SlideShare ist ein Scribd-Unternehmen logo
1 von 77
Downloaden Sie, um offline zu lesen
Volumes of Solids
Volumes By Discs & Washers
         slice  rotation 
Volumes of Solids
Volumes By Discs & Washers
                   slice  rotation 
About the x axis
Volumes of Solids
Volumes By Discs & Washers
                   slice  rotation 
About the x axis
                   y  f x
       y




                   x
Volumes of Solids
Volumes By Discs & Washers
                       slice  rotation 
About the x axis
                       y  f x
       y



           a       b   x
Volumes of Solids
Volumes By Discs & Washers
                       slice  rotation 
About the x axis
                       y  f x
       y



           a x    b   x
Volumes of Solids
Volumes By Discs & Washers
                     slice  rotation 
About the x axis
                     y  f x
       y
                                       y


           a x    b x

                                       x
Volumes of Solids
Volumes By Discs & Washers
                     slice  rotation 
About the x axis
                     y  f x
       y
                                       y  f x


           a x    b x

                                       x
Volumes of Solids
Volumes By Discs & Washers
                     slice  rotation 
About the x axis
                     y  f x
       y
                                       y  f x

                                                   A x     f  x 
                                                                       2


           a x    b x

                                       x
Volumes of Solids
Volumes By Discs & Washers
                     slice  rotation 
About the x axis
                     y  f x
       y
                                       y  f x

                                                   A x     f  x 
                                                                        2


           a x    b x                         V    f  x   x
                                                                    2


                                       x
Volumes of Solids
Volumes By Discs & Washers
                      slice  rotation 
About the x axis
                      y  f x
       y
                                        y  f x

                                                    A x     f  x 
                                                                         2


           a x    b x                           V    f  x   x
                                                                     2


                                         x
                                 b
                   V  lim    f  x   x
                                        2
                         x 0
                                 xa
Volumes of Solids
Volumes By Discs & Washers
                      slice  rotation 
About the x axis
                      y  f x
       y
                                            y  f x

                                                        A x     f  x 
                                                                             2


           a x    b x                              V    f  x   x
                                                                         2


                                            x
                                 b
                   V  lim    f  x   x
                                            2
                         x 0
                                 xa
                           b
                          f  x  dx
                                       2

                           a
About the y axis
                   y  f x
       y




                   x
About the y axis
                   y  f x
       y
       d

       c

                   x
About the y axis
                   y  f x
       y
       d
      y
       c

                   x
About the y axis
                   y  f x
       y
       d
      y                            x
                               y
       c

                   x
About the y axis
                   y  f x
       y
       d
      y                            x  g y
                               y
       c

                   x
About the y axis
                   y  f x
       y
       d
      y                                           x  g y
                               y
       c

                                    A y    g  y 
                                                       2
                   x
About the y axis
                   y  f x
       y
       d
      y                                           x  g y
                               y
       c

                                    A y    g  y 
                                                       2
                   x

                                     V   g  y   y
                                                           2
About the y axis
                      y  f x
       y
       d
      y                                                   x  g y
                                       y
       c

                                            A y    g  y 
                                                               2
                      x

                                             V   g  y   y
                                                                   2




                                 d
                   V  lim   g  y   y
                                              2
                       y  0
                                y c
About the y axis
                      y  f x
       y
       d
      y                                                   x  g y
                                       y
       c

                                            A y    g  y 
                                                               2
                      x

                                             V   g  y   y
                                                                   2




                                 d
                   V  lim   g  y   y
                                              2
                       y  0
                                y c
                          d
                        g  y  dy
                                       2

                          c
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                    y  4  x2

    -2          2       x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                    y  4  x2

    -2     x 2         x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                    y  4  x2

     -2       x 2      x




y  4  x2




             x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                    y  4  x2

     -2       x 2       x




y  4  x2

                     A x    4  x    
                                         2 2




             x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                    y  4  x2

     -2       x 2          x




y  4  x2

                       A x    4  x    
                                           2 2


                  V   16  8 x 2  x 4  x
             x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis

                                              V  lim   16  8 x 2  x 4  x
                                                           2
             y
             4                                    x 0
                                                        x  2
                    y  4 x  2




     -2       x 2          x




y  4  x2

                       A x    4  x    
                                           2 2


                  V   16  8 x 2  x 4  x
             x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis

                                              V  lim   16  8 x 2  x 4  x
                                                            2
             y
             4                                     x 0
                                                         x  2
                    y  4 x  2
                                                       2
                                                  2  16  8 x 2  x 4 dx
     -2       x 2          x
                                                     0




y  4  x2

                       A x    4  x    
                                           2 2


                  V   16  8 x 2  x 4  x
             x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis

                                              V  lim   16  8 x 2  x 4  x
                                                            2
             y
             4                                     x 0
                                                         x  2
                    y  4 x  2
                                                       2
                                                  2  16  8 x 2  x 4 dx
     -2       x 2          x
                                                        0
                                                                              2
                                                        16 x  8 x 3  1 x 5 
                                                    2 
                                                               3       5 0  


y  4  x2

                       A x    4  x    
                                           2 2


                  V   16  8 x 2  x 4  x
             x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis

                                              V  lim   16  8 x 2  x 4  x
                                                            2
             y
             4                                     x 0
                                                         x  2
                    y  4 x  2
                                                       2
                                                  2  16  8 x 2  x 4 dx
     -2       x 2          x
                                                        0
                                                                              2
                                                        16 x  8 x 3  1 x 5 
                                                    2 
                                                               3       5 0  
                                                        32 64 32 0
                                                    2     
                                                             3 5  
y  4  x2
                                                     512
                                                          units 3
                       A x    4  x    
                                           2 2        15
                  V   16  8 x 2  x 4  x
             x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
          y
          4
                       y3

                         x
                    y  4  x2
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
           y
           4
  (-1,3)        (1,3)   y3

                        x
                   y  4  x2
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
            y
            4
   (-1,3)         (1,3)   y3
                x
                           x
                      y  4  x2
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
            y
            4
   (-1,3)         (1,3)   y3
                x
                           x
                      y  4  x2




                                   x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
            y
            4
   (-1,3)         (1,3)    y3
                x
                            x
                       y  4  x2

                y  3  4  x2  3
                      1 x2



                                     x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
            y
            4
   (-1,3)         (1,3)      y3
                x
                             x
                        y  4  x2

                y  3  4  x2  3
                      1 x2

   A x    1  x    
                       2 2


                                     x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
            y
            4
   (-1,3)         (1,3)       y3
                x
                              x
                         y  4  x2

                y  3  4  x2  3
                      1 x2

    A x    1  x    
                        2 2


V   1  2 x 2  x 4  x         x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3

                                                           1  2 x 2  x 4  x
                                                          1
            y
            4                               V  lim
                                               x  0
                                                        
                                                        x  1
   (-1,3)         (1,3)       y3
                x
                              x
                         y  4  x2

                y  3  4  x2  3
                      1 x2

    A x    1  x    
                        2 2


V   1  2 x 2  x 4  x         x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3

                                                           1  2 x 2  x 4  x
                                                          1
            y
            4                               V  lim
                                               x  0
                                                        
                                                        x  1
   (-1,3)         (1,3)       y3                   1

                x                             2  1  2 x 2  x 4 dx
                                                    0
                              x
                         y  4  x2

                y  3  4  x2  3
                      1 x2

    A x    1  x    
                        2 2


V   1  2 x 2  x 4  x         x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3

                                                           1  2 x 2  x 4  x
                                                          1
            y
            4                               V  lim
                                               x  0
                                                        
                                                        x  1
   (-1,3)         (1,3)       y3                   1

                x                             2  1  2 x 2  x 4 dx
                                                    0
                              x                                           1
                                                    x  2 x3  1 x5 
                                               2 
                         y  4  x2
                                                    3          5 0 

                y  3  4  x2  3
                      1 x2

    A x    1  x    
                        2 2


V   1  2 x 2  x 4  x         x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3

                                                           1  2 x 2  x 4  x
                                                          1
            y
            4                               V  lim
                                               x  0
                                                        
                                                        x  1
   (-1,3)         (1,3)       y3                   1

                x                             2  1  2 x 2  x 4 dx
                                                    0
                              x                                           1
                                                    x  2 x3  1 x5 
                                               2 
                         y  4  x2
                                                    3          5 0 

                y  3  4  x2  3                 1 2 1 0
                                               2     
                                                    3 5 
                      1 x2
                                                16
                                                    units 3
    A x    1  x    
                        2 2
                                                 15

V   1  2 x 2  x 4  x         x
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                             x  y2



                         x
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                             x  y2
           (1,1)

                         x
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                             x  y2
           (1,1)
              y
                         x
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                             x  y2
           (1,1)
              y
                         x
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                                x  y2
           (1,1)
              y
                            x

                        1
                 x y   2
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                                x  y2
           (1,1)
              y
                            x

                        1
x y   2
                 x y   2
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                                 x  y2
            (1,1)
               y
                             x

                         1
x y   2
                  x y   2




            1  2        
A y     y    y  
            
               2      2 2

            
                          
                           
iii  The area between the curves y  x 2 and x  y 2 is rotated
     about the line y axis. Find the volume generated.
          y          y  x2

                                 x  y2
            (1,1)
               y
                             x

                         1
x y   2
                  x y   2




            1  2         
A y     y    y  
            
               2       2 2

            
                           
                            
 V    y  y 4  y
iii  The area between the curves y  x 2 and x  y 2 is rotated
     about the line y axis. Find the volume generated.
          y          y  x2
                                            V  lim    y  y 4  y
                                                         1

                                 x y   2
                                                y 0
                                                        y 0
            (1,1)
               y
                             x

                         1
x y   2
                  x y   2




            1  2         
A y     y    y  
            
               2       2 2

            
                           
                            
 V    y  y 4  y
iii  The area between the curves y  x 2 and x  y 2 is rotated
     about the line y axis. Find the volume generated.
          y          y  x2
                                            V  lim    y  y 4  y
                                                         1

                                 x y   2
                                                y 0
                                                        y 0
            (1,1)                                 1

               y                                 y  y 4 dy
                                                  0
                             x

                         1
x y   2
                  x y   2




            1  2         
A y     y    y  
            
               2       2 2

            
                           
                            
 V    y  y 4  y
iii  The area between the curves y  x 2 and x  y 2 is rotated
     about the line y axis. Find the volume generated.
          y          y  x2
                                            V  lim    y  y 4  y
                                                         1

                                 x y   2
                                                y 0
                                                        y 0
            (1,1)                                 1

               y                                 y  y 4 dy
                                                  0
                             x
                                                                    1
                                                1 2 1 5 
                                               y  y 
                         1                      2   5 0
x y   2
                  x y   2




            1  2         
A y     y    y  
            
               2       2 2

            
                           
                            
 V    y  y 4  y
iii  The area between the curves y  x 2 and x  y 2 is rotated
     about the line y axis. Find the volume generated.
          y          y  x2
                                            V  lim    y  y 4  y
                                                         1

                                 x y   2
                                                y 0
                                                        y 0
            (1,1)                                 1

               y                                 y  y 4 dy
                                                  0
                             x
                                                                    1
                                                1 2 1 5 
                                               y  y 
                         1                      2   5 0
x y   2
                  x y   2

                                                  1 1 0
                                                 
                                                 2 5 
                                                3
            1  2                              units 3
A y     y    y  
            
               2       2 2                     10
            
                           
                            
 V    y  y 4  y
(iv) (1996)        y
                   1
      x  y2  0            S

                           1                  4     x


                   -1
The shaded region is bounded by the lines x = 1, y = 1 and y = -1 and
the curve x  y  0 . The region is rotated through 360 about the line
                2

x = 4 to form a solid.

When the region is rotated, the line segment S at height y sweeps out
an annulus.
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 




  y
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 




  y               r
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 


                      R
  y
1
x  y2  0        S

                  1   4   x


             -1
1
x  y2  0        S r

                  1     4   x


             -1
1
x  y2  0         S r  4 1
                       3
                  1             4   x


             -1
1
x  y2  0         S r  4 1
                       3
                  1             4   x

                     R
             -1
1
x  y2  0         S r  4 1
                       3
                  1               4   x

                     R  4 x
             -1         4  y2
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 




  y
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 

                               R  4 x
                                   4  y2
  y
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 

                               R  4 x
                                   4  y2
  y


               r  4 1
                 3
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 

                               R  4 x
                                   4  y2
  y


               r  4 1
                                                   
                                          A y    4  y      3 
                                                              2 2    2

                 3
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 

                               R  4 x
                                   4  y2
  y


               r  4 1
                                                    
                                          A y    4  y      3 
                                                              2 2       2

                 3
                                                  16  8 y 2  y 4  9 
                                                  y 4  8 y 2  7
b) Hence find the volume of the solid.
b) Hence find the volume of the solid.

   V    y 4  8 y 2  7  y
b) Hence find the volume of the solid.

   V    y 4  8 y 2  7  y

                       y 4  8 y 2  7  y
                     1
    V  lim
          y  0
                   
                   y  1
b) Hence find the volume of the solid.

   V    y 4  8 y 2  7  y

                       y 4  8 y 2  7  y
                     1
    V  lim
          y  0
                   
                   y  1
               1
         2   y 4  8 y 2  7 dy
               0
b) Hence find the volume of the solid.

   V    y 4  8 y 2  7  y

                       y 4  8 y 2  7  y
                     1
    V  lim
          y  0
                   
                   y  1
               1
         2   y 4  8 y 2  7 dy
               0
                                       1

         2  y 5  y 3  7 y 
               1    8
             5
                   3          0
                               
b) Hence find the volume of the solid.

   V    y 4  8 y 2  7  y

                       y 4  8 y 2  7  y
                     1
    V  lim
          y  0
                   
                   y  1
               1
         2   y 4  8 y 2  7 dy
               0
                                       1

         2  y 5  y 3  7 y 
               1     8
             5
                    3         0
                               
             1  8   
         2          7 0
             5 3         
          296
                units 3
            15
b) Hence find the volume of the solid.

   V    y 4  8 y 2  7  y

                       y 4  8 y 2  7  y
                     1
    V  lim
          y  0
                   
                   y  1
               1
         2   y 4  8 y 2  7 dy                 Exercise 3A;
               0
                                       1          2, 5, 7, 9, 13, 14, 15
         2  y 5  y 3  7 y 
               1     8
             5
                    3         0
                                                     Exercise 3B;
             1  8   
         2                                    1, 2, 5, 7, 9, 10, 11, 12
                       7 0
             5 3         
          296
                units 3
            15

Weitere ähnliche Inhalte

Ähnlich wie X2 T06 01 discs and washers (2010)

X2 t05 02 cylindrical shells (2013)
X2 t05 02 cylindrical shells (2013)X2 t05 02 cylindrical shells (2013)
X2 t05 02 cylindrical shells (2013)Nigel Simmons
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)Nigel Simmons
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)Nigel Simmons
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)Nigel Simmons
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]Nigel Simmons
 
11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)Nigel Simmons
 
11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)Nigel Simmons
 
11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves II11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves IINigel Simmons
 
11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)Nigel Simmons
 
11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)Nigel Simmons
 
Pc12 sol c03_3-5
Pc12 sol c03_3-5Pc12 sol c03_3-5
Pc12 sol c03_3-5Garden City
 
X2 T04 05 curve sketching - powers of functions
X2 T04 05 curve sketching - powers of functionsX2 T04 05 curve sketching - powers of functions
X2 T04 05 curve sketching - powers of functionsNigel Simmons
 
X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)Nigel Simmons
 
X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)Nigel Simmons
 
11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)Nigel Simmons
 
X2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical ShellsX2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical ShellsNigel Simmons
 
X2 T06 01 Discs & Washers
X2 T06 01 Discs & WashersX2 T06 01 Discs & Washers
X2 T06 01 Discs & WashersNigel Simmons
 
11 x1 t16 07 approximations (2012)
11 x1 t16 07 approximations (2012)11 x1 t16 07 approximations (2012)
11 x1 t16 07 approximations (2012)Nigel Simmons
 
11X1 T16 07 approximations (2011)
11X1 T16 07 approximations (2011)11X1 T16 07 approximations (2011)
11X1 T16 07 approximations (2011)Nigel Simmons
 

Ähnlich wie X2 T06 01 discs and washers (2010) (20)

X2 t05 02 cylindrical shells (2013)
X2 t05 02 cylindrical shells (2013)X2 t05 02 cylindrical shells (2013)
X2 t05 02 cylindrical shells (2013)
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]
 
11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)
 
11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)
 
11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves II11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves II
 
11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)
 
11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)
 
Pc12 sol c03_3-5
Pc12 sol c03_3-5Pc12 sol c03_3-5
Pc12 sol c03_3-5
 
X2 T04 05 curve sketching - powers of functions
X2 T04 05 curve sketching - powers of functionsX2 T04 05 curve sketching - powers of functions
X2 T04 05 curve sketching - powers of functions
 
X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)
 
X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)
 
11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)
 
11X1 T17 04 areas
11X1 T17 04 areas11X1 T17 04 areas
11X1 T17 04 areas
 
X2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical ShellsX2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical Shells
 
X2 T06 01 Discs & Washers
X2 T06 01 Discs & WashersX2 T06 01 Discs & Washers
X2 T06 01 Discs & Washers
 
11 x1 t16 07 approximations (2012)
11 x1 t16 07 approximations (2012)11 x1 t16 07 approximations (2012)
11 x1 t16 07 approximations (2012)
 
11X1 T16 07 approximations (2011)
11X1 T16 07 approximations (2011)11X1 T16 07 approximations (2011)
11X1 T16 07 approximations (2011)
 

Mehr von Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

Mehr von Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Kürzlich hochgeladen

Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 

Kürzlich hochgeladen (20)

OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 

X2 T06 01 discs and washers (2010)

  • 1. Volumes of Solids Volumes By Discs & Washers slice  rotation 
  • 2. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis
  • 3. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y x
  • 4. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y a b x
  • 5. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y a x b x
  • 6. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y y a x b x x
  • 7. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y y  f x a x b x x
  • 8. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y y  f x A x     f  x  2 a x b x x
  • 9. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y y  f x A x     f  x  2 a x b x V    f  x   x 2 x
  • 10. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y y  f x A x     f  x  2 a x b x V    f  x   x 2 x b V  lim    f  x   x 2 x 0 xa
  • 11. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y y  f x A x     f  x  2 a x b x V    f  x   x 2 x b V  lim    f  x   x 2 x 0 xa b     f  x  dx 2 a
  • 12. About the y axis y  f x y x
  • 13. About the y axis y  f x y d c x
  • 14. About the y axis y  f x y d y c x
  • 15. About the y axis y  f x y d y x y c x
  • 16. About the y axis y  f x y d y x  g y y c x
  • 17. About the y axis y  f x y d y x  g y y c A y    g  y  2 x
  • 18. About the y axis y  f x y d y x  g y y c A y    g  y  2 x V   g  y   y 2
  • 19. About the y axis y  f x y d y x  g y y c A y    g  y  2 x V   g  y   y 2 d V  lim   g  y   y 2 y  0 y c
  • 20. About the y axis y  f x y d y x  g y y c A y    g  y  2 x V   g  y   y 2 d V  lim   g  y   y 2 y  0 y c d    g  y  dy 2 c
  • 21. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis
  • 22. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 -2 2 x
  • 23. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 -2 x 2 x
  • 24. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 -2 x 2 x y  4  x2 x
  • 25. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 -2 x 2 x y  4  x2 A x    4  x  2 2 x
  • 26. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 -2 x 2 x y  4  x2 A x    4  x  2 2 V   16  8 x 2  x 4  x x
  • 27. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis V  lim   16  8 x 2  x 4  x 2 y 4 x 0 x  2 y  4 x 2 -2 x 2 x y  4  x2 A x    4  x  2 2 V   16  8 x 2  x 4  x x
  • 28. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis V  lim   16  8 x 2  x 4  x 2 y 4 x 0 x  2 y  4 x 2 2  2  16  8 x 2  x 4 dx -2 x 2 x 0 y  4  x2 A x    4  x  2 2 V   16  8 x 2  x 4  x x
  • 29. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis V  lim   16  8 x 2  x 4  x 2 y 4 x 0 x  2 y  4 x 2 2  2  16  8 x 2  x 4 dx -2 x 2 x 0 2 16 x  8 x 3  1 x 5   2   3 5 0  y  4  x2 A x    4  x  2 2 V   16  8 x 2  x 4  x x
  • 30. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis V  lim   16  8 x 2  x 4  x 2 y 4 x 0 x  2 y  4 x 2 2  2  16  8 x 2  x 4 dx -2 x 2 x 0 2 16 x  8 x 3  1 x 5   2   3 5 0  32 64 32 0  2       3 5  y  4  x2 512  units 3 A x    4  x  2 2 15 V   16  8 x 2  x 4  x x
  • 31. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3
  • 32. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 y3 x y  4  x2
  • 33. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 (-1,3) (1,3) y3 x y  4  x2
  • 34. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 (-1,3) (1,3) y3 x x y  4  x2
  • 35. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 (-1,3) (1,3) y3 x x y  4  x2 x
  • 36. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 (-1,3) (1,3) y3 x x y  4  x2 y  3  4  x2  3  1 x2 x
  • 37. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 (-1,3) (1,3) y3 x x y  4  x2 y  3  4  x2  3  1 x2 A x    1  x  2 2 x
  • 38. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 (-1,3) (1,3) y3 x x y  4  x2 y  3  4  x2  3  1 x2 A x    1  x  2 2 V   1  2 x 2  x 4  x x
  • 39. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3  1  2 x 2  x 4  x 1 y 4 V  lim x  0  x  1 (-1,3) (1,3) y3 x x y  4  x2 y  3  4  x2  3  1 x2 A x    1  x  2 2 V   1  2 x 2  x 4  x x
  • 40. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3  1  2 x 2  x 4  x 1 y 4 V  lim x  0  x  1 (-1,3) (1,3) y3 1 x  2  1  2 x 2  x 4 dx 0 x y  4  x2 y  3  4  x2  3  1 x2 A x    1  x  2 2 V   1  2 x 2  x 4  x x
  • 41. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3  1  2 x 2  x 4  x 1 y 4 V  lim x  0  x  1 (-1,3) (1,3) y3 1 x  2  1  2 x 2  x 4 dx 0 x 1  x  2 x3  1 x5   2  y  4  x2  3 5 0  y  3  4  x2  3  1 x2 A x    1  x  2 2 V   1  2 x 2  x 4  x x
  • 42. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3  1  2 x 2  x 4  x 1 y 4 V  lim x  0  x  1 (-1,3) (1,3) y3 1 x  2  1  2 x 2  x 4 dx 0 x 1  x  2 x3  1 x5   2  y  4  x2  3 5 0  y  3  4  x2  3 1 2 1 0  2       3 5   1 x2 16  units 3 A x    1  x  2 2 15 V   1  2 x 2  x 4  x x
  • 43. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated.
  • 44. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 x
  • 45. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) x
  • 46. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) y x
  • 47. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) y x
  • 48. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) y x 1 x y 2
  • 49. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) y x 1 x y 2 x y 2
  • 50. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) y x 1 x y 2 x y 2  1  2  A y     y    y    2 2 2     
  • 51. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) y x 1 x y 2 x y 2  1  2  A y     y    y    2 2 2      V    y  y 4  y
  • 52. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 V  lim    y  y 4  y 1 x y 2 y 0 y 0 (1,1) y x 1 x y 2 x y 2  1  2  A y     y    y    2 2 2      V    y  y 4  y
  • 53. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 V  lim    y  y 4  y 1 x y 2 y 0 y 0 (1,1) 1 y     y  y 4 dy 0 x 1 x y 2 x y 2  1  2  A y     y    y    2 2 2      V    y  y 4  y
  • 54. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 V  lim    y  y 4  y 1 x y 2 y 0 y 0 (1,1) 1 y     y  y 4 dy 0 x 1 1 2 1 5   y  y  1 2 5 0 x y 2 x y 2  1  2  A y     y    y    2 2 2      V    y  y 4  y
  • 55. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 V  lim    y  y 4  y 1 x y 2 y 0 y 0 (1,1) 1 y     y  y 4 dy 0 x 1 1 2 1 5   y  y  1 2 5 0 x y 2 x y 2  1 1 0     2 5  3  1  2   units 3 A y     y    y    2 2 2 10      V    y  y 4  y
  • 56. (iv) (1996) y 1 x  y2  0 S 1 4 x -1 The shaded region is bounded by the lines x = 1, y = 1 and y = -1 and the curve x  y  0 . The region is rotated through 360 about the line 2 x = 4 to form a solid. When the region is rotated, the line segment S at height y sweeps out an annulus.
  • 57. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 
  • 58. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  y
  • 59. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  y r
  • 60. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  R y
  • 61. 1 x  y2  0 S 1 4 x -1
  • 62. 1 x  y2  0 S r 1 4 x -1
  • 63. 1 x  y2  0 S r  4 1 3 1 4 x -1
  • 64. 1 x  y2  0 S r  4 1 3 1 4 x R -1
  • 65. 1 x  y2  0 S r  4 1 3 1 4 x R  4 x -1  4  y2
  • 66. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  y
  • 67. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  R  4 x  4  y2 y
  • 68. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  R  4 x  4  y2 y r  4 1 3
  • 69. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  R  4 x  4  y2 y r  4 1  A y    4  y   3  2 2 2 3
  • 70. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  R  4 x  4  y2 y r  4 1  A y    4  y   3  2 2 2 3   16  8 y 2  y 4  9    y 4  8 y 2  7
  • 71. b) Hence find the volume of the solid.
  • 72. b) Hence find the volume of the solid. V    y 4  8 y 2  7  y
  • 73. b) Hence find the volume of the solid. V    y 4  8 y 2  7  y   y 4  8 y 2  7  y 1 V  lim y  0  y  1
  • 74. b) Hence find the volume of the solid. V    y 4  8 y 2  7  y   y 4  8 y 2  7  y 1 V  lim y  0  y  1 1  2   y 4  8 y 2  7 dy 0
  • 75. b) Hence find the volume of the solid. V    y 4  8 y 2  7  y   y 4  8 y 2  7  y 1 V  lim y  0  y  1 1  2   y 4  8 y 2  7 dy 0 1  2  y 5  y 3  7 y  1 8 5  3 0 
  • 76. b) Hence find the volume of the solid. V    y 4  8 y 2  7  y   y 4  8 y 2  7  y 1 V  lim y  0  y  1 1  2   y 4  8 y 2  7 dy 0 1  2  y 5  y 3  7 y  1 8 5  3 0  1  8     2  7 0 5 3  296  units 3 15
  • 77. b) Hence find the volume of the solid. V    y 4  8 y 2  7  y   y 4  8 y 2  7  y 1 V  lim y  0  y  1 1  2   y 4  8 y 2  7 dy Exercise 3A; 0 1 2, 5, 7, 9, 13, 14, 15  2  y 5  y 3  7 y  1 8 5  3 0  Exercise 3B; 1  8     2  1, 2, 5, 7, 9, 10, 11, 12 7 0 5 3  296  units 3 15