SlideShare ist ein Scribd-Unternehmen logo
1 von 57
A A nalisis de lgoritmos Informacion tomada del libro de Cormen.
OUTLINE ,[object Object],[object Object],[object Object]
ASYMPTOTIC NOTATION
Asymptotically  N o Negative Functions f(n)  is asymptotically no negative if there exist  n 0    N  such that for every  n    n 0 , 0     f(n) n 0 f
Theta      ( g(n) )  = {   f  : N   R *  | (    c 1 , c 2     R   + )   (    n 0   N) (    n    n 0 )  ( 0   c 1  g(n)    f(n)    c 2  g(n) )   } c 1      lim  f(n)      c 2 n     g(n )   n 0 g c 1 g f c 2 g
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Example Lets show that We have to find  c 1 , c 2  and   n 0   such that
For all  n     n 0 , Dividing by  n 2  yields We have that  3/n  is a decreasing sequence  3, 3/2, 1, 3/4, 3/5, 3/6, 3/7… and then  1/2 - 3/n  is increasing sequence  -5/2, -1, -1/2, -1/4, -1/10, 0, 1/14 that is upper bounded by  1/2 .
The right hand inequality can be made to hold for  n     1  by choosing  c 2     1/2 . Likewise the left hand inequality can be made to hold for  n     7  by choosing  c 1     1/14 .
Thus by choosing  c 1  =  1/14 ,  c 2  =  1/2  and  n 0  =7 then we can verify that
Big  O   O (g(n))   = { f : N   R *  | (    c  R  + ) (  n 0  N) (  n   n 0 ) (  0     f(n)     cg(n)  ) } lim  f(n)     c n     g(n)   n 0 g cg f
[object Object],[object Object],[object Object],[object Object],[object Object]
Example Lets show that We have to find  c   and   n 0   such that
For all  n     n 0 , Dividing by  n   yields The inequality can be made to hold for  n     1  by choosing  c      a+b .  Thus by choosing  c   =  a+b  and  n 0  =1 then we can verify that
n 0 =1 a+b b a
Big Omega      ( g(n) )  = {   f : N   R *  | (    c  R  + ) (  n 0  N) (    n   n 0 ) (  0    cg(n)     f(n)   )   } c      lim  f(n)  n     g(n)   n 0 g f cg
[object Object],[object Object],[object Object],[object Object],[object Object]
Little  o o   (g(n))  =  {  f  : N   R *  | (  c   R  + ) (  n 0  N) (    n   n 0 ) (  0     f(n) < cg (n)  )  } lim  f(n)  = 0 n     g(n)  “ o(g(n))  functions that grow slower than  g  ”   g f
[object Object],[object Object],[object Object]
n 2 n Examples Lets show that We only have to show
Lets show that We have 3n n
Little Omega      ( g(n) )  =  {   f  : N   R *  | (  c  R  + ) (  n 0  N) (    n   n 0 ) (  0     c g(n) < f(n ) )  } lim  f(n)  =     n     g(n)   “    (g(n))  functions that grow faster than  g  ” f g
[object Object],[object Object],[object Object]
Analogy with the comparison of two real numbers Asymptotic   Real Notation numbers f(n)    O(g(n))    f     g f(n)     (g(n))    f     g f(n)     (g(n))    f =  g f(n)    o(g(n))    f <  g f(n)     (g(n))    f >  g Trichotomy does not hold
Not all functions are asymptotically comparable Example f(n)=n g(n)=n (1+sin n) (1+sin(n))    [0,2]
[object Object],[object Object],[object Object],[object Object],   (f(n))=O(f(n))      (f(n))  Properties
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],o (f(n))        (f(n)) =  
Examples ,[object Object],[object Object],[object Object],[object Object],[object Object]
Examples ,[object Object],[object Object],[object Object],[object Object],[object Object]
Examples ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Asymptotic notation two variables O(g(m, n))= {  f: N   N     R *  | (    c   R  + )(    m 0  , n 0    N)   (    n    n 0 ) (    m    m 0 )   (f(m, n)     c g(m, n))  }
COMMON FUNCTIONS
Monotonicity ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Floors and Ceilings ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],-1 0 1  x  -2 2  x  x
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Modular arithmetic For every integer  a  and any possible positive integer  n, a mod n  is the   remainder   of  ( or  residue )  of the quotient  a/n a mod n = a -   a  / n    n.
congruency  or equivalence mod  n If ( a mod n) =  ( b mod n)  we write  a     b  ( mod n)  and we say that  a  is  equivalent  to  b  modulo  n  or that a  is  congruent  to  b  modulo  n. In other words  a     b  ( mod n)  if  a  and  b  have the same remainder when divided by  n . Also  a     b  ( mod n)  if and only if  n  is a divisor of  b-a.
0 1 2 3 -4 -3 -2 -1 -8 -7 -6 -5 -12 -11 -10 -9         12 13 14 15 8 9 10 11 4 5 6 7     Example     (mod 4)    (mod n)   defines a equivalence  relation in   Z  and produces a  partitioned set called  Z n =   Z /n  = {0,1,2,…, n -1} in which can be defined  arithmetic operations a+b (mod n)  a*b (mod n)   [0] [1] [2] [3] Z /4 = {[0],[1],[2],[3]} = {0,1,2,3} 4+1 ( mod  4) = 1 5*2 ( mod  4) = 2
Polynomials Given a no negative integer  d,  a  polynomial  in n of degree d  is a function  p(n)  of the form: Where  a 1  , a 2  , …,   a d  are the  coefficients   and  a d     0.
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Exponentials ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object]
Logarithms ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object]
A function  f(n)   is  polylogaritmically bounded  if  f(n)= O ( lg k  n)  for some constant  k. We have the following relation between polynomials  and polylogarithms: then   lg k  n = o ( n k  )
Factorials Definition   (no recursive)     (recursive) Weak upper bound  n!    n n
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object]
Functional iteration Given a function  f  ( n ) the i-th functional iteration of  f  is  defined as : with  I  the identity function. For a particular  n , we have,
Examples: f(n) = 2n  then f(n) = n 2   then
f(n) = n n   then
Iterated logarithm ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
In general k

Weitere ähnliche Inhalte

Was ist angesagt?

Dericavion e integracion de funciones
Dericavion e integracion de funcionesDericavion e integracion de funciones
Dericavion e integracion de funcionesdiegoalejandroalgara
 
Introduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysisIntroduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysis宗翰 謝
 
Fourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 lFourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 lPepa Vidosa Serradilla
 
Topic: Fourier Series ( Periodic Function to change of interval)
Topic: Fourier Series ( Periodic Function to  change of interval)Topic: Fourier Series ( Periodic Function to  change of interval)
Topic: Fourier Series ( Periodic Function to change of interval)Abhishek Choksi
 
03 convexfunctions
03 convexfunctions03 convexfunctions
03 convexfunctionsSufyan Sahoo
 
Signal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier TransformsSignal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier TransformsArvind Devaraj
 
Numerical analysis convexity, concavity
Numerical analysis  convexity, concavityNumerical analysis  convexity, concavity
Numerical analysis convexity, concavitySHAMJITH KM
 
Solving trignometric equations
Solving trignometric equationsSolving trignometric equations
Solving trignometric equationsTarun Gehlot
 

Was ist angesagt? (20)

Dericavion e integracion de funciones
Dericavion e integracion de funcionesDericavion e integracion de funciones
Dericavion e integracion de funciones
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Fourier series 1
Fourier series 1Fourier series 1
Fourier series 1
 
senior seminar
senior seminarsenior seminar
senior seminar
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Introduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysisIntroduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysis
 
Fourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 lFourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 l
 
Desktop
DesktopDesktop
Desktop
 
Topic: Fourier Series ( Periodic Function to change of interval)
Topic: Fourier Series ( Periodic Function to  change of interval)Topic: Fourier Series ( Periodic Function to  change of interval)
Topic: Fourier Series ( Periodic Function to change of interval)
 
residue
residueresidue
residue
 
Chapter 2 (maths 3)
Chapter 2 (maths 3)Chapter 2 (maths 3)
Chapter 2 (maths 3)
 
Chapter 5 (maths 3)
Chapter 5 (maths 3)Chapter 5 (maths 3)
Chapter 5 (maths 3)
 
03 convexfunctions
03 convexfunctions03 convexfunctions
03 convexfunctions
 
Asymptotic Notation
Asymptotic NotationAsymptotic Notation
Asymptotic Notation
 
Signal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier TransformsSignal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier Transforms
 
Numerical analysis convexity, concavity
Numerical analysis  convexity, concavityNumerical analysis  convexity, concavity
Numerical analysis convexity, concavity
 
Chapter 4 (maths 3)
Chapter 4 (maths 3)Chapter 4 (maths 3)
Chapter 4 (maths 3)
 
Solving trignometric equations
Solving trignometric equationsSolving trignometric equations
Solving trignometric equations
 
Directional derivative and gradient
Directional derivative and gradientDirectional derivative and gradient
Directional derivative and gradient
 
AEM Fourier series
 AEM Fourier series AEM Fourier series
AEM Fourier series
 

Andere mochten auch

Skiena algorithm 2007 lecture02 asymptotic notation
Skiena algorithm 2007 lecture02 asymptotic notationSkiena algorithm 2007 lecture02 asymptotic notation
Skiena algorithm 2007 lecture02 asymptotic notationzukun
 
Lec2 Algorth
Lec2 AlgorthLec2 Algorth
Lec2 Algorthhumanist3
 
02 asymptotic-notation-and-recurrences
02 asymptotic-notation-and-recurrences02 asymptotic-notation-and-recurrences
02 asymptotic-notation-and-recurrencesNoushadur Shoukhin
 
Analysis of algorithn class 3
Analysis of algorithn class 3Analysis of algorithn class 3
Analysis of algorithn class 3Kumar
 
Introduction to Algorithms and Asymptotic Notation
Introduction to Algorithms and Asymptotic NotationIntroduction to Algorithms and Asymptotic Notation
Introduction to Algorithms and Asymptotic NotationAmrinder Arora
 
Asymptotic notations
Asymptotic notationsAsymptotic notations
Asymptotic notationsEhtisham Ali
 
Asymptotic Notation and Data Structures
Asymptotic Notation and Data StructuresAsymptotic Notation and Data Structures
Asymptotic Notation and Data StructuresAmrinder Arora
 

Andere mochten auch (10)

Skiena algorithm 2007 lecture02 asymptotic notation
Skiena algorithm 2007 lecture02 asymptotic notationSkiena algorithm 2007 lecture02 asymptotic notation
Skiena algorithm 2007 lecture02 asymptotic notation
 
Asymptotic notation
Asymptotic notationAsymptotic notation
Asymptotic notation
 
Lec2 Algorth
Lec2 AlgorthLec2 Algorth
Lec2 Algorth
 
02 asymp
02 asymp02 asymp
02 asymp
 
02 asymptotic-notation-and-recurrences
02 asymptotic-notation-and-recurrences02 asymptotic-notation-and-recurrences
02 asymptotic-notation-and-recurrences
 
Lecture1
Lecture1Lecture1
Lecture1
 
Analysis of algorithn class 3
Analysis of algorithn class 3Analysis of algorithn class 3
Analysis of algorithn class 3
 
Introduction to Algorithms and Asymptotic Notation
Introduction to Algorithms and Asymptotic NotationIntroduction to Algorithms and Asymptotic Notation
Introduction to Algorithms and Asymptotic Notation
 
Asymptotic notations
Asymptotic notationsAsymptotic notations
Asymptotic notations
 
Asymptotic Notation and Data Structures
Asymptotic Notation and Data StructuresAsymptotic Notation and Data Structures
Asymptotic Notation and Data Structures
 

Ähnlich wie Clase3 Notacion

Lecture 3(a) Asymptotic-analysis.pdf
Lecture 3(a) Asymptotic-analysis.pdfLecture 3(a) Asymptotic-analysis.pdf
Lecture 3(a) Asymptotic-analysis.pdfShaistaRiaz4
 
Asymptotic notations
Asymptotic notationsAsymptotic notations
Asymptotic notationsNikhil Sharma
 
Lecture 4 - Growth of Functions (1).ppt
Lecture 4 - Growth of Functions (1).pptLecture 4 - Growth of Functions (1).ppt
Lecture 4 - Growth of Functions (1).pptZohairMughal1
 
Lecture 4 - Growth of Functions.ppt
Lecture 4 - Growth of Functions.pptLecture 4 - Growth of Functions.ppt
Lecture 4 - Growth of Functions.pptZohairMughal1
 
Design and analysis of algorithm ppt ppt
Design and analysis of algorithm ppt pptDesign and analysis of algorithm ppt ppt
Design and analysis of algorithm ppt pptsrushtiivp
 
Last+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptxLast+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptxAryanMishra860130
 
Group theory notes
Group theory notesGroup theory notes
Group theory notesmkumaresan
 
lecture 3
lecture 3lecture 3
lecture 3sajinsc
 
2-AnalysisOfAlgs.ppt
2-AnalysisOfAlgs.ppt2-AnalysisOfAlgs.ppt
2-AnalysisOfAlgs.pptTahseenEjaz3
 
CMSC 56 | Lecture 8: Growth of Functions
CMSC 56 | Lecture 8: Growth of FunctionsCMSC 56 | Lecture 8: Growth of Functions
CMSC 56 | Lecture 8: Growth of Functionsallyn joy calcaben
 
Sparse Representation of Multivariate Extremes with Applications to Anomaly R...
Sparse Representation of Multivariate Extremes with Applications to Anomaly R...Sparse Representation of Multivariate Extremes with Applications to Anomaly R...
Sparse Representation of Multivariate Extremes with Applications to Anomaly R...Hayato Watanabe
 

Ähnlich wie Clase3 Notacion (20)

Lecture 3(a) Asymptotic-analysis.pdf
Lecture 3(a) Asymptotic-analysis.pdfLecture 3(a) Asymptotic-analysis.pdf
Lecture 3(a) Asymptotic-analysis.pdf
 
Lecture3(b).pdf
Lecture3(b).pdfLecture3(b).pdf
Lecture3(b).pdf
 
Asymptotic notations
Asymptotic notationsAsymptotic notations
Asymptotic notations
 
Lecture 4 - Growth of Functions (1).ppt
Lecture 4 - Growth of Functions (1).pptLecture 4 - Growth of Functions (1).ppt
Lecture 4 - Growth of Functions (1).ppt
 
Lecture 4 - Growth of Functions.ppt
Lecture 4 - Growth of Functions.pptLecture 4 - Growth of Functions.ppt
Lecture 4 - Growth of Functions.ppt
 
Asymtotic Appoach.ppt
Asymtotic Appoach.pptAsymtotic Appoach.ppt
Asymtotic Appoach.ppt
 
DAA_LECT_2.pdf
DAA_LECT_2.pdfDAA_LECT_2.pdf
DAA_LECT_2.pdf
 
02-asymp.ppt
02-asymp.ppt02-asymp.ppt
02-asymp.ppt
 
Design and analysis of algorithm ppt ppt
Design and analysis of algorithm ppt pptDesign and analysis of algorithm ppt ppt
Design and analysis of algorithm ppt ppt
 
Time complexity
Time complexityTime complexity
Time complexity
 
big_oh
big_ohbig_oh
big_oh
 
Last+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptxLast+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptx
 
Asymptotic notations
Asymptotic notationsAsymptotic notations
Asymptotic notations
 
Asymptotic notation
Asymptotic notationAsymptotic notation
Asymptotic notation
 
Group theory notes
Group theory notesGroup theory notes
Group theory notes
 
Number theory lecture (part 1)
Number theory lecture (part 1)Number theory lecture (part 1)
Number theory lecture (part 1)
 
lecture 3
lecture 3lecture 3
lecture 3
 
2-AnalysisOfAlgs.ppt
2-AnalysisOfAlgs.ppt2-AnalysisOfAlgs.ppt
2-AnalysisOfAlgs.ppt
 
CMSC 56 | Lecture 8: Growth of Functions
CMSC 56 | Lecture 8: Growth of FunctionsCMSC 56 | Lecture 8: Growth of Functions
CMSC 56 | Lecture 8: Growth of Functions
 
Sparse Representation of Multivariate Extremes with Applications to Anomaly R...
Sparse Representation of Multivariate Extremes with Applications to Anomaly R...Sparse Representation of Multivariate Extremes with Applications to Anomaly R...
Sparse Representation of Multivariate Extremes with Applications to Anomaly R...
 

Mehr von luzenith_g

Formacion y crecimiento
Formacion y crecimientoFormacion y crecimiento
Formacion y crecimientoluzenith_g
 
Formacion y crecimiento
Formacion y crecimientoFormacion y crecimiento
Formacion y crecimientoluzenith_g
 
Carácterísticas técnicas de las wikis
Carácterísticas técnicas de las wikisCarácterísticas técnicas de las wikis
Carácterísticas técnicas de las wikisluzenith_g
 
Ejercicios Ada
Ejercicios AdaEjercicios Ada
Ejercicios Adaluzenith_g
 
Ejercicios Ada
Ejercicios AdaEjercicios Ada
Ejercicios Adaluzenith_g
 
Proyecto Unal2009 2
Proyecto Unal2009 2Proyecto Unal2009 2
Proyecto Unal2009 2luzenith_g
 
Taller3 Programacion Ii
Taller3 Programacion IiTaller3 Programacion Ii
Taller3 Programacion Iiluzenith_g
 
Algoritmos Voraces (Greedy)
Algoritmos Voraces (Greedy)Algoritmos Voraces (Greedy)
Algoritmos Voraces (Greedy)luzenith_g
 
Algoritmos Greedy
Algoritmos GreedyAlgoritmos Greedy
Algoritmos Greedyluzenith_g
 
Analisis Clase2
Analisis  Clase2Analisis  Clase2
Analisis Clase2luzenith_g
 
Introducción al Análisis y diseño de algoritmos
Introducción al Análisis y diseño de algoritmosIntroducción al Análisis y diseño de algoritmos
Introducción al Análisis y diseño de algoritmosluzenith_g
 
Como construir un DSS
Como construir un DSSComo construir un DSS
Como construir un DSSluzenith_g
 
State Space Search(2)
State Space Search(2)State Space Search(2)
State Space Search(2)luzenith_g
 
DSS:Conceptos, metodologias y Tecnologias
DSS:Conceptos, metodologias y TecnologiasDSS:Conceptos, metodologias y Tecnologias
DSS:Conceptos, metodologias y Tecnologiasluzenith_g
 
Soporte a las Decisiones Computarizado
Soporte a las Decisiones ComputarizadoSoporte a las Decisiones Computarizado
Soporte a las Decisiones Computarizadoluzenith_g
 
Decision Support Systems
Decision Support SystemsDecision Support Systems
Decision Support Systemsluzenith_g
 

Mehr von luzenith_g (20)

Formacion y crecimiento
Formacion y crecimientoFormacion y crecimiento
Formacion y crecimiento
 
Formacion y crecimiento
Formacion y crecimientoFormacion y crecimiento
Formacion y crecimiento
 
Carácterísticas técnicas de las wikis
Carácterísticas técnicas de las wikisCarácterísticas técnicas de las wikis
Carácterísticas técnicas de las wikis
 
Web 2 0
Web 2 0Web 2 0
Web 2 0
 
Alg1
Alg1Alg1
Alg1
 
Ejercicios Ada
Ejercicios AdaEjercicios Ada
Ejercicios Ada
 
Ejercicios Ada
Ejercicios AdaEjercicios Ada
Ejercicios Ada
 
Proyecto Unal2009 2
Proyecto Unal2009 2Proyecto Unal2009 2
Proyecto Unal2009 2
 
Taller3 Programacion Ii
Taller3 Programacion IiTaller3 Programacion Ii
Taller3 Programacion Ii
 
Algoritmos Voraces (Greedy)
Algoritmos Voraces (Greedy)Algoritmos Voraces (Greedy)
Algoritmos Voraces (Greedy)
 
Algoritmos Greedy
Algoritmos GreedyAlgoritmos Greedy
Algoritmos Greedy
 
Resumen
ResumenResumen
Resumen
 
Analisis Clase2
Analisis  Clase2Analisis  Clase2
Analisis Clase2
 
Introducción al Análisis y diseño de algoritmos
Introducción al Análisis y diseño de algoritmosIntroducción al Análisis y diseño de algoritmos
Introducción al Análisis y diseño de algoritmos
 
Como construir un DSS
Como construir un DSSComo construir un DSS
Como construir un DSS
 
Mergesort
MergesortMergesort
Mergesort
 
State Space Search(2)
State Space Search(2)State Space Search(2)
State Space Search(2)
 
DSS:Conceptos, metodologias y Tecnologias
DSS:Conceptos, metodologias y TecnologiasDSS:Conceptos, metodologias y Tecnologias
DSS:Conceptos, metodologias y Tecnologias
 
Soporte a las Decisiones Computarizado
Soporte a las Decisiones ComputarizadoSoporte a las Decisiones Computarizado
Soporte a las Decisiones Computarizado
 
Decision Support Systems
Decision Support SystemsDecision Support Systems
Decision Support Systems
 

Kürzlich hochgeladen

Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 

Kürzlich hochgeladen (20)

Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 

Clase3 Notacion

  • 1. A A nalisis de lgoritmos Informacion tomada del libro de Cormen.
  • 2.
  • 4. Asymptotically N o Negative Functions f(n) is asymptotically no negative if there exist n 0  N such that for every n  n 0 , 0  f(n) n 0 f
  • 5. Theta   ( g(n) ) = { f : N  R * | (  c 1 , c 2  R + ) (  n 0  N) (  n  n 0 ) ( 0  c 1 g(n)  f(n)  c 2 g(n) ) } c 1  lim f(n)  c 2 n  g(n ) n 0 g c 1 g f c 2 g
  • 6.
  • 7. Example Lets show that We have to find c 1 , c 2 and n 0 such that
  • 8. For all n  n 0 , Dividing by n 2 yields We have that 3/n is a decreasing sequence 3, 3/2, 1, 3/4, 3/5, 3/6, 3/7… and then 1/2 - 3/n is increasing sequence -5/2, -1, -1/2, -1/4, -1/10, 0, 1/14 that is upper bounded by 1/2 .
  • 9. The right hand inequality can be made to hold for n  1 by choosing c 2  1/2 . Likewise the left hand inequality can be made to hold for n  7 by choosing c 1  1/14 .
  • 10. Thus by choosing c 1 = 1/14 , c 2 = 1/2 and n 0 =7 then we can verify that
  • 11. Big O O (g(n)) = { f : N  R * | (  c  R + ) (  n 0  N) (  n  n 0 ) ( 0  f(n)  cg(n) ) } lim f(n)  c n  g(n) n 0 g cg f
  • 12.
  • 13. Example Lets show that We have to find c and n 0 such that
  • 14. For all n  n 0 , Dividing by n yields The inequality can be made to hold for n  1 by choosing c  a+b . Thus by choosing c = a+b and n 0 =1 then we can verify that
  • 15. n 0 =1 a+b b a
  • 16. Big Omega   ( g(n) ) = { f : N  R * | (  c  R + ) (  n 0  N) (  n  n 0 ) ( 0  cg(n)  f(n) ) } c  lim f(n) n  g(n) n 0 g f cg
  • 17.
  • 18. Little o o (g(n)) = { f : N  R * | (  c  R + ) (  n 0  N) (  n  n 0 ) ( 0  f(n) < cg (n) ) } lim f(n) = 0 n  g(n) “ o(g(n)) functions that grow slower than g ” g f
  • 19.
  • 20. n 2 n Examples Lets show that We only have to show
  • 21. Lets show that We have 3n n
  • 22. Little Omega   ( g(n) ) = { f : N  R * | (  c  R + ) (  n 0  N) (  n  n 0 ) ( 0  c g(n) < f(n ) ) } lim f(n) =  n  g(n) “  (g(n)) functions that grow faster than g ” f g
  • 23.
  • 24. Analogy with the comparison of two real numbers Asymptotic Real Notation numbers f(n)  O(g(n)) f  g f(n)   (g(n)) f  g f(n)   (g(n)) f = g f(n)  o(g(n)) f < g f(n)   (g(n)) f > g Trichotomy does not hold
  • 25. Not all functions are asymptotically comparable Example f(n)=n g(n)=n (1+sin n) (1+sin(n))  [0,2]
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33. Asymptotic notation two variables O(g(m, n))= { f: N  N  R * | (  c  R + )(  m 0 , n 0  N) (  n  n 0 ) (  m  m 0 ) (f(m, n)  c g(m, n)) }
  • 35.
  • 36.
  • 37.
  • 38. Modular arithmetic For every integer a and any possible positive integer n, a mod n is the remainder of ( or residue ) of the quotient a/n a mod n = a -  a / n  n.
  • 39. congruency or equivalence mod n If ( a mod n) = ( b mod n) we write a  b ( mod n) and we say that a is equivalent to b modulo n or that a is congruent to b modulo n. In other words a  b ( mod n) if a and b have the same remainder when divided by n . Also a  b ( mod n) if and only if n is a divisor of b-a.
  • 40. 0 1 2 3 -4 -3 -2 -1 -8 -7 -6 -5 -12 -11 -10 -9         12 13 14 15 8 9 10 11 4 5 6 7     Example  (mod 4)  (mod n) defines a equivalence relation in Z and produces a partitioned set called Z n = Z /n = {0,1,2,…, n -1} in which can be defined arithmetic operations a+b (mod n) a*b (mod n) [0] [1] [2] [3] Z /4 = {[0],[1],[2],[3]} = {0,1,2,3} 4+1 ( mod 4) = 1 5*2 ( mod 4) = 2
  • 41. Polynomials Given a no negative integer d, a polynomial in n of degree d is a function p(n) of the form: Where a 1 , a 2 , …, a d are the coefficients and a d  0.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49. A function f(n) is polylogaritmically bounded if f(n)= O ( lg k n) for some constant k. We have the following relation between polynomials and polylogarithms: then lg k n = o ( n k )
  • 50. Factorials Definition (no recursive) (recursive) Weak upper bound n!  n n
  • 51.
  • 52.
  • 53. Functional iteration Given a function f ( n ) the i-th functional iteration of f is defined as : with I the identity function. For a particular n , we have,
  • 54. Examples: f(n) = 2n then f(n) = n 2 then
  • 55. f(n) = n n then
  • 56.