SlideShare ist ein Scribd-Unternehmen logo
1 von 49
Reusable Lunar Lander
JSC-MOD/M. Interbartolo
Agenda
• Introduction
• Mass Allocations and Equipment List
• Lander Schematics
• Flight One and Two Sequence
• Lunar Outpost Assembly Sequence and
Crew Rotation
• Conclusion
Introduction:
Reusable Lander Concept
Concept
• Instead of abandoning the Lunar Lander after
ascent each flight reuse for crew change out.
• Requires several development components.
– Propellant Transfer Module
• Provides Delta V to CEV for LOI since LSAM is no longer
part of TLI stack
• Provides Delta V to resupply Lander for descent and ascent
• Provides Consumables to CEV and Lander
– Lunar outpost modules that can be stowed in Lander
• Based off Single Stage, Dual Hab design
– concept #2 Lunar Surface Access Module Study, RFT0020.05JSC
Phased In approach
• First flight consists of CEV and Lander
– Lander performs LOI
– Lander deploys first Outpost Module via
attached Flat Bed Transport
• Second and subsequent flights consist of
CEV, PTM and Outpost
Modules/Resupplies
– CEV performs LOI with prop from PTM
Lander
Mass Allocations:
Equipment List
Mass Allocations
• Lander: 99,000 lb
– Includes 10,000 outpost module capacity
• CEV: 50,000 lb
• PTM: 89,000 lb
– Prop for CEV to perform LOI
– Prop for Lander Descent and Ascent Resupply
– Consumables for Lander
• N2/O2 for cabin represses, Suit cooling H2O
• Outpost Module #X: 10,000 lb max
Propellant Mass Estimates (FWD)Lander Total 99000
Gc = 32.174 ft/s^2
Propellant Temp/Press Density
(lbm/ft^3)
MR AR [6] Rho_avg
(lbm/ft^3)
Thrust
(lbf)
ISP CEV
Mass (Wi)
(lbm)
DV
(fps)
Useable
Prop [1]
(%)
Margin
[1] [2]
(%)
Ullage [3]
(%)
LO2 (OMS) 162R / 250 psia 62.11 32310.0 5.3
CH4 (OMS) 170R / 250 psia 23.22 9502.9 5.3
LO2 (RCS) 162R / 250 psia 62.11 0.0 5.3
CH4 (RCS) 170R / 250 psia 23.22 0.0 5.3
Total Propellant Weight 41812.9 4 tanks per propellant
Total Tank Weight 1615.4 8.31 [ft] NTO tank Length
Total Prop plus Tank Weight 43428.3 6.82 [ft] MMH tank length LANDER PERFORMING LOI
Total Helium Weight 1313.4 1 tanks per propellant
Total Helium Tank Weight 1643.2 5.82 [ft] NTO He tank diameter
Total Helium plus Tank Wt 2956.5 5.37 [ft] MMH He tank diameter
Total He, Prop, & Tank Wt 46384.8
Lander Wet Mass Post LOI 55873.7
Gc = 32.174 ft/s^2
Propellant Temp/Press Density
(lbm/ft^3)
MR AR [6] Rho_avg
(lbm/ft^3)
Thrust
(lbf)
ISP CEV
Mass (Wi)
(lbm)
DV
(fps)
Useable
Prop [1]
(%)
Margin
[1] [2]
(%)
Ullage [3]
(%)
LO2 (OMS) 162R / 250 psia 62.11 18807.9 5.3
CH4 (OMS) 170R / 250 psia 23.22 5531.7 5.3
LO2 (RCS) 162R / 250 psia 62.11 0.0 5.3
CH4 (RCS) 170R / 250 psia 23.22 0.0 5.3
Total Propellant Weight 24339.7 2 tanks per propellant
Total Tank Weight 912.2 9.45 [ft] NTO tank Length
Total Prop plus Tank Weight 25251.9 7.72 [ft] MMH tank length LANDER PERFORMING DESCENT
Total Helium Weight 764.5 1 tanks per propellant
Total Helium Tank Weight 1152.0 4.86 [ft] NTO He tank diameter
Total Helium plus Tank Wt 1916.5 4.48 [ft] MMH He tank diameter
Total He, Prop, & Tank Wt 27168.4
Lander Wet Mass Post Landing 20769.5
and post Module Deploy 10000
Gc = 32.174 ft/s^2
Propellant Temp/Press Density
(lbm/ft^3)
MR AR [6] Rho_avg
(lbm/ft^3)
Thrust
(lbf)
ISP CEV
Mass (Wi)
(lbm)
DV
(fps)
Useable
Prop [1]
(%)
Margin
[1] [2]
(%)
Ullage [3]
(%)
LO2 (OMS) 162R / 250 psia 62.11 6991.3 5.3
CH4 (OMS) 170R / 250 psia 23.22 2056.3 5.3
LO2 (RCS) 162R / 250 psia 62.11 0.0 5.3
CH4 (RCS) 170R / 250 psia 23.22 0.0 5.3
Total Propellant Weight 9047.6 1 tanks per propellant
Total Tank Weight 361.1 7.37 [ft] NTO tank Length
Total Prop plus Tank Weight 9408.7 6.08 [ft] MMH tank length
LANDER PERFORMING ASCENT
Total Helium Weight 284.2 1 tanks per propellant
Total Helium Tank Weight 603.5 3.49 [ft] NTO He tank diameter
Total Helium plus Tank Wt 887.6 3.22 [ft] MMH He tank diameter
Total He, Prop, & Tank Wt 10296.3
Lander Dry Mass (excludes Prop tanks) 5150.5
LO2 and Methane
Wp
(lbm)
3.4 150 44.99 900 362 149000 3600 98.0% 3.5% 41812.9
3.2 60 44.40 100 345 149000 0 100.0% 3.5% 0.0
LO2 and Methane
Wp
(lbm)
3.4 150 44.99 900 362 55873.7 6200 98.0% 3.5% 24339.7
3.2 60 44.40 100 345 55873.7 0 100.0% 3.5% 0.0
LO2 and Methane
Wp
(lbm)
3.4 150 44.99 900 362 20769.5 6200 98.0%
345 20769.5 0 100.0%3.2 60 44.40 100 3.5% 0.0
3.5% 9047.6
If estimates are correct only 5150
lb for all Lander systems except
prop wet mass
Propellant Mass Estimates (Back)
Gc = 32.174 ft/s^2
Propellant Temp/Press Density
(lbm/ft^3)
MR AR [6] Rho_avg
(lbm/ft^3)
Thrust
(lbf)
ISP CEV Mass
(Wf)
(lbm)
DV
(fps)
Useable
Prop [1]
(%)
Margin
[1] [2]
(%)
Ullage [3]
(%)
Volume
(FT3)
LO2 (OMS)162R / 250 psia 62.11 10982.7 5.3 186.20
CH4 (OMS)170R / 250 psia 23.22 3230.2 5.3 146.49
LO2 (RCS)162R / 250 psia 62.11 0.0 5.3 0.00
CH4 (RCS)170R / 250 psia 23.22 0.0 5.3 0.00
Total Propellant Weight 14212.9 3 tanks per propellant
Total Tank Weight 3819.2 27.36 [ft] NTO tank Length
Total Prop plus Tank Weight 18032.2 21.81 [ft] MMH tank length Lander Performs Ascent
Lander RNDZ Burnout weight 20,000
Total Helium Weight 1225.2 1 tanks per propellant Lander pre Ascent 35,438
Total Helium Tank Weight 1569.8 5.68 [ft] NTO He tank diameter
Total Helium plus Tank Wt 2795.1 5.25 [ft] MMH He tank diameter
Total He, Prop, & Tank Wt 20827.2
Gc = 32.174 ft/s^2
Propellant Temp/Press Density
(lbm/ft^3)
MR AR [6] Rho_avg
(lbm/ft^3)
Thrust
(lbf)
ISP CEV Mass
(Wf)
(lbm)
DV
(fps)
Useable
Prop [1]
(%)
Margin
[1] [2]
(%)
Ullage [3]
(%)
Volume
(FT3)
LO2 (OMS)162R / 250 psia 62.11 24951.6 5.3 423.02
CH4 (OMS)170R / 250 psia 23.22 7338.7 5.3 332.80
LO2 (RCS)162R / 250 psia 62.11 0.0 5.3 0.00
CH4 (RCS)170R / 250 psia 23.22 0.0 5.3 0.00
Total Propellant Weight 32290.3 3 tanks per propellant
Total Tank Weight 3819.2 27.36 [ft] NTO tank Length Lander Performs Descent
Total Prop plus Tank Weight 36109.6 21.81 [ft] MMH tank length Lander Payload 10,000
Lander Touchdown weight 45,438
Total Helium Weight 1225.2 1 tanks per propellant Lander pre Deorbit Burn 78,954
Total Helium Tank Weight 1569.8 5.68 [ft] NTO He tank diameter
Total Helium plus Tank Wt 2795.1 5.25 [ft] MMH He tank diameter
Total He, Prop, & Tank Wt 38904.6
Gc = 32.174 ft/s^2
Propellant Temp/Press Density
(lbm/ft^3)
MR AR [6] Rho_avg
(lbm/ft^3)
Thrust
(lbf)
ISP CEV Mass
(Wf)
(lbm)
DV
(fps)
Useable
Prop [1]
(%)
Margin
[1] [2]
(%)
Ullage [3]
(%)
Volume
(FT3)
LO2 (OMS)162R / 250 psia 62.11 36110.4 5.3 612.21
CH4 (OMS)170R / 250 psia 23.22 10620.7 5.3 481.64
LO2 (RCS)162R / 250 psia 62.11 0.0 5.3 0.00
CH4 (RCS)170R / 250 psia 23.22 0.0 5.3 0.00
Total Propellant Weight 46731.2 3 tanks per propellant
Total Tank Weight 3819.2 27.36 [ft] NTO tank Length Lander Performs LOI Burn
Total Prop plus Tank Weight 50550.4 21.81 [ft] MMH tank length Trans Lunar Stack 176,910
Post LOI Burn 128,954
Total Helium Weight 1225.2 1 tanks per propellant TLI Constraint 149,000
Total Helium Tank Weight 1569.8 5.68 [ft] NTO He tank diameter Lander Allocation 99000
Total Helium plus Tank Wt 2795.1 5.25 [ft] MMH He tank diameter Margin -27,910
Total He, Prop, & Tank Wt 53345.4
3.5% 0.0
LO2 and Methane
Wp
(lbm)
3.5% 46731.2
3.2 60 44.40 100 345 128954 0 100.0%
362 128954 3600 98.0%3.4 150 44.99 900
3.5% 0.0
3.5% 32290.3
3.2 60 44.40 100 345 45438 0 100.0%
362 45438 6250 98.0%3.4 150 44.99 900
3.5% 0.0
LO2 and Methane
Wp
(lbm)
3.5% 14212.9
3.2 60 44.40 100 345 20000 0 100.0%
LO2 and Methane
Wp
(lbm)
3.4 150 44.99 900 362 20000 6250 98.0%
Includes 50,000
for CEV
Lander Systems
• Propulsion
– 4 +Z Direction 10Klb engines
• Lunar Descent and Ascent
– 4 +X Direction 10lkb engines
• For LOI and Deorbit Burn
• Allows for g loads eyeballs in for LOI
– 4 RCS Quads located on Engine Pods
• 870 lb engines for attitude control and translation
– 4 RCS Tris located on Engine Pods
• 870 lb engines for attitude control and translation
– Tanks not optimized for size and shape
• 3 He tanks
• 7 Lox tanks
• 7 CH4 tanks
Lander Systems
• GNC
– 3 IMUs
– 2 Star Camera for IMU alignments
– RNDZ Sensors
• IROC
• SROC
• LROC
• Lidar
• Aux Computers for image processing
• Transponders for comm with CEV or outpost
• Sensor redundancy is covered by the CEV that can rescue Lander for failed rndz
– Descent Sensors
• Ground Proximity sensors
• Ground Radar
• Power
– Solar Arrays
• It may be possible to oversize solar arrays such that post landing crew can remove
arrays for use in outpost solar array farm
– Battery backup for night pass and supplement arrays during peak loading
– Three redundant buses
Lander Systems
• DPS
– 3 Computers
– BIUS
– AUX computers for rndz sensor navigation
– 1553 Data Bus
• ECLSS
– Consumables to support two cabin depress/repress
cycles
• Nominally should only require one depress post descent and
then repress for ascent
– Suit Cooling and Recharge capabilities
– Resupply consumables from PTM
Lander Schematics
Lander
Descent/Ascent Cockpit
with LIDS
Lunar Orbit Insertion/
Deorbit Engines (10klb):
QTY 4, 2 per AFT Pod
Lunar Descent/Ascent
Engine (10klb): QTY 4
1 per Pod
RCS Quad
Engines (870 lb)
Lunar Outpost Module
on Flatbed
Solar Array Panels
Propellant tanks
Descent/Ascent
Consumables
tanks
Propellant
Pressurization tanks
RMS
Landing Gear:
4 Struts per Pod
RCS TRI
Engines
AFT Engine Pods
Gimbaled
10 klb
Engine
RCS Tri
870 lb
RCS Quad
870 lbTwo Gimbaled
10 klb Engines
+X
+Z
+Y
AFT Engine Pods Internal
Gimbal Electronics
RCS Driver
Electronics
Battery
BIU
FWD Engine Pods
Gimbaled 10lkb
Engine
RCS Tri
870 lb
RCS Quad
870 lb
+X
+Z
+Y
FWD Engine Pods Internal
RNDZ Sensor
Electronics
RCS Driver
Electronics
Battery
BIU
Gimbal Electronics
IROC Sensor (port
pod)
SROC Sensor
(starboard pod)
LROC Sensor
(port pod)
LIDAR (starboard
pod) RNDZ Aux
Computer
Ground Proximity
Sensor
Cockpit Internal Side View
Lids
O2
Tank
N2
Tank
Propellant
Transfer
Lines
Cockpit
Displays
Ground
Radar
Computer
Porch and Ladder in
Stowed Position
Crew member in
Eva Suit for
Landing
Star Tracker
IMU
Cockpit Forward Facing
GND
Radar
Propellant tanks
Propellant
Pressurization tanks
Star Tracker Doors
O2
TankN2
TankGround Radar
Electronics
IMUsH2O
Tank
Computers
Star Tracker
Assemblies
Lids
Transfer
connections
FU
OX
He
ECLSS
Stowage
Computer
Stowage
Lander Forward Facing
Solar Array
Panels
RNDZ
Sensors
RNDZ
Sensors
GND
Radar
Porch and Ladder in
Stowed Position
Propellant tanks
Propellant
Pressurization tanks
RCS
Quad
Landing Gear
4 per Pod Descent/Ascent
Engine
Star Tracker Doors
Flat bed Transport
Battery Electric
Drive
Plow attachment for
regolith movement
RMS
Flat Bed
Attach Point
Transport can be
used without flat bed
for rover ops
Computer
Solar
Array
Panel
Suit O2 Supply
tank for extended
rover ops
Outpost Solar
Array Panel
stowed in Flatbed
Suit H2O Supply
tank for extended
rover ops
Hatch to non-
pressurized cockpit
Flight Sequence:
Flights Ones and Two
Flight One
Lander performs Lunar Orbit Insertion
with 4 AFT Engines
Flight One
Lander Lands on surface
Flight One
Lander Releases Outpost
Module and flat bed
Outpost ModuleAirlock
Rover
cockpit
RMS
Flight One
flat bed deploys Outpost
Module with RMS
Lunar Regolith for Shielding
Flight Two
CEV2 with Crew
Rotation
PTM with DeltaV
for LOI and Lander
resupply
Outpost Module #2
CEV2 Performs Lunar orbit
Insertion
Flight TwoCEV2 with Crew
Rotation
PTM with DeltaV for LOI
and Lander resupply
Outpost Module #2
CEV2 Station keeps with
CEV1 awaiting Lander
CEV1
Flight One Termination
Crew egresses outpost and
takes off in Lander
Lunar Regolith for Shielding
Solar Array Farm
Crew RotationCEV2 with Crew
Rotation
CEV2 Station keeps with CEV1
Lander docks to outpost module #2
CEV1
Crew Rotation
CEV2 with Crew
Rotation
CEV2 Station keeps with CEV1
Lander grapples outpost module #2
CEV1
Crew Rotation
CEV2 with Crew
Rotation
CEV2 Station keeps with CEV1
Lander with outpost module #2 grappled
undocks at PTM separation planeCEV1
Crew Rotation
CEV2 with Crew
Rotation
CEV2 Station keeps with CEV1
Lander stows outpost module #2
CEV1
Crew Rotation
CEV2 with Crew
Rotation
CEV2 Station keeps with CEV1
Lander redocks with PTM
PTM resupplies Lander with propellant and consumables
CEV2 crew modes CEV2 to loiter and ingresses PTM
CEV1
Crew RotationCEV2
CEV2 Station keeps with CEV1
Lander undocks with CEV2 at CEV separation plane
CEV2 crew flies Lander while CEV1 crew loiters in PTM
CEV1
Crew RotationCEV2
CEV2 Station keeps with CEV1
Lander docks with CEV1 with PTM attached
CEV1 crew powers up CEV1
CEV1
Crew Rotation
CEV2
CEV2 Station keeps with CEV1
Lander undocks with CEV1 at PTM separation plane
CEV1 crew preps CEV1 for TEI
CEV2 crew performs Lunar Descent in Lander
CEV1
Flight Two Lunar Surface
Crew egresses Lander and
ingresses flat Bed
Lunar Regolith for Shielding
Solar Array Farm
Flight Two Lunar Surface
Flat bed extracts Outpost
Module #2 from Lander
Lunar Regolith for Shielding
Flight Two Lunar Surface
Flat bed installs Outpost
Module #2
Lunar Regolith for Shielding
Lunar Outpost:
Assembly Sequence and Crew Rotation
Lunar Outpost
1 2
3
4
5
N1 N2
Airlock
Solar
Array
Farm
Regolith Berm for
radiation shielding
Mini
Supply
Module
Node
Two Landers allows 8 person Outpost
crew rotating 4 crew members every
3 months
Future Add-on Point
Future Add-on
Point
Node
Assembly Sequence and Crew Rotations
[Jan 2016-April 2017]
Crew 1 Crew 2 Crew 2
Crew 3 Crew 3
Crew 4 Crew 4
Airlock & Outpost Module
#1
Outpost Module #2 Outpost Module #2
Node 1 & MSM Node 1 & MSM
Outpost Module #3 Outpost Module #3
CEV #1 CEV #2 CEV #2
CEV #3 CEV #3
CEV #4 CEV #4
Lander #1 Lander #1 Lander #1
Lander #2 Lander #2
Lander #1 Lander #1
PTM #1 PTM # 1 PTM #2 PTM #2
JAN 2016 APR 2016 JULY 2016 OCT 2016 JAN 2017 APR 2017
Crew 5
CEV #5
Lander #2
Outpost Module #4
PTM #3
Assembly Sequence and Crew Rotations
[Jan 2017-April 2018]
Crew 4 Crew 6 Crew 6
Crew 7 Crew 7
Crew 8 Crew 8
Outpost Module#3
Outpost Module #5
CEV #4 CEV #6 CEV #6
CEV #7 CEV #7
CEV #8 CEV #8
Lander #1 Lander #1 Lander #1
Lander #2 Lander #2
Lander #1 Lander #1
PTM #4
JAN 2017 APR 2017 JULY 2017 OCT 2017 JAN 2018 APR 2018
Crew 5 Crew 5
CEV #5 CEV #5
Lander #2 Lander #2
Outpost Module #4 Outpost Module #4
Node 2 & MSMNode 2 & MSM
Outpost Module #5
PTM #2
PTM #3 PTM #3 PTM #4
NOTE:
It may be possible
to send a third
Lander with Node 2
& MSM which could
be used for surface
flying. Would also
need surface
refueling capability
which could be
Crew 8’s payload.
Conclusion
Total Mass Rollup
• Prop Dry: 10,000 lb excluding valves/manifolds
• GNC: 100 lb
• DPS: 200 lb excluding wiring
• Power: 2,000 lb
• LIDS: 1,000 lb
• Crew: 1,280 lb (4 crew, suits and accommodations)
• RMS: 1000 lb
• ECLSS: ?
• Structure: ?
• ATCS: ?
• Total: CBE 20,000 (15,580 + ?) not including 10,000 for OM (outpost
module)
• Lander total:
– CBE+ OM+PROP (fwd) = 107500 (8,500 Negative Margin)
• Prop wet mass for Lander: ~77500
– CBE+ OM+PROP (Back) = 126,910 (28,000 Negative Margin)
• Prop wet mass for Lander: ~96,910
Conclusion
• Reusable Lander is Not closed Design
– Significant Negative Margin (8,500-28,000)
• Limits of current design
– Based on limited tools from Smart Buyer Effort
• Prop Sizing Generic 6.xls for prop budget
• CEV SBT Master Workbook for equipment mass
– Based on limited engineering development
• MOD notional concept based on Smart Buyer experience
• Is concept viable?
– Necessitates further study

Weitere ähnliche Inhalte

Was ist angesagt?

Presentasi kapal rancangan full countainer 7000 dwt
Presentasi kapal rancangan full countainer 7000 dwtPresentasi kapal rancangan full countainer 7000 dwt
Presentasi kapal rancangan full countainer 7000 dwt
Yogga Haw
 
Internal combustion engine (ja304) chapter 2
Internal combustion engine (ja304) chapter 2Internal combustion engine (ja304) chapter 2
Internal combustion engine (ja304) chapter 2
mechanical86
 
Watertaxi-3rd project presentation-BUET
Watertaxi-3rd project presentation-BUETWatertaxi-3rd project presentation-BUET
Watertaxi-3rd project presentation-BUET
shisalsunny
 
3DoF Helicopter Trim , Deceleration manouver simulation, Stability
3DoF Helicopter Trim , Deceleration manouver simulation, Stability 3DoF Helicopter Trim , Deceleration manouver simulation, Stability
3DoF Helicopter Trim , Deceleration manouver simulation, Stability
Deepak Paul Tirkey
 
French standard for deep foundations roger frank
French standard for deep foundations   roger frankFrench standard for deep foundations   roger frank
French standard for deep foundations roger frank
cfpbolivia
 

Was ist angesagt? (20)

Presentasi kapal rancangan full countainer 7000 dwt
Presentasi kapal rancangan full countainer 7000 dwtPresentasi kapal rancangan full countainer 7000 dwt
Presentasi kapal rancangan full countainer 7000 dwt
 
Internal combustion engine (ja304) chapter 2
Internal combustion engine (ja304) chapter 2Internal combustion engine (ja304) chapter 2
Internal combustion engine (ja304) chapter 2
 
11 05-31-karolina
11 05-31-karolina11 05-31-karolina
11 05-31-karolina
 
Hybrid LTA Heavy Forces Insertion v3.0
Hybrid LTA Heavy Forces Insertion v3.0Hybrid LTA Heavy Forces Insertion v3.0
Hybrid LTA Heavy Forces Insertion v3.0
 
Performance parameters
Performance parametersPerformance parameters
Performance parameters
 
Tugas merancang kapal ii capacity plan
Tugas merancang kapal ii   capacity planTugas merancang kapal ii   capacity plan
Tugas merancang kapal ii capacity plan
 
Lebanon's Huey bomber
Lebanon's Huey bomberLebanon's Huey bomber
Lebanon's Huey bomber
 
Watertaxi-3rd project presentation-BUET
Watertaxi-3rd project presentation-BUETWatertaxi-3rd project presentation-BUET
Watertaxi-3rd project presentation-BUET
 
Pda capwap - frank rausche
Pda capwap - frank rauschePda capwap - frank rausche
Pda capwap - frank rausche
 
fasys
fasysfasys
fasys
 
Grant nov99
Grant nov99Grant nov99
Grant nov99
 
Indian Space Transportation Systems : Present and Future Scenarios
Indian Space Transportation Systems : Present and Future ScenariosIndian Space Transportation Systems : Present and Future Scenarios
Indian Space Transportation Systems : Present and Future Scenarios
 
Numerical Investigation of Flow around an Appended Ship - Svetlozar Neykov - ...
Numerical Investigation of Flow around an Appended Ship - Svetlozar Neykov - ...Numerical Investigation of Flow around an Appended Ship - Svetlozar Neykov - ...
Numerical Investigation of Flow around an Appended Ship - Svetlozar Neykov - ...
 
Structural Design Calculations of Cement Mill 4
Structural Design Calculations of Cement Mill 4 Structural Design Calculations of Cement Mill 4
Structural Design Calculations of Cement Mill 4
 
offshore support vessel design
offshore support vessel designoffshore support vessel design
offshore support vessel design
 
3DoF Helicopter Trim , Deceleration manouver simulation, Stability
3DoF Helicopter Trim , Deceleration manouver simulation, Stability 3DoF Helicopter Trim , Deceleration manouver simulation, Stability
3DoF Helicopter Trim , Deceleration manouver simulation, Stability
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii
 
French standard for deep foundations roger frank
French standard for deep foundations   roger frankFrench standard for deep foundations   roger frank
French standard for deep foundations roger frank
 
Q400
Q400Q400
Q400
 
Vortex lattice implementation of propeller sections for OpenFoam 2.3x
Vortex lattice implementation of propeller sections for OpenFoam 2.3xVortex lattice implementation of propeller sections for OpenFoam 2.3x
Vortex lattice implementation of propeller sections for OpenFoam 2.3x
 

Andere mochten auch

Rex safety manual_ed1_308020_en
Rex safety manual_ed1_308020_enRex safety manual_ed1_308020_en
Rex safety manual_ed1_308020_en
supperman2011
 
COMPANY PROFILE - TAKK-SAMM INERNATIONAL LTD (3)
COMPANY PROFILE - TAKK-SAMM INERNATIONAL LTD (3)COMPANY PROFILE - TAKK-SAMM INERNATIONAL LTD (3)
COMPANY PROFILE - TAKK-SAMM INERNATIONAL LTD (3)
Samuel K. Swaray
 
41 Atg&Ctm Fope06
41 Atg&Ctm Fope0641 Atg&Ctm Fope06
41 Atg&Ctm Fope06
jubin
 
LPG specifications for candidates
LPG specifications for candidatesLPG specifications for candidates
LPG specifications for candidates
Mohsen Saber, MSc
 
Preparation of the Cargo Plan
Preparation of the Cargo PlanPreparation of the Cargo Plan
Preparation of the Cargo Plan
Divine Greatman
 
Level measuring instruments
Level measuring instrumentsLevel measuring instruments
Level measuring instruments
Attiya Rehman
 
50 Mwe Concentrated Solar Power Plant (1)
50 Mwe Concentrated Solar Power Plant (1)50 Mwe Concentrated Solar Power Plant (1)
50 Mwe Concentrated Solar Power Plant (1)
VICTOR MANICKAM
 
CV_MAR 2015
CV_MAR 2015CV_MAR 2015
CV_MAR 2015
Rana M.
 
Training pack multi hose product receiving z cott translated
Training pack   multi hose product receiving z cott translatedTraining pack   multi hose product receiving z cott translated
Training pack multi hose product receiving z cott translated
Trish Sotto
 

Andere mochten auch (20)

20100022074
2010002207420100022074
20100022074
 
Compressed hydrogen2011 11_chato
Compressed hydrogen2011 11_chatoCompressed hydrogen2011 11_chato
Compressed hydrogen2011 11_chato
 
Rex safety manual_ed1_308020_en
Rex safety manual_ed1_308020_enRex safety manual_ed1_308020_en
Rex safety manual_ed1_308020_en
 
COMPANY PROFILE - TAKK-SAMM INERNATIONAL LTD (3)
COMPANY PROFILE - TAKK-SAMM INERNATIONAL LTD (3)COMPANY PROFILE - TAKK-SAMM INERNATIONAL LTD (3)
COMPANY PROFILE - TAKK-SAMM INERNATIONAL LTD (3)
 
41 Atg&Ctm Fope06
41 Atg&Ctm Fope0641 Atg&Ctm Fope06
41 Atg&Ctm Fope06
 
LPG specifications for candidates
LPG specifications for candidatesLPG specifications for candidates
LPG specifications for candidates
 
Operations Management at Petrol retail outlet
Operations Management at Petrol retail outletOperations Management at Petrol retail outlet
Operations Management at Petrol retail outlet
 
V Agrawal A Sarmad Stoc Expo Presentation Updated2
V Agrawal A Sarmad Stoc Expo Presentation Updated2V Agrawal A Sarmad Stoc Expo Presentation Updated2
V Agrawal A Sarmad Stoc Expo Presentation Updated2
 
Duti 254 D
Duti 254 DDuti 254 D
Duti 254 D
 
CargoSurveyor: toolbox for marine cargo surveyors
CargoSurveyor: toolbox for marine cargo surveyorsCargoSurveyor: toolbox for marine cargo surveyors
CargoSurveyor: toolbox for marine cargo surveyors
 
Oil Terminals And Custody Transfer
Oil Terminals And Custody TransferOil Terminals And Custody Transfer
Oil Terminals And Custody Transfer
 
Preparation of the Cargo Plan
Preparation of the Cargo PlanPreparation of the Cargo Plan
Preparation of the Cargo Plan
 
pengukuran perhitungan volume minyak standard di tangki darat
pengukuran perhitungan volume minyak standard di tangki daratpengukuran perhitungan volume minyak standard di tangki darat
pengukuran perhitungan volume minyak standard di tangki darat
 
Level measuring instruments
Level measuring instrumentsLevel measuring instruments
Level measuring instruments
 
50 Mwe Concentrated Solar Power Plant (1)
50 Mwe Concentrated Solar Power Plant (1)50 Mwe Concentrated Solar Power Plant (1)
50 Mwe Concentrated Solar Power Plant (1)
 
Resume
ResumeResume
Resume
 
Afra Marine Technologies Pte Ltd Brochure
Afra Marine Technologies Pte Ltd BrochureAfra Marine Technologies Pte Ltd Brochure
Afra Marine Technologies Pte Ltd Brochure
 
So are we winning yet?
So are we winning yet?So are we winning yet?
So are we winning yet?
 
CV_MAR 2015
CV_MAR 2015CV_MAR 2015
CV_MAR 2015
 
Training pack multi hose product receiving z cott translated
Training pack   multi hose product receiving z cott translatedTraining pack   multi hose product receiving z cott translated
Training pack multi hose product receiving z cott translated
 

Ähnlich wie Reusable lunar lander

IMPACT OF THORIUM BASED MOLTEN SALT REACTOR ON THE CLOSURE OF THE NUCLEAR FUE...
IMPACT OF THORIUM BASED MOLTEN SALT REACTOR ON THE CLOSURE OF THE NUCLEAR FUE...IMPACT OF THORIUM BASED MOLTEN SALT REACTOR ON THE CLOSURE OF THE NUCLEAR FUE...
IMPACT OF THORIUM BASED MOLTEN SALT REACTOR ON THE CLOSURE OF THE NUCLEAR FUE...
Safwan Jaradat
 
Aerojet 2012 модификация нк-33
Aerojet 2012  модификация нк-33Aerojet 2012  модификация нк-33
Aerojet 2012 модификация нк-33
Dmitry Tseitlin
 
COOP training-Bokhari
COOP training-BokhariCOOP training-Bokhari
COOP training-Bokhari
Assad Bokhari
 
TAG WOOHOOPRESENTAION
TAG WOOHOOPRESENTAIONTAG WOOHOOPRESENTAION
TAG WOOHOOPRESENTAION
Dwight Nava
 
Atlas Senior Deisgn Presentation
Atlas Senior Deisgn PresentationAtlas Senior Deisgn Presentation
Atlas Senior Deisgn Presentation
Steven Polowy
 

Ähnlich wie Reusable lunar lander (20)

IMPACT OF THORIUM BASED MOLTEN SALT REACTOR ON THE CLOSURE OF THE NUCLEAR FUE...
IMPACT OF THORIUM BASED MOLTEN SALT REACTOR ON THE CLOSURE OF THE NUCLEAR FUE...IMPACT OF THORIUM BASED MOLTEN SALT REACTOR ON THE CLOSURE OF THE NUCLEAR FUE...
IMPACT OF THORIUM BASED MOLTEN SALT REACTOR ON THE CLOSURE OF THE NUCLEAR FUE...
 
Centurion - OTV Presentation
Centurion - OTV PresentationCenturion - OTV Presentation
Centurion - OTV Presentation
 
Waste_Transm.ppt
Waste_Transm.pptWaste_Transm.ppt
Waste_Transm.ppt
 
Joe yppt
Joe ypptJoe yppt
Joe yppt
 
Airbus Civil Aircraft Design
Airbus Civil Aircraft DesignAirbus Civil Aircraft Design
Airbus Civil Aircraft Design
 
Reusable Lunar Lander
Reusable Lunar LanderReusable Lunar Lander
Reusable Lunar Lander
 
Ship design project Final presentation
Ship design project Final presentationShip design project Final presentation
Ship design project Final presentation
 
Aerojet 2012 модификация нк-33
Aerojet 2012  модификация нк-33Aerojet 2012  модификация нк-33
Aerojet 2012 модификация нк-33
 
Enhanced oil recovery basic
Enhanced oil recovery   basicEnhanced oil recovery   basic
Enhanced oil recovery basic
 
Fighter jet design and performance calculations by using the case studies.
Fighter jet design and performance calculations by using the case studies.Fighter jet design and performance calculations by using the case studies.
Fighter jet design and performance calculations by using the case studies.
 
Analysing shovel dumper productivity for coal mine
Analysing shovel dumper productivity for coal mineAnalysing shovel dumper productivity for coal mine
Analysing shovel dumper productivity for coal mine
 
COOP training-Bokhari
COOP training-BokhariCOOP training-Bokhari
COOP training-Bokhari
 
DRILLING ROTARY RIGS ENGINEERING ANALYSIS .ppt
DRILLING ROTARY RIGS ENGINEERING ANALYSIS .pptDRILLING ROTARY RIGS ENGINEERING ANALYSIS .ppt
DRILLING ROTARY RIGS ENGINEERING ANALYSIS .ppt
 
Mini project Jet Engine Powered Locomotive
Mini project Jet Engine Powered LocomotiveMini project Jet Engine Powered Locomotive
Mini project Jet Engine Powered Locomotive
 
Marine Gyro Compasses For Ships Officers.pdf
Marine Gyro Compasses For Ships Officers.pdfMarine Gyro Compasses For Ships Officers.pdf
Marine Gyro Compasses For Ships Officers.pdf
 
Black Bird Uav Initial Sizing Methadology
Black Bird Uav Initial Sizing MethadologyBlack Bird Uav Initial Sizing Methadology
Black Bird Uav Initial Sizing Methadology
 
TAG WOOHOOPRESENTAION
TAG WOOHOOPRESENTAIONTAG WOOHOOPRESENTAION
TAG WOOHOOPRESENTAION
 
Rockets and Missile Technology AEROSPACE.pptx
Rockets and Missile Technology AEROSPACE.pptxRockets and Missile Technology AEROSPACE.pptx
Rockets and Missile Technology AEROSPACE.pptx
 
419471094-PIPING-HANDBOOK-pdf.pdf
419471094-PIPING-HANDBOOK-pdf.pdf419471094-PIPING-HANDBOOK-pdf.pdf
419471094-PIPING-HANDBOOK-pdf.pdf
 
Atlas Senior Deisgn Presentation
Atlas Senior Deisgn PresentationAtlas Senior Deisgn Presentation
Atlas Senior Deisgn Presentation
 

Mehr von Michael Interbartolo

What is ultraviolet and why should i care
What is ultraviolet and why should i careWhat is ultraviolet and why should i care
What is ultraviolet and why should i care
Michael Interbartolo
 

Mehr von Michael Interbartolo (7)

Hollywood Bootcamp White Paper
Hollywood Bootcamp White PaperHollywood Bootcamp White Paper
Hollywood Bootcamp White Paper
 
What is ultraviolet and why should i care
What is ultraviolet and why should i careWhat is ultraviolet and why should i care
What is ultraviolet and why should i care
 
Prototype Development of an Integrated Mars Atmosphere and Soil Processing Sy...
Prototype Development of an Integrated Mars Atmosphere and Soil Processing Sy...Prototype Development of an Integrated Mars Atmosphere and Soil Processing Sy...
Prototype Development of an Integrated Mars Atmosphere and Soil Processing Sy...
 
Astronaut Wheelock Pics
Astronaut Wheelock PicsAstronaut Wheelock Pics
Astronaut Wheelock Pics
 
My open letter to nbc
My open letter to nbcMy open letter to nbc
My open letter to nbc
 
Interbartolo Entertainment
Interbartolo EntertainmentInterbartolo Entertainment
Interbartolo Entertainment
 
Jsc Multiplayer Interactive Training Environment
Jsc  Multiplayer Interactive Training EnvironmentJsc  Multiplayer Interactive Training Environment
Jsc Multiplayer Interactive Training Environment
 

Kürzlich hochgeladen

EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
Earley Information Science
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
vu2urc
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
giselly40
 

Kürzlich hochgeladen (20)

Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdf
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 

Reusable lunar lander

  • 2. Agenda • Introduction • Mass Allocations and Equipment List • Lander Schematics • Flight One and Two Sequence • Lunar Outpost Assembly Sequence and Crew Rotation • Conclusion
  • 4. Concept • Instead of abandoning the Lunar Lander after ascent each flight reuse for crew change out. • Requires several development components. – Propellant Transfer Module • Provides Delta V to CEV for LOI since LSAM is no longer part of TLI stack • Provides Delta V to resupply Lander for descent and ascent • Provides Consumables to CEV and Lander – Lunar outpost modules that can be stowed in Lander • Based off Single Stage, Dual Hab design – concept #2 Lunar Surface Access Module Study, RFT0020.05JSC
  • 5. Phased In approach • First flight consists of CEV and Lander – Lander performs LOI – Lander deploys first Outpost Module via attached Flat Bed Transport • Second and subsequent flights consist of CEV, PTM and Outpost Modules/Resupplies – CEV performs LOI with prop from PTM
  • 8. Mass Allocations • Lander: 99,000 lb – Includes 10,000 outpost module capacity • CEV: 50,000 lb • PTM: 89,000 lb – Prop for CEV to perform LOI – Prop for Lander Descent and Ascent Resupply – Consumables for Lander • N2/O2 for cabin represses, Suit cooling H2O • Outpost Module #X: 10,000 lb max
  • 9. Propellant Mass Estimates (FWD)Lander Total 99000 Gc = 32.174 ft/s^2 Propellant Temp/Press Density (lbm/ft^3) MR AR [6] Rho_avg (lbm/ft^3) Thrust (lbf) ISP CEV Mass (Wi) (lbm) DV (fps) Useable Prop [1] (%) Margin [1] [2] (%) Ullage [3] (%) LO2 (OMS) 162R / 250 psia 62.11 32310.0 5.3 CH4 (OMS) 170R / 250 psia 23.22 9502.9 5.3 LO2 (RCS) 162R / 250 psia 62.11 0.0 5.3 CH4 (RCS) 170R / 250 psia 23.22 0.0 5.3 Total Propellant Weight 41812.9 4 tanks per propellant Total Tank Weight 1615.4 8.31 [ft] NTO tank Length Total Prop plus Tank Weight 43428.3 6.82 [ft] MMH tank length LANDER PERFORMING LOI Total Helium Weight 1313.4 1 tanks per propellant Total Helium Tank Weight 1643.2 5.82 [ft] NTO He tank diameter Total Helium plus Tank Wt 2956.5 5.37 [ft] MMH He tank diameter Total He, Prop, & Tank Wt 46384.8 Lander Wet Mass Post LOI 55873.7 Gc = 32.174 ft/s^2 Propellant Temp/Press Density (lbm/ft^3) MR AR [6] Rho_avg (lbm/ft^3) Thrust (lbf) ISP CEV Mass (Wi) (lbm) DV (fps) Useable Prop [1] (%) Margin [1] [2] (%) Ullage [3] (%) LO2 (OMS) 162R / 250 psia 62.11 18807.9 5.3 CH4 (OMS) 170R / 250 psia 23.22 5531.7 5.3 LO2 (RCS) 162R / 250 psia 62.11 0.0 5.3 CH4 (RCS) 170R / 250 psia 23.22 0.0 5.3 Total Propellant Weight 24339.7 2 tanks per propellant Total Tank Weight 912.2 9.45 [ft] NTO tank Length Total Prop plus Tank Weight 25251.9 7.72 [ft] MMH tank length LANDER PERFORMING DESCENT Total Helium Weight 764.5 1 tanks per propellant Total Helium Tank Weight 1152.0 4.86 [ft] NTO He tank diameter Total Helium plus Tank Wt 1916.5 4.48 [ft] MMH He tank diameter Total He, Prop, & Tank Wt 27168.4 Lander Wet Mass Post Landing 20769.5 and post Module Deploy 10000 Gc = 32.174 ft/s^2 Propellant Temp/Press Density (lbm/ft^3) MR AR [6] Rho_avg (lbm/ft^3) Thrust (lbf) ISP CEV Mass (Wi) (lbm) DV (fps) Useable Prop [1] (%) Margin [1] [2] (%) Ullage [3] (%) LO2 (OMS) 162R / 250 psia 62.11 6991.3 5.3 CH4 (OMS) 170R / 250 psia 23.22 2056.3 5.3 LO2 (RCS) 162R / 250 psia 62.11 0.0 5.3 CH4 (RCS) 170R / 250 psia 23.22 0.0 5.3 Total Propellant Weight 9047.6 1 tanks per propellant Total Tank Weight 361.1 7.37 [ft] NTO tank Length Total Prop plus Tank Weight 9408.7 6.08 [ft] MMH tank length LANDER PERFORMING ASCENT Total Helium Weight 284.2 1 tanks per propellant Total Helium Tank Weight 603.5 3.49 [ft] NTO He tank diameter Total Helium plus Tank Wt 887.6 3.22 [ft] MMH He tank diameter Total He, Prop, & Tank Wt 10296.3 Lander Dry Mass (excludes Prop tanks) 5150.5 LO2 and Methane Wp (lbm) 3.4 150 44.99 900 362 149000 3600 98.0% 3.5% 41812.9 3.2 60 44.40 100 345 149000 0 100.0% 3.5% 0.0 LO2 and Methane Wp (lbm) 3.4 150 44.99 900 362 55873.7 6200 98.0% 3.5% 24339.7 3.2 60 44.40 100 345 55873.7 0 100.0% 3.5% 0.0 LO2 and Methane Wp (lbm) 3.4 150 44.99 900 362 20769.5 6200 98.0% 345 20769.5 0 100.0%3.2 60 44.40 100 3.5% 0.0 3.5% 9047.6 If estimates are correct only 5150 lb for all Lander systems except prop wet mass
  • 10. Propellant Mass Estimates (Back) Gc = 32.174 ft/s^2 Propellant Temp/Press Density (lbm/ft^3) MR AR [6] Rho_avg (lbm/ft^3) Thrust (lbf) ISP CEV Mass (Wf) (lbm) DV (fps) Useable Prop [1] (%) Margin [1] [2] (%) Ullage [3] (%) Volume (FT3) LO2 (OMS)162R / 250 psia 62.11 10982.7 5.3 186.20 CH4 (OMS)170R / 250 psia 23.22 3230.2 5.3 146.49 LO2 (RCS)162R / 250 psia 62.11 0.0 5.3 0.00 CH4 (RCS)170R / 250 psia 23.22 0.0 5.3 0.00 Total Propellant Weight 14212.9 3 tanks per propellant Total Tank Weight 3819.2 27.36 [ft] NTO tank Length Total Prop plus Tank Weight 18032.2 21.81 [ft] MMH tank length Lander Performs Ascent Lander RNDZ Burnout weight 20,000 Total Helium Weight 1225.2 1 tanks per propellant Lander pre Ascent 35,438 Total Helium Tank Weight 1569.8 5.68 [ft] NTO He tank diameter Total Helium plus Tank Wt 2795.1 5.25 [ft] MMH He tank diameter Total He, Prop, & Tank Wt 20827.2 Gc = 32.174 ft/s^2 Propellant Temp/Press Density (lbm/ft^3) MR AR [6] Rho_avg (lbm/ft^3) Thrust (lbf) ISP CEV Mass (Wf) (lbm) DV (fps) Useable Prop [1] (%) Margin [1] [2] (%) Ullage [3] (%) Volume (FT3) LO2 (OMS)162R / 250 psia 62.11 24951.6 5.3 423.02 CH4 (OMS)170R / 250 psia 23.22 7338.7 5.3 332.80 LO2 (RCS)162R / 250 psia 62.11 0.0 5.3 0.00 CH4 (RCS)170R / 250 psia 23.22 0.0 5.3 0.00 Total Propellant Weight 32290.3 3 tanks per propellant Total Tank Weight 3819.2 27.36 [ft] NTO tank Length Lander Performs Descent Total Prop plus Tank Weight 36109.6 21.81 [ft] MMH tank length Lander Payload 10,000 Lander Touchdown weight 45,438 Total Helium Weight 1225.2 1 tanks per propellant Lander pre Deorbit Burn 78,954 Total Helium Tank Weight 1569.8 5.68 [ft] NTO He tank diameter Total Helium plus Tank Wt 2795.1 5.25 [ft] MMH He tank diameter Total He, Prop, & Tank Wt 38904.6 Gc = 32.174 ft/s^2 Propellant Temp/Press Density (lbm/ft^3) MR AR [6] Rho_avg (lbm/ft^3) Thrust (lbf) ISP CEV Mass (Wf) (lbm) DV (fps) Useable Prop [1] (%) Margin [1] [2] (%) Ullage [3] (%) Volume (FT3) LO2 (OMS)162R / 250 psia 62.11 36110.4 5.3 612.21 CH4 (OMS)170R / 250 psia 23.22 10620.7 5.3 481.64 LO2 (RCS)162R / 250 psia 62.11 0.0 5.3 0.00 CH4 (RCS)170R / 250 psia 23.22 0.0 5.3 0.00 Total Propellant Weight 46731.2 3 tanks per propellant Total Tank Weight 3819.2 27.36 [ft] NTO tank Length Lander Performs LOI Burn Total Prop plus Tank Weight 50550.4 21.81 [ft] MMH tank length Trans Lunar Stack 176,910 Post LOI Burn 128,954 Total Helium Weight 1225.2 1 tanks per propellant TLI Constraint 149,000 Total Helium Tank Weight 1569.8 5.68 [ft] NTO He tank diameter Lander Allocation 99000 Total Helium plus Tank Wt 2795.1 5.25 [ft] MMH He tank diameter Margin -27,910 Total He, Prop, & Tank Wt 53345.4 3.5% 0.0 LO2 and Methane Wp (lbm) 3.5% 46731.2 3.2 60 44.40 100 345 128954 0 100.0% 362 128954 3600 98.0%3.4 150 44.99 900 3.5% 0.0 3.5% 32290.3 3.2 60 44.40 100 345 45438 0 100.0% 362 45438 6250 98.0%3.4 150 44.99 900 3.5% 0.0 LO2 and Methane Wp (lbm) 3.5% 14212.9 3.2 60 44.40 100 345 20000 0 100.0% LO2 and Methane Wp (lbm) 3.4 150 44.99 900 362 20000 6250 98.0% Includes 50,000 for CEV
  • 11. Lander Systems • Propulsion – 4 +Z Direction 10Klb engines • Lunar Descent and Ascent – 4 +X Direction 10lkb engines • For LOI and Deorbit Burn • Allows for g loads eyeballs in for LOI – 4 RCS Quads located on Engine Pods • 870 lb engines for attitude control and translation – 4 RCS Tris located on Engine Pods • 870 lb engines for attitude control and translation – Tanks not optimized for size and shape • 3 He tanks • 7 Lox tanks • 7 CH4 tanks
  • 12. Lander Systems • GNC – 3 IMUs – 2 Star Camera for IMU alignments – RNDZ Sensors • IROC • SROC • LROC • Lidar • Aux Computers for image processing • Transponders for comm with CEV or outpost • Sensor redundancy is covered by the CEV that can rescue Lander for failed rndz – Descent Sensors • Ground Proximity sensors • Ground Radar • Power – Solar Arrays • It may be possible to oversize solar arrays such that post landing crew can remove arrays for use in outpost solar array farm – Battery backup for night pass and supplement arrays during peak loading – Three redundant buses
  • 13. Lander Systems • DPS – 3 Computers – BIUS – AUX computers for rndz sensor navigation – 1553 Data Bus • ECLSS – Consumables to support two cabin depress/repress cycles • Nominally should only require one depress post descent and then repress for ascent – Suit Cooling and Recharge capabilities – Resupply consumables from PTM
  • 15. Lander Descent/Ascent Cockpit with LIDS Lunar Orbit Insertion/ Deorbit Engines (10klb): QTY 4, 2 per AFT Pod Lunar Descent/Ascent Engine (10klb): QTY 4 1 per Pod RCS Quad Engines (870 lb) Lunar Outpost Module on Flatbed Solar Array Panels Propellant tanks Descent/Ascent Consumables tanks Propellant Pressurization tanks RMS Landing Gear: 4 Struts per Pod RCS TRI Engines
  • 16. AFT Engine Pods Gimbaled 10 klb Engine RCS Tri 870 lb RCS Quad 870 lbTwo Gimbaled 10 klb Engines +X +Z +Y
  • 17. AFT Engine Pods Internal Gimbal Electronics RCS Driver Electronics Battery BIU
  • 18. FWD Engine Pods Gimbaled 10lkb Engine RCS Tri 870 lb RCS Quad 870 lb +X +Z +Y
  • 19. FWD Engine Pods Internal RNDZ Sensor Electronics RCS Driver Electronics Battery BIU Gimbal Electronics IROC Sensor (port pod) SROC Sensor (starboard pod) LROC Sensor (port pod) LIDAR (starboard pod) RNDZ Aux Computer Ground Proximity Sensor
  • 20. Cockpit Internal Side View Lids O2 Tank N2 Tank Propellant Transfer Lines Cockpit Displays Ground Radar Computer Porch and Ladder in Stowed Position Crew member in Eva Suit for Landing Star Tracker IMU
  • 21. Cockpit Forward Facing GND Radar Propellant tanks Propellant Pressurization tanks Star Tracker Doors O2 TankN2 TankGround Radar Electronics IMUsH2O Tank Computers Star Tracker Assemblies Lids Transfer connections FU OX He ECLSS Stowage Computer Stowage
  • 22. Lander Forward Facing Solar Array Panels RNDZ Sensors RNDZ Sensors GND Radar Porch and Ladder in Stowed Position Propellant tanks Propellant Pressurization tanks RCS Quad Landing Gear 4 per Pod Descent/Ascent Engine Star Tracker Doors
  • 23. Flat bed Transport Battery Electric Drive Plow attachment for regolith movement RMS Flat Bed Attach Point Transport can be used without flat bed for rover ops Computer Solar Array Panel Suit O2 Supply tank for extended rover ops Outpost Solar Array Panel stowed in Flatbed Suit H2O Supply tank for extended rover ops Hatch to non- pressurized cockpit
  • 25. Flight One Lander performs Lunar Orbit Insertion with 4 AFT Engines
  • 27. Flight One Lander Releases Outpost Module and flat bed Outpost ModuleAirlock Rover cockpit RMS
  • 28. Flight One flat bed deploys Outpost Module with RMS Lunar Regolith for Shielding
  • 29. Flight Two CEV2 with Crew Rotation PTM with DeltaV for LOI and Lander resupply Outpost Module #2 CEV2 Performs Lunar orbit Insertion
  • 30. Flight TwoCEV2 with Crew Rotation PTM with DeltaV for LOI and Lander resupply Outpost Module #2 CEV2 Station keeps with CEV1 awaiting Lander CEV1
  • 31. Flight One Termination Crew egresses outpost and takes off in Lander Lunar Regolith for Shielding Solar Array Farm
  • 32. Crew RotationCEV2 with Crew Rotation CEV2 Station keeps with CEV1 Lander docks to outpost module #2 CEV1
  • 33. Crew Rotation CEV2 with Crew Rotation CEV2 Station keeps with CEV1 Lander grapples outpost module #2 CEV1
  • 34. Crew Rotation CEV2 with Crew Rotation CEV2 Station keeps with CEV1 Lander with outpost module #2 grappled undocks at PTM separation planeCEV1
  • 35. Crew Rotation CEV2 with Crew Rotation CEV2 Station keeps with CEV1 Lander stows outpost module #2 CEV1
  • 36. Crew Rotation CEV2 with Crew Rotation CEV2 Station keeps with CEV1 Lander redocks with PTM PTM resupplies Lander with propellant and consumables CEV2 crew modes CEV2 to loiter and ingresses PTM CEV1
  • 37. Crew RotationCEV2 CEV2 Station keeps with CEV1 Lander undocks with CEV2 at CEV separation plane CEV2 crew flies Lander while CEV1 crew loiters in PTM CEV1
  • 38. Crew RotationCEV2 CEV2 Station keeps with CEV1 Lander docks with CEV1 with PTM attached CEV1 crew powers up CEV1 CEV1
  • 39. Crew Rotation CEV2 CEV2 Station keeps with CEV1 Lander undocks with CEV1 at PTM separation plane CEV1 crew preps CEV1 for TEI CEV2 crew performs Lunar Descent in Lander CEV1
  • 40. Flight Two Lunar Surface Crew egresses Lander and ingresses flat Bed Lunar Regolith for Shielding Solar Array Farm
  • 41. Flight Two Lunar Surface Flat bed extracts Outpost Module #2 from Lander Lunar Regolith for Shielding
  • 42. Flight Two Lunar Surface Flat bed installs Outpost Module #2 Lunar Regolith for Shielding
  • 43. Lunar Outpost: Assembly Sequence and Crew Rotation
  • 44. Lunar Outpost 1 2 3 4 5 N1 N2 Airlock Solar Array Farm Regolith Berm for radiation shielding Mini Supply Module Node Two Landers allows 8 person Outpost crew rotating 4 crew members every 3 months Future Add-on Point Future Add-on Point Node
  • 45. Assembly Sequence and Crew Rotations [Jan 2016-April 2017] Crew 1 Crew 2 Crew 2 Crew 3 Crew 3 Crew 4 Crew 4 Airlock & Outpost Module #1 Outpost Module #2 Outpost Module #2 Node 1 & MSM Node 1 & MSM Outpost Module #3 Outpost Module #3 CEV #1 CEV #2 CEV #2 CEV #3 CEV #3 CEV #4 CEV #4 Lander #1 Lander #1 Lander #1 Lander #2 Lander #2 Lander #1 Lander #1 PTM #1 PTM # 1 PTM #2 PTM #2 JAN 2016 APR 2016 JULY 2016 OCT 2016 JAN 2017 APR 2017 Crew 5 CEV #5 Lander #2 Outpost Module #4 PTM #3
  • 46. Assembly Sequence and Crew Rotations [Jan 2017-April 2018] Crew 4 Crew 6 Crew 6 Crew 7 Crew 7 Crew 8 Crew 8 Outpost Module#3 Outpost Module #5 CEV #4 CEV #6 CEV #6 CEV #7 CEV #7 CEV #8 CEV #8 Lander #1 Lander #1 Lander #1 Lander #2 Lander #2 Lander #1 Lander #1 PTM #4 JAN 2017 APR 2017 JULY 2017 OCT 2017 JAN 2018 APR 2018 Crew 5 Crew 5 CEV #5 CEV #5 Lander #2 Lander #2 Outpost Module #4 Outpost Module #4 Node 2 & MSMNode 2 & MSM Outpost Module #5 PTM #2 PTM #3 PTM #3 PTM #4 NOTE: It may be possible to send a third Lander with Node 2 & MSM which could be used for surface flying. Would also need surface refueling capability which could be Crew 8’s payload.
  • 48. Total Mass Rollup • Prop Dry: 10,000 lb excluding valves/manifolds • GNC: 100 lb • DPS: 200 lb excluding wiring • Power: 2,000 lb • LIDS: 1,000 lb • Crew: 1,280 lb (4 crew, suits and accommodations) • RMS: 1000 lb • ECLSS: ? • Structure: ? • ATCS: ? • Total: CBE 20,000 (15,580 + ?) not including 10,000 for OM (outpost module) • Lander total: – CBE+ OM+PROP (fwd) = 107500 (8,500 Negative Margin) • Prop wet mass for Lander: ~77500 – CBE+ OM+PROP (Back) = 126,910 (28,000 Negative Margin) • Prop wet mass for Lander: ~96,910
  • 49. Conclusion • Reusable Lander is Not closed Design – Significant Negative Margin (8,500-28,000) • Limits of current design – Based on limited tools from Smart Buyer Effort • Prop Sizing Generic 6.xls for prop budget • CEV SBT Master Workbook for equipment mass – Based on limited engineering development • MOD notional concept based on Smart Buyer experience • Is concept viable? – Necessitates further study