SlideShare ist ein Scribd-Unternehmen logo
1 von 21
Downloaden Sie, um offline zu lesen
The current issue and full text archive of this journal is available at
                                                 www.emeraldinsight.com/1463-5771.htm




BIJ
18,1                                     Benchmarking of North Indian
                                             urban water utilities
                                                Mamata R. Singh, Atul K. Mittal and V. Upadhyay
86                                                   Indian Institute of Technology-Delhi, New Delhi, India

                                     Abstract
                                     Purpose – The purpose of this paper is to develop a suitable benchmarking framework that
                                     encompasses multiple criteria of sustainable water supply services for assessing the performance of
                                     select North Indian urban water utilities and also to arrive at potential for input reductions (or efficient
                                     input levels).
                                     Design/methodology/approach – The study considers 35 North Indian urban water utilities
                                     pertaining to two union territories (Chandigarh and Delhi) and three states (Haryana, Punjab and Uttar
                                     Pradesh) for sustainability-based performance assessment using input-oriented variable returns to
                                     scale data envelopment analysis (DEA) model. Important criteria considered for sustainable water
                                     supply services are service sufficiency, service reliability, resource conservation, staff rationalization,
                                     and business viability which in turn address the key sustainability dimensions (social, environmental
                                     and financial).
                                     Findings – The approach when applied to a sample of 35 North Indian urban water utilities shows
                                     low-performance levels for most of the utilities, with significant scope for reduction in operation and
                                     maintenance expenditure, staff size and water losses. State/UT-wise analysis of sustainability-based
                                     average efficiency presents the highest score for Chandigarh and the least score for Haryana, whereas
                                     the rest of the three states/UT score in between them.
                                     Research limitations/implications – Limited data availability has constrained the incorporation
                                     of other sustainability criteria (such as services to the poor, tariff design, customer services, revenue
                                     functions, etc.) for efficiency analysis of urban water utilities. Also, estimation of efficiency scores does
                                     not encompass the effect of exogenous environmental factors which are beyond utilities’ managerial
                                     control (such as topography, population density, water source, ownership status, etc.).
                                     Practical implications – This framework would be useful for the regulator or operator of the facility
                                     to rank the utilities and devise performance-linked incentive mechanism or price cap regulation.
                                     Originality/value – This paper is a significant departure from the other international benchmarking
                                     initiatives/studies as it develops a holistic framework for benchmarking in the water sector that
                                     encompasses multiple criteria of sustainable water supply services using DEA as a tool.
                                     Keywords India, Water industry, Urban regions, Benchmarking
                                     Paper type Technical paper


                                     1. Introduction
                                     India has to support one-sixth of the world’s population with meager 1/50th of world’s
                                     land and only 1/25th of the world’s water supply. Although the world water
                                     development report ranked India 127th out of 180 nations for fresh potable water
                                     availability to its citizens, India is the second largest consumer of water in the world
                                     after China (Kapadia, 2005). Exponential growth of population, industrialization and
Benchmarking: An International       urbanization has resulted in progressive decline in the per capita availability of water
Journal                              in Indian cities. In India, water supply to the consumer is inadequate, intermittent,
Vol. 18 No. 1, 2011
pp. 86-106                           generally for low duration and of poor quality. Considering the growing water scarcity
q Emerald Group Publishing Limited   and poor services to the consumers, Indian urban water utilities need to instill
1463-5771
DOI 10.1108/14635771111109832        efficient practices for sustainable water supply services to the consumers. An attempt
towards benchmarking of Indian water utilities would serve as an important step in              North Indian
this direction.                                                                                 urban water
    Though several benchmarking initiatives have been undertaken internationally
(Table I), Indian urban water sector has hardly witnessed any benchmarking study. Most               utilities
of such initiatives do not view performance from sustainability dimensions and compute
efficiency with major focus on cost-saving aspect. Also such studies have not endeavored
to estimate potential for reduction in parameters other than cost (for example,                           87
unaccounted for water (UFW, i.e. water loss) reduction, staff reduction, etc.). Attempts to
estimate utilities’ performance in totality that encompass important criteria (such as
service sufficiency, service reliability, resource conservation, staff rationalization,
business viability, etc.) of sustainable water supply services (referred as “sustainability
criteria” hereafter in this study) have not been made so far in the water sector. This study,
therefore, intends to fill this gap and evolves suitable benchmarking framework for
sustainability-based performance assessment of 35 North Indian urban water utilities
using data envelopment analysis (DEA) approach. The efficiency scores obtained
through DEA model may be used to rank the utilities and estimate potential for cost
savings and other input reductions (such as UFW, i.e. water loss, staff size and operation
and maintenance (O&M) expenditure). The study uses secondary data of 35 urban water
utilities (hereafter referred as decision-making units, i.e. decision making unit (DMUs) as
per DEA terminology) pertaining to three states (Haryana, Punjab and Uttar Pradesh)
and two union territories (Delhi and Chandigarh) provided by National Institute of
Urban Affairs (NIUA Report, 2005). The data are of the year 1999.
    This paper is divided into five sections including the present one. Section 2 discusses
the status and problems of Indian urban water sector and further reviews the literature
on benchmarking and DEA in water sector. Section 3 presents the methodology for the
study. Section 4 discusses the benchmarking framework using DEA including the basis
for selection of input and output variables for assessment of technical and scale
efficiency (te and se) scores of the DMUs. Section 5 covers the analysis of DEA results for
35 North Indian DMUs. Finally, Section 6 provides conclusions and recommendations.

2. Literature review
This section initially discusses the status and problems of Indian urban water sector
covering a range of issues, namely: per capita water supply, revenue receipts, water
quality, UFW, staff size and O&M expenditure including examples of few international
studies. The second part of this section introduces DEA as a benchmarking tool and
reviews the benchmarking studies undertaken in water sector by various authors in
different countries using DEA.

2.1 Status and problems of Indian urban water sector
In India about two-thirds of the cities have net per capita supply below the established
norms as is evident from NIUA Report (2005). The status of revenue receipts is very poor.
For example, in certain Maharashtra towns, average revenue per connection is Rs 120
a year, as against expenditure of Rs 1,300 a year for each connection (Patwardhan, 1993).
Though this study is old but the current situation has not yet improved. Also quality of
water supplied to the consumers is often in question as more than 50 percent of urban
centers in India do not monitor raw water quality and have inadequate laboratory
facilities for testing water quality. For the remaining Indian cities, periodicity of water
88
                                                                                                                                                      BIJ




  sector
                                                                                                                                                      18,1




  Table I.

  using DEA in water
  Benchmarking studies
Country          Author(s)      Inputs                                    Outputs                                    Sustainability criteria ignored/remarks

Palestine Alsharif et al. Cost of water bought and energy costs,          Total revenue                              Service sufficiency and service
          (2008)          maintenance and other expenses and                                                         reliability
                          staff salary and water losses
Peru      Berg and Lin Operating costs, number of staff and               Volume of water billed, number of          Resource conservation and business
          (2007)          number of connections                           customers, service coverage and            viability
                                                                          continuity of service
Uganda           Mugisha        Labour, network length (as a proxy for    Connections and water billed as a          Service reliability, resource
                 (2007)         capital) and operating expenses           percentage of water delivered              conservation and business viability
                                (stochastic frontier analysis (SFA)
                                technique used)
Canada           Renzetti and   Labour expenditure, materials             Water delivered                            Service reliability, resource
                 Dupont         expenditure and kilometers of                                                        conservation and business viability
                 (2007)         distribution network
India            Kulshrestha    Operating expenditure and UFW             Number of connections, length of           Staff rationalization and business
                 (2005)                                                   distribution network and water             viability
                                                                          produced, population covered and
                                                                          number of hours of supply
Brazil           Tupper and Labour expenses, operational costs and        Water produced, treated sewage,            Resource conservation and business
                 Resende      other operational costs                     population served by water and             viability
                 (2004)                                                   population served by treated sewage
UK               Thanassoulis OPEX (operating expenditure)                Water produced, number of connections    Service reliability, resource
                 (2000)                                                   and length of distribution network       conservation, staff rationalization and
                                                                                                                   business viability
Japan            Aida et al.    Number of employees, operating            Operating revenues and water billed (net Service reliability and resource
                 (1998)         expenses before depreciation, net plant   of leakage)                              conservation
                                and equipment and population and
                                length of pipes
Ghana            Akosa et al. Technical, financial, economic,              Reliability, utilization and convenience   Variables are at very abstract level
                 (1995)         institutional, social and environmental   factors
                                factors
USA              Lambert et al. Annual labour, energy used, materials     Total water delivered                      Service reliability, resource
                 (1993)         input and value of capital                                                           conservation (UFW control) and
                                                                                                                     business viability
quality monitoring (raw water or water at treatment plant or at distribution network)               North Indian
varies from daily basis to once in a month to once in six months (NIUA Report, 2005).               urban water
    For water supply systems, UFW are attributed to line losses, fire hydrant losses, fire
fighting and evaporation, free supply to slum/J.J areas, billing and collection inefficiencies,            utilities
theft, etc. In India, on an average about 40 percent of the consumers are not charged for the
water supply services due to poor billing and collection practices which eventually
encourage them to use water liberally and waste it. UFW in Indian cities range between                        89
20 and 40 percent and is gradually increasing indicating substantial revenue loss
(Singh et al., 2005). An international study for UFW by Tynan and Kingdom (2002) for top
25 percent of developing countries recommend a target of 23 percent (or less). The mean
for developed countries is 16 percent. Average UFW in Singapore, Japan, the USA and
France are 6, 11, 12 and 15 percent, respectively, (Yepes and Dianderas, 1996).
    Currently, most of the government organisations responsible for water supply are
overstaffed where number of employee per 1,000 connections ranges from 15 to 25
(Singh et al., 2005) whereas the recommended ratio of the developing countries is in the
range of five to ten (Kaaya, 1999). Owing to overstaffing, staff expenditure for Indian
cities is also very high (about 30 percent). A larger share of expenditure on establishment
considerably reduces the funds available for operation and maintenance of water supply
system. Expenditure on electricity, consumables, repairs and replacements and other
related expenses together constitute the operation and maintenance head. In India, about
half the total expenditure on water supply service is spent on O&M in most of the urban
centers (NIUA Report, 2005). O&M costs per cubic meter of water are Rs 13, 16 and 17 for
Chennai, Bangalore and Hyderabad, respectively, whereas typical prices charged to
consumers in India is about Rs 1.5-2.00 per cubic meter (Raghupathi and Foster, 2002).
Thus, consumers are charged for water supply below cost and many a times revenue
generated is not sufficient even to cover manpower cost.
    The status and problems discussed so far indicate the overall position of Indian urban
water sector. The present study, however, focuses on urban water utilities of North Indian
region. The states (Punjab, Haryana and Uttar Pradesh) and union territories (Delhi and
Chandigarh) selected in the study fall in the north central part of India and are bordered
with mountains (Himalayas) on its north side and great plateau on its south side. This
region is almost dead flat, very fertile and one of the largest food producing baskets
accommodating a sizeable part of the Indian population. Water supply being a state
subject in India, the states and union territories considered for the analysis may have slight
differences in their policies; institutional arrangements, tariff structures, etc. but have great
similarities in terms of climatic conditions, topography, water supply practices and urban
inhabitants’ lifestyles and cultural values. Considering the similarities and the importance
of this region in terms of high population density and water resources availability
(due to abundance of rivers Satluj, Beas, Ravi, Ganga, Yamuna, Ramganga, Gomati,
Ghagra and Gandak) and also the want of reasonable sample size, the present study deals
with benchmarking of 35 North Indian urban water utilities using DEA approach.

2.2 Benchmarking using DEA
According to Tupper and Resende (2004), efficiency measurement studies have been
“relatively scarce” in the water supply sector. Lin (2005) and Berg (2006) also acknowledge
the fact that water sector has been given less attention and limited data availability is one
of the reasons for the same. For benchmarking, Berg (2006) has categorized many
BIJ    alternative models into 11 analytic techniques arrayed in terms of the technical and
18,1   quantitative skills required for implementing the different approaches. Jamasb and Pollitt
       (2001) have suggested that benchmarking methods should be treated as a decision aid tool,
       need to be applied with care and regard to the context in which they are used and their raw
       results should not be regarded as replacements for decision makers and their judgments.
       A good review of benchmarking methods is available in Coelli et al. (1998, 2003).
90         Most international initiatives on benchmarking limit themselves to
       indicator-by-indicator comparisons and do not employ standard quantitative
       techniques. Only very few studies have dealt with the most recent benchmarking
       methods which use the most efficient utilities to form an efficiency frontier with respect
       to which rest of the utilities are compared. These methods are called frontier methods.
       One of the most used frontier method is DEA which stemmed from the concept of Pareto
       optimality and states that, within the given limitations of resources and technology,
       there is no way of producing more of some desired commodity without reducing output
       of some other desired commodity (Zeleny, 1982). Charnes, Cooper and Rhodes (CCR) first
       introduced the term DEA and received wide attention as it defined a simple measure of
       firm efficiency accounting for multiple inputs and outputs (Charnes et al., 1978).
           DEA in essence is a linear programming technique that converts multiple inputs and
       outputs into a scalar measure of efficiency. The most efficient utilities are rated to have
       an efficiency score of one, while the less efficient utilities score between zero and one. The
       utilities lying on efficient frontier are identified as best practice utilities by DEA. CCR
       considered constant returns to scale (CRS) model with input orientation whereas
       subsequent works by Banker, Charnes and Cooper (BCC) proposed a variable returns to
       scale (VRS) model with either input or output orientation (Banker et al., 1984). Both CCR
       and BCC are most commonly used DEA formulations in the utility sector. After CCR and
       BCC, there have been a large number of papers which have extended the application of
       DEA methodology. Table I summarises few benchmarking studies undertaken in water
       sector by various authors in different countries using DEA. It also lists the input and
       output variables used for DEA in these studies along with the identification of
       sustainability criteria that has been ignored under these studies.

       3. Methodology
       The study uses DEA as a benchmarking tool to estimate efficiencies of 35 DMUs under
       consideration. Figure 1 presents the methodological sequence for the present study. The
       first step consists of selection of DMUs that enter the analysis. Important criteria for
       sustainable water supply services (namely, service sufficiency, service reliability,
       resource conservation, staff rationalization, business viability, etc.) that address the key
       sustainability dimensions (social, environmental and financial) are then identified
       against which efficiencies of the selected 35 DMUs are to be evaluated. Next crucial step
       for DEA consists of model specification and selection of input and output variables
       (Table II) that address the above-identified sustainability criteria. DEAP (Version 2.0)
       software is run to obtain te and se scores for each DMU. The study finally analyses the
       DEA results to assess performance status of 35 DMUs.

       3.1 DEA formulations
       For water utilities input minimization is generally preferred option as output is
       often exogenous and beyond managerial control at least in short to medium term.
Selection of 35 water                                               North Indian
                                        utilities (DMUs) for DEA                                               urban water
                                                                                                                    utilities
                            Identification of important criteria for sustainable
                                           water supply services
                                                                                                                              91
                            Model specifications and selection of input/output
                            variables representing the above criteria for DEA


                                       Results using DEA software

                                                                                                                       Figure 1.
                                       Analysis of DEA results                                                       Methodology




Inputs/outputs                           Sustainability criteria                   Sustainability dimensions

Inputs
1. UFW                                   Resource conservation                     Environmental
2. Total staff                           Staff rationalization                     Financial
3. O&M expenditure                       Resource conservation                     Environmental
Outputs
1. Net per capita supply                 Service sufficiency                        Social                                Table II.
2. Total revenue receipts                Business viability                        Financial                   Inputs, outputs and
3. Water treated                         Service reliability                       Social                            sustainability


Also, the analysis in the paper intends to suggest input benchmarks. Hence, the basic
DEA model discussed below has an input orientation. This section describes the DEA
formulation employed in the paper for analysis.
   In case of CRS hypothesis as developed by Charnes et al. (1978), a proportional
increase of all input levels produces equi-proportional increase in output levels. The
CRS assumption is only appropriate when all firms are operating at an optimal scale.
Imperfect competition, constraints on finance, etc. may cause a firm to not operate at
optimal scale. Banker et al. (1984) suggested an extension of the CRS DEA model to
account for VRS situations, by adding a convexity constraint as shown in equation (3).
   The efficiency score in the presence of multiple input and output factors is defined as:
                                             weighted sum of outputs
                            Efficiency ¼                                                                ð1Þ
                                             weighted sum of inputs
Assuming that the chosen sample has z DMUs, each with m inputs and n outputs, the
relative efficiency score of a test DMU p is obtained by solving the model proposed by
Charnes et al. (1978):
                             Pn                 Pn
                                    vk ykp           vk yki
                       max Pk¼1 m          s:t: Pk¼1
                                                 m          # 1 ;i                 ð2Þ
                                j¼1 uj xjp       j¼1 uj xji
BIJ    where:
18,1      i    ¼ 1 to z;
          j ¼ 1 to m;
          k ¼ 1 to n;
92        yki ¼ amount of output k produced by DMU i;
          xji ¼ amount of input j utilized by DMU i;
          vk ¼ weight given to output k; and
          uj ¼ weight given to input j.
       The fractional program in equation (2) is subsequently converted to a linear
       programming format and a mathematical dual is employed as shown in equation (3), to
       solve the linear program. The dual reduces number of constraints from z þ m þ n þ 1
       in the primal to m þ n in the dual; thereby rendering the linear problem easier to solve:
                                     X z                            Xz
               minu;l u s:t: uxjp 2       li xji $ 0 ;j 2 ykp þ         li yki $ 0 ;k
                                      i¼1                           i¼1                      ð3Þ
               Xz
                   li ¼ 1 ! Convexity constraint li $ 0 ;i
                i¼1

       where:
          u      efficiency score; and
          li     dual variables (weights in the dual model for the inputs and outputs of the
                 z DMUs).
       The above problem is run z times for calculating the relative efficiency scores (u) of all the
       DMUs. Each individual DMU in the sample requires the solution of linear program.
       Distance of a DMU from the frontier measures its efficiency scores. A DMU is efficient if
       it operates on the frontier and also has zero associated slacks. The slacks are output
       shortfalls and input surpluses associated with the examined DMU, in addition to the
       increase of all outputs or the decrease in all inputs by a factor equal to the efficiency
       score. The technique also computes input and output targets that would turn an
       inefficient unit into an efficient one.         À Pz          Á
           Note that the convexity constraint            i¼1 li ¼ 1    essentially ensures that
       benchmarking of an inefficient firm is only against firms of a similar size. That is,
       the projected point (for that firm) on the DEA frontier will be a convex combination of
       observed firms. CRS case has no convexity restriction imposed. Hence, in a CRS-DEA,
       benchmarking of an inefficient firm may be against firms of substantially larger
       (smaller) size and the “l” weights will sum to a value greater than (less than) one.
           The use of the CRS specification when not all firms are operating at the optimal scale,
       results in measures of te confounded by se. The use of the VRS specification permits the
       calculation of te devoid of these se effects and is most commonly used in the service
       or utility sector. As the CRS contains VRS within its envelope, VRS model provides te
       scores which are greater than or equal to those obtained under CRS model. If there is a
       difference in the CRS and VRS te scores for a particular firm, then this indicates
that the firm has scale inefficiency. The DEA model solved may be useful to identify              North Indian
whether a DMU on the VRS efficient boundary operates with constant, increasing or                urban water
decreasing returns to scale (CRS, IRS or DRS).
                                                                                                     utilities
4. Benchmarking framework using DEA
The important sustainability criteria incorporated into analysis are service sufficiency,
service reliability, resource conservation, staff rationalization and business viability.                 93
Most of the output variables considered for analysis in the water sector are generally
exogenous and are beyond managerial control at least in short to medium term rendering
the exercise on output-oriented DEA model futile. Input orientation has, therefore, been
considered for DEA as the objective of the analysis is to suggest input benchmarks to
produce a given level of output. This is useful to estimate the potential for reduction in
inputs – O&M expenditure, UFW and staff size and hence potential for cost savings.
   Percentage cost-saving potential (% CSP) of each DMU has been calculated as:
                                Actual Exp: 2 projected Exp:
                    % CSP ¼                                  £ 100
                                        Actual Exp:
Or, potential for input reduction (%) of each DMU has been calculated as:
                            Actual input 2 projected input
                        ¼                                  £ 100
                                     Actual input
where, inputs may be O&M expenditure or UFW or staff size.
   For utility or service sector, output levels cannot be raised equi-proportional to input
levels and hence VRS-DEA model is more appropriate. This paper, therefore, considers
input-oriented VRS-DEA model for analysis.

4.1 Selection of input and output variables
The input and output variables chosen for DEA have been determined on the basis of:
   .
      reference to the standard literature on whatever scarce work on benchmarking
      has been carried out so far in the water sector (Table I);
   .
      analogy drawn from the variable selection in electricity sectors (as both water
      and electricity sectors are essentially network industries with natural monopoly
      characteristics);
   .
      ideas drawn from the variable selection for benchmarking by other service
      sectors (namely, hospital, educational institutions, tourism, banks, etc.); and
   .
      data availability for the 35 DMUs under consideration from NIUA Report.

Suitability of the chosen input and output variables are further affirmed using Pearsons’
correlation method which checks the compliance with isotonicity relationship
(i.e. increase in input should result in increase in output). Number of input and output
variables is so determined that their sum total is less than one-third of the total number of
DMUs selected for DEA (Banker et al., 1989) in order to strengthen the discriminatory
power of DEA and avoid “degree of freedom” problems to occur.
    Utilities which are not subjected to competition may compromise its service quality
(or reliability) for reducing costs and to increase profits. Service reliability criterion
therefore needs to be incorporated for efficiency estimation in order to effectively align
BIJ    incentives with the reliability factors. UFW if controlled would enhance environmental
18,1   quality and assure long-term availability of water. This is of special significance as the
       government policy now accords major emphasis on resource conservation.
       Rationalisation of staff size and adequate revenue generation are the two most critical
       issues which need to be given due consideration for business viability of water utilities.
       The present study therefore considers UFW (in million litres’ per day (MLD), total staff
94     (nos) and operation and maintenance (O&M) expenditure (in Indian rupees, INR
       millions/year) as three inputs and net per capita supply (in liters per capita per day – lpcd),
       total revenue receipts (in INR millions/year) and water treated (as percentage of water
       produced) as three outputs. Service sufficiency and service quality criteria address social
       sustainability dimension and is represented by outputs net per capita supply and water
       treated. Resource conservation criterion address environmental sustainability dimension
       and is represented by inputs UFW and O&M expenditure (O&M expenditure serves as a
       proxy for energy consumption in the absence of exclusive data on energy consumption for
       the 35 DMUs). Staff rationalization and business viability criteria address financial
       sustainability dimension and are represented by an input total staff and output total
       revenue receipts, respectively. The inputs and outputs chosen for DEA are shown in
       Table II.

       5. Results and analysis
       This section covers the results of efficiency analysis in terms of te scores, se scores,
       returns to scale (RTS), benchmark DMUs, input and output slacks, percentage CSPs,
       etc. for each DMU; ranking position, number of DMUs under different efficiency ranges
       and cost-recovery analysis. This section further explores the scope for reduction in
       O&M expenditure, UFW and staff size (Tables III and IV).

       5.1 Efficiency analysis
       te for 35 DMUs ranges from 0.268 to 1 with its average value as 0.814. se for 35 DMUs
       ranges from 0.279 to 1 with its average value as 0.879 (Table III and Figure 2).
           Percentage CSP for 35 DMUs ranges from 0 to 73 percent. Total CSP of all DMUs is
       INR 410 millions/year (US$1.00 < 45.00 Indian rupees, INR) and is 10.65 percent of the
       actual annual expenditure of all DMUs (Table IV).
           For 14 DMUs se . te whereas for 13 DMUs te . se and for rest of the eight overall
       efficient DMUs te ¼ se (Table III and Figure 2). DMUs with te . se need to place major
       emphasis on improving their operational scale whereas the DMUs with se . te need to
       focus on productivity and technology improvement. These measures would enhance
       the operational efficiency of the DMUs.
           Data on RTS show that 11 DMUs have se ¼ 1. More than 50 percent of the DMUs
       (18 nos.), mostly large sized with higher population exhibit DRS and need to strive for
       optimization of operational scale and productivity enhancement. Unbundling of water
       supply functions may also help in optimal allocation of resources. On the other hand, less
       than 20 percent of the DMUs (six nos. – Gurgaon, Pathankot, Faizabad, Mathura,
       Rae Bareli and Rampur), mostly small sized with lesser population exhibit IRS and need
       to focus on resource expansion. Also possibility may be explored to transfer the
       resources from the DMUs operating at DRS to those operating at IRS within a state.
           For the outputs, out of all DMUs, 14 DMUs have slack for net per capita supply
       whereas only four DMUs have slack for total revenue receipts and three DMUs have
North Indian
     urban water
          utilities

                    95




              Table III.
DEA results: efficiencies,
 ranking and targets for
               35 DMUs
BIJ
18,1


96




Table III.
North Indian




(continued )
                    urban water
                         utilities

                                    97




                              Table IV.
               DEA results: cost-savings
                 potential, cost recovery
                and slacks for 35 DMUs
BIJ
18,1


98




Table IV.
1.1
                      te   se                                                                 North Indian
                  1
                0.9                                                                           urban water
 Efficiencies




                0.8
                0.7
                0.6
                                                                                                   utilities
                0.5
                0.4
                0.3
                0.2
                0.1
                  0      Gurgaon                                                                             99
                            Delhi
                          Kanpur
                        Lucknow
                        Ludhiana
                         Varanasi
                          Ambala
                       Faridabad

                            Hisar
                           Karnal
                          Rohtak
                         Amritsar
                         Bathinda
                      Hoshiarpur
                        Jalandhar
                            Moga
                       Pathankot
                           Patiala
                             Agra
                          Aligarh
                       Allahabad
                          Bareilly
                         Faizabad
                       Ghaziabad
                      Gorakhpur
                        Haldwani
                           Hapur
                           Jhansi
                         Mathura
                      Moradabad
                      Muzaffarna
                       Rae Bareli
                          Rampur
                      Saharanpur
                      Chandigarh
                                                                                                         Figure 2.
                                                                                             te and se of 35 DMUs
                                              Cities

slack for percentage water treated. For the inputs, out of all DMUs, 14 DMUs have
slack for UFW whereas three DMUs have slack for total staff and one DMU has slack
for O&M expenditure. Thus, there is a scope for increasing average net per capita
water supply provision by 9.4 percent and reducing UFW by 10.74 percent of their
respective actual values of all the DMUs due to slacks, in addition to the decrease in all
inputs by a factor equal to the efficiency score. However, scope for increase in rest of
the outputs and decrease in rest of the inputs of all the DMUs is almost negligible on
account of slacks.
    Average of projected net per capita water supply of all DMUs is 121.7 lpcd as against
their actual average value of 111.3 lpcd. This would require an additional 381 MLD of
water to meet the projected demand for all the DMUs.
    Agra is found to be the most frequent benchmark DMU (for nine inefficient DMUs)
followed by Haldwani and Chandigarh (for seven inefficient DMUs each) (Table III).
The inefficient DMUs are of similar size and scale as of their respective efficient
benchmark DMUs (i.e. Agra, Haldwani and Chandigarh).

5.2 Ranking position and number of DMUs under various efficiency ranges
About 18 DMUs rank first on te scores whereas 12 DMUs rank first on se scores. All eight
overall efficient DMUs rank first on te and se scores. Delhi, Karnal Ambala and
Jalandhar rank first on te score whereas they rank 35th (last), 34th, 33rd and 31st,
respectively, on se score. These four DMUs need to focus on improving their operational
scale in order to be overall efficient. Jhansi, Gorakhpur and Ghaziabad rank first on se
scores but they rank 31st, 30th and 22nd, respectively, on te scores. These three DMUs
need to shift their focus towards productivity enhancement and technology upgradation
in order to be overall efficient. Pathankot, Mathura and Muzaffarnagar rank close to
each other on te and se scores.
   More than 50 percent DMUs (18 nos.) have 100 percent te and only 14 percent DMUs
(five nos. – Ludhiana, Faridabad, Gurgaon, Faizabad and Jhansi) have te , 50 percent.
About 70 percent of the DMUs have te . 75 percent. Approximately, one-third
DMUs (11 nos.) have 100 percent se and only two DMUs (Delhi and Karnal) have
se , 70 percent and for rest of the 22 DMUs, se ranges between 70 and 100 percent.

5.3 Cost-recovery analysis
Faridabad, Gurgaon, Faizabad and Jhansi have higher potential for increasing (by more
than 60 percent) their actual cost recovery (Table IV and Figure 3).
BIJ                          120                            Actual cost recovery (%)
                             110                            Projected cost recovery(%)
18,1                         100
                              90
                              80
                              70
                           % 60
                              50
                              40
                              30
100                           20
                              10
                               0




                                        Gurgaon
                                           Delhi
                                         Kanpur
                                       Lucknow
                                       Ludhiana
                                        Varanasi
                                         Ambala
                                      Faridabad

                                           Hisar
                                          Karnal
                                         Rohtak
                                        Amritsar
                                        Bathinda
                                     Hoshiarpur
                                       Jalandhar
                                           Moga
                                      Pathankot
                                          Patiala
                                            Agra
                                         Aligarh
                                      Allahabad
                                         Bareilly
                                        Faizabad
                                      Ghaziabad
                                     Gorakhpur
                                       Haldwani
                                          Hapur
                                          Jhansi
                                        Mathura
                                     Moradabad
                                     Muzaffarna
                                      Rae Bareli
                                         Rampur
                                     Saharanpur
                                     Chandigarh
Figure 3.
Actual vs projected
percentage cost recovery
                                                                                  Cities


                           Projected annual revenue receipts of all DMUs as obtained from DEA show only
                           0.15 percent increase in the actual annual revenue receipts of all DMUs whereas
                           projected cost recovery (49.8 percent) of all the DMUs when calculated using projected
                           expenditure data shows 5.4 percent increase in actual cost recovery (44.4 percent) of all
                           DMUs. Thus, actual cost recovery can be increased by 5.4 percent (if all inefficient
                           utilities reach efficient frontier) though potential for increasing actual annual revenue
                           receipts is only by 0.15 percent. Increased cost recovery would help in improving
                           service coverage and hence increased consumer satisfaction.

                           5.4 UFW analysis
                           Projected UFW is maximum for Kanpur and Allahabad (30 percent each) though they
                           are 100 percent technically efficient and is # 5 percent for 17 DMUs (Table IV and
                           Figure 4).
                              Actual UFW of all utilities is 23.23 percent whereas projected UFW is 18.05 percent
                           of the total water produced of all utilities.
                              Potential for UFW reduction of all DMUs is 305 MLD and is 22.3 percent of the actual
                           total UFW of all DMUs, if all inefficient DMUs reach efficient frontier. Thus, 305 MLD of
                           additional water may be made available to the consumers of all DMUs if UFW is brought

                             50
                                        Actual UFW (%)
                             45
                                        Projected UFW (%)
                             40
                             35
                             30
                           % 25
                             20
                             15
                             10
                              5
                              0
                                       Gurgaon
                                          Delhi
                                        Kanpur
                                      Lucknow
                                      Ludhiana
                                       Varanasi
                                        Ambala
                                     Faridabad

                                          Hisar
                                         Karnal
                                        Rohtak
                                       Amritsar
                                       Bathinda
                                    Hoshiarpur
                                      Jalandhar
                                          Moga
                                     Pathankot
                                         Patiala
                                           Agra
                                        Aligarh
                                     Allahabad
                                        Bareilly
                                       Faizabad
                                     Ghaziabad
                                    Gorakhpur
                                      Haldwani
                                          Hapur
                                         Jhansi
                                       Mathura
                                    Moradabad
                                    Muzaffarna
                                     Rae Bareli
                                        Rampur
                                    Saharanpur
                                    Chandigarh




Figure 4.
Actual vs projected UFW
(in percentage)
                                                                                  Cities
down to the projected level as obtained from DEA model. This would help in achieving               North Indian
the target for average net per capita water supply provision to a great extent.
   Annual additional revenue receipts potential of all DMUs when percentage UFW is
                                                                                                   urban water
brought down to projected level (through additional water sale) is INR 109.9 millions/year              utilities
and is 6.4 percent of the actual annual revenue receipts of all DMUs and 2.85 percent of
the total annual expenditure of all DMUs. Thus, reducing the UFW would improve
service coverage and revenue receipts status.                                                               101
5.5 Staff analysis
Potential for reducing staff size of all DMUs is 2,999 nos. and is 8.42 percent of the total
number of actual staff of all DMUs (Table III), if all inefficient utilities reach efficient
frontier. This would result in cost saving of INR 156.27 millions/year and is 9.5 percent
of the actual annual staff expenditure of all DMUs and 4.1 percent of the total annual
expenditure of all DMUs.
   Actual average of staff per 1,000 connections of all DMUs is 7.72 as against projected
average of 5.82. Though the analysis shows potential for reducing staff size, average
staff per 1,000 connections is well within the range (five to ten) obtained from
international average of developing countries (Kaaya, 1999). Thus, focus may be shifted
towards reducing staff expenditure and not on staff size at the initial instance.

5.6 O&M expenditure analysis
CSP of all DMUs on account of reduction in O&M expenditure, if all inefficient DMUs
reach efficient frontier, is INR 253.8 millions/year and is 11.52 percent of the actual
annual O&M expenditure of all DMUs and 6.6 percent of the total annual expenditure
of all DMUs (Tables III and IV). Cutting down the electricity expenditure would reduce
O&M expenditure to a greater extent and therefore suitable measures are required to
be taken in this direction.
   Thus, it is evident that there is significant scope for cost savings on account of UFW
control, staff rationalization and O&M cost reduction.

5.7 State-wise performance analysis
This section carries out performance analysis for the two union territories (Delhi and
Chandigarh) and three states (UP, Haryana and Punjab). Calculations of efficiencies
and other variables (staff size, UFW, O&M expenditure, etc.) for each of the three states are
based on the respective average values of variables of all the utilities belonging to the state
under consideration. Out of 35 utilities under consideration, two utilities are of union
territories (Chandigarh and Delhi), seven utilities belong to Haryana, seven utilities belong to
Punjab and rest of the 19 utilities belongs to UP. The analysis highlights the following facts:
    .
       Delhi and Chandigarh have 100 percent te. te of UP, Punjab and Haryana are,
       respectively, 0.92, 0.81 and 0.67. Thus, Haryana has to relatively focus more on
       improving its technical efficiency.
    .
       Chandigarh has 100 percent overall efficiency and Delhi has the least overall
       efficiency (0.28). Overall, efficiencies of UP, Punjab and Haryana are,
       respectively, 0.76, 0.78 and 0.51.
    .
       Chandigarh has 100 percent se and Delhi has the least se (0.28). se of UP, Punjab and
       Haryana are, respectively, 0.93, 0.85 and 0.84. Thus, Delhi has to place major emphasis
       on improving its se which in turn would also improve its overall efficiency.
BIJ       .
              Delhi exhibits DRS and Chandigarh has 100 percent se. In Haryana, all the utilities
18,1          except Gurgaon (with IRS) exhibit DRS. In Punjab, Bhatinda and Moga have
              100 percent se, Pathankot exhibits IRS and rest of the four utilities exhibit DRS.
              In UP, eight utilities have 100 percent se, four utilities exhibit IRS and rest of the
              seven utilities exhibit DRS. Suitable strategies need to be evolved to transfer the
              resources from utilities operating at DRS to those utilities operating at IRS within
102           the state in order to optimize the operational scale.
          .
              CSP[1] is nil for Delhi and Chandigarh, highest for Haryana (58.4 percent), very
              less for Punjab (6 percent) and 23.4 percent for UP. Within Haryana, Faridabad,
              Gurgaon and Ludhiana have very high CSP (. 65 percent). Within Punjab,
              Pathankot and Hoshiarpur have higher CSP (. 35 percent) and within
              UP, Faizabad, Jhansi and Bareilly have higher CSP (. 50 percent).
          .
              Potential for UFW reduction (as a percentage of water produced) is nil for Delhi
              and Chandigarh and is highest for Haryana (14.59 percent) followed by Punjab
              (13 percent) and UP (8.2 percent).
          .
              Potential for staff reduction (as a percentage of total number of actual staff) is nil
              for Delhi and Chandigarh and is highest for Haryana (54.87 percent) followed by
              UP (19.9 percent) and Punjab (10.9 percent).
          .
              Potential for reduction in O&M expenditure (as a percentage of total expenditure)
              is nil for Delhi and Chandigarh and is highest for Haryana (41 percent) followed
              by UP (12 percent) and Punjab (3 percent).
          .
              Potential for increasing the annual cost recovery is nil for Delhi and Chandigarh
              and is highest for Haryana (36 percent) followed by UP (23 percent) and Punjab
              (4.3 percent).


       6. Conclusions
       Presently, most of the utilities have failed to provide adequate service and connection
       coverage with wide supply demand gap. UFW of most of the utilities are very high along
       with high O&M expenditure and oversized and untrained staff. The range of problems
       prevalent in Indian urban water sector clearly establishes the need for benchmarking.
       A “benchmark” is a reference or measurement standard used for comparison whereas
       “benchmarking” is the continuous activity of identifying, understanding and adapting
       best practice and processes that will lead to superior performance. Benchmarking can be
       a useful mechanism to help each utility focus on improvement opportunities by
       comparing its practices with the other utilities and accordingly make suitable changes to
       some of its procedures and working methods which in turn will lead to continuous
       improvement. However, commitment for improvement at the top level is the necessary
       prerequisite to realize the benefits of benchmarking.
          To fulfill the commitments of the millennium development goals which incorporate the
       target of “reducing by half the proportion of people without sustainable access to safe
       drinking water by year 2015” (Johanesburg Summit, 2002), governments will need to
       develop suitable sustainability-based benchmarking framework for assessing the relative
       performance of utilities which in turn would facilitate efficient practices by water utilities
       towards sustainable water supply services to its consumers. Hardly any benchmarking
       initiative has been undertaken systematically in Indian urban water sector.
Benchmarking framework developed in the present study therefore serves as an                      North Indian
important milestone in this direction.                                                            urban water
   Efficiency analysis of the selected 35 urban water utilities using DEA approach
shows substantial scope for reduction in UFW, staff size and O&M expenditure and                       utilities
hence, significant potential for cost savings. The study projects the percentage CSP on
account of reduction in UFW, staff size and O&M expenditure as 2.85, 4.1 and 6.6 percent,
respectively, of the total annual expenditure of all DMUs. Such results may be useful for                  103
the water utilities to prioritize their improvement strategy. Though potential for
additional revenue receipts is almost negligible, the study shows potential for increased
cost recovery due to potential for cost savings (or reduced expenditure). The additional
water available through UFW control (305 MLD) would help in meeting projected per
capita water requirement (381 MLD) to a great extent. As average number of staff per
1,000 connections is within the international range (five to ten) of developing countries as
found by Kaaya (1999), utilities may place more emphasis on reducing the staff
expenditure than staff downsizing to curtail operating expenses. Possibility needs to
be explored by the utilities to minimize electricity expenses in order to bring down O&M
expenditure. The study also suggests that 50 percent (14 nos.) of the inefficient utilities
(with te . se) need to focus on improving their operational scale whereas about rest
50 percent (13 nos.) of the inefficient utilities (with se . te) need to strive for productivity
and technology improvement (Table III). Thus, the utilities striving to reach the efficient
input levels as projected by DEA model would eventually lead to sustainable water
supply services.
   State/UT-wise performance analysis as regards efficiencies and other variables
(staff size, UFW, O&M expenditure, etc.) broadly present their status from best to worst in
the order of Chandigarh, Delhi, Punjab, UP and lastly Haryana. The analysis, thus, shows
maximum scope for improvement in Haryana. Chandigarh exhibits the best performance
in spite of the fact that water supply services in Chandigarh are managed by municipal
bodies. On the other hand, Haryana exhibits relatively worst performance though water
supply services in Haryana are managed by state government body (Public Health
Department). Water supply services in Delhi, Punjab and UP are managed by specialist
agencies (autonomous body/water boards) and their performance is in the middle order.
   The benchmarking framework developed in the present study would be useful for the
regulator or operator of the facility to rank the utilities under their control for their
performance and accordingly devise suitable incentive mechanism or price cap
regulation. As water supply is essentially a state subject in India, setting up of an
independent regulatory body at state level will almost certainly become a mandatory
requirement to execute such benchmarking scheme. The scheme would also help water
managers to identify suitable benchmarks, estimate performance targets and devise
appropriate measures to remedy underperformance. Governments need to develop
uniformly acceptable template for data collection and its standardization in order to
facilitate effective implementation of such benchmarking scheme. The results of
benchmarking exercise, whenever attempted should be made public which in turn
would enable concerned stakeholders to act as pressure groups and facilitate efficient
practices by non-performing utilities. Internal efficiencies of water supply services when
improved would effect internal savings for greater expansion of service coverage,
reduced UFW, reduced electricity consumption and therefore increased revenue
generation. This would eventually lead to sustainable urban water supply services.
BIJ       The scope of the present analysis could not be widened to incorporate additional
18,1   sustainability criteria (such as, services to the poor, tariff design, customer services,
       revenue functions, etc.) due to limited data availability. Also efficiency analysis did not
       take into account the impact of non-controllable environment factors (such as
       topography, population density, water source, ownership status, etc.). However, there is
       considerable scope for further research on this subject. Urban water utilities of other
104    developing as well as developed countries may also be included for DEA in order to draw
       useful lessons from the international best practices. Also availability of data on resources
       (materials, manpower, etc.) and their respective prices would enable cost efficiency
       analysis of the utilities. Similar benchmarking studies may be undertaken using other
       techniques, such as SFA, regression analysis, etc. and results may be compared with the
       current analysis to gain greater insights. Efficiency analysis can also be performed using
       time series data to estimate change in productivity levels of the utilities.

       Note
        1. Cost-saving potential of Haryana, Punjab and UP is calculated as difference between the
           total actual and total projected expenditure divided by total actual expenditure of all the
           utilities belonging to that state.


       References
                                      ´
       Aida, K., William, W.C., Jesus, T.P. and Toshiyuki, S. (1998), “Evaluating water supply services
              in Japan with RAM: a range-adjusted measure of inefficiency”, Omega, International
              Journal of Management Science, Vol. 26 No. 2, pp. 207-32.
       Akosa, G., Franceys, R., Barker, P. and Jones, T.W. (1995), “Efficiency of water
              supply and sanitation projects in Ghana”, Journal of Infrastructure Systems, Vol. 1 No. 1,
              pp. 56-65.
       Alsharif, K., Feroz, E.H., Klemer, A. and Raab, R. (2008), “Governance of water supply systems in
              the Palestinian Territories: a data envelopment analysis approach to the management of
              water resources”, Journal of Environment Management, Vol. 87 No. 1, pp. 80-94.
       Banker, R.D., Charnes, A. and Cooper, W.W. (1984), “Some models for estimating technical and
              scale inefficiencies in data envelopment analysis”, Management Science, Vol. 30 No. 9,
              pp. 1078-92.
       Banker, R.D., Charnes, A., Cooper, W.W., Swarts, J. and Thomas, D.A. (1989), “An introduction to
              data envelopment analysis with some of its models and their uses”, Research in
              Governmental and Nonprofit Accounting, Vol. 5, pp. 125-63.
       Berg, S.V. (2006), “Survey of benchmarking methodologies: executive summary”,
              working paper, World Bank, Public Utility Research Centre, Washington, DC, available at:
              www.purc.org
       Berg, S.V. and Lin, C. (2007), “Consistency in performance rankings: the Peru water sector”,
              Journal of Applied Economics, Vol. 40 No. 6, pp. 93-805.
       Charnes, A., Cooper, W.W. and Rhodes, E. (1978), “Measuring the efficiency of decision making
              units”, European Journal of Operational Research, Vol. 2 No. 6, pp. 429-44.
       Coelli, T., Rao, D.S.P. and Battese, G.E. (1998), An Introduction to Efficiency and Productivity
              Analysis, Kluwer, London.
       Coelli, T.J., Estache, A., Perelman, S. and Trujillo, L. (2003), A Primer on Efficiency Measurement
              for Utilities and Transport Regulators, The World Bank, Washington, DC.
Jamasb, T. and Pollitt, M. (2001), “Benchmarking and regulation: international electricity            North Indian
      experience”, Utilities Policy, Vol. 9, pp. 107-30.
                                                                                                      urban water
Johanesburg Summit (2002), “Johanesburg Summit – Secretary General calls for global action on
      water issues”, available at: www.johanesburgsummit.org/html/media_info/pressrelease_                 utilities
      prep2/global_action_water_2103.pdf (accessed 2002).
Kaaya, J.A. (1999), “Experience of autonomous water and sewerage authorities in Tanzania”,
      Proc. 25th WEDC Conference, Addis Ababa, Ethiopia, 30 August-3 September.                                105
Kapadia, K. (2005), “Sustainable water supply in urban development: case studies of Gurgaon,
      Dwarka and Greater Noida”, Journal of Indian Buildings Congress ( IBC ), Vol. 12 No. 1.
Kulshrestha, M. (2005), “Performance assessment and efficiency evaluation for the urban water
      operations of Indian utilities”, PhD thesis, Indian Institute of Technology, Delhi.
Lambert, D., Dichev, D. and Raffiee, K. (1993), “Ownership and sources of inefficiency in
      provision of water services”, Water Resources Research, Vol. 29, pp. 1573-8.
Lin, C. (2005), “Incorporating service quality & prospects of benchmarking: evidence from the
      Peru water sector”, Utilities Policy, Vol. 13, pp. 230-9.
Mugisha, S. (2007), “Effects of incentive applications on technical efficiencies: empirical evidence
      from Ugandan water utilities”, Utilities Policy, Vol. 15 No. 4, pp. 225-33.
NIUA Report (2005), “Status of water supply, sanitation and solid waste management in urban
      areas for year 1999”, Main Report & Statistical Volume I (Water Supply & Water Tariff),
      MoUD, Government of India, New Delhi.
Patwardhan, S.S. (1993), “Financing urban water supply scheme”, Journal of IWWA,
      October-December.
Raghupathi, P.U. and Foster, V. (2002), “A scorecard for India : Paper 2”, Water Tariff &
      Subsidies in South Asia, December.
Renzetti, S. and Dupont, D. (2007), “Measuring the technical efficiency of municipal water
      suppliers: the role of environmental factors”, Journal of Land Economics, Vol. 85 No. 4,
      pp. 627-36.
Singh, M.R., Upadhyay, V. and Mittal, A.K. (2005), “Urban water tariff structure & cost recovery
      opportunities in India”, Water Science and Technology, Vol. 52 No. 12, pp. 43-51.
Thanassoulis, E. (2000), “The use of data envelopment analysis in the regulation of UK water
      utilities: water distribution”, European Journal of Operational Research, Vol. 126,
      pp. 436-53.
Tupper, H.C. and Resende, M. (2004), “Efficiency and regulatory issues in the Brazilian water and
      sewage sector: an empirical study”, Utilities Policy, Vol. 12, pp. 29-40.
Tynan, N. and Kingdom, B. (2002), “A water scorecard: setting performance targets for water
      utilities”, Public Policy for the Private Sector, Group Private Sector and Infrastructure
      Network, Public Policy Journal, Note No. 242, The World Bank, Washington, DC.
Yepes, G. and Dianderas, A. (1996), Indicators, Water and Waste Water Utilities, 2nd ed.,
      Water and Sanitation Division of the Transportation, Water and Urban Development
      Department, TWUWS, The World Bank, Washington, DC ( published informally by
      International Bank of Reconstruction and Development).
Zeleny, M. (1982), Multiple Criteria Decision Making, McGraw-Hill, New York, NY.


About the authors
Mamata R. Singh is a Master of Engineering (Building Engineering and Management) and
submitted a PhD thesis in July 2008. She is a Research Scholar at the Indian Institute
BIJ    of Technology-Delhi, New Delhi, India and a Lecturer at the Directorate of Training and Technical
       Education, New Delhi, India. Her areas of specialization include urban infrastructure (water),
18,1   project management and quality management systems (including ISO-9000 series).
       Mamata R. Singh is the corresponding author and can be contacted at: mamatarsingh@yahoo.com
           Atul K. Mittal holds a PhD (in Waste Water). He is Associate Professor, Environmental
       Engineering, in the Department of Civil Engineering at the Indian Institute of Technology-Delhi,
       New Delhi, India. His areas of specialization include water and wastewater design and treatment,
106    urban infrastructure, environmental engineering and management.
           V. Upadhyay holds a PhD in Economics. He is Professor in the Department of Humanities and
       Social Sciences, Indian Institute of Technology-Delhi, New Delhi, India. His areas of
       specialization include development economics, economic theory and econometrics.




       To purchase reprints of this article please e-mail: reprints@emeraldinsight.com
       Or visit our web site for further details: www.emeraldinsight.com/reprints

Weitere ähnliche Inhalte

Andere mochten auch

5.an integrated
5.an integrated5.an integrated
5.an integratedlibfsb
 
1.hedge your
1.hedge your1.hedge your
1.hedge yourlibfsb
 
4.easy ways
4.easy ways4.easy ways
4.easy wayslibfsb
 
5.benchmarking supplier
5.benchmarking supplier5.benchmarking supplier
5.benchmarking supplierlibfsb
 
7.a more
7.a more7.a more
7.a morelibfsb
 
1.benchmarking procurement
1.benchmarking procurement1.benchmarking procurement
1.benchmarking procurementlibfsb
 

Andere mochten auch (6)

5.an integrated
5.an integrated5.an integrated
5.an integrated
 
1.hedge your
1.hedge your1.hedge your
1.hedge your
 
4.easy ways
4.easy ways4.easy ways
4.easy ways
 
5.benchmarking supplier
5.benchmarking supplier5.benchmarking supplier
5.benchmarking supplier
 
7.a more
7.a more7.a more
7.a more
 
1.benchmarking procurement
1.benchmarking procurement1.benchmarking procurement
1.benchmarking procurement
 

Ähnlich wie 5.benchmarking of

IEWP @ National Workshop on " Blueprint Water Accounting in India", 15 februa...
IEWP @ National Workshop on " Blueprint Water Accounting in India", 15 februa...IEWP @ National Workshop on " Blueprint Water Accounting in India", 15 februa...
IEWP @ National Workshop on " Blueprint Water Accounting in India", 15 februa...India-EU Water Partnership
 
Applications of Re-Engineered Productivity Award Model in the Measurement of ...
Applications of Re-Engineered Productivity Award Model in the Measurement of ...Applications of Re-Engineered Productivity Award Model in the Measurement of ...
Applications of Re-Engineered Productivity Award Model in the Measurement of ...IJAEMSJORNAL
 
IRJET- Assessment of Non-Revenue Water in a Water Distribution System and Str...
IRJET- Assessment of Non-Revenue Water in a Water Distribution System and Str...IRJET- Assessment of Non-Revenue Water in a Water Distribution System and Str...
IRJET- Assessment of Non-Revenue Water in a Water Distribution System and Str...IRJET Journal
 
Improving the Effectiveness of Wastewater Treatment Systems to Enhance Water ...
Improving the Effectiveness of Wastewater Treatment Systems to Enhance Water ...Improving the Effectiveness of Wastewater Treatment Systems to Enhance Water ...
Improving the Effectiveness of Wastewater Treatment Systems to Enhance Water ...IRJET Journal
 
IRJET- Review on Economical Water Treatment Plant
IRJET-  	  Review on Economical Water Treatment PlantIRJET-  	  Review on Economical Water Treatment Plant
IRJET- Review on Economical Water Treatment PlantIRJET Journal
 
Evaluation of participatory irrigation management in kerala with special
Evaluation of participatory irrigation management in kerala with specialEvaluation of participatory irrigation management in kerala with special
Evaluation of participatory irrigation management in kerala with specialAnuRadha336
 
A study on non revenue water in intermittent and continuous water service in ...
A study on non revenue water in intermittent and continuous water service in ...A study on non revenue water in intermittent and continuous water service in ...
A study on non revenue water in intermittent and continuous water service in ...Alexander Decker
 
A study on non revenue water in intermittent and continuous water service in ...
A study on non revenue water in intermittent and continuous water service in ...A study on non revenue water in intermittent and continuous water service in ...
A study on non revenue water in intermittent and continuous water service in ...Alexander Decker
 
Visualization of NATIONAL WATER RESOURCES FRAMEWORK STUDY done by CEEW
Visualization of NATIONAL WATER RESOURCES FRAMEWORK STUDY done by CEEWVisualization of NATIONAL WATER RESOURCES FRAMEWORK STUDY done by CEEW
Visualization of NATIONAL WATER RESOURCES FRAMEWORK STUDY done by CEEWFRANK Water
 
Page 1 of 22 Water Utility Efficiency Assessment Using a .docx
 Page 1 of 22 Water Utility Efficiency Assessment Using a .docx Page 1 of 22 Water Utility Efficiency Assessment Using a .docx
Page 1 of 22 Water Utility Efficiency Assessment Using a .docxMARRY7
 
Water audit in distribution network by establishing district metered area dma...
Water audit in distribution network by establishing district metered area dma...Water audit in distribution network by establishing district metered area dma...
Water audit in distribution network by establishing district metered area dma...IAEME Publication
 
IRJET- Performance Evaluation of Irrigation Projects
IRJET- Performance Evaluation of Irrigation ProjectsIRJET- Performance Evaluation of Irrigation Projects
IRJET- Performance Evaluation of Irrigation ProjectsIRJET Journal
 
A Comparative Study of different Sewage Treatment Technologies
A Comparative Study of different Sewage Treatment TechnologiesA Comparative Study of different Sewage Treatment Technologies
A Comparative Study of different Sewage Treatment TechnologiesIRJET Journal
 
IRJET- Review of Remote Sensing-based Irrigation System Performance Asses...
IRJET-  	  Review of Remote Sensing-based Irrigation System Performance Asses...IRJET-  	  Review of Remote Sensing-based Irrigation System Performance Asses...
IRJET- Review of Remote Sensing-based Irrigation System Performance Asses...IRJET Journal
 
IRJET- Comparison of River Bank Filtration with other Filtration Techniqu...
IRJET-  	  Comparison of River Bank Filtration with other Filtration Techniqu...IRJET-  	  Comparison of River Bank Filtration with other Filtration Techniqu...
IRJET- Comparison of River Bank Filtration with other Filtration Techniqu...IRJET Journal
 
Assessment of Groundwater Quality Index Using GIS at Tirupathi, India
Assessment of Groundwater Quality Index Using GIS at Tirupathi, IndiaAssessment of Groundwater Quality Index Using GIS at Tirupathi, India
Assessment of Groundwater Quality Index Using GIS at Tirupathi, IndiaIRJET Journal
 
DESIGN OF SOFTWARE BASED WATER DISTRIBUTION SYSTEM FOR A VILLAGE
DESIGN OF SOFTWARE BASED WATER DISTRIBUTION SYSTEM FOR A VILLAGEDESIGN OF SOFTWARE BASED WATER DISTRIBUTION SYSTEM FOR A VILLAGE
DESIGN OF SOFTWARE BASED WATER DISTRIBUTION SYSTEM FOR A VILLAGEIRJET Journal
 
Sustainable Water Management by Conjunctive use of Ground and Surface Water o...
Sustainable Water Management by Conjunctive use of Ground and Surface Water o...Sustainable Water Management by Conjunctive use of Ground and Surface Water o...
Sustainable Water Management by Conjunctive use of Ground and Surface Water o...IRJET Journal
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)inventionjournals
 

Ähnlich wie 5.benchmarking of (20)

IEWP @ National Workshop on " Blueprint Water Accounting in India", 15 februa...
IEWP @ National Workshop on " Blueprint Water Accounting in India", 15 februa...IEWP @ National Workshop on " Blueprint Water Accounting in India", 15 februa...
IEWP @ National Workshop on " Blueprint Water Accounting in India", 15 februa...
 
call for papers, research paper publishing, where to publish research paper, ...
call for papers, research paper publishing, where to publish research paper, ...call for papers, research paper publishing, where to publish research paper, ...
call for papers, research paper publishing, where to publish research paper, ...
 
Applications of Re-Engineered Productivity Award Model in the Measurement of ...
Applications of Re-Engineered Productivity Award Model in the Measurement of ...Applications of Re-Engineered Productivity Award Model in the Measurement of ...
Applications of Re-Engineered Productivity Award Model in the Measurement of ...
 
IRJET- Assessment of Non-Revenue Water in a Water Distribution System and Str...
IRJET- Assessment of Non-Revenue Water in a Water Distribution System and Str...IRJET- Assessment of Non-Revenue Water in a Water Distribution System and Str...
IRJET- Assessment of Non-Revenue Water in a Water Distribution System and Str...
 
Improving the Effectiveness of Wastewater Treatment Systems to Enhance Water ...
Improving the Effectiveness of Wastewater Treatment Systems to Enhance Water ...Improving the Effectiveness of Wastewater Treatment Systems to Enhance Water ...
Improving the Effectiveness of Wastewater Treatment Systems to Enhance Water ...
 
IRJET- Review on Economical Water Treatment Plant
IRJET-  	  Review on Economical Water Treatment PlantIRJET-  	  Review on Economical Water Treatment Plant
IRJET- Review on Economical Water Treatment Plant
 
Evaluation of participatory irrigation management in kerala with special
Evaluation of participatory irrigation management in kerala with specialEvaluation of participatory irrigation management in kerala with special
Evaluation of participatory irrigation management in kerala with special
 
A study on non revenue water in intermittent and continuous water service in ...
A study on non revenue water in intermittent and continuous water service in ...A study on non revenue water in intermittent and continuous water service in ...
A study on non revenue water in intermittent and continuous water service in ...
 
A study on non revenue water in intermittent and continuous water service in ...
A study on non revenue water in intermittent and continuous water service in ...A study on non revenue water in intermittent and continuous water service in ...
A study on non revenue water in intermittent and continuous water service in ...
 
Visualization of NATIONAL WATER RESOURCES FRAMEWORK STUDY done by CEEW
Visualization of NATIONAL WATER RESOURCES FRAMEWORK STUDY done by CEEWVisualization of NATIONAL WATER RESOURCES FRAMEWORK STUDY done by CEEW
Visualization of NATIONAL WATER RESOURCES FRAMEWORK STUDY done by CEEW
 
Page 1 of 22 Water Utility Efficiency Assessment Using a .docx
 Page 1 of 22 Water Utility Efficiency Assessment Using a .docx Page 1 of 22 Water Utility Efficiency Assessment Using a .docx
Page 1 of 22 Water Utility Efficiency Assessment Using a .docx
 
Water audit in distribution network by establishing district metered area dma...
Water audit in distribution network by establishing district metered area dma...Water audit in distribution network by establishing district metered area dma...
Water audit in distribution network by establishing district metered area dma...
 
IRJET- Performance Evaluation of Irrigation Projects
IRJET- Performance Evaluation of Irrigation ProjectsIRJET- Performance Evaluation of Irrigation Projects
IRJET- Performance Evaluation of Irrigation Projects
 
A Comparative Study of different Sewage Treatment Technologies
A Comparative Study of different Sewage Treatment TechnologiesA Comparative Study of different Sewage Treatment Technologies
A Comparative Study of different Sewage Treatment Technologies
 
IRJET- Review of Remote Sensing-based Irrigation System Performance Asses...
IRJET-  	  Review of Remote Sensing-based Irrigation System Performance Asses...IRJET-  	  Review of Remote Sensing-based Irrigation System Performance Asses...
IRJET- Review of Remote Sensing-based Irrigation System Performance Asses...
 
IRJET- Comparison of River Bank Filtration with other Filtration Techniqu...
IRJET-  	  Comparison of River Bank Filtration with other Filtration Techniqu...IRJET-  	  Comparison of River Bank Filtration with other Filtration Techniqu...
IRJET- Comparison of River Bank Filtration with other Filtration Techniqu...
 
Assessment of Groundwater Quality Index Using GIS at Tirupathi, India
Assessment of Groundwater Quality Index Using GIS at Tirupathi, IndiaAssessment of Groundwater Quality Index Using GIS at Tirupathi, India
Assessment of Groundwater Quality Index Using GIS at Tirupathi, India
 
DESIGN OF SOFTWARE BASED WATER DISTRIBUTION SYSTEM FOR A VILLAGE
DESIGN OF SOFTWARE BASED WATER DISTRIBUTION SYSTEM FOR A VILLAGEDESIGN OF SOFTWARE BASED WATER DISTRIBUTION SYSTEM FOR A VILLAGE
DESIGN OF SOFTWARE BASED WATER DISTRIBUTION SYSTEM FOR A VILLAGE
 
Sustainable Water Management by Conjunctive use of Ground and Surface Water o...
Sustainable Water Management by Conjunctive use of Ground and Surface Water o...Sustainable Water Management by Conjunctive use of Ground and Surface Water o...
Sustainable Water Management by Conjunctive use of Ground and Surface Water o...
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 

Mehr von libfsb

Principles of food beverage and labor cost controls
Principles of food  beverage  and labor cost controlsPrinciples of food  beverage  and labor cost controls
Principles of food beverage and labor cost controlslibfsb
 
Principles of food beverage and labor cost controls
Principles of food  beverage  and labor cost controlsPrinciples of food  beverage  and labor cost controls
Principles of food beverage and labor cost controlslibfsb
 
Foodbeverage
FoodbeverageFoodbeverage
Foodbeveragelibfsb
 
Food and beverage_operations
Food and beverage_operationsFood and beverage_operations
Food and beverage_operationslibfsb
 
Food safety basics a reference guide for foodservice operators
Food safety basics a reference guide for foodservice operatorsFood safety basics a reference guide for foodservice operators
Food safety basics a reference guide for foodservice operatorslibfsb
 
The bar & beverage book
The bar & beverage bookThe bar & beverage book
The bar & beverage booklibfsb
 
The bar & beverage book
The bar & beverage bookThe bar & beverage book
The bar & beverage booklibfsb
 
Introduction.to.management.in.the.hospitality.industry.10th.edition
Introduction.to.management.in.the.hospitality.industry.10th.editionIntroduction.to.management.in.the.hospitality.industry.10th.edition
Introduction.to.management.in.the.hospitality.industry.10th.editionlibfsb
 
Hotel front office management 3rd edition
Hotel front office management 3rd editionHotel front office management 3rd edition
Hotel front office management 3rd editionlibfsb
 
4.the singularity
4.the singularity4.the singularity
4.the singularitylibfsb
 
3.great profits
3.great profits3.great profits
3.great profitslibfsb
 
2.pleasing all
2.pleasing all2.pleasing all
2.pleasing alllibfsb
 
1.the recession,
1.the recession,1.the recession,
1.the recession,libfsb
 
9.greener library
9.greener library9.greener library
9.greener librarylibfsb
 
8.moving on
8.moving on 8.moving on
8.moving on libfsb
 
7.let them
7.let them7.let them
7.let themlibfsb
 
6.dealing with
6.dealing with6.dealing with
6.dealing withlibfsb
 
5.the management
5.the management5.the management
5.the managementlibfsb
 
4.making the
4.making the4.making the
4.making thelibfsb
 
2.free electronic
2.free electronic2.free electronic
2.free electroniclibfsb
 

Mehr von libfsb (20)

Principles of food beverage and labor cost controls
Principles of food  beverage  and labor cost controlsPrinciples of food  beverage  and labor cost controls
Principles of food beverage and labor cost controls
 
Principles of food beverage and labor cost controls
Principles of food  beverage  and labor cost controlsPrinciples of food  beverage  and labor cost controls
Principles of food beverage and labor cost controls
 
Foodbeverage
FoodbeverageFoodbeverage
Foodbeverage
 
Food and beverage_operations
Food and beverage_operationsFood and beverage_operations
Food and beverage_operations
 
Food safety basics a reference guide for foodservice operators
Food safety basics a reference guide for foodservice operatorsFood safety basics a reference guide for foodservice operators
Food safety basics a reference guide for foodservice operators
 
The bar & beverage book
The bar & beverage bookThe bar & beverage book
The bar & beverage book
 
The bar & beverage book
The bar & beverage bookThe bar & beverage book
The bar & beverage book
 
Introduction.to.management.in.the.hospitality.industry.10th.edition
Introduction.to.management.in.the.hospitality.industry.10th.editionIntroduction.to.management.in.the.hospitality.industry.10th.edition
Introduction.to.management.in.the.hospitality.industry.10th.edition
 
Hotel front office management 3rd edition
Hotel front office management 3rd editionHotel front office management 3rd edition
Hotel front office management 3rd edition
 
4.the singularity
4.the singularity4.the singularity
4.the singularity
 
3.great profits
3.great profits3.great profits
3.great profits
 
2.pleasing all
2.pleasing all2.pleasing all
2.pleasing all
 
1.the recession,
1.the recession,1.the recession,
1.the recession,
 
9.greener library
9.greener library9.greener library
9.greener library
 
8.moving on
8.moving on 8.moving on
8.moving on
 
7.let them
7.let them7.let them
7.let them
 
6.dealing with
6.dealing with6.dealing with
6.dealing with
 
5.the management
5.the management5.the management
5.the management
 
4.making the
4.making the4.making the
4.making the
 
2.free electronic
2.free electronic2.free electronic
2.free electronic
 

5.benchmarking of

  • 1. The current issue and full text archive of this journal is available at www.emeraldinsight.com/1463-5771.htm BIJ 18,1 Benchmarking of North Indian urban water utilities Mamata R. Singh, Atul K. Mittal and V. Upadhyay 86 Indian Institute of Technology-Delhi, New Delhi, India Abstract Purpose – The purpose of this paper is to develop a suitable benchmarking framework that encompasses multiple criteria of sustainable water supply services for assessing the performance of select North Indian urban water utilities and also to arrive at potential for input reductions (or efficient input levels). Design/methodology/approach – The study considers 35 North Indian urban water utilities pertaining to two union territories (Chandigarh and Delhi) and three states (Haryana, Punjab and Uttar Pradesh) for sustainability-based performance assessment using input-oriented variable returns to scale data envelopment analysis (DEA) model. Important criteria considered for sustainable water supply services are service sufficiency, service reliability, resource conservation, staff rationalization, and business viability which in turn address the key sustainability dimensions (social, environmental and financial). Findings – The approach when applied to a sample of 35 North Indian urban water utilities shows low-performance levels for most of the utilities, with significant scope for reduction in operation and maintenance expenditure, staff size and water losses. State/UT-wise analysis of sustainability-based average efficiency presents the highest score for Chandigarh and the least score for Haryana, whereas the rest of the three states/UT score in between them. Research limitations/implications – Limited data availability has constrained the incorporation of other sustainability criteria (such as services to the poor, tariff design, customer services, revenue functions, etc.) for efficiency analysis of urban water utilities. Also, estimation of efficiency scores does not encompass the effect of exogenous environmental factors which are beyond utilities’ managerial control (such as topography, population density, water source, ownership status, etc.). Practical implications – This framework would be useful for the regulator or operator of the facility to rank the utilities and devise performance-linked incentive mechanism or price cap regulation. Originality/value – This paper is a significant departure from the other international benchmarking initiatives/studies as it develops a holistic framework for benchmarking in the water sector that encompasses multiple criteria of sustainable water supply services using DEA as a tool. Keywords India, Water industry, Urban regions, Benchmarking Paper type Technical paper 1. Introduction India has to support one-sixth of the world’s population with meager 1/50th of world’s land and only 1/25th of the world’s water supply. Although the world water development report ranked India 127th out of 180 nations for fresh potable water availability to its citizens, India is the second largest consumer of water in the world after China (Kapadia, 2005). Exponential growth of population, industrialization and Benchmarking: An International urbanization has resulted in progressive decline in the per capita availability of water Journal in Indian cities. In India, water supply to the consumer is inadequate, intermittent, Vol. 18 No. 1, 2011 pp. 86-106 generally for low duration and of poor quality. Considering the growing water scarcity q Emerald Group Publishing Limited and poor services to the consumers, Indian urban water utilities need to instill 1463-5771 DOI 10.1108/14635771111109832 efficient practices for sustainable water supply services to the consumers. An attempt
  • 2. towards benchmarking of Indian water utilities would serve as an important step in North Indian this direction. urban water Though several benchmarking initiatives have been undertaken internationally (Table I), Indian urban water sector has hardly witnessed any benchmarking study. Most utilities of such initiatives do not view performance from sustainability dimensions and compute efficiency with major focus on cost-saving aspect. Also such studies have not endeavored to estimate potential for reduction in parameters other than cost (for example, 87 unaccounted for water (UFW, i.e. water loss) reduction, staff reduction, etc.). Attempts to estimate utilities’ performance in totality that encompass important criteria (such as service sufficiency, service reliability, resource conservation, staff rationalization, business viability, etc.) of sustainable water supply services (referred as “sustainability criteria” hereafter in this study) have not been made so far in the water sector. This study, therefore, intends to fill this gap and evolves suitable benchmarking framework for sustainability-based performance assessment of 35 North Indian urban water utilities using data envelopment analysis (DEA) approach. The efficiency scores obtained through DEA model may be used to rank the utilities and estimate potential for cost savings and other input reductions (such as UFW, i.e. water loss, staff size and operation and maintenance (O&M) expenditure). The study uses secondary data of 35 urban water utilities (hereafter referred as decision-making units, i.e. decision making unit (DMUs) as per DEA terminology) pertaining to three states (Haryana, Punjab and Uttar Pradesh) and two union territories (Delhi and Chandigarh) provided by National Institute of Urban Affairs (NIUA Report, 2005). The data are of the year 1999. This paper is divided into five sections including the present one. Section 2 discusses the status and problems of Indian urban water sector and further reviews the literature on benchmarking and DEA in water sector. Section 3 presents the methodology for the study. Section 4 discusses the benchmarking framework using DEA including the basis for selection of input and output variables for assessment of technical and scale efficiency (te and se) scores of the DMUs. Section 5 covers the analysis of DEA results for 35 North Indian DMUs. Finally, Section 6 provides conclusions and recommendations. 2. Literature review This section initially discusses the status and problems of Indian urban water sector covering a range of issues, namely: per capita water supply, revenue receipts, water quality, UFW, staff size and O&M expenditure including examples of few international studies. The second part of this section introduces DEA as a benchmarking tool and reviews the benchmarking studies undertaken in water sector by various authors in different countries using DEA. 2.1 Status and problems of Indian urban water sector In India about two-thirds of the cities have net per capita supply below the established norms as is evident from NIUA Report (2005). The status of revenue receipts is very poor. For example, in certain Maharashtra towns, average revenue per connection is Rs 120 a year, as against expenditure of Rs 1,300 a year for each connection (Patwardhan, 1993). Though this study is old but the current situation has not yet improved. Also quality of water supplied to the consumers is often in question as more than 50 percent of urban centers in India do not monitor raw water quality and have inadequate laboratory facilities for testing water quality. For the remaining Indian cities, periodicity of water
  • 3. 88 BIJ sector 18,1 Table I. using DEA in water Benchmarking studies Country Author(s) Inputs Outputs Sustainability criteria ignored/remarks Palestine Alsharif et al. Cost of water bought and energy costs, Total revenue Service sufficiency and service (2008) maintenance and other expenses and reliability staff salary and water losses Peru Berg and Lin Operating costs, number of staff and Volume of water billed, number of Resource conservation and business (2007) number of connections customers, service coverage and viability continuity of service Uganda Mugisha Labour, network length (as a proxy for Connections and water billed as a Service reliability, resource (2007) capital) and operating expenses percentage of water delivered conservation and business viability (stochastic frontier analysis (SFA) technique used) Canada Renzetti and Labour expenditure, materials Water delivered Service reliability, resource Dupont expenditure and kilometers of conservation and business viability (2007) distribution network India Kulshrestha Operating expenditure and UFW Number of connections, length of Staff rationalization and business (2005) distribution network and water viability produced, population covered and number of hours of supply Brazil Tupper and Labour expenses, operational costs and Water produced, treated sewage, Resource conservation and business Resende other operational costs population served by water and viability (2004) population served by treated sewage UK Thanassoulis OPEX (operating expenditure) Water produced, number of connections Service reliability, resource (2000) and length of distribution network conservation, staff rationalization and business viability Japan Aida et al. Number of employees, operating Operating revenues and water billed (net Service reliability and resource (1998) expenses before depreciation, net plant of leakage) conservation and equipment and population and length of pipes Ghana Akosa et al. Technical, financial, economic, Reliability, utilization and convenience Variables are at very abstract level (1995) institutional, social and environmental factors factors USA Lambert et al. Annual labour, energy used, materials Total water delivered Service reliability, resource (1993) input and value of capital conservation (UFW control) and business viability
  • 4. quality monitoring (raw water or water at treatment plant or at distribution network) North Indian varies from daily basis to once in a month to once in six months (NIUA Report, 2005). urban water For water supply systems, UFW are attributed to line losses, fire hydrant losses, fire fighting and evaporation, free supply to slum/J.J areas, billing and collection inefficiencies, utilities theft, etc. In India, on an average about 40 percent of the consumers are not charged for the water supply services due to poor billing and collection practices which eventually encourage them to use water liberally and waste it. UFW in Indian cities range between 89 20 and 40 percent and is gradually increasing indicating substantial revenue loss (Singh et al., 2005). An international study for UFW by Tynan and Kingdom (2002) for top 25 percent of developing countries recommend a target of 23 percent (or less). The mean for developed countries is 16 percent. Average UFW in Singapore, Japan, the USA and France are 6, 11, 12 and 15 percent, respectively, (Yepes and Dianderas, 1996). Currently, most of the government organisations responsible for water supply are overstaffed where number of employee per 1,000 connections ranges from 15 to 25 (Singh et al., 2005) whereas the recommended ratio of the developing countries is in the range of five to ten (Kaaya, 1999). Owing to overstaffing, staff expenditure for Indian cities is also very high (about 30 percent). A larger share of expenditure on establishment considerably reduces the funds available for operation and maintenance of water supply system. Expenditure on electricity, consumables, repairs and replacements and other related expenses together constitute the operation and maintenance head. In India, about half the total expenditure on water supply service is spent on O&M in most of the urban centers (NIUA Report, 2005). O&M costs per cubic meter of water are Rs 13, 16 and 17 for Chennai, Bangalore and Hyderabad, respectively, whereas typical prices charged to consumers in India is about Rs 1.5-2.00 per cubic meter (Raghupathi and Foster, 2002). Thus, consumers are charged for water supply below cost and many a times revenue generated is not sufficient even to cover manpower cost. The status and problems discussed so far indicate the overall position of Indian urban water sector. The present study, however, focuses on urban water utilities of North Indian region. The states (Punjab, Haryana and Uttar Pradesh) and union territories (Delhi and Chandigarh) selected in the study fall in the north central part of India and are bordered with mountains (Himalayas) on its north side and great plateau on its south side. This region is almost dead flat, very fertile and one of the largest food producing baskets accommodating a sizeable part of the Indian population. Water supply being a state subject in India, the states and union territories considered for the analysis may have slight differences in their policies; institutional arrangements, tariff structures, etc. but have great similarities in terms of climatic conditions, topography, water supply practices and urban inhabitants’ lifestyles and cultural values. Considering the similarities and the importance of this region in terms of high population density and water resources availability (due to abundance of rivers Satluj, Beas, Ravi, Ganga, Yamuna, Ramganga, Gomati, Ghagra and Gandak) and also the want of reasonable sample size, the present study deals with benchmarking of 35 North Indian urban water utilities using DEA approach. 2.2 Benchmarking using DEA According to Tupper and Resende (2004), efficiency measurement studies have been “relatively scarce” in the water supply sector. Lin (2005) and Berg (2006) also acknowledge the fact that water sector has been given less attention and limited data availability is one of the reasons for the same. For benchmarking, Berg (2006) has categorized many
  • 5. BIJ alternative models into 11 analytic techniques arrayed in terms of the technical and 18,1 quantitative skills required for implementing the different approaches. Jamasb and Pollitt (2001) have suggested that benchmarking methods should be treated as a decision aid tool, need to be applied with care and regard to the context in which they are used and their raw results should not be regarded as replacements for decision makers and their judgments. A good review of benchmarking methods is available in Coelli et al. (1998, 2003). 90 Most international initiatives on benchmarking limit themselves to indicator-by-indicator comparisons and do not employ standard quantitative techniques. Only very few studies have dealt with the most recent benchmarking methods which use the most efficient utilities to form an efficiency frontier with respect to which rest of the utilities are compared. These methods are called frontier methods. One of the most used frontier method is DEA which stemmed from the concept of Pareto optimality and states that, within the given limitations of resources and technology, there is no way of producing more of some desired commodity without reducing output of some other desired commodity (Zeleny, 1982). Charnes, Cooper and Rhodes (CCR) first introduced the term DEA and received wide attention as it defined a simple measure of firm efficiency accounting for multiple inputs and outputs (Charnes et al., 1978). DEA in essence is a linear programming technique that converts multiple inputs and outputs into a scalar measure of efficiency. The most efficient utilities are rated to have an efficiency score of one, while the less efficient utilities score between zero and one. The utilities lying on efficient frontier are identified as best practice utilities by DEA. CCR considered constant returns to scale (CRS) model with input orientation whereas subsequent works by Banker, Charnes and Cooper (BCC) proposed a variable returns to scale (VRS) model with either input or output orientation (Banker et al., 1984). Both CCR and BCC are most commonly used DEA formulations in the utility sector. After CCR and BCC, there have been a large number of papers which have extended the application of DEA methodology. Table I summarises few benchmarking studies undertaken in water sector by various authors in different countries using DEA. It also lists the input and output variables used for DEA in these studies along with the identification of sustainability criteria that has been ignored under these studies. 3. Methodology The study uses DEA as a benchmarking tool to estimate efficiencies of 35 DMUs under consideration. Figure 1 presents the methodological sequence for the present study. The first step consists of selection of DMUs that enter the analysis. Important criteria for sustainable water supply services (namely, service sufficiency, service reliability, resource conservation, staff rationalization, business viability, etc.) that address the key sustainability dimensions (social, environmental and financial) are then identified against which efficiencies of the selected 35 DMUs are to be evaluated. Next crucial step for DEA consists of model specification and selection of input and output variables (Table II) that address the above-identified sustainability criteria. DEAP (Version 2.0) software is run to obtain te and se scores for each DMU. The study finally analyses the DEA results to assess performance status of 35 DMUs. 3.1 DEA formulations For water utilities input minimization is generally preferred option as output is often exogenous and beyond managerial control at least in short to medium term.
  • 6. Selection of 35 water North Indian utilities (DMUs) for DEA urban water utilities Identification of important criteria for sustainable water supply services 91 Model specifications and selection of input/output variables representing the above criteria for DEA Results using DEA software Figure 1. Analysis of DEA results Methodology Inputs/outputs Sustainability criteria Sustainability dimensions Inputs 1. UFW Resource conservation Environmental 2. Total staff Staff rationalization Financial 3. O&M expenditure Resource conservation Environmental Outputs 1. Net per capita supply Service sufficiency Social Table II. 2. Total revenue receipts Business viability Financial Inputs, outputs and 3. Water treated Service reliability Social sustainability Also, the analysis in the paper intends to suggest input benchmarks. Hence, the basic DEA model discussed below has an input orientation. This section describes the DEA formulation employed in the paper for analysis. In case of CRS hypothesis as developed by Charnes et al. (1978), a proportional increase of all input levels produces equi-proportional increase in output levels. The CRS assumption is only appropriate when all firms are operating at an optimal scale. Imperfect competition, constraints on finance, etc. may cause a firm to not operate at optimal scale. Banker et al. (1984) suggested an extension of the CRS DEA model to account for VRS situations, by adding a convexity constraint as shown in equation (3). The efficiency score in the presence of multiple input and output factors is defined as: weighted sum of outputs Efficiency ¼ ð1Þ weighted sum of inputs Assuming that the chosen sample has z DMUs, each with m inputs and n outputs, the relative efficiency score of a test DMU p is obtained by solving the model proposed by Charnes et al. (1978): Pn Pn vk ykp vk yki max Pk¼1 m s:t: Pk¼1 m # 1 ;i ð2Þ j¼1 uj xjp j¼1 uj xji
  • 7. BIJ where: 18,1 i ¼ 1 to z; j ¼ 1 to m; k ¼ 1 to n; 92 yki ¼ amount of output k produced by DMU i; xji ¼ amount of input j utilized by DMU i; vk ¼ weight given to output k; and uj ¼ weight given to input j. The fractional program in equation (2) is subsequently converted to a linear programming format and a mathematical dual is employed as shown in equation (3), to solve the linear program. The dual reduces number of constraints from z þ m þ n þ 1 in the primal to m þ n in the dual; thereby rendering the linear problem easier to solve: X z Xz minu;l u s:t: uxjp 2 li xji $ 0 ;j 2 ykp þ li yki $ 0 ;k i¼1 i¼1 ð3Þ Xz li ¼ 1 ! Convexity constraint li $ 0 ;i i¼1 where: u efficiency score; and li dual variables (weights in the dual model for the inputs and outputs of the z DMUs). The above problem is run z times for calculating the relative efficiency scores (u) of all the DMUs. Each individual DMU in the sample requires the solution of linear program. Distance of a DMU from the frontier measures its efficiency scores. A DMU is efficient if it operates on the frontier and also has zero associated slacks. The slacks are output shortfalls and input surpluses associated with the examined DMU, in addition to the increase of all outputs or the decrease in all inputs by a factor equal to the efficiency score. The technique also computes input and output targets that would turn an inefficient unit into an efficient one. À Pz Á Note that the convexity constraint i¼1 li ¼ 1 essentially ensures that benchmarking of an inefficient firm is only against firms of a similar size. That is, the projected point (for that firm) on the DEA frontier will be a convex combination of observed firms. CRS case has no convexity restriction imposed. Hence, in a CRS-DEA, benchmarking of an inefficient firm may be against firms of substantially larger (smaller) size and the “l” weights will sum to a value greater than (less than) one. The use of the CRS specification when not all firms are operating at the optimal scale, results in measures of te confounded by se. The use of the VRS specification permits the calculation of te devoid of these se effects and is most commonly used in the service or utility sector. As the CRS contains VRS within its envelope, VRS model provides te scores which are greater than or equal to those obtained under CRS model. If there is a difference in the CRS and VRS te scores for a particular firm, then this indicates
  • 8. that the firm has scale inefficiency. The DEA model solved may be useful to identify North Indian whether a DMU on the VRS efficient boundary operates with constant, increasing or urban water decreasing returns to scale (CRS, IRS or DRS). utilities 4. Benchmarking framework using DEA The important sustainability criteria incorporated into analysis are service sufficiency, service reliability, resource conservation, staff rationalization and business viability. 93 Most of the output variables considered for analysis in the water sector are generally exogenous and are beyond managerial control at least in short to medium term rendering the exercise on output-oriented DEA model futile. Input orientation has, therefore, been considered for DEA as the objective of the analysis is to suggest input benchmarks to produce a given level of output. This is useful to estimate the potential for reduction in inputs – O&M expenditure, UFW and staff size and hence potential for cost savings. Percentage cost-saving potential (% CSP) of each DMU has been calculated as: Actual Exp: 2 projected Exp: % CSP ¼ £ 100 Actual Exp: Or, potential for input reduction (%) of each DMU has been calculated as: Actual input 2 projected input ¼ £ 100 Actual input where, inputs may be O&M expenditure or UFW or staff size. For utility or service sector, output levels cannot be raised equi-proportional to input levels and hence VRS-DEA model is more appropriate. This paper, therefore, considers input-oriented VRS-DEA model for analysis. 4.1 Selection of input and output variables The input and output variables chosen for DEA have been determined on the basis of: . reference to the standard literature on whatever scarce work on benchmarking has been carried out so far in the water sector (Table I); . analogy drawn from the variable selection in electricity sectors (as both water and electricity sectors are essentially network industries with natural monopoly characteristics); . ideas drawn from the variable selection for benchmarking by other service sectors (namely, hospital, educational institutions, tourism, banks, etc.); and . data availability for the 35 DMUs under consideration from NIUA Report. Suitability of the chosen input and output variables are further affirmed using Pearsons’ correlation method which checks the compliance with isotonicity relationship (i.e. increase in input should result in increase in output). Number of input and output variables is so determined that their sum total is less than one-third of the total number of DMUs selected for DEA (Banker et al., 1989) in order to strengthen the discriminatory power of DEA and avoid “degree of freedom” problems to occur. Utilities which are not subjected to competition may compromise its service quality (or reliability) for reducing costs and to increase profits. Service reliability criterion therefore needs to be incorporated for efficiency estimation in order to effectively align
  • 9. BIJ incentives with the reliability factors. UFW if controlled would enhance environmental 18,1 quality and assure long-term availability of water. This is of special significance as the government policy now accords major emphasis on resource conservation. Rationalisation of staff size and adequate revenue generation are the two most critical issues which need to be given due consideration for business viability of water utilities. The present study therefore considers UFW (in million litres’ per day (MLD), total staff 94 (nos) and operation and maintenance (O&M) expenditure (in Indian rupees, INR millions/year) as three inputs and net per capita supply (in liters per capita per day – lpcd), total revenue receipts (in INR millions/year) and water treated (as percentage of water produced) as three outputs. Service sufficiency and service quality criteria address social sustainability dimension and is represented by outputs net per capita supply and water treated. Resource conservation criterion address environmental sustainability dimension and is represented by inputs UFW and O&M expenditure (O&M expenditure serves as a proxy for energy consumption in the absence of exclusive data on energy consumption for the 35 DMUs). Staff rationalization and business viability criteria address financial sustainability dimension and are represented by an input total staff and output total revenue receipts, respectively. The inputs and outputs chosen for DEA are shown in Table II. 5. Results and analysis This section covers the results of efficiency analysis in terms of te scores, se scores, returns to scale (RTS), benchmark DMUs, input and output slacks, percentage CSPs, etc. for each DMU; ranking position, number of DMUs under different efficiency ranges and cost-recovery analysis. This section further explores the scope for reduction in O&M expenditure, UFW and staff size (Tables III and IV). 5.1 Efficiency analysis te for 35 DMUs ranges from 0.268 to 1 with its average value as 0.814. se for 35 DMUs ranges from 0.279 to 1 with its average value as 0.879 (Table III and Figure 2). Percentage CSP for 35 DMUs ranges from 0 to 73 percent. Total CSP of all DMUs is INR 410 millions/year (US$1.00 < 45.00 Indian rupees, INR) and is 10.65 percent of the actual annual expenditure of all DMUs (Table IV). For 14 DMUs se . te whereas for 13 DMUs te . se and for rest of the eight overall efficient DMUs te ¼ se (Table III and Figure 2). DMUs with te . se need to place major emphasis on improving their operational scale whereas the DMUs with se . te need to focus on productivity and technology improvement. These measures would enhance the operational efficiency of the DMUs. Data on RTS show that 11 DMUs have se ¼ 1. More than 50 percent of the DMUs (18 nos.), mostly large sized with higher population exhibit DRS and need to strive for optimization of operational scale and productivity enhancement. Unbundling of water supply functions may also help in optimal allocation of resources. On the other hand, less than 20 percent of the DMUs (six nos. – Gurgaon, Pathankot, Faizabad, Mathura, Rae Bareli and Rampur), mostly small sized with lesser population exhibit IRS and need to focus on resource expansion. Also possibility may be explored to transfer the resources from the DMUs operating at DRS to those operating at IRS within a state. For the outputs, out of all DMUs, 14 DMUs have slack for net per capita supply whereas only four DMUs have slack for total revenue receipts and three DMUs have
  • 10. North Indian urban water utilities 95 Table III. DEA results: efficiencies, ranking and targets for 35 DMUs
  • 12. North Indian (continued ) urban water utilities 97 Table IV. DEA results: cost-savings potential, cost recovery and slacks for 35 DMUs
  • 14. 1.1 te se North Indian 1 0.9 urban water Efficiencies 0.8 0.7 0.6 utilities 0.5 0.4 0.3 0.2 0.1 0 Gurgaon 99 Delhi Kanpur Lucknow Ludhiana Varanasi Ambala Faridabad Hisar Karnal Rohtak Amritsar Bathinda Hoshiarpur Jalandhar Moga Pathankot Patiala Agra Aligarh Allahabad Bareilly Faizabad Ghaziabad Gorakhpur Haldwani Hapur Jhansi Mathura Moradabad Muzaffarna Rae Bareli Rampur Saharanpur Chandigarh Figure 2. te and se of 35 DMUs Cities slack for percentage water treated. For the inputs, out of all DMUs, 14 DMUs have slack for UFW whereas three DMUs have slack for total staff and one DMU has slack for O&M expenditure. Thus, there is a scope for increasing average net per capita water supply provision by 9.4 percent and reducing UFW by 10.74 percent of their respective actual values of all the DMUs due to slacks, in addition to the decrease in all inputs by a factor equal to the efficiency score. However, scope for increase in rest of the outputs and decrease in rest of the inputs of all the DMUs is almost negligible on account of slacks. Average of projected net per capita water supply of all DMUs is 121.7 lpcd as against their actual average value of 111.3 lpcd. This would require an additional 381 MLD of water to meet the projected demand for all the DMUs. Agra is found to be the most frequent benchmark DMU (for nine inefficient DMUs) followed by Haldwani and Chandigarh (for seven inefficient DMUs each) (Table III). The inefficient DMUs are of similar size and scale as of their respective efficient benchmark DMUs (i.e. Agra, Haldwani and Chandigarh). 5.2 Ranking position and number of DMUs under various efficiency ranges About 18 DMUs rank first on te scores whereas 12 DMUs rank first on se scores. All eight overall efficient DMUs rank first on te and se scores. Delhi, Karnal Ambala and Jalandhar rank first on te score whereas they rank 35th (last), 34th, 33rd and 31st, respectively, on se score. These four DMUs need to focus on improving their operational scale in order to be overall efficient. Jhansi, Gorakhpur and Ghaziabad rank first on se scores but they rank 31st, 30th and 22nd, respectively, on te scores. These three DMUs need to shift their focus towards productivity enhancement and technology upgradation in order to be overall efficient. Pathankot, Mathura and Muzaffarnagar rank close to each other on te and se scores. More than 50 percent DMUs (18 nos.) have 100 percent te and only 14 percent DMUs (five nos. – Ludhiana, Faridabad, Gurgaon, Faizabad and Jhansi) have te , 50 percent. About 70 percent of the DMUs have te . 75 percent. Approximately, one-third DMUs (11 nos.) have 100 percent se and only two DMUs (Delhi and Karnal) have se , 70 percent and for rest of the 22 DMUs, se ranges between 70 and 100 percent. 5.3 Cost-recovery analysis Faridabad, Gurgaon, Faizabad and Jhansi have higher potential for increasing (by more than 60 percent) their actual cost recovery (Table IV and Figure 3).
  • 15. BIJ 120 Actual cost recovery (%) 110 Projected cost recovery(%) 18,1 100 90 80 70 % 60 50 40 30 100 20 10 0 Gurgaon Delhi Kanpur Lucknow Ludhiana Varanasi Ambala Faridabad Hisar Karnal Rohtak Amritsar Bathinda Hoshiarpur Jalandhar Moga Pathankot Patiala Agra Aligarh Allahabad Bareilly Faizabad Ghaziabad Gorakhpur Haldwani Hapur Jhansi Mathura Moradabad Muzaffarna Rae Bareli Rampur Saharanpur Chandigarh Figure 3. Actual vs projected percentage cost recovery Cities Projected annual revenue receipts of all DMUs as obtained from DEA show only 0.15 percent increase in the actual annual revenue receipts of all DMUs whereas projected cost recovery (49.8 percent) of all the DMUs when calculated using projected expenditure data shows 5.4 percent increase in actual cost recovery (44.4 percent) of all DMUs. Thus, actual cost recovery can be increased by 5.4 percent (if all inefficient utilities reach efficient frontier) though potential for increasing actual annual revenue receipts is only by 0.15 percent. Increased cost recovery would help in improving service coverage and hence increased consumer satisfaction. 5.4 UFW analysis Projected UFW is maximum for Kanpur and Allahabad (30 percent each) though they are 100 percent technically efficient and is # 5 percent for 17 DMUs (Table IV and Figure 4). Actual UFW of all utilities is 23.23 percent whereas projected UFW is 18.05 percent of the total water produced of all utilities. Potential for UFW reduction of all DMUs is 305 MLD and is 22.3 percent of the actual total UFW of all DMUs, if all inefficient DMUs reach efficient frontier. Thus, 305 MLD of additional water may be made available to the consumers of all DMUs if UFW is brought 50 Actual UFW (%) 45 Projected UFW (%) 40 35 30 % 25 20 15 10 5 0 Gurgaon Delhi Kanpur Lucknow Ludhiana Varanasi Ambala Faridabad Hisar Karnal Rohtak Amritsar Bathinda Hoshiarpur Jalandhar Moga Pathankot Patiala Agra Aligarh Allahabad Bareilly Faizabad Ghaziabad Gorakhpur Haldwani Hapur Jhansi Mathura Moradabad Muzaffarna Rae Bareli Rampur Saharanpur Chandigarh Figure 4. Actual vs projected UFW (in percentage) Cities
  • 16. down to the projected level as obtained from DEA model. This would help in achieving North Indian the target for average net per capita water supply provision to a great extent. Annual additional revenue receipts potential of all DMUs when percentage UFW is urban water brought down to projected level (through additional water sale) is INR 109.9 millions/year utilities and is 6.4 percent of the actual annual revenue receipts of all DMUs and 2.85 percent of the total annual expenditure of all DMUs. Thus, reducing the UFW would improve service coverage and revenue receipts status. 101 5.5 Staff analysis Potential for reducing staff size of all DMUs is 2,999 nos. and is 8.42 percent of the total number of actual staff of all DMUs (Table III), if all inefficient utilities reach efficient frontier. This would result in cost saving of INR 156.27 millions/year and is 9.5 percent of the actual annual staff expenditure of all DMUs and 4.1 percent of the total annual expenditure of all DMUs. Actual average of staff per 1,000 connections of all DMUs is 7.72 as against projected average of 5.82. Though the analysis shows potential for reducing staff size, average staff per 1,000 connections is well within the range (five to ten) obtained from international average of developing countries (Kaaya, 1999). Thus, focus may be shifted towards reducing staff expenditure and not on staff size at the initial instance. 5.6 O&M expenditure analysis CSP of all DMUs on account of reduction in O&M expenditure, if all inefficient DMUs reach efficient frontier, is INR 253.8 millions/year and is 11.52 percent of the actual annual O&M expenditure of all DMUs and 6.6 percent of the total annual expenditure of all DMUs (Tables III and IV). Cutting down the electricity expenditure would reduce O&M expenditure to a greater extent and therefore suitable measures are required to be taken in this direction. Thus, it is evident that there is significant scope for cost savings on account of UFW control, staff rationalization and O&M cost reduction. 5.7 State-wise performance analysis This section carries out performance analysis for the two union territories (Delhi and Chandigarh) and three states (UP, Haryana and Punjab). Calculations of efficiencies and other variables (staff size, UFW, O&M expenditure, etc.) for each of the three states are based on the respective average values of variables of all the utilities belonging to the state under consideration. Out of 35 utilities under consideration, two utilities are of union territories (Chandigarh and Delhi), seven utilities belong to Haryana, seven utilities belong to Punjab and rest of the 19 utilities belongs to UP. The analysis highlights the following facts: . Delhi and Chandigarh have 100 percent te. te of UP, Punjab and Haryana are, respectively, 0.92, 0.81 and 0.67. Thus, Haryana has to relatively focus more on improving its technical efficiency. . Chandigarh has 100 percent overall efficiency and Delhi has the least overall efficiency (0.28). Overall, efficiencies of UP, Punjab and Haryana are, respectively, 0.76, 0.78 and 0.51. . Chandigarh has 100 percent se and Delhi has the least se (0.28). se of UP, Punjab and Haryana are, respectively, 0.93, 0.85 and 0.84. Thus, Delhi has to place major emphasis on improving its se which in turn would also improve its overall efficiency.
  • 17. BIJ . Delhi exhibits DRS and Chandigarh has 100 percent se. In Haryana, all the utilities 18,1 except Gurgaon (with IRS) exhibit DRS. In Punjab, Bhatinda and Moga have 100 percent se, Pathankot exhibits IRS and rest of the four utilities exhibit DRS. In UP, eight utilities have 100 percent se, four utilities exhibit IRS and rest of the seven utilities exhibit DRS. Suitable strategies need to be evolved to transfer the resources from utilities operating at DRS to those utilities operating at IRS within 102 the state in order to optimize the operational scale. . CSP[1] is nil for Delhi and Chandigarh, highest for Haryana (58.4 percent), very less for Punjab (6 percent) and 23.4 percent for UP. Within Haryana, Faridabad, Gurgaon and Ludhiana have very high CSP (. 65 percent). Within Punjab, Pathankot and Hoshiarpur have higher CSP (. 35 percent) and within UP, Faizabad, Jhansi and Bareilly have higher CSP (. 50 percent). . Potential for UFW reduction (as a percentage of water produced) is nil for Delhi and Chandigarh and is highest for Haryana (14.59 percent) followed by Punjab (13 percent) and UP (8.2 percent). . Potential for staff reduction (as a percentage of total number of actual staff) is nil for Delhi and Chandigarh and is highest for Haryana (54.87 percent) followed by UP (19.9 percent) and Punjab (10.9 percent). . Potential for reduction in O&M expenditure (as a percentage of total expenditure) is nil for Delhi and Chandigarh and is highest for Haryana (41 percent) followed by UP (12 percent) and Punjab (3 percent). . Potential for increasing the annual cost recovery is nil for Delhi and Chandigarh and is highest for Haryana (36 percent) followed by UP (23 percent) and Punjab (4.3 percent). 6. Conclusions Presently, most of the utilities have failed to provide adequate service and connection coverage with wide supply demand gap. UFW of most of the utilities are very high along with high O&M expenditure and oversized and untrained staff. The range of problems prevalent in Indian urban water sector clearly establishes the need for benchmarking. A “benchmark” is a reference or measurement standard used for comparison whereas “benchmarking” is the continuous activity of identifying, understanding and adapting best practice and processes that will lead to superior performance. Benchmarking can be a useful mechanism to help each utility focus on improvement opportunities by comparing its practices with the other utilities and accordingly make suitable changes to some of its procedures and working methods which in turn will lead to continuous improvement. However, commitment for improvement at the top level is the necessary prerequisite to realize the benefits of benchmarking. To fulfill the commitments of the millennium development goals which incorporate the target of “reducing by half the proportion of people without sustainable access to safe drinking water by year 2015” (Johanesburg Summit, 2002), governments will need to develop suitable sustainability-based benchmarking framework for assessing the relative performance of utilities which in turn would facilitate efficient practices by water utilities towards sustainable water supply services to its consumers. Hardly any benchmarking initiative has been undertaken systematically in Indian urban water sector.
  • 18. Benchmarking framework developed in the present study therefore serves as an North Indian important milestone in this direction. urban water Efficiency analysis of the selected 35 urban water utilities using DEA approach shows substantial scope for reduction in UFW, staff size and O&M expenditure and utilities hence, significant potential for cost savings. The study projects the percentage CSP on account of reduction in UFW, staff size and O&M expenditure as 2.85, 4.1 and 6.6 percent, respectively, of the total annual expenditure of all DMUs. Such results may be useful for 103 the water utilities to prioritize their improvement strategy. Though potential for additional revenue receipts is almost negligible, the study shows potential for increased cost recovery due to potential for cost savings (or reduced expenditure). The additional water available through UFW control (305 MLD) would help in meeting projected per capita water requirement (381 MLD) to a great extent. As average number of staff per 1,000 connections is within the international range (five to ten) of developing countries as found by Kaaya (1999), utilities may place more emphasis on reducing the staff expenditure than staff downsizing to curtail operating expenses. Possibility needs to be explored by the utilities to minimize electricity expenses in order to bring down O&M expenditure. The study also suggests that 50 percent (14 nos.) of the inefficient utilities (with te . se) need to focus on improving their operational scale whereas about rest 50 percent (13 nos.) of the inefficient utilities (with se . te) need to strive for productivity and technology improvement (Table III). Thus, the utilities striving to reach the efficient input levels as projected by DEA model would eventually lead to sustainable water supply services. State/UT-wise performance analysis as regards efficiencies and other variables (staff size, UFW, O&M expenditure, etc.) broadly present their status from best to worst in the order of Chandigarh, Delhi, Punjab, UP and lastly Haryana. The analysis, thus, shows maximum scope for improvement in Haryana. Chandigarh exhibits the best performance in spite of the fact that water supply services in Chandigarh are managed by municipal bodies. On the other hand, Haryana exhibits relatively worst performance though water supply services in Haryana are managed by state government body (Public Health Department). Water supply services in Delhi, Punjab and UP are managed by specialist agencies (autonomous body/water boards) and their performance is in the middle order. The benchmarking framework developed in the present study would be useful for the regulator or operator of the facility to rank the utilities under their control for their performance and accordingly devise suitable incentive mechanism or price cap regulation. As water supply is essentially a state subject in India, setting up of an independent regulatory body at state level will almost certainly become a mandatory requirement to execute such benchmarking scheme. The scheme would also help water managers to identify suitable benchmarks, estimate performance targets and devise appropriate measures to remedy underperformance. Governments need to develop uniformly acceptable template for data collection and its standardization in order to facilitate effective implementation of such benchmarking scheme. The results of benchmarking exercise, whenever attempted should be made public which in turn would enable concerned stakeholders to act as pressure groups and facilitate efficient practices by non-performing utilities. Internal efficiencies of water supply services when improved would effect internal savings for greater expansion of service coverage, reduced UFW, reduced electricity consumption and therefore increased revenue generation. This would eventually lead to sustainable urban water supply services.
  • 19. BIJ The scope of the present analysis could not be widened to incorporate additional 18,1 sustainability criteria (such as, services to the poor, tariff design, customer services, revenue functions, etc.) due to limited data availability. Also efficiency analysis did not take into account the impact of non-controllable environment factors (such as topography, population density, water source, ownership status, etc.). However, there is considerable scope for further research on this subject. Urban water utilities of other 104 developing as well as developed countries may also be included for DEA in order to draw useful lessons from the international best practices. Also availability of data on resources (materials, manpower, etc.) and their respective prices would enable cost efficiency analysis of the utilities. Similar benchmarking studies may be undertaken using other techniques, such as SFA, regression analysis, etc. and results may be compared with the current analysis to gain greater insights. Efficiency analysis can also be performed using time series data to estimate change in productivity levels of the utilities. Note 1. Cost-saving potential of Haryana, Punjab and UP is calculated as difference between the total actual and total projected expenditure divided by total actual expenditure of all the utilities belonging to that state. References ´ Aida, K., William, W.C., Jesus, T.P. and Toshiyuki, S. (1998), “Evaluating water supply services in Japan with RAM: a range-adjusted measure of inefficiency”, Omega, International Journal of Management Science, Vol. 26 No. 2, pp. 207-32. Akosa, G., Franceys, R., Barker, P. and Jones, T.W. (1995), “Efficiency of water supply and sanitation projects in Ghana”, Journal of Infrastructure Systems, Vol. 1 No. 1, pp. 56-65. Alsharif, K., Feroz, E.H., Klemer, A. and Raab, R. (2008), “Governance of water supply systems in the Palestinian Territories: a data envelopment analysis approach to the management of water resources”, Journal of Environment Management, Vol. 87 No. 1, pp. 80-94. Banker, R.D., Charnes, A. and Cooper, W.W. (1984), “Some models for estimating technical and scale inefficiencies in data envelopment analysis”, Management Science, Vol. 30 No. 9, pp. 1078-92. Banker, R.D., Charnes, A., Cooper, W.W., Swarts, J. and Thomas, D.A. (1989), “An introduction to data envelopment analysis with some of its models and their uses”, Research in Governmental and Nonprofit Accounting, Vol. 5, pp. 125-63. Berg, S.V. (2006), “Survey of benchmarking methodologies: executive summary”, working paper, World Bank, Public Utility Research Centre, Washington, DC, available at: www.purc.org Berg, S.V. and Lin, C. (2007), “Consistency in performance rankings: the Peru water sector”, Journal of Applied Economics, Vol. 40 No. 6, pp. 93-805. Charnes, A., Cooper, W.W. and Rhodes, E. (1978), “Measuring the efficiency of decision making units”, European Journal of Operational Research, Vol. 2 No. 6, pp. 429-44. Coelli, T., Rao, D.S.P. and Battese, G.E. (1998), An Introduction to Efficiency and Productivity Analysis, Kluwer, London. Coelli, T.J., Estache, A., Perelman, S. and Trujillo, L. (2003), A Primer on Efficiency Measurement for Utilities and Transport Regulators, The World Bank, Washington, DC.
  • 20. Jamasb, T. and Pollitt, M. (2001), “Benchmarking and regulation: international electricity North Indian experience”, Utilities Policy, Vol. 9, pp. 107-30. urban water Johanesburg Summit (2002), “Johanesburg Summit – Secretary General calls for global action on water issues”, available at: www.johanesburgsummit.org/html/media_info/pressrelease_ utilities prep2/global_action_water_2103.pdf (accessed 2002). Kaaya, J.A. (1999), “Experience of autonomous water and sewerage authorities in Tanzania”, Proc. 25th WEDC Conference, Addis Ababa, Ethiopia, 30 August-3 September. 105 Kapadia, K. (2005), “Sustainable water supply in urban development: case studies of Gurgaon, Dwarka and Greater Noida”, Journal of Indian Buildings Congress ( IBC ), Vol. 12 No. 1. Kulshrestha, M. (2005), “Performance assessment and efficiency evaluation for the urban water operations of Indian utilities”, PhD thesis, Indian Institute of Technology, Delhi. Lambert, D., Dichev, D. and Raffiee, K. (1993), “Ownership and sources of inefficiency in provision of water services”, Water Resources Research, Vol. 29, pp. 1573-8. Lin, C. (2005), “Incorporating service quality & prospects of benchmarking: evidence from the Peru water sector”, Utilities Policy, Vol. 13, pp. 230-9. Mugisha, S. (2007), “Effects of incentive applications on technical efficiencies: empirical evidence from Ugandan water utilities”, Utilities Policy, Vol. 15 No. 4, pp. 225-33. NIUA Report (2005), “Status of water supply, sanitation and solid waste management in urban areas for year 1999”, Main Report & Statistical Volume I (Water Supply & Water Tariff), MoUD, Government of India, New Delhi. Patwardhan, S.S. (1993), “Financing urban water supply scheme”, Journal of IWWA, October-December. Raghupathi, P.U. and Foster, V. (2002), “A scorecard for India : Paper 2”, Water Tariff & Subsidies in South Asia, December. Renzetti, S. and Dupont, D. (2007), “Measuring the technical efficiency of municipal water suppliers: the role of environmental factors”, Journal of Land Economics, Vol. 85 No. 4, pp. 627-36. Singh, M.R., Upadhyay, V. and Mittal, A.K. (2005), “Urban water tariff structure & cost recovery opportunities in India”, Water Science and Technology, Vol. 52 No. 12, pp. 43-51. Thanassoulis, E. (2000), “The use of data envelopment analysis in the regulation of UK water utilities: water distribution”, European Journal of Operational Research, Vol. 126, pp. 436-53. Tupper, H.C. and Resende, M. (2004), “Efficiency and regulatory issues in the Brazilian water and sewage sector: an empirical study”, Utilities Policy, Vol. 12, pp. 29-40. Tynan, N. and Kingdom, B. (2002), “A water scorecard: setting performance targets for water utilities”, Public Policy for the Private Sector, Group Private Sector and Infrastructure Network, Public Policy Journal, Note No. 242, The World Bank, Washington, DC. Yepes, G. and Dianderas, A. (1996), Indicators, Water and Waste Water Utilities, 2nd ed., Water and Sanitation Division of the Transportation, Water and Urban Development Department, TWUWS, The World Bank, Washington, DC ( published informally by International Bank of Reconstruction and Development). Zeleny, M. (1982), Multiple Criteria Decision Making, McGraw-Hill, New York, NY. About the authors Mamata R. Singh is a Master of Engineering (Building Engineering and Management) and submitted a PhD thesis in July 2008. She is a Research Scholar at the Indian Institute
  • 21. BIJ of Technology-Delhi, New Delhi, India and a Lecturer at the Directorate of Training and Technical Education, New Delhi, India. Her areas of specialization include urban infrastructure (water), 18,1 project management and quality management systems (including ISO-9000 series). Mamata R. Singh is the corresponding author and can be contacted at: mamatarsingh@yahoo.com Atul K. Mittal holds a PhD (in Waste Water). He is Associate Professor, Environmental Engineering, in the Department of Civil Engineering at the Indian Institute of Technology-Delhi, New Delhi, India. His areas of specialization include water and wastewater design and treatment, 106 urban infrastructure, environmental engineering and management. V. Upadhyay holds a PhD in Economics. He is Professor in the Department of Humanities and Social Sciences, Indian Institute of Technology-Delhi, New Delhi, India. His areas of specialization include development economics, economic theory and econometrics. To purchase reprints of this article please e-mail: reprints@emeraldinsight.com Or visit our web site for further details: www.emeraldinsight.com/reprints