponential_a...Rapid growth of_seed_black_holes_in_the_early_universe_by_supra_exponential_a...
Rapid growth of_seed_black_holes_in_the_early_universe_by_supra_exponential_a...Sérgio Sacani
 
The Pulsar Mass Distribution
The Pulsar Mass DistributionThe Pulsar Mass Distribution
The Pulsar Mass DistributionJohn Antoniadis
 
Magnetic interaction of_a_super_cme_with_the_earths_magnetosphere_scenario_fo...
Magnetic interaction of_a_super_cme_with_the_earths_magnetosphere_scenario_fo...Magnetic interaction of_a_super_cme_with_the_earths_magnetosphere_scenario_fo...
Magnetic interaction of_a_super_cme_with_the_earths_magnetosphere_scenario_fo...Sérgio Sacani
 
Плутон светится в рентгеновском диапазоне
Плутон светится в рентгеновском диапазонеПлутон светится в рентгеновском диапазоне
Плутон светится в рентгеновском диапазонеAnatol Alizar
 
Атмосфера Земли медленно теряет кислород
Атмосфера Земли медленно теряет кислородАтмосфера Земли медленно теряет кислород
Атмосфера Земли медленно теряет кислородAnatol Alizar
 
Красное пятно на полюсе Харона
Красное пятно на полюсе ХаронаКрасное пятно на полюсе Харона
Красное пятно на полюсе ХаронаAnatol Alizar
 
Possible interaction between baryons and dark-matter particles revealed by th...
Possible interaction between baryons and dark-matter particles revealed by th...Possible interaction between baryons and dark-matter particles revealed by th...
Possible interaction between baryons and dark-matter particles revealed by th...Sérgio Sacani
 
3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...
3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...
3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...Sérgio Sacani
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...Lake Como School of Advanced Studies
 
The magma ocean stage in the formation of rocky-terrestrial planets
The magma ocean stage in the formation of rocky-terrestrial planetsThe magma ocean stage in the formation of rocky-terrestrial planets
The magma ocean stage in the formation of rocky-terrestrial planetsAdvanced-Concepts-Team
 
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...Lake Como School of Advanced Studies
 
Universal Gravitation
Universal GravitationUniversal Gravitation
Universal GravitationZBTHS
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...Lake Como School of Advanced Studies
 

Was ist angesagt? (19)

Rapid growth of_seed_black_holes_in_the_early_universe_by_supra_exponential_a...
Rapid growth of_seed_black_holes_in_the_early_universe_by_supra_exponential_a...Rapid growth of_seed_black_holes_in_the_early_universe_by_supra_exponential_a...
Rapid growth of_seed_black_holes_in_the_early_universe_by_supra_exponential_a...
 
The Pulsar Mass Distribution
The Pulsar Mass DistributionThe Pulsar Mass Distribution
The Pulsar Mass Distribution
 
Magnetic interaction of_a_super_cme_with_the_earths_magnetosphere_scenario_fo...
Magnetic interaction of_a_super_cme_with_the_earths_magnetosphere_scenario_fo...Magnetic interaction of_a_super_cme_with_the_earths_magnetosphere_scenario_fo...
Magnetic interaction of_a_super_cme_with_the_earths_magnetosphere_scenario_fo...
 
Плутон светится в рентгеновском диапазоне
Плутон светится в рентгеновском диапазонеПлутон светится в рентгеновском диапазоне
Плутон светится в рентгеновском диапазоне
 
Binary Black Holes & Tests of GR - Luis Lehner
Binary Black Holes & Tests of GR - Luis LehnerBinary Black Holes & Tests of GR - Luis Lehner
Binary Black Holes & Tests of GR - Luis Lehner
 
Атмосфера Земли медленно теряет кислород
Атмосфера Земли медленно теряет кислородАтмосфера Земли медленно теряет кислород
Атмосфера Земли медленно теряет кислород
 
Красное пятно на полюсе Харона
Красное пятно на полюсе ХаронаКрасное пятно на полюсе Харона
Красное пятно на полюсе Харона
 
Possible interaction between baryons and dark-matter particles revealed by th...
Possible interaction between baryons and dark-matter particles revealed by th...Possible interaction between baryons and dark-matter particles revealed by th...
Possible interaction between baryons and dark-matter particles revealed by th...
 
3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...
3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...
3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
 
3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
 
Igcse physics formula
Igcse physics formulaIgcse physics formula
Igcse physics formula
 
The magma ocean stage in the formation of rocky-terrestrial planets
The magma ocean stage in the formation of rocky-terrestrial planetsThe magma ocean stage in the formation of rocky-terrestrial planets
The magma ocean stage in the formation of rocky-terrestrial planets
 
Gravitational Waves and Binary Systems (1) - Thibault Damour
Gravitational Waves and Binary Systems (1) - Thibault DamourGravitational Waves and Binary Systems (1) - Thibault Damour
Gravitational Waves and Binary Systems (1) - Thibault Damour
 
Gravitational Waves and Binary Systems (4) - Thibault Damour
Gravitational Waves and Binary Systems (4) - Thibault DamourGravitational Waves and Binary Systems (4) - Thibault Damour
Gravitational Waves and Binary Systems (4) - Thibault Damour
 
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
 
Universal Gravitation
Universal GravitationUniversal Gravitation
Universal Gravitation
 
Searches for spin-dependent short-range forces
Searches for spin-dependent short-range forcesSearches for spin-dependent short-range forces
Searches for spin-dependent short-range forces
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
 

Andere mochten auch

Andere mochten auch (9)

Mercury Volcanism
Mercury VolcanismMercury Volcanism
Mercury Volcanism
 
Solar System
Solar SystemSolar System
Solar System
 
09 lecture outline
09 lecture outline09 lecture outline
09 lecture outline
 
Global winds
Global windsGlobal winds
Global winds
 
Radiation ppt
Radiation pptRadiation ppt
Radiation ppt
 
Winds and Wind System
Winds and Wind SystemWinds and Wind System
Winds and Wind System
 
Lecture 1-aerial photogrammetry
Lecture 1-aerial photogrammetryLecture 1-aerial photogrammetry
Lecture 1-aerial photogrammetry
 
Higher Atmosphere Revision
Higher Atmosphere RevisionHigher Atmosphere Revision
Higher Atmosphere Revision
 
Global and local winds
Global and local windsGlobal and local winds
Global and local winds
 

Ähnlich wie Planetary Atmospheres I

Guest_slides_ Paradox_lecture_Altieri.ppt
Guest_slides_ Paradox_lecture_Altieri.pptGuest_slides_ Paradox_lecture_Altieri.ppt
Guest_slides_ Paradox_lecture_Altieri.pptObulReddy61
 
Introduction to Cosmology
Introduction to CosmologyIntroduction to Cosmology
Introduction to CosmologyDanielBaumann11
 
Materials Required· Computer and internet access· Textbook·
Materials Required· Computer and internet access· Textbook· Materials Required· Computer and internet access· Textbook·
Materials Required· Computer and internet access· Textbook· AbramMartino96
 
Materials Required· Computer and internet access· Textbook·
Materials Required· Computer and internet access· Textbook· Materials Required· Computer and internet access· Textbook·
Materials Required· Computer and internet access· Textbook· AbramMartino96
 
Chapter 6 Thermally Activated Process and Diffusion in Solids.
Chapter 6 Thermally Activated Process and Diffusion in Solids.Chapter 6 Thermally Activated Process and Diffusion in Solids.
Chapter 6 Thermally Activated Process and Diffusion in Solids.Pem(ເປ່ມ) PHAKVISETH
 
lect9_geodyn_convect [Compatibility Mode] [Repaired].ppt
lect9_geodyn_convect [Compatibility Mode] [Repaired].pptlect9_geodyn_convect [Compatibility Mode] [Repaired].ppt
lect9_geodyn_convect [Compatibility Mode] [Repaired].pptcjoypingaron
 
Astonishing Astronomy 101 - Chapter 16
Astonishing Astronomy 101 - Chapter 16Astonishing Astronomy 101 - Chapter 16
Astonishing Astronomy 101 - Chapter 16Don R. Mueller, Ph.D.
 
13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - iSolo Hermelin
 
Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction he...
Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction he...Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction he...
Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction he...Sérgio Sacani
 
Hollow earth, contrails & global warming calculations lecture
Hollow earth, contrails & global warming calculations lectureHollow earth, contrails & global warming calculations lecture
Hollow earth, contrails & global warming calculations lectureMarcus 2012
 
Lecture 3_thermal property drude model.pdf.pdf
Lecture 3_thermal property drude model.pdf.pdfLecture 3_thermal property drude model.pdf.pdf
Lecture 3_thermal property drude model.pdf.pdfAwnishTripathi4
 

Ähnlich wie Planetary Atmospheres I (20)

Guest_slides_ Paradox_lecture_Altieri.ppt
Guest_slides_ Paradox_lecture_Altieri.pptGuest_slides_ Paradox_lecture_Altieri.ppt
Guest_slides_ Paradox_lecture_Altieri.ppt
 
Introduction to Cosmology
Introduction to CosmologyIntroduction to Cosmology
Introduction to Cosmology
 
Materials Required· Computer and internet access· Textbook·
Materials Required· Computer and internet access· Textbook· Materials Required· Computer and internet access· Textbook·
Materials Required· Computer and internet access· Textbook·
 
Materials Required· Computer and internet access· Textbook·
Materials Required· Computer and internet access· Textbook· Materials Required· Computer and internet access· Textbook·
Materials Required· Computer and internet access· Textbook·
 
statistical physics assignment help
statistical physics assignment helpstatistical physics assignment help
statistical physics assignment help
 
Chapter 6 Thermally Activated Process and Diffusion in Solids.
Chapter 6 Thermally Activated Process and Diffusion in Solids.Chapter 6 Thermally Activated Process and Diffusion in Solids.
Chapter 6 Thermally Activated Process and Diffusion in Solids.
 
Energy and Mass Exchanges
Energy and Mass ExchangesEnergy and Mass Exchanges
Energy and Mass Exchanges
 
Solar sail
Solar sailSolar sail
Solar sail
 
Aerodynamics part i
Aerodynamics   part iAerodynamics   part i
Aerodynamics part i
 
4. Jesus.pdf
4. Jesus.pdf4. Jesus.pdf
4. Jesus.pdf
 
4. Jesus.pdf
4. Jesus.pdf4. Jesus.pdf
4. Jesus.pdf
 
Global warming
Global warmingGlobal warming
Global warming
 
lect9_geodyn_convect [Compatibility Mode] [Repaired].ppt
lect9_geodyn_convect [Compatibility Mode] [Repaired].pptlect9_geodyn_convect [Compatibility Mode] [Repaired].ppt
lect9_geodyn_convect [Compatibility Mode] [Repaired].ppt
 
Astonishing Astronomy 101 - Chapter 16
Astonishing Astronomy 101 - Chapter 16Astonishing Astronomy 101 - Chapter 16
Astonishing Astronomy 101 - Chapter 16
 
PART II.3 - Modern Physics
PART II.3 - Modern PhysicsPART II.3 - Modern Physics
PART II.3 - Modern Physics
 
13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i
 
Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction he...
Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction he...Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction he...
Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction he...
 
Hollow earth, contrails & global warming calculations lecture
Hollow earth, contrails & global warming calculations lectureHollow earth, contrails & global warming calculations lecture
Hollow earth, contrails & global warming calculations lecture
 
GPC_3.ppt
GPC_3.pptGPC_3.ppt
GPC_3.ppt
 
Lecture 3_thermal property drude model.pdf.pdf
Lecture 3_thermal property drude model.pdf.pdfLecture 3_thermal property drude model.pdf.pdf
Lecture 3_thermal property drude model.pdf.pdf
 

Mehr von Renée Condori Apaza

Metales pesados en agua de mar por AAS.pptx
Metales pesados en agua de mar por AAS.pptxMetales pesados en agua de mar por AAS.pptx
Metales pesados en agua de mar por AAS.pptxRenée Condori Apaza
 
Proyecto brazo robot mediante algoritmos evolutivos
Proyecto brazo robot mediante algoritmos evolutivosProyecto brazo robot mediante algoritmos evolutivos
Proyecto brazo robot mediante algoritmos evolutivosRenée Condori Apaza
 
Diseño y Estructura de un Brazo Robot Seleccionador de Objetos
Diseño y Estructura de un  Brazo  Robot Seleccionador de ObjetosDiseño y Estructura de un  Brazo  Robot Seleccionador de Objetos
Diseño y Estructura de un Brazo Robot Seleccionador de ObjetosRenée Condori Apaza
 
Ecosistema Acuático del Puerto de Ilo
Ecosistema Acuático del Puerto de IloEcosistema Acuático del Puerto de Ilo
Ecosistema Acuático del Puerto de IloRenée Condori Apaza
 
Investigación científica en Ingeniería Química
Investigación científica en Ingeniería QuímicaInvestigación científica en Ingeniería Química
Investigación científica en Ingeniería QuímicaRenée Condori Apaza
 
Microplásticos en ecosistemas acuáticos marinos
Microplásticos en ecosistemas acuáticos marinos Microplásticos en ecosistemas acuáticos marinos
Microplásticos en ecosistemas acuáticos marinos Renée Condori Apaza
 
Investigación y tecnología del agua (Continentales y Marino Costeros)
Investigación y tecnología del agua (Continentales y Marino Costeros)Investigación y tecnología del agua (Continentales y Marino Costeros)
Investigación y tecnología del agua (Continentales y Marino Costeros)Renée Condori Apaza
 
Proyecto de la Calidad de agua en manantiales de chuña
Proyecto de la Calidad de agua en manantiales de chuñaProyecto de la Calidad de agua en manantiales de chuña
Proyecto de la Calidad de agua en manantiales de chuñaRenée Condori Apaza
 
CLIMATOLOGÍA EN LA FRANJA DESÉRTICA DE ILO-PERU (METEOROLÓGIA Y CLIMA)
CLIMATOLOGÍA EN LA FRANJA DESÉRTICA DE ILO-PERU (METEOROLÓGIA Y CLIMA)CLIMATOLOGÍA EN LA FRANJA DESÉRTICA DE ILO-PERU (METEOROLÓGIA Y CLIMA)
CLIMATOLOGÍA EN LA FRANJA DESÉRTICA DE ILO-PERU (METEOROLÓGIA Y CLIMA)Renée Condori Apaza
 
Importancia de las Pampas de la Joya como análogo a Marte
Importancia de las Pampas de la Joya como análogo a MarteImportancia de las Pampas de la Joya como análogo a Marte
Importancia de las Pampas de la Joya como análogo a MarteRenée Condori Apaza
 
Desierto de la Joya Análogo a Marte
Desierto de la Joya Análogo a Marte Desierto de la Joya Análogo a Marte
Desierto de la Joya Análogo a Marte Renée Condori Apaza
 
Plan de Manejo Ambiental - Mitigacion
Plan de Manejo Ambiental - MitigacionPlan de Manejo Ambiental - Mitigacion
Plan de Manejo Ambiental - MitigacionRenée Condori Apaza
 

Mehr von Renée Condori Apaza (20)

Metales pesados en agua de mar por AAS.pptx
Metales pesados en agua de mar por AAS.pptxMetales pesados en agua de mar por AAS.pptx
Metales pesados en agua de mar por AAS.pptx
 
Proyecto brazo robot mediante algoritmos evolutivos
Proyecto brazo robot mediante algoritmos evolutivosProyecto brazo robot mediante algoritmos evolutivos
Proyecto brazo robot mediante algoritmos evolutivos
 
Diseño y Estructura de un Brazo Robot Seleccionador de Objetos
Diseño y Estructura de un  Brazo  Robot Seleccionador de ObjetosDiseño y Estructura de un  Brazo  Robot Seleccionador de Objetos
Diseño y Estructura de un Brazo Robot Seleccionador de Objetos
 
Ecosistema Acuático del Puerto de Ilo
Ecosistema Acuático del Puerto de IloEcosistema Acuático del Puerto de Ilo
Ecosistema Acuático del Puerto de Ilo
 
Día Mundial del Agua
Día  Mundial  del  AguaDía  Mundial  del  Agua
Día Mundial del Agua
 
Investigación científica en Ingeniería Química
Investigación científica en Ingeniería QuímicaInvestigación científica en Ingeniería Química
Investigación científica en Ingeniería Química
 
Microplásticos en ecosistemas acuáticos marinos
Microplásticos en ecosistemas acuáticos marinos Microplásticos en ecosistemas acuáticos marinos
Microplásticos en ecosistemas acuáticos marinos
 
Investigación y tecnología del agua (Continentales y Marino Costeros)
Investigación y tecnología del agua (Continentales y Marino Costeros)Investigación y tecnología del agua (Continentales y Marino Costeros)
Investigación y tecnología del agua (Continentales y Marino Costeros)
 
Proyecto de la Calidad de agua en manantiales de chuña
Proyecto de la Calidad de agua en manantiales de chuñaProyecto de la Calidad de agua en manantiales de chuña
Proyecto de la Calidad de agua en manantiales de chuña
 
El evento del Niño - Enos o Enso
El evento del Niño - Enos o EnsoEl evento del Niño - Enos o Enso
El evento del Niño - Enos o Enso
 
CLIMATOLOGÍA EN LA FRANJA DESÉRTICA DE ILO-PERU (METEOROLÓGIA Y CLIMA)
CLIMATOLOGÍA EN LA FRANJA DESÉRTICA DE ILO-PERU (METEOROLÓGIA Y CLIMA)CLIMATOLOGÍA EN LA FRANJA DESÉRTICA DE ILO-PERU (METEOROLÓGIA Y CLIMA)
CLIMATOLOGÍA EN LA FRANJA DESÉRTICA DE ILO-PERU (METEOROLÓGIA Y CLIMA)
 
Curva de Abatimiento del CO2
Curva  de Abatimiento del CO2Curva  de Abatimiento del CO2
Curva de Abatimiento del CO2
 
Teoria de Gaia
Teoria de Gaia Teoria de Gaia
Teoria de Gaia
 
Calentamiento Global
Calentamiento Global Calentamiento Global
Calentamiento Global
 
Importancia de las Pampas de la Joya como análogo a Marte
Importancia de las Pampas de la Joya como análogo a MarteImportancia de las Pampas de la Joya como análogo a Marte
Importancia de las Pampas de la Joya como análogo a Marte
 
Desierto de la Joya Análogo a Marte
Desierto de la Joya Análogo a Marte Desierto de la Joya Análogo a Marte
Desierto de la Joya Análogo a Marte
 
Contaminacion Ambiental y Mineria
Contaminacion Ambiental y MineriaContaminacion Ambiental y Mineria
Contaminacion Ambiental y Mineria
 
Horas frío y AG3 en Duraznero
Horas frío y AG3 en DurazneroHoras frío y AG3 en Duraznero
Horas frío y AG3 en Duraznero
 
Viajando por el Universo
Viajando por el UniversoViajando por el Universo
Viajando por el Universo
 
Plan de Manejo Ambiental - Mitigacion
Plan de Manejo Ambiental - MitigacionPlan de Manejo Ambiental - Mitigacion
Plan de Manejo Ambiental - Mitigacion
 

Kürzlich hochgeladen

Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DayH2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DaySri Ambati
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfPrecisely
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostZilliz
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxhariprasad279825
 

Kürzlich hochgeladen (20)

Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DayH2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptx
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 

Planetary Atmospheres I

  • 1. RENEE CONDORI APAZA, JULIO VALDIVIA SILVA, Christopher P. McKay
  • 2. A principal reason for studying planetary atmospheres is to try to understand the origin and evolution of the earth’s atmosphere. Of course, in trying to understand the workings of our solar system or even the evolution of the earth as a body, the earth’s atmosphere is essentially irrelevant since its mass is negligible. For that matter, the mass of the earth is only a small fraction of the mass of the sun. So we are considering a thin skin of gravitationally bound gas attached to a speck of matter in a dynamic and, in the past, violent, system. Therefore, it is a formidable problem. However, it is in that thin skin of gas and on that speck of matter that we live, and therefore, it is interesting to us.
  • 3. It is also clear now that the earth’s gaseous envelope is changing and has changed. In fact it is abundantly clear that the present atmosphere barely resembles the original residual gas left when the earth formed. Because of this it is also important to study the other atmospheres in the solar system, since they are either different end states or in different stages of atmospheric evolution. They may all have had roughly similar materials as sources, but either these atmospheres are on objects of a very different size or at a very different distance from the sun. Since, we can not carry out many experiments to see how the earth’s atmosphere is evolving, Interpreting the data on other atmospheres, given to us by Spacecraft and telescope data, is crucial and is one goal of this theme.
  • 4. Basic Properties of Atmospheres Composition Size Equilibrium T Scale Height Adiabatic Lapse Role Mixing in Troposphere Radiation Absorption Absorption Cross Section Heating by Absorption Chapman Layer Ozone Production: Stratosphere Thermospheric Structure Ionospheres Green House Effect Atmospheric Evolution Water: Venus, Earth, Mars Loss by Escape Isotope Ratios CO2 cycle: Earth, Venus, Mars Atmospheric Circulation Coriolis Effect Local Circulation Boundary Layer Global Circulation Zonal Belts Cloud Formation Topical Problems in Planetary Atmospheres Overview of Solar System
  • 5. Type Name Mass Escape p T* (eV/u) (bar) (K) H/He Jupiter 318 18 128 Gas Balls Saturn 95 6.5 98 Uranus 14.5 2.3 56 Neptune 17.0 2.8 57 Terrestrial Venus 0.81 0.56 90 750 Earth 1 0.65 1 280 Mars 0.11 0.13 8mb 240 Titan 0.022 0.051 1.5 94 Triton 0.022 0.051 17b 38 Escaping Io 0.015 0.034 10nb 130 Europa 0.008 0.021 .02nb 120 Ganymede 0.024 0.024 .01nb 140 Enceladus 0.000013 0.00024 150? Pluto 0.002 0.008 1b 36 Comets small ~0
  • 6. Type Name Mass Escape p T* (eV/u) (bar) (K) Collisionless Mercury 0.053 0.093 Moon 0.012 0.029 Other moons T*: for Jovian they are Teq ; for the terrestrial they are mean surface temperatures; for icy satellites they are the subsolar T 1eV = 1.16x104 K 1 bar = 105 Pa = 105 N/m2.
  • 7. Molecular Sun H (H2) 0.86 He 0.14 O 0.0014 C 0.0008 Ne 0.0002 N 0.0004 Jupiter Saturn Uranus Neptune H2 0.898 0.963 0.825 0.80 He 0.102 0.0325 0.152 0.19 CH4 0.003 0.0045 0.023 0.015 NH3 0.0026 0.0001 <10-7 <6x10-7
  • 8. Molecular Earth Venus Mars Titan CO2 0.0031 0.965 0.953 N2 0.781 0.035 0.027 0.97 O2 0.209 0.00003 0.0013 CH4 0.00015 0.03 H2O* 0.01 <0.0002 0.0003 9Ar 0.009 ~0.0001 0.016 0.01? *Variable
  • 9. Pressure is the weight of a column of gas: force per unit area p = mg N (column density: N) Thickness if frozen: Hs p(bar) Hs(m) Ma/Mp (10-5) Mars 0.008 2 0.049 Earth 1 10 0.087 Titan 1.5 100 6.8 Venus 90 1000 9.7 How big might Mars atmosphere have been (in bars) based on its size? How big might the earth’s have been?
  • 10. p, T, n (density) Equation of State Conservation of Species Continuity Equation: Diffusion and Flow Sources / Sinks: Volcanoes Escape (top) Condensation/ Reaction (surface) Chemical Rate Equations Conservation of Energy Heat Equation: Conduction, Convection, Radiation Sources: Sun and Internal Sinks: Radiation to Space, Cooling to Surface Radiation transport Conservation of Momentum Pressure Balance Flow Rotating: Coriolis Atomic and Molecular Physics Solar Radiation: Absorption and Emission Heating; Cooling; Chemistry Solar Wind: Aurora
  • 11. Equilibrium Temperature Heat In = Heat Out or Source (Sun) = Sink (IR Radiation to Space) Planetary body with radius a it absorbs energy over an area pa2 Cooling: IR radiation out If the planetary body is rapidly rotating or has winds rapidly transporting energy, it radiates energy from all of its area 4pa2
  • 12. Fraction of radiation absorbed in atmosphere vs. wavelength Principal absorbing species indicated
  • 13. Source=Absorb Area heat flux amount absorbed pa2 x [F / Rsp 2] x [1-A] A = Bond Albedo: total amount reflected (Complicated) Solar Flux 1AU: F =1370W/m2 Rsp= distance from sun to planet in AU Loss=Emitted (ideal radiator) Area radiated flux 4pa2 x T4  = Stefan-Boltzman Constant= 5.67x10-8 J/(m2 K4 s) Fig. Radiation/ Albedo
  • 14. Bond Albedo, A, is fraction of sunlight reflected to space: Surface, clouds, sc attered
  • 15. Set Equal Heat In = Heat Out Te = [ (F / Rsp 2) (1-A) / 4 ]1/4 Rsp A Te Ts Mercury 0.39 0.11 435 440 Venus 0.72 0.77 227 750 Earth 1 0.3 256 280 Mars 1.52 0.15 216 240 Jupiter 5.2 0.58 98 134* If the radiation was slow but evaporation was fast, like in a comet, describe the loss term that would the IR loss. Fig. Sub T
  • 17. Pressure vs. Altitude Hydrostatic Law Force Up = Force Down p- A=area --------------------------------------------- Draw forces Δz --------------------------------------------- p+ mg = (ρ A Δz) g Result: Net Force= 0 = - (Δp A) - (ρ A Δz) g where p = p-- - p+
  • 18. dp/dz = - g Now Use Ideal Gas Law p = nkT (k=1.38 x 10-23 J/K) =kT/m or p = (R/Mr)T [Gas constant: R=Nak =8.3143 J/(K mole) with Mr the mass in grams of a mole] substitute for  dp/dz = - p(mg/kT)= -p/H H is an effect height= Gravitational Force/ Thermal Energy Same result for a ballistic atmosphere
  • 19. Pressure vs. Altitude p = po exp( - ∫ dz / H) (assuming T constant) p = po exp( - z / H) or Density vs. Altitude  = 0 exp( - z / H) Scale Height: H H = kT/mg (or H = RT / Mr g) Mr g(m/s2) Ts(K) H(km) Venus CO2 44 8.88 750 16 Earth N2 ,O2 29 9.81 288 8.4 Mars CO2 44 3.73 240 12 Titan N2 , CH4 28 1.36 95 20 Jupiter H2 2 26.2 128 20 Note: did not use Te , used Ts for V,E,M
  • 20. Pressure: p p = weight of a column of gas (force per unit area) 1bar = 106 dyne/cm2=105 Pascal=0.987atmospheres Pascal=N/m2 ; Torr=atmosphere/760= 1.33mbars Venus 90 bars Titan 1.5 bars Earth 1 bar Mars 0.008 bar Column Density: N p = m g N Surface of earth: N  2.5 x 1025 molecules/cm2. What would N be at the surface of Venus? If the atmosphere froze (like on Triton), how deep would it be? n(solid N2)  2.5 x 1022 /cm3 N/n = 10m
  • 21. PARTIAL PRESSURES Lower Atmosphere Mixing dominates: use m or Mr Upper atmosphere Diffusive separation Partial Pressure (const T) p =  pi(z) =  poi exp[ - z/Hi ] Hi = kT/ mig Fig. Density vs. z
  • 22.
  • 24.
  • 25. Convection Dominates  Adiabatic Lapse Rate In the troposphere Radiation Dominates  Greenhouse Effect In the troposphere and stratosphere Conduction Dominates  Thermal Conductivity In the thermosphere Fig. T vs. z
  • 27. Imagine gas moving up or down adiabatically: no heat in or out of the volume Energy = Internal energy + Work dq = cvdT + p dV (energy per mass of a volume of gas V = 1 / ) Adiabatic = no heat in or out: dq = 0 cv dT = - p dV Ideal gas law [p = nkT = (R/Mr)T ] pV = (R/Mr)T
  • 28. Differentiate p dV + dp V = (R/Mr) dT or cv dT = - (R/Mr) dT + V dp (cv +R/Mr) dT = dp /  cp (dT/dz) = (dp/dz) /  Apply Hydrostatic Law (dp/dz) = - g
  • 29. (dT/dz) = -g / cp = - d Heating at surface + Slow vertical motion. T= [Ts - d z] T falls off linearly with altitude cp (erg/gm/K) d (deg/km) Venus 8.3 x 106 11 Earth 1.0 x 107 10 Mars 8.3 x 106 4.5 Jupiter 1.3 x 108 20
  • 30. cp = Cp / m = cv + (R/Mr) = Cv + k m CvT = heat energy of a molecule Atom = Cv = (3/2)k ; kinetic energy only 3-degrees of freedom each with k/2 N2: One would think that there are 6-degrees of freedom: 3 + 3 or 3 (CM) + 2 (ROT) + 1 (VIB) Cv = 3k
  • 31. But potential energy of internal vibrations needed. Cv  3.5 k = 4.8 x 10-16 ergs/K 1 mass unit = 1.66x 10-24 gm cv  1.0 x 107 (ergs/gm/K) fortuitous as Cp  3.5 Define  = Cp/Cv Using the above  - 1 = k/Cv or ( - 1) /  = k/ Cp = k/(mcp)
  • 32. Now have p(z) with T dependence. Use (dT/dz) = -g / cp and dp/dz = - ρ g and p = nkT dp/p = - mgdz/kT = [m cp/k] dT/T = x dT/T x = /(-1) =cp/cv 1/x = ~0.2 for N2 ; ~0.17 for CO2 ; ~0 for large molecule (~5/3, 7/3, 4/3 for mono, dia and ployatomic gases) Solve and rearrange (p/po) = (T/To)x using T= [Ts - d z] p(z) = po[1 - z/(xH)]x --> po exp(-z/H) for x small
  • 33.  = T (po/p)1/x Adiabatic  Entropy = Constant Gas can move freely along constant  lines Using dq = T dS where S is entropy Can show S = cp ln + const
  • 34. Things you should know Te and how is it obtained The average albedo The hydrostatic law for an atmosphere The atmospheric scale height The adiabatic lapse rate Potential Temperature