SlideShare ist ein Scribd-Unternehmen logo
1 von 46
1
2




                                              Glycosides

Definition:
Glycosides are (usually) non-reducing compounds, on hydrolysis by reagents or enzymes yield one or
more reducing sugars among the products of hydrolysis.



                             non-sugar        glycosidic
                                                           sugar
                                              linkage
                             (genin)                       (glycone)


1- Alcoholic or phenolic (aglycone): e.g., O-Glycoside

                                                             CH2 OH
                              CH2OH
                                       OH                              O-C6 H11 O5

              C6 H12 O6 +                   -H2O
                                                                            Glycosidic linkage
                Sugar
                                                            Salicin

2- Sulphur containing compounds: e.g., S-Glycoside
                                                                                            Glycosidic linkage
                                         SH
                                                                                             S     C6 H11 O5
C 6H12 O6     + CH2     CH   CH2   C
                                                             CH2       CH       CH2     C
                                         N     OSO3 K
   Sugar                                                                                     N     OSO3 K

                                                                         Sinigrin
3- Nitrogen containing compounds: e.g., N-Glycoside
3




                                      NH2                          NH2
OHCH2       O       OH
                                  N              N            N                      N
     H                        +
                    H
                                      N      N                     N         N
         OH OH
                                             H
                                                              OHCH2      O
                                                                                         Glycosidic linkage
                                                                  H              H

                                                                       OH OH
                                                                       Adenine


4- C-Glycoside
                         HO       O         OH                               HO          O       OH


C6 H12 O6       +

                                                     CH2 OH                                                   CH2 OH
                                                                  Glycosidic
                                                                   linkage               C6 H11 O5
                                                                                  Barbaloin




1- Sugars exist in isomeric α and β forms. Both α and β Glycosides are theoretically possible.
2- All natural glycosides are of the β Type.
3- Some α linkage exists in sucrose, glycogen and starch. Also the glycoside K-strophanthoside
     (strophanthidin-linke to strophanthotriose (Cymarose + β-glucose + α- glucose).
4-




1- According to the type of glycosidic linkage: α- glycoside (α-sugar) and β-glycosides (β-sugar).
2- According to the chemical group of the aglycone involved into the acetal union:
a. O-glycoside (OH group)
b. S-glycoside (SH group).
c. N-glycoside (NH group).
d. C-glycoside (C group).
3- According to the nature of the simple sugar component of the glycoside:
a. Glucosides (the glycone is glucose).
4




b. Galacosides (the glycone is galacose).
c. Mannosides (the glycone is mannose).
d. Arabinosides (the glycone is arabinose).
4- According to the number of the monosaccharides in the sugar moiety:
a. Monoside (one monosaccharide) e.g., salicin.
b. Biosides (two monosaccharide) e.g., gentobioside.
c. Triosides (three monosaccharide) e.g., strophanthotriose.
5- According to the physiological or pharmacological activity ‘therapeutic classification)
a. Laxative glsycosides.
b. Cardiotonic glycosides.
6- according to the correlation to the parent natural glycoside:
a. primary glycosides e.g., amygdalin, purpurea glycoside A,
b. Secondary glycosides e.g., prunasin, digitoxin.
7- According to the plant families.
8- According to the chemical nature of the aglycone:
a. Alcoholic and phenolic glycosides (aglycones are alcohols or phenols)
b. Aldehydic G (aglycones are aldehydes).
c. Cyanogenic G (aglycones are nitriles or derivatives of hydrocyanic acid).
d. Anthracene or anthraquinone G (aglycones are anthracene der.).
e. Steroidal G (aglycones are steroidal in nature, derived from cyclopentanoperhydrophenanthrene) .
f. Coumarin G (aglycones are derivative of benzo α-pyrone).
g. Chromone glycosides (aglycones are derivatives of benzo-δ-pyrone)
h. Flavonoidal G (aglycones are 2-phenyl chromone structure).
i. Sulphur containing or thioglycosides (aglycones are contain sulphur).
j. Alkaloidal glycosides (aglycone is alkaloidal in nature) e.g., glucoalkaloids of solanum species.


Sugars in glycosides:
1- Monosaccharide (glucose in salicin, rhamnose in ouabain)
2- Disaccharides (gentiobiose in amygdalin).
3- Trisaccharides (strophanthotriose).
4- Tetrasaccharides (purpurea glycosides)
5




5- Rare sugers (deoxy sugers)
6- Sugar linked in one position to the aglycone rarely in 2 positions as sennosides.




A- 6-deoxy sugars
e.g., 1- methylpentoses                                  2- α-L-rhamnose.
             CHO
           H C OH                                                   O OH
                                                       HO CH3
           H C OH
          HO C H
          HO C H
               CH3                                            OH OH


B- 2,6-deoxy sugars (called rare sugars)
e.g.,
1- D.digitoxose           2- D.cymarose                      3- diginose

             CHO                           CHO                                   CHO
             C H2                          C H2                                  C H2
             C OH                          C OCH3
                                                                           H3 CO C
              C      OH                    C      OH                        HO C
              C      OH                     C     OH                         H   C      OH
              CH3                          CH3                                   CH3


C- 2-deoxy sugars                       e.g. 2-deoxy-D-ribose

                                       HOH2 C        O
                                                         H
                                                H             OH

                                                    OH H
6




Characteristic of 2-deoxy sugers:
1- Give positive Schiff’s test for aldehydes.
2- Positive Keller-Kelliani test.




Diversity in structure makes it difficult to find general physical and chemical properties:
1- A- Most glycosides are water soluble and soluble in alcohols.
B- Either insoluble or less soluble in non polar organic solvents.
C- More sugar units in a glycoside lead to more soluble in polar solvents.
2- Glycosides do not reduce Fehling’s solution, but when are susceptible to hydrolysis give reducing
sugars (C-glycosides are exceptions).




1- Acid hydrolysis:
a- Acetal linkage between the aglycon and glycone more unstable than that between two individual
sugars within the molecule.
b- all glycosides are hydrolysable by acids non specific (except C-glycosides).
c- Glycosides containing 2-deoxy sugars are more unstable towards acid hydrolysis even at room
temperature.
d- C-glycosides are very stable (need oxidative hydrolysis).
2- Alkali hydrolysis:
1- mild alkali
2- strong alkali
3- Enzyme hydrolysis:
1- Enzymatic hydrolysis is specific for each glycoside there is a specific enzyme that exerts a
hydrolytic action on it.
7




2- The same enzyme is capable to hydrolyze different glycosides, but α and β sterio-isomers of the
same glycoside are usually not hydrolysed by the same enzyme.
3- Emulsin is found to hydrolysed most β-glycoside linkages, those glycoside are attacked by
emulsin are regarded as β-glycosides.
4- Maltase and invertase are α-glycosidases, capable of hydrolyzing α-glycosides only.




1- Water mixed with different proportions of methanol or ethanol (most suitable extracting solvent).
2- Non-polar organic solvents are generally used for de-fating process.
3- Glycosides are not precipitate from aqueous solutions by lead acetate.




1- Destruction of hydrolysing enzymes.
a. Drying for 15-30 min. at 100 C˚.
b. Place plant in boiling water or alcohol 10-20 min.
c. Boiling with acetone.
d. Cold acid pH treatment.
e. Extract at very low temperature.
2- De-fating or purification of the plant material (in case of seeds).
3- Extraction of the glycosidal constituents by alcohol, water or dilute alcohols. Some times ether
saturated with water for dry material.
4- Concentrate the alcoholic extract (to get rid of the organic solvent). Add water (or hot water)→
filter any precipitate.
5- Purify aqueous extract:
a- Extract non glycosidal impurities by org solvent.
b- Water soluble impurities precipitate by lead acetate.
6- Precipitate excess lead salts.
7- Isolation of the glycosides from the purified aqueous solution, by crystallization.
8




They do not themselves reduce Fehling’s. but reducing sugars upon hydrolysis.
To test for the presence of glycosides
Estimate reducing sugars before and after hydrolysis. (by acids or enzymes)




1- Steroidal or cardiac glycosides:
Give positive Liebermann’s test (steroidal structure).
2- Anthraquinone glycosides and/or aglycone:
Give positive Borntrager’s test, characteristic reddish coloration with alkalies.
3- Flavonoidal glycosides and/or aglycones:
Characteristic color with, NH4OH, AlCl3, FeCl3.
4- Cyanogenetic glycosides give upon hydrolysis hydrocyanic acid can be easily tested by change
Na bikrate paper (yellow) to red color.
5- Sulphur containing glycosides give black precipitate of silver sulphate upon treatment with
AgNO3 solution.




1- Keller Killiani’s test for 2-deoxy sugers:
Specificity of action of the hydrolyzing enzymes is often applied for the identification of the sugar
moieties of glycosides or even the glycoside as alcohol.
1- Scillarin A [acid hydrolysis] →→→ Scillaridine A + Scillabiose
 Scillabiose [Scillabiase] →→→ Rhamnose + glucose.
9




                                                             CHO




2- Prunasin [Prunase] →→→          glucose + HCN +
                                                     H
                                                             OC 6 H 11 O 5
                                                         C

                                                             CN


3- Amygdalin [amygdalase] → Prunasin                                         + glucose


4- Myrosin enzyme is specific for thio D- glucosides e.g., Sinigrin and sinalbin.




Determination of the glycosidic linkages:
1- By the use of α and β glycosidases.
2- By acid hydrolysis of glycosides, immediate optical activity measurement of the resulting
solution.


Color reactions based on the sugar moiety [2-deoxy sugars]:
1- Keller Killiani:
glacialacetic acid containing + FeCl3 + H2SO4 → brown ring free from red (acetic acid a quire blue).
2- Xanthydrol:
xanthydrol in glacial acetic containing 1% HCl + glycoside [heat]→ red color.
N.B. Stability indicating after extraction. U.S.P.


Medicinal importance of glycosides:
1- Cardiac drugs: cardiotonic glycosides e.g., digitalis glycosides, strophanthus, squill.
2- Laxatives e.g., anthraquinone glycosides of senna, aloes, rhubarb, cascara, frangula.
3- Counter irritants e.g., thioglycosides and their hydrolytic products ‘allylisothiocyanate’
4- Analgesics e.g., methylsalicylate ‘a hydrolytic product of gaultherin.
5- Anti rheumatic e.g., salicin.
10




6- Some glycosides are claimed to reduce the capillary fragility e.g., flavonoidal glycosides, rutin,
    hisperidin.
7- Anti-inflamatory: e.g., the glycoside glycyrrhizin has a demulcent, expectorant and antispasmodic
    action.
8- More recently as an anticancer agent e.g., amygdalin known in the U.S. as Laetrile.




1-The genins of all cardiac glycosides are steroidal in nature, that act as cardiotonic agents.
2-They are characterized by their highly specific action cardiac muscle, increasing tone, excitability
and contractility of this muscle, thus allowing the weakened heart to function more efficiently.
                                                                                   Lactone ring
                                                                    12       CH3
                                                                                   17
                                                           11               13
                                                   1                                    16
                                                       R        9           14
                                           2                                        15
                                                       10           8        OH
                                               3
                                                                        7
                      Sugar            O               5
                                                   4            6

All cardio active glycosides are characterized by the following structural features:
1- The presence of β-OH at position C-3, which is always involved in a glycosidic linkage to a mono,
di, tri, OR tetra saccharide.
2- The presence of another β-OH group at C-14.
3- The presence of unsaturated 5 or 6- membered lactone ring at position C-17, also in the β
configuration.
4- The A/B ring junction is usually (cis), while the B/C ring junction is always (trans) and the C/D
ring junction is in all cases (cis).
5- Additional OH groups may be present at C-5, C-11 and C-16.
11




1- Cardiac glycosides that α-β unsaturated 5-membered lactose ring in position C-17 are known as
cardenolides. These are represented by the digitalis and straphanthus group.


2- Digitalis glycosides contain angular methyl group at C-10, while strophanthus glycoside are
characterized by presence of either an aldehydic (CHO) or primary alcoholic (C`H2OH) group at C-
10.
                                                                                               O         O



                                                                OH 12            CH3
                                                                                          17
                                                           11                13
                                                 1                                             16
                                                       R         9           14
                                         2                                                 15
                                                          10         8           OH
                                             3
                                                                         7
                         Sugar      O                  5
                                                 4              6

                                                     Cardenolides
Digitalis glycosides             R=CH3
Strophanthus glycosides          R=CHO OR CH2OH


3- Cardiac agents that have doubly unsaturated 6-membered lactone ring in position C-17 are
referred to as Bufadienolides.
4- This group includes the squill glycosides and the toad venom, Bufotoxin.


                                                                                                    O


                                                                                                          O



                                                                         OH 12
                                                                                                     17
                                                                    11                    13
                                                      1                                                      16
                                                                             9            14
                                             2                                                          15
                                                                10                8        R1
                                                 3                                                  R2
                                                                                      7
                       Sugar        O                           5
                                                      4                  6

                                                 Bufadienolides
12




Squill glycosides               R1=OH, R2=H
Bufotoxin                       R1 & R2 = ester group
5- The glycone portion at position C-3 of cardiac glycosides may contain four monosaccharide
molecules linked in series. Thus, from a single genin one may have a monoside, a bioside, a trioside or
a tetroside.
6- With the exception of D-glucose and L-rhamnose, all the other sugars that are found in cardiac
glycosides are uncommon deoxy-sugars e.g., Digitoxose, Cymarose, Thevetose.

 CHO                            CHO                                 CHO
  C H2                          C H2
                                                                    HC OH
  C OH                          C OCH3
                                                            CH3 O C H
  C      OH                     C      OH
                                                               H     C     OH
  C      OH                     C      OH                     H      C   OH
  CH3                           CH3                                  CH3

Digitoxose                Cyamarose                     Thevetose


Isolation difficulties:
1. Major difficulty in the isolation of 1ry glycosides from the crude drug.. why? because 1ry glycosides
are converted into secondary glycosides by hydrolysable enzymes.
2. Other difficulty is the existence of several closely related glycosides in the same drug, which are
extremely difficult to separate and purify.




Origin: D. purpurea, D. lanata, D. lutea and D. thapsi
The structures of the common aglycones of the digitalis group are indicated below:
13




                                                                             O        O


                                                      R1

                                                                        17
                                             11       12
                                                              13
                                     1                                  16       R2
                                                  9           14
                            2                                            15
                                          10          8        OH
                                3
                                                          7
                  H     O                5
                                     4            6


Compounds                           R1                             R2
Digitoxigenin                       H                              H
Gitoxigenin                         H                              OH
Digoxigenin                         OH                             H




      DX = Digitoxose, DX (AC)=Acetyldigitoxose,G = Glucose.


1- Glycosides derived from Digitoxigenin:
a- Lanatoside A = Digitoxigenin---DX---DX----DX(AC)---G.
b- Acetyl-digitoxin = Digitoxigenin---DX---DX----DX---(AC).
c- Digitoxin = Digitoxigenin------DX---DX----DX.
d- Purpurea gly A = Digitoxigenin---DX---DX----DX---G


2- Glycosides derived from Gitoxigenin:
a- Lanatoside B = Gitoxigenin---DX---DX----DX(AC)---G.
b- Acetyl-gitoxin = Gitoxigenin---DX---DX----DX---(AC).
c- Gitoxin = Gitoxigenin------DX---DX----DX.
d- Purpurea gly B = Gitoxigenin---DX---DX----DX---G
14




3- Glycosides derived from Digoxigenin:
a- Lanatoside C = Digoxigenin---DX---DX----DX(AC)---G.
b- Acetyl-digoxin = Digoxigenin---DX---DX----DX---(AC).
c- Digoxin = Digoxigenin------DX---DX----DX.
d- Deslanoside = Digoxigenin---DX---DX----DX---G


1- The 1ry glycosides Lanatoside A, Lanatoside B, Lanatoside C are acted by specific enzyme
which split the terminal glucose, give the 2ry glycosides acetyldigitoxin, acetylgitoxin and
acetyldigoxin respectively.
2- The deacetyl-lanatosides A, B and C can be obtained by the alkaline hydrolysis of the
corresponding lanatosides.
3- Digitoxin, gitoxin and digoxin are obtained by the action of alkali on their acetyl-derivatives.

                                           Lanatoside A

                               Alkaline           Specific
purpurea gly. A                                                 Acetyldigitoxin
                               hydrolysis         enzyme

                Specific                                   Alkaline
                                    Digitoxin
                enzyme                                     hydrolysis
                                  Acid hydrolysis

                                   Digitoxigenin + 3 digitoxose




1- The glycoside K-strophanthoside (a trioside), K-strophanthin B (bioside) and cymarin (a
monoside) were isolated from different strophanthus species.
2- The 1ry glycoside K-strophanthoside gives by hydrolysis one molecule of glucose and the 2ry
glycoside K-strophanthoside B or K- strophanthin B.
15




3- The later gives by hydrolysis one molecule of glucose and the tertiary glycoside cymarin, which
on turn hydrolyze into the genin K-strophanthidin and the deoxysugar cymarose.


                                                                O          O




                                                           17
                                11       12                                                 K- strophanthidin
                                                 13
                        1                                  16
                            CHO 9                14                                         Cymarin
                2                                           15
                            10           8           OH
                    3       5                                                               K- strophanthin B
                                             7
            O
                        4   OH 6                                                            K- strophanthoside
         Cymarose

         B-glucose

         a-glucose


The seeds of Strophanthus gratus contains another glycoside named Ouabain or (G-strophanthin),
which yield on hydrolysis rhamnose and the aglycone ouabagenin.
Ouabagenin differs from K-strophanthidin in having 2 additional (OH) groups at C-1 and C-11 and
having a 1ry alcoholic group at C-10 instead of the aldehydic group.

                                                                                    O   O



                                                       OH
                                              OH                               17
                                                                12
                                     OH           11                 13
                                                                               16
                                              CH2 9                  14
                            2        1                                          15
                                                 10         8         OH
                                3
   Rhamnose                                                      7
                        O                        5
                                     4                 6
                                             OH

                                                      Ouabain (G-strophanthin)
16




This group of cardioactive agents includes the squill glycosides (the scillarins) and the Toad poison
(Bufotoxin).
The genins of squill glycosides differ from those of the cardenolides in two important aspects:
1- They have six membered doubly unsaturated lactone ring in position C-17.
2- They have at least one double bond in the steroid nucleus.

                                                                           O


                                                                               O




                                                                      OH

         Glucose-Glucose-Rhamnose         O
                                                                     Scillaridin A
                                                                    Proscillaridin A
                                                                     Scillarin A
                                                                     Glucoscillarin A
                                   The Bufadienolides of Squill


Name of glycosides                      Structure
Glucoscillarin                    Scillaridin A ---RH—G---G
Scillarin A                       Scillaridin A ---RH—G
Proscillaridin A                  Scillaridin A ---RH
17




* The different cardiac glycosides show different solubilities in aqueous and organic solvents. They
are usually soluble in water or aqueous alcohol and insoluble in the fat solvents with exception of
chloroform and ethylacetate.
* The higher number of sugar units in the molecule, the greater solubility in water but lower soluble in
chloroform.
* Alcohols are good solvents for both the glycosides and the aglycones. Therefore, they are considered
as the solvents of choice for the extraction of all CG from drugs.
* pet.ether and ether are used for defatting process of drug, they do not dissolve CG.




1- Acid hydrolysis cleavage of the glycosides into aglycones and sugar residues.
2- Specific enzyme usually coexist with CG in plants, which may split the primary G into G with less
sugar units. Thus, CG deteriorate during drying and storage unless special precautions are taken.
3- So it is required by many pharmacopoeias that CG containing drugs must contain not more than
specified moisture content and that these drugs should be stored in sealed containers over
dehydrating agents.
4- It is recommended to heat stabilize these CG, by destroying the enzymes at higher temperatures. At
higher temperature, the tertiary OH gp at C-14 may split off as water, leading to formation of an
inactive anhydro-form of CG.
                                                           O    O                                                               O    O



                                       12       CH3                                                         12       CH3
                                                      17                                                                   17
                              11               13                                                  11               13
                      1                                    16   -H2O                                                            16
                          R        9           14                                          1   R        9           14
              2                                       15                           2                                       15
                          10           8        OH                                             10           8
                  3                                                                    3
                                           7                                                                    7
Sugar     O               5
                                   6                                   Sugar   O               5
                      4                                                                                 6
                                                                                           4



5- The gitoxin has in addition to tertiary OH at C-14 another secondary OH at C-16. Both OH gps
split as water by the action of H2SO4 with the formation of two additional double bonds. These with
18




the double bond of the lactone ring from a conjugated double bond system that makes the compound
fluorescent in UV light.
                                                             O        O                                                                 O    O



                                         12       CH3                                                               12       CH3
                                                        17                                                                         17
                                11               13                                                        11               13
                        1   R        9                  16       OH   -2H2 O                       1                                    16
                                                 14                                                    R        9           14
                2                                        15                                2                                       15
                            10           8        OH                                                   10           8
                    3                                                                          3
                                             7                                                                          7
Sugar       O               5
                                     6                                         Sugar   O               5
                        4                                                                                       6
                                                                                                   4




The detection of gitoxin in other digitalis G is based on the above mentioned reaction.




1- CGs are steroidal in nature, give +Ve with Liebermann’s and Salkoviski’s test.
2- CG that contain deoxy-sugars are distinguished by Keller Kiliani’s test, e.g., digitoxose and
cymarose.
3- Cardenolides are distinguished from the scillarins by a group of color reagents, that are all
alkaline solutions of aromatic nitro compounds, namely,
Kedde’s reagent, 3,5 dinitrobenzoic,
Raymond’s reagent, metadinitrobenzene,
Baljet’s reagent, picric acid,
Legal’s test, alkaline solution of sodium nitroprusside.
4- All these nitrocompounds react with the active methylene of the five membered lactone ring (in
alkaline medium) to give characteristic colors.




1-                  Cardiotonics, CHF, rheumatic heart disease, atherosclerosis, HTN.
2-                  Diuretics (capillary of the kidneys are dialated).
19




1- The glycone part displays a great influence on the solubility and the rate of absorption and
distribution of the glycosides to the site of action.
2- Small change in the molecules such as a change of the location of the OH gp, modify the cardiac
activity or even eliminate it completely.
3- The saturation and/or cleavage of the lactone ring, destroys the cardiac activity.
Therefore, the closely related CG, differ greatly in the rate of absorption, duration of action and
their cumulative effect.




1- digitalis leaf (digitalis tablets)
2- digitoxin tablets 200μg/tablet
3- digoxin injection contain 0.0025% digoxin
4- digoxin tablets contain 250μg/tablet
5- gitalin, lanatoside C, deslanoside, strophanthus, strophanthin, ouabain and squill.
20




          Anthraquinone                                          Anthrone                                           Anthranol
               O                                                         O
                                                                                                                       OH
     8                  1                                    8                          1
7              9             2                      7                     9                     2
                                      4H
6              10                3                  6                     10                    3
     5                  4                                    5       H         H        4
               O                                                                                                       H
                                           O
          2H
                             8                           1
                    7                      9                      2

                    6                      10                        3
                             5        H                  4
                                                OH

                                     Oxanthrone




1- O-glycosides where the aglycone moiety is 1,8 dihydroxyanthraquinone derivatives, e.g.,

Gl             O
     O                  OH                                                O
                        1                           Gl       O                          OH                 Gl   O
                                                                                                                       O
                                                                                                                                OH
                                                                                        1                                       1
     8         9                 2                           8            9                     2               8      9             2
               10
                                     CH2 OH                               10                                           10
      5                 4                                                                           COOH                                 CH3
                                                             5                          4                       5                4
               O
                                                                          O                                            O
 Aloe-emodin-8-glycoside                                 Rhein-8-glycoside                                 Chrysophanol-8-glycoside


2- O-glycoside where the aglycone moiety partially reduced 1,8 dihydroxy anthraquinone, e.g.,
Oxanthrone-type.
                                                                                   Gl
                                                         OH                                 OH
                                                                  H            O
                                            7            8                9                 1        2

                                            6                             10                         3
                                                         5                                  4
                                                                         O


                                               Emodin-oxanthrone-9-glucoside
3- C-glycoside where the aglycone structure (anthrone der.)
                                                                 O
                                            OH                                 OH

                                     7          8                9             1            2

                                     6                           10            4            3
                                                5                                                   CH2 OH
                                                         H               C6 H11 O5
21




                                               Barbaloin
4- O-glycosides where the aglycone moiety is di-anthrone der. (i.e., dimmer) e.g., Sennosides where
there is C-C bridge between the anthranol units. Sennoside A&B
                                  Gl                 O
                                           O                 OH

                                  7         8        9       1        2

                                  6                  10      4        3
                                                                          COOH
                                           5     H
                                                         H
                                                                          COOH




                              Gl           O                 OH
                                                     O




The most widely used drugs that contain anthracene compounds are:




Consists of the dried leaflet of Alexandrian or Khartoum senna, Cassia senna (C.acutifolia),
Tinnevelly senna (C.angustifolia).
Constituents:
Dimeric anthracene glycosides derived from two anthrones moieties which may be:
                     O
               OH            OH
                             1                                              O
                                                                  OH              OH
               8     9                                                            1
                                       2
                                                                  8          9         2
                     10
                                           CH2 OH                           10
               5              4                                                            COOH
                                                                  5                4
           Aloe-emodin anthrone
                                                                      Rhein anthrone

1- Similar anthrone moiety (Homo-dianthrones) i.e., 2 rhein anthrone moieties condensate through
two C-10 atomes. Thus it can be exist in two optical forms, Sennoside A (L- form) & Sennoside B
(meso form).
22




                        Gl              O
                              O                     OH

                        7      8        9           1       2

                        6               10          4       3
                                                                COOH
                              5     H
                                            H
                                                                COOH




                       Gl    O                      OH
                                        O
                                                                           Sennosides A &B
2- Or different (Hetero-dianthrones) i.e., one rhein-anthrone & one emodin anthrone, Sennoside C
(L- form) and Sennoside D (meso form).

                               Gl                   O
                                        O                       OH

                               7        8           9           1      2

                               6                    10          4      3
                                                                           CH2 OH
                                        5       H
                                                        H
                                                                           COOH




                             Gl         O                       OH
                                                    O

                                                Sennoside C&D




The dried bark of Rhamnus purshiana Family Rhamnaceae. B. P. specified that the collection must
be made at least one year before the bark is used (fresh bark contains an emetic principle).
Constituents:
A- Four primary glycosides:
1- cascarosides A&B (glycosides of barbaloin)
2- cascarosides C&D (glycosides of chrysaloin)
23




      OH           O          OH                               O          OH
                                             Gl    O




                                    CH2 OH                                         CH2 OH
           H            Gl                                 H        Gl
         Barbaloin                                                 Cascaroside A& B


               O             OH                   Gl   O           O          OH
    OH




                                   CH3                                               CH3
           H           Gl                                      H         Gl

         Chrysaloin                                            Cascaroside C & D            B-Two   aloins
(secondary glycosides):
Barbaloin derived from (C-10-C-glycoside) of aloe-emodin anthrone and chrysaloin derived from
(C-10-C-glycoside) of chrysophanol anthrone.
C- A number of O- glycosides:
e.g., derived from emodin, emodine oxanthrone, aloe emodin and chrysophanol.

    OH         O             OH
                                                   OH          O          OH




                                   CH2 OH
                                                                                   CH3
               O
                                                               O
           Aloe emodin                                  Chrysophanol

E- Free anthraquinones:
Aloe emodin, chysophanol and emodin.




1- Frangulin (frangula emodin rhamnoside).
2- Glucofrangulin (frangula emodin glucorhamnoside).
24




                                     OH       O         OH




                         RO                                      CH3
                                              O

                                     Frangulin         R= Rhamnose
                                    Glucofrangulin      R= Rhamnose-glucose

3-             hydrolysis of glucofrangulin yields frangulin and glucose.
4-             Hydrolysis of frangulin gives frangula emodin and rhamnose.




1- Consist of glycoside of rhein, rhein anthrone, chrysophanol and aloe emodin.
2- Dianthrones of heteroanthrone types are palmidin A, B, C, Rheidins, sennosides A&B and their
oxalate esters (sennosides E&F).
3- The presence of tannins in rhubarb makes the drug constipating. So in small doses, rhubarb exerts
no purgative action but acts only as intestinal astringent, but large doses cause purgation.




Cascara is a purgative, mainly in the form of liquid extract, elixir or as tablets prepared from a dry
extract.
The laxative action of the crude drugs is always higher than from their content of anthracene
der. The different anthracene der. contained by the crude drug are said to exert a synergistic
action.
Thus, the naturally occurring anthracene glycosides were found superior to the synthesis of
numerous hydroxyl anthracene der.
Some of these synthetic compounds act too drastically and also caused kidney damage.
The only compound which is used to some extent in current medicine is danthrone. It is also
used as a standared in colorimetric assays of anthraquinone glycosides.
25




                                           OH       O        OH




                                                    O

                                                Danthrone
Note:
1- The 1ry glycosides are more active than the aloins while the free anthraquinon have little
purgative activity.
2- C-C glycosides, aloins are very resistance to hydrolysis and are not easily hydrolysed (like other
anthrones and anthranols) to corresponding anthraquinones.
3- Aloin type glycosides are present in aloes and other anthracene bearing drugs of the family
liliaceae.




1- Glycosilation:
The purgative action of anthracene bearing drugs is owed to their anthracene glycosidal content rather
than their content of free anthracene aglycones (i.e., glycosylation is the main requirement for activity,
as the sugar moiety serve to transport the aglycone to the site of action in the large intestine).
2- Hydroxylation:
Hydroxylation of C-1, C-8 is essential for activity. Increase hydroxylation leading to increase
solubility.
3- Oxidation level:
The degree of oxidation at positions C-9 & C-10 plays an important role in the pharmacological
activity. Higher oxidation level at C-9 & C-10 caused lowering of activity. i.e., anthrones and
anthranols are more potent than their corresponding oxanthrones, which in turn more active than their
corresponding anthraquinones. Complete reduction of C-10 &C-9 lead to complete loss of activity.
4- The nature of substances at C-3:
Derivative with CH2OH (as in aloe emodin) are more active than those with CH3 substitution. The
latter more active than derivative with COOH substitution at C-3.
26




Anthraquinone glycosides containing adimer more active than a monomer.
5- Effect of storage on the active of anthracene glycosides:
a- Prolonged storage of anthracene bearing drugs may bring oxidation of anthranols and anthrones to
give the less active anthraquinones. Thus, the activity of drugs decreases by time. However,
anthraquinone glycosides do not cause any griping action (like anthranol and anthone), thus no
antispasmodic such as belladonna is prescribed with them.
b- Drugs as senna, Aloe and cascara preparations retain their activity for a long time.
c- Cascara and frangula must be aged for one year before it is used for medicinal preparation.WHY?


Stability is achieved as follows:
1- In senna, there is dimeric glycoside in which a C-C bridge between two anthrone units is formed
(the C-10 position of one anthrone is involved in a C-C-covalent bonding with C-10 of the other
anthrone). Thus, the C-10 position can not be easily oxidized and the anthrone structure is stabilized.
2- In the aloe, the aloins (barbaloin & chrysaloin) contain C-C glycosidic linkage (anhydroglycosides)
stabilise the anthrone structure.
4- In cascara, cascarosides have an additional O-glycosidic linkage (beside the C-10-C glycosidic
linkage. The solubility of cascarosides is increased and thus, produce higher pharmacological activity.




The glycosides are extracted and hydrolyzed by boiling the drug with acids.
The aglycones are extracted from the acidic solution with ether or benzene. Upon shaking the ether or
benzene layer with aqueous alkali or ammonia solution, the aqueous layer assumes a deep red color,
because of the formation of anthraquinone salts.
Borntrager’s reaction can distinguish anthraquinones from anthrones and anthranols which do not
give the test unless they are converted to anthraquinone by oxidation with mild oxidants such as
hydrogen peroxide or ferric chloride.
Official anthraquinone drugs in B.P and U.S.P.:
1- Senna leaf & senna fruit (pod).
2- Aloes.
3- Cascara tablets, elixir, dry exract, liquid extract.
27




4- Rhubarb powdered, tincture.
5- Danthrone
6- Frangula bark




-   Flavonoidal compounds are considered as the largest group of naturally occurring phenols.
-   Flavonoidals constitute the majority of the yellow colored plant pigments.
-   Many flavonoidal compounds present as a glycosidic or as a free forms.
-   All derived from the same parent nucleus, 2-phenyl-benzopyran (flavan), thus they have a basic C-
15 skeleton.
Flavonoidal compounds are classified according to the oxidation level of central pyran ring they are
classified into flavones, isoflavones, flavonols, flavanones, (true flavanoids) anthocyanidins,
chalcones and aurones.
True flavones, are 2-phenyl chromones (2-phenyl benzopyrone), while isoflavones are 3-phenyl
chromones der.
Flavonols are 3-hydroxyflavones, while flavanones are 2,3-dihydro der. of flavones (2,3-double
bond is lacking).
(2-phenylbenzopyran)              (2-phenylbenzopyrone)
28




                       1                      2'       3'
         8
                  9    O                 1'                                            O
 7                         2                                4'
 6                     4            3
                  10                           6'      5'
         5
             Flavan
                                                                                       O
                                                                                        Flavone
                       O                                                                     O



                                         OH

                       O                                                                     O

                  Flavonol                                                            Isoflavone


                                                                 O

                                                                         H
                                                                        H

                                                                 O
                                                                     Flavanone



Anthocyanidines, chalcones and aurones are lack the typical flavone structure. Anthocyanidins and its
glycosides (anthecyanins) are ionic oxonium salts. This is responsible for the permanent blue, purple,
violet, mauve, and red color of flower, fruits and leaves of higher plants.
Anthocyanidins and anthecyanins are soluble in polar solvents.


Cyanidin chloride is an example of anthocyanidines .
                                                                                                 -
                                                   R                                        Cl                          OH
                   +                2'        3'                                                              2'   3'
     8                                                                            8         +
             9     O           1'                                        OH             9   O            1'
7                                                   4' OH        -            7                                         4' OH
                                                            X
6                          3                                                  6                      3
             10                         6'    5'                                                              6'   5'
                                                R                                      10                OH
     5                                                                            5
             Anthocyanidins                                                       OH        Cyanidin chloride

Chalcones, have no central pyrone ring, so they are not true flavonoidal compounds. The parent
compound chalcone, is chemically phenyl-styryl ketone, or benzylidene acetophenone.


Aurones are oxidized forms that are obtained by enzymatic oxidation. Instead of the central pyrone
ring of the normal flavonoidal structure, aurones have five membered ring.
29




                                                          O
                                                                  CH



             O                                            O


             Chalcon                                     Aurone




Flavonoids dissolve in alkalis give intense yellow color solution, on the addition of acid become
colorless.
Flavonoids exhibit strong fluorescence under UV light.


Flavonoidal glycosides are soluble in water and alcohol. Ethylacetate is the solvent of choice for the
extraction of flavonoids from aqueous solution.
Flavonoids compounds may be characterized through the investigation of their UV Spectra, that
usually show two main bands,
1- Band at higher wavelength (band I) which is attributed to the cinnamoyl fraction of the
flavonoidal structure Why?.
2- Band at lower wavelength (band II) which is due to the benzoyl fraction of the flavonoidal
structure.
30




               Benzoyl
                                     O
                                                     B
                           A
                                             R
                                                         Cinnamoyl
                                     O




 A



                      II                         I
                      Band                       Band

               200             Wave length                  400


           Hypsochromic shift             Bathochromic shift

Band I >> 300 nm
If R= H                  R=OH                 R=O-substitution
Flavones                 flavonols            3-sub flavonol
Band I: 304-350 nm         Band I: 352-385         Band I: 328-357
Band II << 300nm
(250-280 nm)
Note:
More OH in ring A: Bathochromic shift in band II.
More OH in ring B: Bathochromic shift in band I.
Shift reagents:
Back to lab.




1- Diosmin: flavone glycoside
Occurance: buchu leaves, Barosma crenulata F. Rutaceae.
Uses: diuretic and diaphoretic action of the leaves is owed in part to diosmin, and in part to
diosphenol, the main constituent of the volatile oil of the leaf.
31




                                                                         OH
                      Rha-Gl       O                O
                                                                   B          OCH3
                                          A


                                          OH
                                                    O

                                                Diosmin
Upon hydrolysis, diosmin yields rhamnose, glucose and diosmetin.
2- Rutin and quercetrin: are examples of flavonol glycosides
a- Rutin occurs in the leaves of buckwheat. It is the 3-rhamnoglucoside (called rutinose) of the genin
quercitin.
It gives on hydrolysis the aglycone (quercitin) beside one molecule of glucose, and one molecule of
rhamnose.
Rutin is used to
1- Decrease capillary fragility.
2- It is a biflavonoids that plays a true vitamin function.
b- Quercitrin is quercitin 3-O-rhamnoside.
It occurs in the bark of Quercus tinctoria.
Quercitrin yield upon acid hydrolysis rhamnose and quercetin.
The aglycone quercetin occurs in bearberry leaves (Uva Ursi) and has a diuretic action of the leaves.
                                                                         OH

                               HO                   O
                                                                   B         OH
                                          A

                                                              OR
                                          OH
                                                    O
                                          Quercetin:          R=H
                                          Quercetrin:         R= rhamnosyl
                                           Rutin:             R=rutinosyl



3- Hesperidin: it is an example of flavanones. It is the main flavonoidal glycoside of citrus fruits.
32




                                                       OH
 R         O                  O
                                               B            OCH3
                    A


                    OH
                              O

                        Hesperitin R:H
                        Hesperidin R:rutinosyl

Upon hydrolysis by acid, hesperidin gives rhamnose, glucose and hesperitin.
Uses:
1- Hesperidin appears to be identical to vitamin P (citrin).
2- It is necessary for absorption and retention of vit C that lead to decrease capillary fragility.
3- Decrease CVD and HTN.
Uses of flavonoids:
1- Increase capillary resistance and decrease vitamins C & P deficiency.
2- They are recommended in the treatment of thrombopenia (blood coagulation).
3- They are reported of value in the treatment of influenza, when given with ascorbic acid.


Isoflavone:
1-             Genistein show significant oestrogenic activity.
                               HO                  O




                                          OH
                                                   O
                                                                        OH

2-             Rotenoids employed as insecticide.



                                     O                 O
                                                               O




                                                       O
33




                                                    Flavono-lignans
Coupling of a flavonoid moiety with hemi-lignan molecule by oxidative coupling.

 OH            O
                            B       OH                                OR
        A
                                                +
                                OH
        OH     O

             Flavonoid moiety                                     Hemi-lignan moiety



               OH               O
                                           B         O
                       A
                                                              OH
                                                O
                       OH       O                                   OCH3



                                                                    OH
                                Flavonolignan




The leaves and fruits of Silybum marianum family Compositae contain silymarin (silybin).

                       OH                   O
                                                              B            O
                                    A
                                                                                       OH
                                                      OH          O
                                    OH      O                                               OCH3



                                                    Silybin                                 OH




1- Silymarin is a very effective lipotropic and hepato protective therapy.
2- It is a free radical scavenger.
3- Supportive treatment of acute and chronic alcoholic poisoning and toxin induce hepatitis.
34




4- It is used for treatment of liver cirrhosis caused by plant toxins (mushroom, amanita), silymarin is
applied as intravenous injection.
5- Silymarin is available in the market in the form of tablets, effervescent granules. Trade name
legalon, silyhexal, silirex…etc.

                                         Synthetic flavonoids

Flavoxate:
                                             O       O
                                   N
                                                          O
                                                                      B
                                                 A

                                                                CH3

                                                          O

                                                         Flavoxate
Uses:
To remove pain (anti-spasmodic) and anti-inflammatory of the genitor urinary tract.
Flavoxate tablets are available under several names: Urispas, Uronid, Spasurit, Genurin).




* Saponins are a group of amorphous colloidal glycodides which is wiedly distributed in the higher
plants.
* Have ability to form lasting foam when shaking in aqueous solution.
* They are excellent emulsifying agents (modify surface tension).
* Formerly used as detergents to replace soap (e.g., quillaia).
* Saponins are colorless and optical active. They form colloidal solution with water and are soluble in
alcohol and dilute alcohols.

* Saponins have haemolytic properties, they precipitate the cholesterol and lethisins that exist in the
memberanes of the red blood cells and thus haemoglobin is liberated. So, saponins are extremely toxic
when injected into the blood stream. However, they are not harmful when taken orally.

* Saponins are difficult to purify. However, they precipitated from solutions containing them by the
addition of a solution of the sterol, filtering off the insoluble sterol-saponin compound and boiling it
with toluene which resolves the compound again into sterol (which is soluble in toluene) and saponin
(which is insoluble in toluene).
Chemically:
35




Saponins are classified according to the genin part into:
1- Steroidal type C25.
2- Triterpinoidal type C30.
Both types of saponins have the glycosidic linkage at position 3.

                                     O



                                     O

                                                                                    COOH

                                                                                    R2

 HO                                          HO
                                                             R1
          Diosgenin
                                                      Quillaic acid: R1=CHO, R=OH

                                                      Olianolic acid R1=CH3, R2=H




Medicinal importance of saponins:

1- The steroidal saponins are structurally related to modern synthetic compounds that have a
therapeutic significance, such as adrenocortecoids and the sex hormones. So, they are a suitable
precursors in the partial synthesis of these hormones, e.g., Diosgenin (sapogenins) isolated from the
rhizome of Dioscoria species.
                                                                           CH3
                            OH                                             CO
               O                                                            OH
                                                             O




 O                                            O

             Testosterone                                  Progesterone


                                 O                                CH2 OH

                                                                  CO
                                                                   OH
                                 O                O




     HO                              O

                                             Cortisone
          Diosgenin


2- Saponins increase the rate of absorption of many pharmacological active substances (e.g., cardiac
glycosides).
36




3- Many saponin-containing drugs are used as expectorants (e.g., Ipeca, Senaga and liquorice) as
their contents of saponins stimulate bronchial secretion and also activate the ciliary epithelium of
the bronchi.
a-The triterpenoidal saponin glycoside, glycyrrhizin, is the main sweet principle of liquorice. It is
calcium and potassium salts of glycyrrhizic acid, which in tern is the diglucuronic acid glycoside of
glycyrrhitinic acid.
                                                                 COOH



                                                O




         Glucuronic-glucuronic
                                 O


                                            B-Glycyrrhitinic

                            Glycyrrhizic acid



                             Glycyrrhizin =Ca, K



b- Beside being a valuable flavouring and sweetening agent, liquorice has demulcent, expectorant and
antispasmodic action. All these activities attributed to the saponin, glycyrrhizin.
c- Recently, glycyrrhizin was shown to be effectively in gastric ulcer treatment and have a cortisone
like action in rheumatic arthritis and other inflammatory diseases.
Saponins drugs officially in the B.P and U.S.P:
1- Quillaia bark: used as emulsifier.
2- Liquorice root: used as flavouring agent and expectorant.




1- Tannins are widely distributed phenolic plant constituents.
It is characterized by being able to combine with proteins of animal hides thus preventing their
putrefaction and converting them into leather (true tannins).
37




2- Tannins are detected qualitatively by Goldbeater’s skin test (a tanning test), and can be
quantitatively estimated by absorption on standard hide powder. Only high molecular weight
tannins that are capable of tanning hide.
It is more acceptable to define true tannins as those high molecular weight phenolic plant constituents
that can be detected by Glodbeater’s skin tanning test.
3- True tannin solutions have the ability of precipitating soluble proteins (gelatine), heavy metals,
alkaloids and glycosides.
4- This will exclude simple molecular weight compounds such as gallic acid, catechin, flavan-3,4-
diol and chlorogenic acid, that usually coexist with true tannins. These simpler tannins like
compounds are referred to as pseudotannins.
                              HO                      HO

                   HO                  OH   HO                OH




                              COOH                    COOC6 H11 O5


                         Gallic acid                  Glucogallin



                              OH
                                            HO                CH=CH-COO
                                     OH
                                                 HO                       OH   OH
 HO            O
                                                       Chlorogenic acid


                        OH
       OH

            Flavan-3,4-diol




Hydrolysable tannins                                  Condensed tannins


1- Hydrolysable tannins:
38




a- These can be hydrolyzed by acids or enzymes to give phenolic acids (gallic or ellagic) and
glucose, so called phenolic acid glycosides.
b- Tannins of gallic acid are called gallitannins and those of ellagic acid is called ellagitannins.
c- Dry distillation of hydrolysable tannins gives pyrogallol. This class is named pyrogallol tannins.
d- Gallitannins and ellagitannins react with ferric salts to give bluish color precipitate.
2- Condensed tannins:
a- These are more resistant to hydrolysis upon prolonged heating with acids.
b- They undergo decomposition (not hydrolysis) to give a red soluble compound (phlobaphane).
c- Condensed tannins are derived from catechin and flavan, 3,4-diol.
d- Dry distillation of condensed tannins gives catechol. This class is named catechol tannins.
e- Being phenolic, it reacts with ferric salts to give greenish color precipitate.




1- Salicin:
Salicin is classified as:
1- Alcoholic glycoside, as it contains free primary alcoholic group.
2- A phenolic glycoside, as its aglycone is phenolic in nature.

                                              CH2 OH


                                           Gl O


                                                     Salicin
39




                              CH2 OH


                           Gl O             Acid

       Enzyme


                                                     CH2 OH
 CH2 OH

                                                      O              + Glucose
 HO                     + Glucose

            Saligenin                              CH2 OH

                                                    Saliretin

1- Salicin is obtained from different species of Salix, the principle commercial source is Salix
fragilis.
2- Salicin is used for many years as a remedy in the treatment of fever and rheumatism.
3- It is now used as an analgesic-antipyretic in case of periodic fever. It is better tolerated in the
stomach than sodium salicylate, asprin and other antipyretics and anti-inflammatory agents, which
have largely displaced in medical practice.
4- Salicin is hydrolyzed by the enzyme emulsin into saligenin (Salicyl alcohol) and glucose.
5- Acid hydrolysis of salicin gives glucose and a phenolic ether called saliretin which is a
condensation product of two molecules of saligenin.


6-                 Oxidation of saligenin gives salicylic acid and this accounts for the medicinal value of
salicin.




1- Arbutin is a phenolic glycoside that occurs in bearberry leaves Arectostaphyllos uva ursi.
2- When hydrolysed with acids or with emulsin it yields glucose and hydroquinone.
3- It is used as diuretic and also has bactericidal action. This activity is due to the hydroquinone given
by hydrolysis.
40




3-             Uva ursi leaf contains also methylarbutin (the methyl ether of arbutin), that also
contributes to the diuretic and urinary antiseptic action of the leave.


                                   OH                        OCH3




                                   O-Gl                      O-Gl

                                  Arbutin                   Methylarbutin




1-              Glucovanillin is a glycosidal constituent of green vanilla pods.
2-              The fruits of the plant (pods) are collected and carefully cured. To permit enzymatic
action on the glycoside with the liberation of vanillin (the aglycone) which is the principal flavouring
constituent of the pods.
3-              Vanillin is widely used as a flavouring agent. It may be obtained from vanilla pod or
prepared from the glycoside coniferin, lignin or from the phenolic volatile oil constituents eugenol.
41




                              CHO                                    CHO




                                     OCH3                                  OCH3

                             O-Gl                                    OH

                             Glucovanillin                     Vanillin


1-               From Coniferin and lignin
      CH=CH-CH OH
              2                            CH=CH-CH OH
                                                   2                       CHO


                        Hydrolysis                       Oxidation
             OCH3                               OCH3                             OCH3
      O-Gl                                 OH                              OH
     Coniferin                   Coniferyl alcohol                         Vanillin


2-               From Eugenol
      CH2 -CH=CH2                          CH=CH-CH3                       CHO



                         KOH                             Oxidation
             OCH3                               OCH3                             OCH3
                                           OH                              OH
      OH
      Eugenol                               isoeugenol                     Vanillin


The bulk of vanillin which is produced commercially is prepared from lignin, which gives upon
hydrolysis coniferyl alcohol.
                              Hydrolysis
                    Lignin                      coniferyl alcohol


Lignin is obtained in extremely large amounts as a by product of timber industry.
42




1- These are glycosides that are yield hydrocyanic acid as one of their hydrolytic products.
2- Plant containing these glycosides are toxic.
3- The aglycone part is cyanohydrin of a carbonyl compound (condensation product of HCN with an
aldehyde or keton).
4- The majority of cyanogenic glycosides are derived of benzaldehyde cyanohydrin.

               O
                                                  OH
                       HCN                             Sugars
               C                               CH               Mandilonitrile glycosides

                   H
                                                  CN
      Benzaldehyde                 Mandilonitrile




       CH3                         CH3                          CH3          O-Gl
                                                  OH
                             HCN                       Sugars
               C       O                   C                             C
                                                  CN                           CN
         CH3                         CH3                          CH3

         Acetone                     Acetone cyanohydrin
                                                                        Linamarin




                                    D-Mandelonitrile gentiobioside
1-                 Amygdalin is the most widely distributed cyanophore glycoside.
2-                 It occurs in several Prunus species, and is obtained from bitter almonds (Prunus
amygdalus Var. amara Family Rosaceae).
3-                 Amygdalin is considered as gentiobioside of D-mandelonitrile. Gentiobioside is a
reducing disaccharide consisting of two molecules of β-glucose linked by β-1,6 linkage.
43




                                                                                                         CN

                                                                                                              C
                                                                                                         O

                                                                   O
                                                                    6                     1
            6                       1                              CH2
            CH2 OH                                                                            H
                                                                             O
                                        H                          5
                      O
             5                                                                        2
                                                                         3
                  3             2
                                                           4
        4

                                                       Amygdalin
                                                                                 CN

                                                                                          C
                                                                                 O


                                                           1
                                        6
                                    CH2 OH                     H
                                                 O
                                        5
                                            3          2

                            4
                                                                       Prunasin

4-                Acid hydrolysis of amygdalin split two molecules of glucose and one molecule of
mandelonitrile. The latter decomposes spontaneously to form benzaldehyde and HCN.
5-                Different enzymes act upon amygdalin in different ways:


                          Amygdalase                                             Prunase
                                                  Glocose + Prunasin                              Glucose + HCN +Benzaldehyde


            C             Prunase                Gentiobiose + Benzaldehyde + HCN
 Gl-Gl-O         CN
            H
                          Emulsin               Glucose + Benzaldehyde + HCN
     Amygdalin             or acid
44




                                                                                             The    plant
material is cutted into small fragments and then a filter paper moistened with sodium picrate is then
suspended in the neck of the flask, the flask is stoppered and incubated in a warm place (40˚C) for
about 30-60 min. By this time, the coexisting enzymes act upon the glycosides with the liberation of
HCN which turns, the sodium picrate paper convert to brick red color.




                                                                                         Thioglycosides


1- A number of plants of the family Cruciferae yield glycosides containing sulphur.
2- Hydrolysis of these, yield volatile genins of thiocyanate structure e.g., mustard oils.
3- The best known compounds Sinigrin and Sinalbin, two glycosides occurring in black mustard and
white mustard seed respectively.
4- The glycosides and their specific enzymes are found in different cell in the seeds. They donot
interact until they are brought together by the distruction of the cell walls.


5- The general structure of thioglycosides is:



                                              S-GL
                                                                     +
                                      R C                        X

                                                    -
                                              N-OSO3
45




6- The anion is called the glucosinolate ion, R may be aliphatic or aromatic. The cation (X) may be a
simple metal ion or a complex organic cation, e.g., sinapine ion of sinalbin.

                                                                      S-GL
                      S-GL
 CH2     CH-CH2 -C                       HO                   CH2 C
                                                                           -
                      N-OSO3 K                                        N-OSO3 - Sinapine+


         Sinigrin                                              Sinalbin
6-               Sinigrin gives upon hydrolysis, glucose, allylisothiocyanate (volatile oil of mustard)
and potassium acid sulphate.


7-               Hydrolysis of the glycoside sinalbin gives a phenolic isothiocyanate (Acrinyl
isothiocyanate), glucose and the acid sulphate of a quaternary alkaloid, sinapine.
                                                                                     +



                       CH3 O


                                                                               CH3
                     HO                       CH-CH-COO-CH -CH2 -N
                                                          2                   CH3
                                                                             CH3
                     CH3 O
                                         Sinalpine cation


8-               Black and white mustard seeds are used as rubefacients and counter irritants. These
effects are attributed to their contents of thioglycosides.




Aglycone 1- coumarin (benzo-α-pyrane).
46




2-coumarin derivative (hydroxyl and methoxy coumarins).
3-               Umbelliferone [7-hydroxy coumarin] is the lactone of umbellic acid which occurs both
in the free state and in the form of glycosides in some resins of the Umbelliferae (Asafetida and
galbanum).




             O       O
                                            O      O     HO               O     O
            a-pyrone            coumarin                        umbelliferone

4-               Coumarin and its derivatives give blue or violet fluorescence in aqueous ammonical
solutions (conjugated double bond system). This is made use of in qualitative testing for coumarin,
coumarin derivatives and coumarin glycosides and drugs containing them.


5-               The oleo gum resin galbanum that contains umbelliferone in a free state is
distinguished from asafoetida that contains only combind umbelliferone, by the addition of ammonia
to its aqueous alcoholic extract, when the characteristic blue fluorescence is given. Asafetida responds
positive to the fluorescence test only after acid hydrolysis.

Weitere ähnliche Inhalte

Was ist angesagt? (20)

Anthraquinone Glycosides
Anthraquinone GlycosidesAnthraquinone Glycosides
Anthraquinone Glycosides
 
Saponin glycosides
Saponin glycosidesSaponin glycosides
Saponin glycosides
 
Digitalis glycoside
Digitalis glycosideDigitalis glycoside
Digitalis glycoside
 
Tropane alkaloids notes
Tropane alkaloids notesTropane alkaloids notes
Tropane alkaloids notes
 
Extraction of glycosides
Extraction of glycosidesExtraction of glycosides
Extraction of glycosides
 
Glycosides
GlycosidesGlycosides
Glycosides
 
Alkaloids
AlkaloidsAlkaloids
Alkaloids
 
Introduction, Properties, Classification etc., of Resin and Resin combination...
Introduction, Properties, Classification etc., of Resin and Resin combination...Introduction, Properties, Classification etc., of Resin and Resin combination...
Introduction, Properties, Classification etc., of Resin and Resin combination...
 
Alkaloids
AlkaloidsAlkaloids
Alkaloids
 
Isothiocynate glycosides
Isothiocynate glycosidesIsothiocynate glycosides
Isothiocynate glycosides
 
Glycosides
GlycosidesGlycosides
Glycosides
 
Alkaloids Pharmacognosy
Alkaloids PharmacognosyAlkaloids Pharmacognosy
Alkaloids Pharmacognosy
 
Rheology
RheologyRheology
Rheology
 
Flavonoid glycosides
Flavonoid glycosidesFlavonoid glycosides
Flavonoid glycosides
 
Antipsychotics Med chem lecture
Antipsychotics Med chem lecture Antipsychotics Med chem lecture
Antipsychotics Med chem lecture
 
2. phenylpropanoids and flavonoids
2. phenylpropanoids and flavonoids2. phenylpropanoids and flavonoids
2. phenylpropanoids and flavonoids
 
Pharmaceutical Syrup
Pharmaceutical SyrupPharmaceutical Syrup
Pharmaceutical Syrup
 
Extraction , Isolation and Structure Elucidation of Digoxin
Extraction , Isolation and Structure Elucidation of DigoxinExtraction , Isolation and Structure Elucidation of Digoxin
Extraction , Isolation and Structure Elucidation of Digoxin
 
Glycosides
Glycosides Glycosides
Glycosides
 
Flavonoids
FlavonoidsFlavonoids
Flavonoids
 

Ähnlich wie Glycoside instant notes (20)

Glycosides-lect-notes-phkhnk
 Glycosides-lect-notes-phkhnk Glycosides-lect-notes-phkhnk
Glycosides-lect-notes-phkhnk
 
Karbohidrat
KarbohidratKarbohidrat
Karbohidrat
 
Monosaccharides(2)
Monosaccharides(2)Monosaccharides(2)
Monosaccharides(2)
 
Carbohydrates by dr. pramod r. padole
Carbohydrates by dr. pramod r. padoleCarbohydrates by dr. pramod r. padole
Carbohydrates by dr. pramod r. padole
 
BIOLOGICAL MOLECULES
BIOLOGICAL MOLECULESBIOLOGICAL MOLECULES
BIOLOGICAL MOLECULES
 
Carbohydrates
CarbohydratesCarbohydrates
Carbohydrates
 
Stability techniques
Stability techniquesStability techniques
Stability techniques
 
Chemistry 3
Chemistry 3Chemistry 3
Chemistry 3
 
Triglycerides
TriglyceridesTriglycerides
Triglycerides
 
Chapter 13 carbohydrates
Chapter 13 carbohydratesChapter 13 carbohydrates
Chapter 13 carbohydrates
 
CARBOHYDRATE
CARBOHYDRATECARBOHYDRATE
CARBOHYDRATE
 
CHO-CNP .ppt
CHO-CNP .pptCHO-CNP .ppt
CHO-CNP .ppt
 
Phytochemistry carbohydrate intro.
Phytochemistry carbohydrate intro.Phytochemistry carbohydrate intro.
Phytochemistry carbohydrate intro.
 
The Chemistry of Life
The Chemistry of LifeThe Chemistry of Life
The Chemistry of Life
 
The nature of carbohydrates
The nature of carbohydrates The nature of carbohydrates
The nature of carbohydrates
 
09 terrence monks
09 terrence monks09 terrence monks
09 terrence monks
 
Digestion glycolysis
Digestion glycolysisDigestion glycolysis
Digestion glycolysis
 
Carbohydrates
Carbohydrates Carbohydrates
Carbohydrates
 
Lecture 14 carbohydrates complete to be taught
Lecture 14 carbohydrates complete to be taughtLecture 14 carbohydrates complete to be taught
Lecture 14 carbohydrates complete to be taught
 
Carbohydrates
CarbohydratesCarbohydrates
Carbohydrates
 

Kürzlich hochgeladen

THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxnelietumpap1
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 

Kürzlich hochgeladen (20)

Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptx
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 

Glycoside instant notes

  • 1. 1
  • 2. 2 Glycosides Definition: Glycosides are (usually) non-reducing compounds, on hydrolysis by reagents or enzymes yield one or more reducing sugars among the products of hydrolysis. non-sugar glycosidic sugar linkage (genin) (glycone) 1- Alcoholic or phenolic (aglycone): e.g., O-Glycoside CH2 OH CH2OH OH O-C6 H11 O5 C6 H12 O6 + -H2O Glycosidic linkage Sugar Salicin 2- Sulphur containing compounds: e.g., S-Glycoside Glycosidic linkage SH S C6 H11 O5 C 6H12 O6 + CH2 CH CH2 C CH2 CH CH2 C N OSO3 K Sugar N OSO3 K Sinigrin 3- Nitrogen containing compounds: e.g., N-Glycoside
  • 3. 3 NH2 NH2 OHCH2 O OH N N N N H + H N N N N OH OH H OHCH2 O Glycosidic linkage H H OH OH Adenine 4- C-Glycoside HO O OH HO O OH C6 H12 O6 + CH2 OH CH2 OH Glycosidic linkage C6 H11 O5 Barbaloin 1- Sugars exist in isomeric α and β forms. Both α and β Glycosides are theoretically possible. 2- All natural glycosides are of the β Type. 3- Some α linkage exists in sucrose, glycogen and starch. Also the glycoside K-strophanthoside (strophanthidin-linke to strophanthotriose (Cymarose + β-glucose + α- glucose). 4- 1- According to the type of glycosidic linkage: α- glycoside (α-sugar) and β-glycosides (β-sugar). 2- According to the chemical group of the aglycone involved into the acetal union: a. O-glycoside (OH group) b. S-glycoside (SH group). c. N-glycoside (NH group). d. C-glycoside (C group). 3- According to the nature of the simple sugar component of the glycoside: a. Glucosides (the glycone is glucose).
  • 4. 4 b. Galacosides (the glycone is galacose). c. Mannosides (the glycone is mannose). d. Arabinosides (the glycone is arabinose). 4- According to the number of the monosaccharides in the sugar moiety: a. Monoside (one monosaccharide) e.g., salicin. b. Biosides (two monosaccharide) e.g., gentobioside. c. Triosides (three monosaccharide) e.g., strophanthotriose. 5- According to the physiological or pharmacological activity ‘therapeutic classification) a. Laxative glsycosides. b. Cardiotonic glycosides. 6- according to the correlation to the parent natural glycoside: a. primary glycosides e.g., amygdalin, purpurea glycoside A, b. Secondary glycosides e.g., prunasin, digitoxin. 7- According to the plant families. 8- According to the chemical nature of the aglycone: a. Alcoholic and phenolic glycosides (aglycones are alcohols or phenols) b. Aldehydic G (aglycones are aldehydes). c. Cyanogenic G (aglycones are nitriles or derivatives of hydrocyanic acid). d. Anthracene or anthraquinone G (aglycones are anthracene der.). e. Steroidal G (aglycones are steroidal in nature, derived from cyclopentanoperhydrophenanthrene) . f. Coumarin G (aglycones are derivative of benzo α-pyrone). g. Chromone glycosides (aglycones are derivatives of benzo-δ-pyrone) h. Flavonoidal G (aglycones are 2-phenyl chromone structure). i. Sulphur containing or thioglycosides (aglycones are contain sulphur). j. Alkaloidal glycosides (aglycone is alkaloidal in nature) e.g., glucoalkaloids of solanum species. Sugars in glycosides: 1- Monosaccharide (glucose in salicin, rhamnose in ouabain) 2- Disaccharides (gentiobiose in amygdalin). 3- Trisaccharides (strophanthotriose). 4- Tetrasaccharides (purpurea glycosides)
  • 5. 5 5- Rare sugers (deoxy sugers) 6- Sugar linked in one position to the aglycone rarely in 2 positions as sennosides. A- 6-deoxy sugars e.g., 1- methylpentoses 2- α-L-rhamnose. CHO H C OH O OH HO CH3 H C OH HO C H HO C H CH3 OH OH B- 2,6-deoxy sugars (called rare sugars) e.g., 1- D.digitoxose 2- D.cymarose 3- diginose CHO CHO CHO C H2 C H2 C H2 C OH C OCH3 H3 CO C C OH C OH HO C C OH C OH H C OH CH3 CH3 CH3 C- 2-deoxy sugars e.g. 2-deoxy-D-ribose HOH2 C O H H OH OH H
  • 6. 6 Characteristic of 2-deoxy sugers: 1- Give positive Schiff’s test for aldehydes. 2- Positive Keller-Kelliani test. Diversity in structure makes it difficult to find general physical and chemical properties: 1- A- Most glycosides are water soluble and soluble in alcohols. B- Either insoluble or less soluble in non polar organic solvents. C- More sugar units in a glycoside lead to more soluble in polar solvents. 2- Glycosides do not reduce Fehling’s solution, but when are susceptible to hydrolysis give reducing sugars (C-glycosides are exceptions). 1- Acid hydrolysis: a- Acetal linkage between the aglycon and glycone more unstable than that between two individual sugars within the molecule. b- all glycosides are hydrolysable by acids non specific (except C-glycosides). c- Glycosides containing 2-deoxy sugars are more unstable towards acid hydrolysis even at room temperature. d- C-glycosides are very stable (need oxidative hydrolysis). 2- Alkali hydrolysis: 1- mild alkali 2- strong alkali 3- Enzyme hydrolysis: 1- Enzymatic hydrolysis is specific for each glycoside there is a specific enzyme that exerts a hydrolytic action on it.
  • 7. 7 2- The same enzyme is capable to hydrolyze different glycosides, but α and β sterio-isomers of the same glycoside are usually not hydrolysed by the same enzyme. 3- Emulsin is found to hydrolysed most β-glycoside linkages, those glycoside are attacked by emulsin are regarded as β-glycosides. 4- Maltase and invertase are α-glycosidases, capable of hydrolyzing α-glycosides only. 1- Water mixed with different proportions of methanol or ethanol (most suitable extracting solvent). 2- Non-polar organic solvents are generally used for de-fating process. 3- Glycosides are not precipitate from aqueous solutions by lead acetate. 1- Destruction of hydrolysing enzymes. a. Drying for 15-30 min. at 100 C˚. b. Place plant in boiling water or alcohol 10-20 min. c. Boiling with acetone. d. Cold acid pH treatment. e. Extract at very low temperature. 2- De-fating or purification of the plant material (in case of seeds). 3- Extraction of the glycosidal constituents by alcohol, water or dilute alcohols. Some times ether saturated with water for dry material. 4- Concentrate the alcoholic extract (to get rid of the organic solvent). Add water (or hot water)→ filter any precipitate. 5- Purify aqueous extract: a- Extract non glycosidal impurities by org solvent. b- Water soluble impurities precipitate by lead acetate. 6- Precipitate excess lead salts. 7- Isolation of the glycosides from the purified aqueous solution, by crystallization.
  • 8. 8 They do not themselves reduce Fehling’s. but reducing sugars upon hydrolysis. To test for the presence of glycosides Estimate reducing sugars before and after hydrolysis. (by acids or enzymes) 1- Steroidal or cardiac glycosides: Give positive Liebermann’s test (steroidal structure). 2- Anthraquinone glycosides and/or aglycone: Give positive Borntrager’s test, characteristic reddish coloration with alkalies. 3- Flavonoidal glycosides and/or aglycones: Characteristic color with, NH4OH, AlCl3, FeCl3. 4- Cyanogenetic glycosides give upon hydrolysis hydrocyanic acid can be easily tested by change Na bikrate paper (yellow) to red color. 5- Sulphur containing glycosides give black precipitate of silver sulphate upon treatment with AgNO3 solution. 1- Keller Killiani’s test for 2-deoxy sugers: Specificity of action of the hydrolyzing enzymes is often applied for the identification of the sugar moieties of glycosides or even the glycoside as alcohol. 1- Scillarin A [acid hydrolysis] →→→ Scillaridine A + Scillabiose Scillabiose [Scillabiase] →→→ Rhamnose + glucose.
  • 9. 9 CHO 2- Prunasin [Prunase] →→→ glucose + HCN + H OC 6 H 11 O 5 C CN 3- Amygdalin [amygdalase] → Prunasin + glucose 4- Myrosin enzyme is specific for thio D- glucosides e.g., Sinigrin and sinalbin. Determination of the glycosidic linkages: 1- By the use of α and β glycosidases. 2- By acid hydrolysis of glycosides, immediate optical activity measurement of the resulting solution. Color reactions based on the sugar moiety [2-deoxy sugars]: 1- Keller Killiani: glacialacetic acid containing + FeCl3 + H2SO4 → brown ring free from red (acetic acid a quire blue). 2- Xanthydrol: xanthydrol in glacial acetic containing 1% HCl + glycoside [heat]→ red color. N.B. Stability indicating after extraction. U.S.P. Medicinal importance of glycosides: 1- Cardiac drugs: cardiotonic glycosides e.g., digitalis glycosides, strophanthus, squill. 2- Laxatives e.g., anthraquinone glycosides of senna, aloes, rhubarb, cascara, frangula. 3- Counter irritants e.g., thioglycosides and their hydrolytic products ‘allylisothiocyanate’ 4- Analgesics e.g., methylsalicylate ‘a hydrolytic product of gaultherin. 5- Anti rheumatic e.g., salicin.
  • 10. 10 6- Some glycosides are claimed to reduce the capillary fragility e.g., flavonoidal glycosides, rutin, hisperidin. 7- Anti-inflamatory: e.g., the glycoside glycyrrhizin has a demulcent, expectorant and antispasmodic action. 8- More recently as an anticancer agent e.g., amygdalin known in the U.S. as Laetrile. 1-The genins of all cardiac glycosides are steroidal in nature, that act as cardiotonic agents. 2-They are characterized by their highly specific action cardiac muscle, increasing tone, excitability and contractility of this muscle, thus allowing the weakened heart to function more efficiently. Lactone ring 12 CH3 17 11 13 1 16 R 9 14 2 15 10 8 OH 3 7 Sugar O 5 4 6 All cardio active glycosides are characterized by the following structural features: 1- The presence of β-OH at position C-3, which is always involved in a glycosidic linkage to a mono, di, tri, OR tetra saccharide. 2- The presence of another β-OH group at C-14. 3- The presence of unsaturated 5 or 6- membered lactone ring at position C-17, also in the β configuration. 4- The A/B ring junction is usually (cis), while the B/C ring junction is always (trans) and the C/D ring junction is in all cases (cis). 5- Additional OH groups may be present at C-5, C-11 and C-16.
  • 11. 11 1- Cardiac glycosides that α-β unsaturated 5-membered lactose ring in position C-17 are known as cardenolides. These are represented by the digitalis and straphanthus group. 2- Digitalis glycosides contain angular methyl group at C-10, while strophanthus glycoside are characterized by presence of either an aldehydic (CHO) or primary alcoholic (C`H2OH) group at C- 10. O O OH 12 CH3 17 11 13 1 16 R 9 14 2 15 10 8 OH 3 7 Sugar O 5 4 6 Cardenolides Digitalis glycosides R=CH3 Strophanthus glycosides R=CHO OR CH2OH 3- Cardiac agents that have doubly unsaturated 6-membered lactone ring in position C-17 are referred to as Bufadienolides. 4- This group includes the squill glycosides and the toad venom, Bufotoxin. O O OH 12 17 11 13 1 16 9 14 2 15 10 8 R1 3 R2 7 Sugar O 5 4 6 Bufadienolides
  • 12. 12 Squill glycosides R1=OH, R2=H Bufotoxin R1 & R2 = ester group 5- The glycone portion at position C-3 of cardiac glycosides may contain four monosaccharide molecules linked in series. Thus, from a single genin one may have a monoside, a bioside, a trioside or a tetroside. 6- With the exception of D-glucose and L-rhamnose, all the other sugars that are found in cardiac glycosides are uncommon deoxy-sugars e.g., Digitoxose, Cymarose, Thevetose. CHO CHO CHO C H2 C H2 HC OH C OH C OCH3 CH3 O C H C OH C OH H C OH C OH C OH H C OH CH3 CH3 CH3 Digitoxose Cyamarose Thevetose Isolation difficulties: 1. Major difficulty in the isolation of 1ry glycosides from the crude drug.. why? because 1ry glycosides are converted into secondary glycosides by hydrolysable enzymes. 2. Other difficulty is the existence of several closely related glycosides in the same drug, which are extremely difficult to separate and purify. Origin: D. purpurea, D. lanata, D. lutea and D. thapsi The structures of the common aglycones of the digitalis group are indicated below:
  • 13. 13 O O R1 17 11 12 13 1 16 R2 9 14 2 15 10 8 OH 3 7 H O 5 4 6 Compounds R1 R2 Digitoxigenin H H Gitoxigenin H OH Digoxigenin OH H DX = Digitoxose, DX (AC)=Acetyldigitoxose,G = Glucose. 1- Glycosides derived from Digitoxigenin: a- Lanatoside A = Digitoxigenin---DX---DX----DX(AC)---G. b- Acetyl-digitoxin = Digitoxigenin---DX---DX----DX---(AC). c- Digitoxin = Digitoxigenin------DX---DX----DX. d- Purpurea gly A = Digitoxigenin---DX---DX----DX---G 2- Glycosides derived from Gitoxigenin: a- Lanatoside B = Gitoxigenin---DX---DX----DX(AC)---G. b- Acetyl-gitoxin = Gitoxigenin---DX---DX----DX---(AC). c- Gitoxin = Gitoxigenin------DX---DX----DX. d- Purpurea gly B = Gitoxigenin---DX---DX----DX---G
  • 14. 14 3- Glycosides derived from Digoxigenin: a- Lanatoside C = Digoxigenin---DX---DX----DX(AC)---G. b- Acetyl-digoxin = Digoxigenin---DX---DX----DX---(AC). c- Digoxin = Digoxigenin------DX---DX----DX. d- Deslanoside = Digoxigenin---DX---DX----DX---G 1- The 1ry glycosides Lanatoside A, Lanatoside B, Lanatoside C are acted by specific enzyme which split the terminal glucose, give the 2ry glycosides acetyldigitoxin, acetylgitoxin and acetyldigoxin respectively. 2- The deacetyl-lanatosides A, B and C can be obtained by the alkaline hydrolysis of the corresponding lanatosides. 3- Digitoxin, gitoxin and digoxin are obtained by the action of alkali on their acetyl-derivatives. Lanatoside A Alkaline Specific purpurea gly. A Acetyldigitoxin hydrolysis enzyme Specific Alkaline Digitoxin enzyme hydrolysis Acid hydrolysis Digitoxigenin + 3 digitoxose 1- The glycoside K-strophanthoside (a trioside), K-strophanthin B (bioside) and cymarin (a monoside) were isolated from different strophanthus species. 2- The 1ry glycoside K-strophanthoside gives by hydrolysis one molecule of glucose and the 2ry glycoside K-strophanthoside B or K- strophanthin B.
  • 15. 15 3- The later gives by hydrolysis one molecule of glucose and the tertiary glycoside cymarin, which on turn hydrolyze into the genin K-strophanthidin and the deoxysugar cymarose. O O 17 11 12 K- strophanthidin 13 1 16 CHO 9 14 Cymarin 2 15 10 8 OH 3 5 K- strophanthin B 7 O 4 OH 6 K- strophanthoside Cymarose B-glucose a-glucose The seeds of Strophanthus gratus contains another glycoside named Ouabain or (G-strophanthin), which yield on hydrolysis rhamnose and the aglycone ouabagenin. Ouabagenin differs from K-strophanthidin in having 2 additional (OH) groups at C-1 and C-11 and having a 1ry alcoholic group at C-10 instead of the aldehydic group. O O OH OH 17 12 OH 11 13 16 CH2 9 14 2 1 15 10 8 OH 3 Rhamnose 7 O 5 4 6 OH Ouabain (G-strophanthin)
  • 16. 16 This group of cardioactive agents includes the squill glycosides (the scillarins) and the Toad poison (Bufotoxin). The genins of squill glycosides differ from those of the cardenolides in two important aspects: 1- They have six membered doubly unsaturated lactone ring in position C-17. 2- They have at least one double bond in the steroid nucleus. O O OH Glucose-Glucose-Rhamnose O Scillaridin A Proscillaridin A Scillarin A Glucoscillarin A The Bufadienolides of Squill Name of glycosides Structure Glucoscillarin Scillaridin A ---RH—G---G Scillarin A Scillaridin A ---RH—G Proscillaridin A Scillaridin A ---RH
  • 17. 17 * The different cardiac glycosides show different solubilities in aqueous and organic solvents. They are usually soluble in water or aqueous alcohol and insoluble in the fat solvents with exception of chloroform and ethylacetate. * The higher number of sugar units in the molecule, the greater solubility in water but lower soluble in chloroform. * Alcohols are good solvents for both the glycosides and the aglycones. Therefore, they are considered as the solvents of choice for the extraction of all CG from drugs. * pet.ether and ether are used for defatting process of drug, they do not dissolve CG. 1- Acid hydrolysis cleavage of the glycosides into aglycones and sugar residues. 2- Specific enzyme usually coexist with CG in plants, which may split the primary G into G with less sugar units. Thus, CG deteriorate during drying and storage unless special precautions are taken. 3- So it is required by many pharmacopoeias that CG containing drugs must contain not more than specified moisture content and that these drugs should be stored in sealed containers over dehydrating agents. 4- It is recommended to heat stabilize these CG, by destroying the enzymes at higher temperatures. At higher temperature, the tertiary OH gp at C-14 may split off as water, leading to formation of an inactive anhydro-form of CG. O O O O 12 CH3 12 CH3 17 17 11 13 11 13 1 16 -H2O 16 R 9 14 1 R 9 14 2 15 2 15 10 8 OH 10 8 3 3 7 7 Sugar O 5 6 Sugar O 5 4 6 4 5- The gitoxin has in addition to tertiary OH at C-14 another secondary OH at C-16. Both OH gps split as water by the action of H2SO4 with the formation of two additional double bonds. These with
  • 18. 18 the double bond of the lactone ring from a conjugated double bond system that makes the compound fluorescent in UV light. O O O O 12 CH3 12 CH3 17 17 11 13 11 13 1 R 9 16 OH -2H2 O 1 16 14 R 9 14 2 15 2 15 10 8 OH 10 8 3 3 7 7 Sugar O 5 6 Sugar O 5 4 6 4 The detection of gitoxin in other digitalis G is based on the above mentioned reaction. 1- CGs are steroidal in nature, give +Ve with Liebermann’s and Salkoviski’s test. 2- CG that contain deoxy-sugars are distinguished by Keller Kiliani’s test, e.g., digitoxose and cymarose. 3- Cardenolides are distinguished from the scillarins by a group of color reagents, that are all alkaline solutions of aromatic nitro compounds, namely, Kedde’s reagent, 3,5 dinitrobenzoic, Raymond’s reagent, metadinitrobenzene, Baljet’s reagent, picric acid, Legal’s test, alkaline solution of sodium nitroprusside. 4- All these nitrocompounds react with the active methylene of the five membered lactone ring (in alkaline medium) to give characteristic colors. 1- Cardiotonics, CHF, rheumatic heart disease, atherosclerosis, HTN. 2- Diuretics (capillary of the kidneys are dialated).
  • 19. 19 1- The glycone part displays a great influence on the solubility and the rate of absorption and distribution of the glycosides to the site of action. 2- Small change in the molecules such as a change of the location of the OH gp, modify the cardiac activity or even eliminate it completely. 3- The saturation and/or cleavage of the lactone ring, destroys the cardiac activity. Therefore, the closely related CG, differ greatly in the rate of absorption, duration of action and their cumulative effect. 1- digitalis leaf (digitalis tablets) 2- digitoxin tablets 200μg/tablet 3- digoxin injection contain 0.0025% digoxin 4- digoxin tablets contain 250μg/tablet 5- gitalin, lanatoside C, deslanoside, strophanthus, strophanthin, ouabain and squill.
  • 20. 20 Anthraquinone Anthrone Anthranol O O OH 8 1 8 1 7 9 2 7 9 2 4H 6 10 3 6 10 3 5 4 5 H H 4 O H O 2H 8 1 7 9 2 6 10 3 5 H 4 OH Oxanthrone 1- O-glycosides where the aglycone moiety is 1,8 dihydroxyanthraquinone derivatives, e.g., Gl O O OH O 1 Gl O OH Gl O O OH 1 1 8 9 2 8 9 2 8 9 2 10 CH2 OH 10 10 5 4 COOH CH3 5 4 5 4 O O O Aloe-emodin-8-glycoside Rhein-8-glycoside Chrysophanol-8-glycoside 2- O-glycoside where the aglycone moiety partially reduced 1,8 dihydroxy anthraquinone, e.g., Oxanthrone-type. Gl OH OH H O 7 8 9 1 2 6 10 3 5 4 O Emodin-oxanthrone-9-glucoside 3- C-glycoside where the aglycone structure (anthrone der.) O OH OH 7 8 9 1 2 6 10 4 3 5 CH2 OH H C6 H11 O5
  • 21. 21 Barbaloin 4- O-glycosides where the aglycone moiety is di-anthrone der. (i.e., dimmer) e.g., Sennosides where there is C-C bridge between the anthranol units. Sennoside A&B Gl O O OH 7 8 9 1 2 6 10 4 3 COOH 5 H H COOH Gl O OH O The most widely used drugs that contain anthracene compounds are: Consists of the dried leaflet of Alexandrian or Khartoum senna, Cassia senna (C.acutifolia), Tinnevelly senna (C.angustifolia). Constituents: Dimeric anthracene glycosides derived from two anthrones moieties which may be: O OH OH 1 O OH OH 8 9 1 2 8 9 2 10 CH2 OH 10 5 4 COOH 5 4 Aloe-emodin anthrone Rhein anthrone 1- Similar anthrone moiety (Homo-dianthrones) i.e., 2 rhein anthrone moieties condensate through two C-10 atomes. Thus it can be exist in two optical forms, Sennoside A (L- form) & Sennoside B (meso form).
  • 22. 22 Gl O O OH 7 8 9 1 2 6 10 4 3 COOH 5 H H COOH Gl O OH O Sennosides A &B 2- Or different (Hetero-dianthrones) i.e., one rhein-anthrone & one emodin anthrone, Sennoside C (L- form) and Sennoside D (meso form). Gl O O OH 7 8 9 1 2 6 10 4 3 CH2 OH 5 H H COOH Gl O OH O Sennoside C&D The dried bark of Rhamnus purshiana Family Rhamnaceae. B. P. specified that the collection must be made at least one year before the bark is used (fresh bark contains an emetic principle). Constituents: A- Four primary glycosides: 1- cascarosides A&B (glycosides of barbaloin) 2- cascarosides C&D (glycosides of chrysaloin)
  • 23. 23 OH O OH O OH Gl O CH2 OH CH2 OH H Gl H Gl Barbaloin Cascaroside A& B O OH Gl O O OH OH CH3 CH3 H Gl H Gl Chrysaloin Cascaroside C & D B-Two aloins (secondary glycosides): Barbaloin derived from (C-10-C-glycoside) of aloe-emodin anthrone and chrysaloin derived from (C-10-C-glycoside) of chrysophanol anthrone. C- A number of O- glycosides: e.g., derived from emodin, emodine oxanthrone, aloe emodin and chrysophanol. OH O OH OH O OH CH2 OH CH3 O O Aloe emodin Chrysophanol E- Free anthraquinones: Aloe emodin, chysophanol and emodin. 1- Frangulin (frangula emodin rhamnoside). 2- Glucofrangulin (frangula emodin glucorhamnoside).
  • 24. 24 OH O OH RO CH3 O Frangulin R= Rhamnose Glucofrangulin R= Rhamnose-glucose 3- hydrolysis of glucofrangulin yields frangulin and glucose. 4- Hydrolysis of frangulin gives frangula emodin and rhamnose. 1- Consist of glycoside of rhein, rhein anthrone, chrysophanol and aloe emodin. 2- Dianthrones of heteroanthrone types are palmidin A, B, C, Rheidins, sennosides A&B and their oxalate esters (sennosides E&F). 3- The presence of tannins in rhubarb makes the drug constipating. So in small doses, rhubarb exerts no purgative action but acts only as intestinal astringent, but large doses cause purgation. Cascara is a purgative, mainly in the form of liquid extract, elixir or as tablets prepared from a dry extract. The laxative action of the crude drugs is always higher than from their content of anthracene der. The different anthracene der. contained by the crude drug are said to exert a synergistic action. Thus, the naturally occurring anthracene glycosides were found superior to the synthesis of numerous hydroxyl anthracene der. Some of these synthetic compounds act too drastically and also caused kidney damage. The only compound which is used to some extent in current medicine is danthrone. It is also used as a standared in colorimetric assays of anthraquinone glycosides.
  • 25. 25 OH O OH O Danthrone Note: 1- The 1ry glycosides are more active than the aloins while the free anthraquinon have little purgative activity. 2- C-C glycosides, aloins are very resistance to hydrolysis and are not easily hydrolysed (like other anthrones and anthranols) to corresponding anthraquinones. 3- Aloin type glycosides are present in aloes and other anthracene bearing drugs of the family liliaceae. 1- Glycosilation: The purgative action of anthracene bearing drugs is owed to their anthracene glycosidal content rather than their content of free anthracene aglycones (i.e., glycosylation is the main requirement for activity, as the sugar moiety serve to transport the aglycone to the site of action in the large intestine). 2- Hydroxylation: Hydroxylation of C-1, C-8 is essential for activity. Increase hydroxylation leading to increase solubility. 3- Oxidation level: The degree of oxidation at positions C-9 & C-10 plays an important role in the pharmacological activity. Higher oxidation level at C-9 & C-10 caused lowering of activity. i.e., anthrones and anthranols are more potent than their corresponding oxanthrones, which in turn more active than their corresponding anthraquinones. Complete reduction of C-10 &C-9 lead to complete loss of activity. 4- The nature of substances at C-3: Derivative with CH2OH (as in aloe emodin) are more active than those with CH3 substitution. The latter more active than derivative with COOH substitution at C-3.
  • 26. 26 Anthraquinone glycosides containing adimer more active than a monomer. 5- Effect of storage on the active of anthracene glycosides: a- Prolonged storage of anthracene bearing drugs may bring oxidation of anthranols and anthrones to give the less active anthraquinones. Thus, the activity of drugs decreases by time. However, anthraquinone glycosides do not cause any griping action (like anthranol and anthone), thus no antispasmodic such as belladonna is prescribed with them. b- Drugs as senna, Aloe and cascara preparations retain their activity for a long time. c- Cascara and frangula must be aged for one year before it is used for medicinal preparation.WHY? Stability is achieved as follows: 1- In senna, there is dimeric glycoside in which a C-C bridge between two anthrone units is formed (the C-10 position of one anthrone is involved in a C-C-covalent bonding with C-10 of the other anthrone). Thus, the C-10 position can not be easily oxidized and the anthrone structure is stabilized. 2- In the aloe, the aloins (barbaloin & chrysaloin) contain C-C glycosidic linkage (anhydroglycosides) stabilise the anthrone structure. 4- In cascara, cascarosides have an additional O-glycosidic linkage (beside the C-10-C glycosidic linkage. The solubility of cascarosides is increased and thus, produce higher pharmacological activity. The glycosides are extracted and hydrolyzed by boiling the drug with acids. The aglycones are extracted from the acidic solution with ether or benzene. Upon shaking the ether or benzene layer with aqueous alkali or ammonia solution, the aqueous layer assumes a deep red color, because of the formation of anthraquinone salts. Borntrager’s reaction can distinguish anthraquinones from anthrones and anthranols which do not give the test unless they are converted to anthraquinone by oxidation with mild oxidants such as hydrogen peroxide or ferric chloride. Official anthraquinone drugs in B.P and U.S.P.: 1- Senna leaf & senna fruit (pod). 2- Aloes. 3- Cascara tablets, elixir, dry exract, liquid extract.
  • 27. 27 4- Rhubarb powdered, tincture. 5- Danthrone 6- Frangula bark - Flavonoidal compounds are considered as the largest group of naturally occurring phenols. - Flavonoidals constitute the majority of the yellow colored plant pigments. - Many flavonoidal compounds present as a glycosidic or as a free forms. - All derived from the same parent nucleus, 2-phenyl-benzopyran (flavan), thus they have a basic C- 15 skeleton. Flavonoidal compounds are classified according to the oxidation level of central pyran ring they are classified into flavones, isoflavones, flavonols, flavanones, (true flavanoids) anthocyanidins, chalcones and aurones. True flavones, are 2-phenyl chromones (2-phenyl benzopyrone), while isoflavones are 3-phenyl chromones der. Flavonols are 3-hydroxyflavones, while flavanones are 2,3-dihydro der. of flavones (2,3-double bond is lacking). (2-phenylbenzopyran) (2-phenylbenzopyrone)
  • 28. 28 1 2' 3' 8 9 O 1' O 7 2 4' 6 4 3 10 6' 5' 5 Flavan O Flavone O O OH O O Flavonol Isoflavone O H H O Flavanone Anthocyanidines, chalcones and aurones are lack the typical flavone structure. Anthocyanidins and its glycosides (anthecyanins) are ionic oxonium salts. This is responsible for the permanent blue, purple, violet, mauve, and red color of flower, fruits and leaves of higher plants. Anthocyanidins and anthecyanins are soluble in polar solvents. Cyanidin chloride is an example of anthocyanidines . - R Cl OH + 2' 3' 2' 3' 8 8 + 9 O 1' OH 9 O 1' 7 4' OH - 7 4' OH X 6 3 6 3 10 6' 5' 6' 5' R 10 OH 5 5 Anthocyanidins OH Cyanidin chloride Chalcones, have no central pyrone ring, so they are not true flavonoidal compounds. The parent compound chalcone, is chemically phenyl-styryl ketone, or benzylidene acetophenone. Aurones are oxidized forms that are obtained by enzymatic oxidation. Instead of the central pyrone ring of the normal flavonoidal structure, aurones have five membered ring.
  • 29. 29 O CH O O Chalcon Aurone Flavonoids dissolve in alkalis give intense yellow color solution, on the addition of acid become colorless. Flavonoids exhibit strong fluorescence under UV light. Flavonoidal glycosides are soluble in water and alcohol. Ethylacetate is the solvent of choice for the extraction of flavonoids from aqueous solution. Flavonoids compounds may be characterized through the investigation of their UV Spectra, that usually show two main bands, 1- Band at higher wavelength (band I) which is attributed to the cinnamoyl fraction of the flavonoidal structure Why?. 2- Band at lower wavelength (band II) which is due to the benzoyl fraction of the flavonoidal structure.
  • 30. 30 Benzoyl O B A R Cinnamoyl O A II I Band Band 200 Wave length 400 Hypsochromic shift Bathochromic shift Band I >> 300 nm If R= H R=OH R=O-substitution Flavones flavonols 3-sub flavonol Band I: 304-350 nm Band I: 352-385 Band I: 328-357 Band II << 300nm (250-280 nm) Note: More OH in ring A: Bathochromic shift in band II. More OH in ring B: Bathochromic shift in band I. Shift reagents: Back to lab. 1- Diosmin: flavone glycoside Occurance: buchu leaves, Barosma crenulata F. Rutaceae. Uses: diuretic and diaphoretic action of the leaves is owed in part to diosmin, and in part to diosphenol, the main constituent of the volatile oil of the leaf.
  • 31. 31 OH Rha-Gl O O B OCH3 A OH O Diosmin Upon hydrolysis, diosmin yields rhamnose, glucose and diosmetin. 2- Rutin and quercetrin: are examples of flavonol glycosides a- Rutin occurs in the leaves of buckwheat. It is the 3-rhamnoglucoside (called rutinose) of the genin quercitin. It gives on hydrolysis the aglycone (quercitin) beside one molecule of glucose, and one molecule of rhamnose. Rutin is used to 1- Decrease capillary fragility. 2- It is a biflavonoids that plays a true vitamin function. b- Quercitrin is quercitin 3-O-rhamnoside. It occurs in the bark of Quercus tinctoria. Quercitrin yield upon acid hydrolysis rhamnose and quercetin. The aglycone quercetin occurs in bearberry leaves (Uva Ursi) and has a diuretic action of the leaves. OH HO O B OH A OR OH O Quercetin: R=H Quercetrin: R= rhamnosyl Rutin: R=rutinosyl 3- Hesperidin: it is an example of flavanones. It is the main flavonoidal glycoside of citrus fruits.
  • 32. 32 OH R O O B OCH3 A OH O Hesperitin R:H Hesperidin R:rutinosyl Upon hydrolysis by acid, hesperidin gives rhamnose, glucose and hesperitin. Uses: 1- Hesperidin appears to be identical to vitamin P (citrin). 2- It is necessary for absorption and retention of vit C that lead to decrease capillary fragility. 3- Decrease CVD and HTN. Uses of flavonoids: 1- Increase capillary resistance and decrease vitamins C & P deficiency. 2- They are recommended in the treatment of thrombopenia (blood coagulation). 3- They are reported of value in the treatment of influenza, when given with ascorbic acid. Isoflavone: 1- Genistein show significant oestrogenic activity. HO O OH O OH 2- Rotenoids employed as insecticide. O O O O
  • 33. 33 Flavono-lignans Coupling of a flavonoid moiety with hemi-lignan molecule by oxidative coupling. OH O B OH OR A + OH OH O Flavonoid moiety Hemi-lignan moiety OH O B O A OH O OH O OCH3 OH Flavonolignan The leaves and fruits of Silybum marianum family Compositae contain silymarin (silybin). OH O B O A OH OH O OH O OCH3 Silybin OH 1- Silymarin is a very effective lipotropic and hepato protective therapy. 2- It is a free radical scavenger. 3- Supportive treatment of acute and chronic alcoholic poisoning and toxin induce hepatitis.
  • 34. 34 4- It is used for treatment of liver cirrhosis caused by plant toxins (mushroom, amanita), silymarin is applied as intravenous injection. 5- Silymarin is available in the market in the form of tablets, effervescent granules. Trade name legalon, silyhexal, silirex…etc. Synthetic flavonoids Flavoxate: O O N O B A CH3 O Flavoxate Uses: To remove pain (anti-spasmodic) and anti-inflammatory of the genitor urinary tract. Flavoxate tablets are available under several names: Urispas, Uronid, Spasurit, Genurin). * Saponins are a group of amorphous colloidal glycodides which is wiedly distributed in the higher plants. * Have ability to form lasting foam when shaking in aqueous solution. * They are excellent emulsifying agents (modify surface tension). * Formerly used as detergents to replace soap (e.g., quillaia). * Saponins are colorless and optical active. They form colloidal solution with water and are soluble in alcohol and dilute alcohols. * Saponins have haemolytic properties, they precipitate the cholesterol and lethisins that exist in the memberanes of the red blood cells and thus haemoglobin is liberated. So, saponins are extremely toxic when injected into the blood stream. However, they are not harmful when taken orally. * Saponins are difficult to purify. However, they precipitated from solutions containing them by the addition of a solution of the sterol, filtering off the insoluble sterol-saponin compound and boiling it with toluene which resolves the compound again into sterol (which is soluble in toluene) and saponin (which is insoluble in toluene). Chemically:
  • 35. 35 Saponins are classified according to the genin part into: 1- Steroidal type C25. 2- Triterpinoidal type C30. Both types of saponins have the glycosidic linkage at position 3. O O COOH R2 HO HO R1 Diosgenin Quillaic acid: R1=CHO, R=OH Olianolic acid R1=CH3, R2=H Medicinal importance of saponins: 1- The steroidal saponins are structurally related to modern synthetic compounds that have a therapeutic significance, such as adrenocortecoids and the sex hormones. So, they are a suitable precursors in the partial synthesis of these hormones, e.g., Diosgenin (sapogenins) isolated from the rhizome of Dioscoria species. CH3 OH CO O OH O O O Testosterone Progesterone O CH2 OH CO OH O O HO O Cortisone Diosgenin 2- Saponins increase the rate of absorption of many pharmacological active substances (e.g., cardiac glycosides).
  • 36. 36 3- Many saponin-containing drugs are used as expectorants (e.g., Ipeca, Senaga and liquorice) as their contents of saponins stimulate bronchial secretion and also activate the ciliary epithelium of the bronchi. a-The triterpenoidal saponin glycoside, glycyrrhizin, is the main sweet principle of liquorice. It is calcium and potassium salts of glycyrrhizic acid, which in tern is the diglucuronic acid glycoside of glycyrrhitinic acid. COOH O Glucuronic-glucuronic O B-Glycyrrhitinic Glycyrrhizic acid Glycyrrhizin =Ca, K b- Beside being a valuable flavouring and sweetening agent, liquorice has demulcent, expectorant and antispasmodic action. All these activities attributed to the saponin, glycyrrhizin. c- Recently, glycyrrhizin was shown to be effectively in gastric ulcer treatment and have a cortisone like action in rheumatic arthritis and other inflammatory diseases. Saponins drugs officially in the B.P and U.S.P: 1- Quillaia bark: used as emulsifier. 2- Liquorice root: used as flavouring agent and expectorant. 1- Tannins are widely distributed phenolic plant constituents. It is characterized by being able to combine with proteins of animal hides thus preventing their putrefaction and converting them into leather (true tannins).
  • 37. 37 2- Tannins are detected qualitatively by Goldbeater’s skin test (a tanning test), and can be quantitatively estimated by absorption on standard hide powder. Only high molecular weight tannins that are capable of tanning hide. It is more acceptable to define true tannins as those high molecular weight phenolic plant constituents that can be detected by Glodbeater’s skin tanning test. 3- True tannin solutions have the ability of precipitating soluble proteins (gelatine), heavy metals, alkaloids and glycosides. 4- This will exclude simple molecular weight compounds such as gallic acid, catechin, flavan-3,4- diol and chlorogenic acid, that usually coexist with true tannins. These simpler tannins like compounds are referred to as pseudotannins. HO HO HO OH HO OH COOH COOC6 H11 O5 Gallic acid Glucogallin OH HO CH=CH-COO OH HO OH OH HO O Chlorogenic acid OH OH Flavan-3,4-diol Hydrolysable tannins Condensed tannins 1- Hydrolysable tannins:
  • 38. 38 a- These can be hydrolyzed by acids or enzymes to give phenolic acids (gallic or ellagic) and glucose, so called phenolic acid glycosides. b- Tannins of gallic acid are called gallitannins and those of ellagic acid is called ellagitannins. c- Dry distillation of hydrolysable tannins gives pyrogallol. This class is named pyrogallol tannins. d- Gallitannins and ellagitannins react with ferric salts to give bluish color precipitate. 2- Condensed tannins: a- These are more resistant to hydrolysis upon prolonged heating with acids. b- They undergo decomposition (not hydrolysis) to give a red soluble compound (phlobaphane). c- Condensed tannins are derived from catechin and flavan, 3,4-diol. d- Dry distillation of condensed tannins gives catechol. This class is named catechol tannins. e- Being phenolic, it reacts with ferric salts to give greenish color precipitate. 1- Salicin: Salicin is classified as: 1- Alcoholic glycoside, as it contains free primary alcoholic group. 2- A phenolic glycoside, as its aglycone is phenolic in nature. CH2 OH Gl O Salicin
  • 39. 39 CH2 OH Gl O Acid Enzyme CH2 OH CH2 OH O + Glucose HO + Glucose Saligenin CH2 OH Saliretin 1- Salicin is obtained from different species of Salix, the principle commercial source is Salix fragilis. 2- Salicin is used for many years as a remedy in the treatment of fever and rheumatism. 3- It is now used as an analgesic-antipyretic in case of periodic fever. It is better tolerated in the stomach than sodium salicylate, asprin and other antipyretics and anti-inflammatory agents, which have largely displaced in medical practice. 4- Salicin is hydrolyzed by the enzyme emulsin into saligenin (Salicyl alcohol) and glucose. 5- Acid hydrolysis of salicin gives glucose and a phenolic ether called saliretin which is a condensation product of two molecules of saligenin. 6- Oxidation of saligenin gives salicylic acid and this accounts for the medicinal value of salicin. 1- Arbutin is a phenolic glycoside that occurs in bearberry leaves Arectostaphyllos uva ursi. 2- When hydrolysed with acids or with emulsin it yields glucose and hydroquinone. 3- It is used as diuretic and also has bactericidal action. This activity is due to the hydroquinone given by hydrolysis.
  • 40. 40 3- Uva ursi leaf contains also methylarbutin (the methyl ether of arbutin), that also contributes to the diuretic and urinary antiseptic action of the leave. OH OCH3 O-Gl O-Gl Arbutin Methylarbutin 1- Glucovanillin is a glycosidal constituent of green vanilla pods. 2- The fruits of the plant (pods) are collected and carefully cured. To permit enzymatic action on the glycoside with the liberation of vanillin (the aglycone) which is the principal flavouring constituent of the pods. 3- Vanillin is widely used as a flavouring agent. It may be obtained from vanilla pod or prepared from the glycoside coniferin, lignin or from the phenolic volatile oil constituents eugenol.
  • 41. 41 CHO CHO OCH3 OCH3 O-Gl OH Glucovanillin Vanillin 1- From Coniferin and lignin CH=CH-CH OH 2 CH=CH-CH OH 2 CHO Hydrolysis Oxidation OCH3 OCH3 OCH3 O-Gl OH OH Coniferin Coniferyl alcohol Vanillin 2- From Eugenol CH2 -CH=CH2 CH=CH-CH3 CHO KOH Oxidation OCH3 OCH3 OCH3 OH OH OH Eugenol isoeugenol Vanillin The bulk of vanillin which is produced commercially is prepared from lignin, which gives upon hydrolysis coniferyl alcohol. Hydrolysis Lignin coniferyl alcohol Lignin is obtained in extremely large amounts as a by product of timber industry.
  • 42. 42 1- These are glycosides that are yield hydrocyanic acid as one of their hydrolytic products. 2- Plant containing these glycosides are toxic. 3- The aglycone part is cyanohydrin of a carbonyl compound (condensation product of HCN with an aldehyde or keton). 4- The majority of cyanogenic glycosides are derived of benzaldehyde cyanohydrin. O OH HCN Sugars C CH Mandilonitrile glycosides H CN Benzaldehyde Mandilonitrile CH3 CH3 CH3 O-Gl OH HCN Sugars C O C C CN CN CH3 CH3 CH3 Acetone Acetone cyanohydrin Linamarin D-Mandelonitrile gentiobioside 1- Amygdalin is the most widely distributed cyanophore glycoside. 2- It occurs in several Prunus species, and is obtained from bitter almonds (Prunus amygdalus Var. amara Family Rosaceae). 3- Amygdalin is considered as gentiobioside of D-mandelonitrile. Gentiobioside is a reducing disaccharide consisting of two molecules of β-glucose linked by β-1,6 linkage.
  • 43. 43 CN C O O 6 1 6 1 CH2 CH2 OH H O H 5 O 5 2 3 3 2 4 4 Amygdalin CN C O 1 6 CH2 OH H O 5 3 2 4 Prunasin 4- Acid hydrolysis of amygdalin split two molecules of glucose and one molecule of mandelonitrile. The latter decomposes spontaneously to form benzaldehyde and HCN. 5- Different enzymes act upon amygdalin in different ways: Amygdalase Prunase Glocose + Prunasin Glucose + HCN +Benzaldehyde C Prunase Gentiobiose + Benzaldehyde + HCN Gl-Gl-O CN H Emulsin Glucose + Benzaldehyde + HCN Amygdalin or acid
  • 44. 44 The plant material is cutted into small fragments and then a filter paper moistened with sodium picrate is then suspended in the neck of the flask, the flask is stoppered and incubated in a warm place (40˚C) for about 30-60 min. By this time, the coexisting enzymes act upon the glycosides with the liberation of HCN which turns, the sodium picrate paper convert to brick red color. Thioglycosides 1- A number of plants of the family Cruciferae yield glycosides containing sulphur. 2- Hydrolysis of these, yield volatile genins of thiocyanate structure e.g., mustard oils. 3- The best known compounds Sinigrin and Sinalbin, two glycosides occurring in black mustard and white mustard seed respectively. 4- The glycosides and their specific enzymes are found in different cell in the seeds. They donot interact until they are brought together by the distruction of the cell walls. 5- The general structure of thioglycosides is: S-GL + R C X - N-OSO3
  • 45. 45 6- The anion is called the glucosinolate ion, R may be aliphatic or aromatic. The cation (X) may be a simple metal ion or a complex organic cation, e.g., sinapine ion of sinalbin. S-GL S-GL CH2 CH-CH2 -C HO CH2 C - N-OSO3 K N-OSO3 - Sinapine+ Sinigrin Sinalbin 6- Sinigrin gives upon hydrolysis, glucose, allylisothiocyanate (volatile oil of mustard) and potassium acid sulphate. 7- Hydrolysis of the glycoside sinalbin gives a phenolic isothiocyanate (Acrinyl isothiocyanate), glucose and the acid sulphate of a quaternary alkaloid, sinapine. + CH3 O CH3 HO CH-CH-COO-CH -CH2 -N 2 CH3 CH3 CH3 O Sinalpine cation 8- Black and white mustard seeds are used as rubefacients and counter irritants. These effects are attributed to their contents of thioglycosides. Aglycone 1- coumarin (benzo-α-pyrane).
  • 46. 46 2-coumarin derivative (hydroxyl and methoxy coumarins). 3- Umbelliferone [7-hydroxy coumarin] is the lactone of umbellic acid which occurs both in the free state and in the form of glycosides in some resins of the Umbelliferae (Asafetida and galbanum). O O O O HO O O a-pyrone coumarin umbelliferone 4- Coumarin and its derivatives give blue or violet fluorescence in aqueous ammonical solutions (conjugated double bond system). This is made use of in qualitative testing for coumarin, coumarin derivatives and coumarin glycosides and drugs containing them. 5- The oleo gum resin galbanum that contains umbelliferone in a free state is distinguished from asafoetida that contains only combind umbelliferone, by the addition of ammonia to its aqueous alcoholic extract, when the characteristic blue fluorescence is given. Asafetida responds positive to the fluorescence test only after acid hydrolysis.