SlideShare ist ein Scribd-Unternehmen logo
1 von 72
Downloaden Sie, um offline zu lesen
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  

.∞§                                                §∞.
Part 1: Why Fusion? Humanity’s Growing Resource Problem
Part 2: Fusion – A Primer
Part 3: Fusion Energy Cycles
Part 4: Fusion Confinement Devices
Part 5: Public Awareness Of Fusion
Part 6: Conclusion
Part 7: Appendixes

“But if you wanted to know what the perfect energy source is? The perfect energy source is one that doesn't
take up much space, has a virtually inexhaustible supply, is safe, doesn't put any carbon into the atmosphere,
doesn't leave any long lived radioactive waste, it's fusion. But there is a catch. Of course there is always a
catch in these cases. Fusion is very hard to do. We've been trying for 50 years. .. And we have 30 million
years worth of fusion fuel in sea water..”

– Prof. Steven Cowley – Director of the United Kingdom Atomic Energy Authority's Culham
Laboratory
 - Source: TED Talks http://www.ted.com/talks/steven_cowley_fusion_is_energy_s_future.html
	
  

Introduction:	
  	
  
	
  
This	
   project	
   is	
   intended	
   as	
   a	
   primer	
   on	
   nuclear	
   fusion	
   and	
   is	
   written	
   in	
   mostly	
   non-­‐
technical	
   language	
   for	
   the	
   non	
   scientific	
   reader.	
   It	
   is	
   a	
   research	
   project	
   on	
   the	
  
applications	
  of	
   	
  	
  nuclear	
  fusion	
  as	
  a	
  power	
  source.	
   	
  This	
  is	
  a	
  large	
  area	
  of	
  science,	
  but	
  I	
  
have	
   done	
   my	
   best	
   to	
   condense	
   the	
   large	
   amount	
   of	
   available	
   information	
   into	
   an	
  
easily	
  understandable	
  format.	
  
	
  
	
  As	
  a	
  research	
  document	
  this	
  work	
  is	
  compiled	
  from	
  a	
  variety	
  of	
  sources,	
  adding	
  my	
  
own	
  commentary	
  in	
  the	
  context	
  of	
  this	
  work.	
  Though	
  much	
  of	
  this	
  is	
  my	
  own	
  work,	
  I	
  
make	
  no	
  assumptions	
  or	
  claims	
  to	
  any	
  of	
  it	
  –	
  I	
  have	
  credited	
  the	
  authors	
  whenever	
  I	
  
have	
  used	
  information	
  they	
  have	
  provided	
  
	
  
I	
  will	
  not	
  discuss	
  the	
  application	
  of	
  fusion	
  in	
  weaponry.	
  The	
  world	
  has	
  seen	
  the	
  effects	
  
of	
  this	
  already	
  and	
  there	
  is	
  ample	
  information	
  on	
  it.	
  
	
  
This	
  document	
  is	
  not	
  intended	
  to	
  discuss	
  the	
  entire	
  field	
  in	
  great	
  detail,	
  which	
  is	
   far	
  
beyond	
   the	
   scope	
   of	
   a	
   short	
   document	
   like	
   this.	
   It	
   is	
   instead	
   a	
   carefully	
   arranged,	
  
ordered	
   primer	
   and	
   a	
   signpost.	
   	
   Ample	
   links	
   provide	
   further	
   roads	
   for	
   the	
   intrigued	
  
reader	
   to	
   explore	
   fusion	
   on	
   his	
   own	
   terms.	
   There	
   is	
   far	
   more	
   coherent	
   information	
  
than	
  I	
  could	
  reasonably	
  express,	
  or	
  fit	
  in	
  to	
  the	
  document.	
  
	
  
On	
  another	
  note,	
  I	
  am	
  not	
  a	
  fusion	
  scientist,	
  simply	
  a	
  very	
  interested	
  undergraduate.	
  	
  I	
  
have	
  done	
  my	
  best,	
  but	
  have	
  probably	
  made	
  mistakes,	
  I	
  acknowledge	
  this.	
  
	
  
I	
  hope	
  that	
  you	
  find	
  this	
  information	
  both	
  useful	
  and	
  informative.	
  The	
  energy	
  shortfall	
  
and	
   pollution	
   problems	
   are	
   huge	
   hurdles	
   to	
   human	
   progress.	
   The	
   realisation	
   of	
  
commercially	
  viable	
  fusion	
  presents	
  a	
  very	
  real	
  solution.	
  


                     Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                    www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  




Why	
  fusion?	
  Humanity’s	
  worsening	
  
resource	
  problem	
  
In grossly simple terms, there are two problems quickly becoming apparent that effect modern civilization.
These problems are:

1) Increasing energy costs due to limited availability of fuels with finite deposits.
2) Increasing pollution due to increased economic development and global energy usage

Both problems clearly derive from the our reliance upon, and the burning of fossil fuels, which are finite,
cause atmospheric pollution and in some areas are unable to be obtained in quantities fully able to satisfy
demand.

In 2007, the world consumed an estimated 531 exajoules of energy [one exajoule, [denoted as EJ], is 10
exponential 18 joules]. This is equivalent to the energy released by detonating about 9.73 million A-bombs.
Sources:
EIA:	
  www.eia.doe.gov/	
  
BP:	
  www.bp.com/	
  	
  
	
  




                                                                                    	
  
World	
  Energy	
  Shortfall	
  Predictions	
  –	
  	
  
Note:	
  prediction	
  around	
  2050	
  of	
  a	
  beginning	
  of	
  a	
  shortfall.	
  




                 Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  




                                                                                                                      	
  
Even	
  an	
  ‘acceptable’	
  release	
  of	
  C02	
  is	
  double	
  the	
  amount	
  the	
  world	
  faced	
  before	
  fossil	
  
fuels	
  became	
  widely	
  used	
  in	
  industry!	
  




                                                                                                                   	
  
Modern	
  man	
  consumes	
  around	
  35	
  times	
  the	
  amount	
  of	
  yearly	
  energy	
  of	
  primitive,	
  pre-­‐
agricultural	
  man.	
  

                   Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                  www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  




                                                                                                         	
  
World	
  Energy	
  Consumption	
  2006	
  by	
  Fuel	
  Type	
  [Sources:	
  BP,	
  EIA]	
  
Note:	
  In	
  2006	
  around	
  86%	
  of	
  our	
  energy	
  came	
  from	
  fossil	
  sources.	
  




                                                                                                                          	
  
Evolution	
  of	
  World	
  Total	
  Fuel	
  Consumption	
  by	
  type	
  
Note:	
  energy	
  usage	
  roughly	
  doubles	
  between	
  1972	
  and	
  2005.	
  
           	
  



                  Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                 www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  




                                                                                                                                                                 	
  
           World	
  Energy	
  Use	
  and	
  Reserves	
  circa	
  2001	
  –	
  Source:	
  WEA	
  
           Note:	
  in	
  2001	
  renewables	
  comprised	
  less	
  than	
  14%	
  of	
  our	
  energy	
  supply.	
  
           	
  




                                                                                                	
  
           UN	
  Predicted	
  world	
  growth	
  1950-­‐2050.	
  Note	
  that	
  the	
  scale	
  is	
  logarithmic	
  and	
  
           the	
  population	
  value	
  is	
  given	
  in	
  millions!	
  -­‐	
  Source	
  data	
  calculated	
  from:	
  
           http://esa.un.org/unpp/	
  
           	
  
           According	
  to	
  the	
  U.S.	
  Energy	
  Information	
  Administration	
  (EIA),	
  the	
  demand	
  for	
  
           global	
  energy	
  is	
  projected	
  to	
  grow	
  44%	
  between	
  2005	
  and	
  2030.	
  This	
  will	
  be	
  



                  Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                 www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
           caused	
  by	
  a	
  number	
  of	
  factors,	
  such	
  as	
  continuing	
  economic	
  growth	
  and	
  
           increasing	
  populations	
  in	
  developing	
  countries.	
  	
  	
  
           -­‐	
  Source:	
  http://www.eia.doe.gov/oiaf/ieo/highlights.html	
  
           	
  
           This	
  same	
  report	
  also	
  stated	
  that	
  China	
  is	
  the	
  largest	
  consumer	
  of	
  the	
  world’s	
  
           coal	
  supply,	
  and	
  since	
  2000	
  it’s	
  coal	
  usage	
  has	
  doubled.	
  Given	
  the	
  country’s	
  
           expanding	
  economy,	
  and	
  large	
  coal	
  reserves,	
  China’s	
  demand	
  for	
  coal	
  is	
  
           expected	
  to	
  remain	
  strong.	
  In	
  the	
  reference	
  case,	
  world	
  coal	
  usage	
  grows	
  by	
  2%	
  
           every	
  year,	
  between	
  2005	
  and	
  2030,	
  with	
  coal’s	
  share	
  of	
  the	
  world’s	
  total	
  needs	
  
           reaching	
  29%	
  by	
  2030.	
  	
  Two	
  of	
  the	
  main	
  consumers	
  of	
  energy	
  will	
  be	
  China	
  and	
  
           India,	
  as	
  they	
  are	
  both	
  developing	
  very	
  quickly	
  and	
  have	
  very	
  large	
  
           populations.	
  In	
  1990	
  both	
  the	
  countries	
  where	
  consuming	
  on	
  average,	
  10%	
  of	
  
           the	
  world’s	
  total	
  energy	
  expenditure,	
  but	
  in	
  2006	
  their	
  combined	
  share	
  had	
  
           grown	
  to	
  19%.	
  It	
  is	
  expected	
  that	
  with	
  continued	
  strong	
  economic	
  growth,	
  
           both	
  countries	
  will	
  increase	
  their	
  energy	
  consumption	
  twofold,	
  making	
  up	
  
           28%	
  of	
  total	
  world	
  consumption	
  by	
  2030.	
  
           	
  
           	
  Fission	
  reactors	
  have	
  been	
  suggested	
  as	
  an	
  alternative	
  to	
  this	
  problem.	
  But	
  
           nuclear	
  fission	
  power	
  has	
  its	
  own	
  problems.	
  Licensing	
  and	
  building	
  reactors	
  
           take	
  a	
  very	
  long	
  time.	
  If	
  the	
  fuel	
  were	
  used	
  directly	
  (non-­‐breeder	
  reactors),	
  the	
  
           finite	
  Uranium	
  sources	
  would	
  limit	
  the	
  available	
  operation	
  in	
  a	
  relative	
  short	
  
           time	
  (several	
  decades).	
  Going	
  to	
  breeder	
  reactors	
  can	
  greatly	
  extend	
  this	
  time,	
  
           breeder	
  reactors	
  can	
  utilize	
  more	
  abundant	
  Thorium	
  in	
  fission,	
  and	
  consume	
  
           Uranium	
  at	
  a	
  slower	
  rate.	
  However,	
  these	
  reactors	
  produce	
  Plutonium,	
  which	
  is	
  
           very,	
  very	
  dangerous.	
  Concerns	
  about	
  the	
  safety	
  of	
  nuclear	
  fission	
  reactors	
  
           include	
  the	
  possibility	
  of	
  radiation-­‐releasing	
  nuclear	
  accidents,	
  the	
  problems	
  of	
  
           radioactive	
  waste	
  disposal,	
  and	
  the	
  possibility	
  of	
  contributing	
  to	
  nuclear	
  
           weapon	
  proliferation.	
  Spent	
  fuel	
  elements	
  contain	
  plutonium-­‐239.	
  This	
  
           plutonium	
  could	
  be	
  separated	
  chemically	
  and	
  diverted	
  to	
  nuclear	
  weapons	
  
           production.	
  	
  	
  
           	
  
           	
  




                  Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                 www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  




                                                                                                          	
  
           Remaining	
  oil	
  reserves	
  by	
  source.	
  
           Over	
  38%	
  is	
  unrecoverable.	
  
           	
  




                                                                                                                   	
  



                  Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                 www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
           Chernobyl	
  Nuclear	
  Power	
  Plant,	
  reactor	
  4–	
  site	
  of	
  the	
  April	
  1986	
  disaster	
  and	
  
           along	
  with	
  Three	
  Mile	
  Island	
  in	
  the	
  USA,	
  a	
  significant	
  reason	
  why	
  nuclear	
  
           fission’s	
  reputation	
  amongst	
  the	
  lay	
  public	
  (at	
  least	
  in	
  the	
  USA)	
  retains	
  a	
  
           negative	
  stain.	
  (Yim	
  2003)	
  
           	
  
           	
  




                                                                                       	
  
           Decay	
  timeline	
  of	
  fission	
  biproducts.	
  	
  
           Note:	
  the	
  immense	
  amounts	
  of	
  time	
  taken	
  for	
  radioactivity	
  to	
  decay	
  to	
  0.	
  
           	
  	
  
           	
  




                  Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                 www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  




                                                                                                   	
  
Diagram	
  comparing	
  radiotoxocity	
  of	
  materials	
  in	
  various	
  fission	
  and	
  fusion	
  reactors.	
  	
  
Note	
  two	
  points.	
  	
  

1.	
  	
  The	
  extremely	
  steep	
  decline	
  in	
  fusion	
  radiotoxicity	
  relative	
  to	
  fission	
  radiotoxicity.	
  
Fusion	
  reactors	
  have	
  much	
  shorter	
  radioactive	
  half	
  lives	
  	
  than	
  fission	
  reactors	
  

2.	
  	
  A	
  fusion	
  reactor	
  with	
  a	
  vanadium	
  alloy	
  is	
  no	
  more	
  radioactive	
  than	
  coal	
  plant	
  ashes	
  
after	
  around	
  50	
  years.	
  

Renewables	
  
Renewable	
  energy	
  sources	
  are	
  an	
  excellent	
  alternative	
  to	
  finite	
  and	
  polluting	
  fuels,	
  
being	
  sustainable	
  and	
  a	
  lot	
  more	
  environmentally	
  friendly.	
  However	
  on	
  average	
  they	
  
do	
  not	
  provide	
  energy	
  as	
  cheaply	
  as	
  fission	
  or	
  other	
  finite	
  resources.	
  Furthermore,	
  they	
  
are	
  not	
  always	
  suitable	
  in	
  many	
  locations.	
  For	
  example,	
  geothermal	
  plants	
  can	
  only	
  be	
  
sighted	
  in	
  areas	
  where	
  geological	
  conditions	
  allow	
  for	
  subterranean	
  heat	
  to	
  be	
  
accessed.	
  Solar	
  panels	
  are	
  not	
  as	
  effective	
  in	
  countries	
  which	
  receive	
  on	
  average,	
  less	
  
sunlight,	
  and	
  wind	
  farms,	
  obviously	
  require	
  a	
  significant	
  amount	
  of	
  wind.	
  	
  
It	
  should	
  be	
  emphasized	
  that	
  all	
  alternative	
  methods	
  of	
  generation	
  of	
  electricity	
  on	
  
Earth,	
  wind	
  energy,	
  wave	
  energy	
  from	
  the	
  sea,	
  solar	
  radiation	
  converted	
  by	
  solar	
  cells,	
  
etc,	
  are	
  all	
  indirectly	
  derived	
  from	
  the	
  energy	
  emitted	
  by	
  the	
  Sun,	
  i.e.	
  they	
  originate	
  



                   Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                  www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
from	
  solar	
  fusion.	
  Even	
  the	
  atmosphere,	
  the	
  rivers	
  and	
  the	
  forests	
  providing	
  other	
  
energy	
  alternatives	
  for	
  electric	
  power	
  are	
  driven	
  by	
  heat	
  and	
  light	
  from	
  solar	
  fusion.	
  	
  
Great	
  efforts	
  will	
  be	
  needed	
  to	
  achieve	
  the	
  sustainable	
  energy	
  surplus	
  we	
  require	
  in	
  
the	
  time	
  we	
  have	
  available,	
  before	
  other	
  options	
  begin	
  to	
  run	
  down.	
  	
  
	
  




-­‐Source:	
  Met	
  Office	
  Hadley	
  –	
  Datasets	
  |	
  
http://hadobs.metoffice.com/hadcrut3/diagnostics/global/nh+sh/	
  
	
  
Environmentally	
  speaking,	
  I	
  believe	
  it	
  would	
  be	
  prudent	
  to	
  hedge	
  our	
  bets	
  in	
  regards	
  
to	
  climate	
  change,	
  as	
  the	
  many	
  of	
  the	
  predictions	
  brought	
  about	
  by	
  climate	
  change	
  
could	
  be	
  disastrous	
  if	
  they	
  turn	
  out	
  to	
  be	
  accurate.	
  	
  One	
  must	
  remember	
  that	
  a	
  
reduction	
  in	
  atmospheric	
  CO2	
  levels	
  would	
  take	
  many	
  years	
  even	
  if	
  emissions	
  were	
  
drastically	
  reduced	
  today.	
  Economically	
  speaking;	
  we	
  require	
  the	
  economic	
  
infrastructure	
  in	
  place	
  to	
  make	
  up	
  the	
  shortfall	
  that	
  a	
  combination	
  of	
  increased	
  
consumption	
  and	
  declining	
  fossil	
  stocks	
  will	
  present	
  in	
  the	
  coming	
  decades.	
  	
  
	
  

Energy	
  is	
  undoubtedly	
  the	
  food	
  of	
  civilization.	
  With	
  enough	
  cheap	
  and	
  clean	
  energy,	
  
we	
  can	
  produce	
  unlimited	
  clean	
  drinking	
  water	
  from	
  desalinating	
  the	
  oceans,	
  grow	
  
almost	
  unlimited	
  food	
  in	
  the	
  desert,	
  and	
  reverse	
  environmental	
  damage	
  through	
  
terraforming.	
  We	
  can	
  easily	
  power	
  the	
  technological,	
  electronic	
  systems	
  that	
  are	
  so	
  
essential	
  in	
  both	
  our	
  personal	
  lives,	
  and	
  to	
  society	
  as	
  a	
  whole.	
  With	
  planning	
  we	
  can	
  
live	
  in	
  a	
  world	
  where	
  our	
  needs	
  are	
  met,	
  and	
  not	
  at	
  the	
  expense	
  of	
  the	
  environment.	
  
The	
  path	
  to	
  an	
  infinitely	
  abundant	
  energy	
  source?	
  Nuclear	
  Fusion.	
  




                   Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                  www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



    	
  
    Fusion	
  –	
  a	
  primer	
  on	
  possibly	
  the	
  world’s	
  
    most	
  useful	
  energy	
  source	
  
    It	
  may	
  almost	
  seem	
  too	
  good	
  to	
  be	
  true,	
  but	
  fusion	
  has	
  a	
  number	
  of	
  properties	
  that,	
  
    technological	
  challenges	
  aside,	
  make	
  it	
  the	
  most	
  promising	
  energy	
  source	
  yet.	
  




                                                                                                                                        	
  
    Plasma	
  being	
  channelled	
  in	
  a	
  fusion	
  torus	
  
    Fusion	
  –	
  The	
  Benefits	
  	
  
    SAFE	
  
•   If	
  there	
  is	
  an	
  accident	
  and	
  the	
  magnetic	
  containment	
  is	
  breached,	
  the	
  reaction	
  
    immediately	
  stops!	
  The	
  metallic	
  walls	
  of	
  the	
  vessel	
  surrounding	
  the	
  plasma	
  would	
  
    cool	
  the	
  expanding	
  plasma	
  in	
  a	
  short	
  period,	
  collapsing	
  the	
  reaction	
  cleanly	
  and	
  
    quickly.	
  
    	
  
•   A	
  fusion	
  reactor	
  is	
  like	
  a	
  gas	
  burner	
  –	
  the	
  fuel	
  which	
  is	
  injected	
  into	
  the	
  system	
  is	
  
    burnt	
  off.	
  There	
  is	
  very	
  little	
  fuel	
  in	
  the	
  reaction	
  chamber	
  at	
  any	
  given	
  moment	
  (about	
  
    1g	
  in	
  a	
  volume	
  of	
  1000	
  m3)	
  and	
  if	
  the	
  fuel	
  supply	
  is	
  interrupted,	
  the	
  reactions	
  only	
  
    continue	
  for	
  a	
  few	
  seconds.	
  Any	
  malfunction	
  of	
  the	
  device	
  would	
  cause	
  the	
  reactor	
  to	
  
    cool	
  and	
  the	
  reactions	
  would	
  stop.	
  	
  
    	
  
•   These	
  instabilities	
  in	
  the	
  plasma	
  act	
  as	
  an	
  inherent	
  safety	
  mechanism.	
  A	
  fusion	
  reactor	
  
    cannot	
  melt	
  down	
  like	
  a	
  conventional	
  nuclear	
  reactor,	
  it	
  simply	
  degrades	
  to	
  gas	
  
    	
  
•   Though	
  fusion	
  is	
  the	
  main	
  energy	
  source	
  of	
  hydrogen	
  bombs,	
  fusion	
  alone	
  has	
  never	
  

                        Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                       www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



    	
  
    produced	
  a	
  bomb;	
  the	
  hydrogen	
  bomb	
  requires	
  a	
  fission-­‐	
  based	
  atomic	
  bomb	
  to	
  set	
  it	
  
    off.	
  	
  This	
  uncontrolled	
  fusion	
  reaction	
  used	
  in	
  a	
  bomb	
  is	
  a	
  completely	
  different	
  
    mechanism	
  to	
  the	
  controlled	
  fusion	
  which	
  is	
  utilized	
  in	
  peaceful	
  fusion.	
  
    	
  
•   Day-­‐to-­‐day-­‐operation	
  of	
  a	
  fusion	
  power	
  station	
  would	
  not	
  require	
  the	
  transport	
  of	
  
    radio-­‐active	
  materials	
  	
  
    	
  
•   	
  	
  There	
  are	
  no	
  byproducts	
  that	
  could	
  be	
  adapted	
  for	
  military	
  purposes.	
  
    	
  
    	
  
    CLEAN	
  AND	
  ABUNDANT	
  
•   No	
  carbon	
  emissions	
  are	
  generated	
  by	
  fusion.	
  
    	
  
•   The	
  raw	
  fuels	
  are	
  abundant	
  and	
  equally	
  distributed	
  around	
  the	
  globe.	
  This	
  prevents	
  
    geopolitical	
  and	
  economic	
  issues	
  such	
  as	
  countries	
  gaining	
  political	
  advantages	
  from	
  
    the	
  scarcity	
  of	
  the	
  resource	
  
    	
  
•   	
  It	
  also	
  prevents	
  economic	
  inequalities.	
  Fusion’s	
  raw	
  materials	
  are	
  available	
  to	
  all.	
  
    	
  
•   Raw	
  materials	
  for	
  hydrogen	
  will	
  last	
  for	
  millions	
  of	
  years.	
  They	
  are	
  a	
  type	
  (isotope)	
  of	
  
    hydrogen	
  –	
  deuterium	
  (found	
  in	
  seawater)	
  –	
  and	
  lithium	
  (a	
  light	
  metal	
  which	
  is	
  found	
  
    in	
  the	
  Earth’s	
  crust	
  and	
  in	
  seawater).	
  The	
  lithium	
  in	
  the	
  fusion	
  reactor	
  wall	
  produces	
  
    tritium	
  (another	
  isotope	
  of	
  hydrogen)	
  
    	
  
•   The	
  waste	
  product	
  from	
  a	
  deuterium-­‐tritium	
  fusion	
  reactor	
  is	
  ordinary	
  (and	
  harmless)	
  
    helium.	
  	
  There	
  are	
  no	
  complicated	
  nuclear	
  byproducts	
  and	
  therefore	
  no	
  nuclear	
  
    reprocessing,	
  or	
  complicated	
  fuel	
  cycling	
  is	
  required.	
  
    	
  
•   Although	
  radioactive	
  materials	
  will	
  be	
  generated	
  in	
  the	
  walls	
  of	
  a	
  fusion	
  power	
  plant	
  
    they	
  would	
  decay	
  with	
  half-­‐lives	
  of	
  about	
  10	
  years	
  and	
  the	
  whole	
  plant	
  could	
  be	
  re-­‐
    cycled	
  within	
  100	
  years.	
  There	
  is	
  no	
  long-­‐lasting	
  radioactive	
  waste	
  to	
  burden	
  future	
  
    generations.	
  

    EFFICIENT	
  




                       Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                      www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



    	
  




                                                                                                                           	
  
    The	
  oceans	
  offer	
  us	
  an	
  effectively	
  limitless	
  source	
  of	
  Deutirium.                 	
  
•   Fusion	
  is	
  a	
  very	
  efficient	
  form	
  of	
  energy	
  production.	
  1	
  kg	
  of	
  deuterium	
  and	
  tritium	
  
    would	
  supply	
  the	
  same	
  amount	
  of	
  energy	
  as	
  10	
  million	
  kg	
  of	
  coal.	
  	
  
    	
  
•   The	
  fuel	
  consumption	
  of	
  a	
  fusion	
  power	
  station	
  will	
  be	
  extremely	
  low.	
  A	
  1	
  GW	
  fusion	
  
    plant	
  will	
  need	
  about	
  100	
  kg	
  of	
  deuterium	
  and	
  3	
  tons	
  of	
  natural	
  lithium	
  to	
  operate	
  for	
  
    a	
  whole	
  year,	
  generating	
  about	
  7	
  billion	
  kWh.	
  
    	
  
•   The	
  lithium	
  in	
  one	
  laptop	
  battery	
  plus	
  the	
  deuterium	
  from	
  half	
  a	
  bathtub	
  of	
  water	
  
    would	
  provide	
  the	
  UK’s	
  per	
  capita	
  electricity	
  production	
  for	
  30	
  years.	
  
    Source	
  -­‐	
  	
  Culham	
  Centre	
  For	
  Fusion	
  Energy-­‐	
  fusion.org.uk/fusion_energy.pdf	
  	
  

    Fusion	
  –	
  The	
  Drawbacks	
  
    Though	
  I	
  argue	
  that	
  fusion	
  is	
  extremely	
  promising,	
  it	
  would	
  not	
  be	
  balanced	
  for	
  me	
  to	
  
    leave	
  out	
  the	
  shortcomings	
  of	
  nuclear	
  fusion.	
  
    As	
  an	
  energy	
  source,	
  fusion	
  has	
  very	
  few	
  fundamental	
  shortcomings.	
  The	
  main	
  
    problem	
  with	
  fusion	
  today	
  is	
  that,	
  technologically	
  it	
  is	
  still	
  beyond	
  our	
  grasp.	
  Though	
  
    great	
  advancements	
  have	
  been	
  made,	
  most	
  expert	
  sources	
  believe	
  that	
  commercially	
  
    viable	
  fusion	
  is	
  many	
  decades	
  away.	
  And	
  at	
  the	
  current	
  rate	
  of	
  funding,	
  this	
  will	
  
    remain	
  to	
  be	
  a	
  problem…	
  	
  

    PROBLEM:	
  Escalating	
  research	
  costs	
  	
  
    Many	
  countries	
  perceive	
  fusion	
  funding	
  as	
  a	
  research	
  risk.	
  Essentially	
  it	
  is	
  
    seen	
  to	
  have	
  a	
  huge	
  possible	
  payoff	
  in	
  the	
  far	
  future,	
  and	
  the	
  timescales	
  
    involved	
  are	
  too	
  long.	
  The	
  energy	
  problem	
  is	
  pressing	
  and	
  we	
  need	
  

                       Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                      www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
results	
  now!	
  Other	
  renewable	
  energy	
  sources	
  compete	
  with	
  fusion	
  for	
  
finite	
  R&D	
  funding.	
  Sadly,	
  many	
  green	
  energy	
  advocates	
  have	
  yet	
  to	
  catch	
  
on.	
  Many	
  commentators,	
  particularly	
  those	
  greens	
  who	
  have	
  fought	
  long	
  
campaigns	
  against	
  nuclear	
  fission,	
  are	
  deeply	
  suspicious	
  of	
  fusion.	
  They	
  
doubt	
  fusion	
  will	
  deliver	
  and	
  believe	
  the	
  money	
  earmarked	
  for	
  research	
  
would	
  be	
  better	
  spent	
  on	
  renewables,	
  such	
  as	
  wind,	
  wave	
  and	
  solar	
  
energy.	
  Many	
  of	
  these	
  other	
  resources	
  are	
  already	
  in	
  commercial	
  use,	
  
which	
  makes	
  them	
  perceived	
  as	
  a	
  more	
  credible	
  source	
  of	
  funding.	
  	
  	
  
	
  
	
  
“The	
  ITER	
  fusion	
  reactor	
  was	
  originally	
  costed	
  at	
  €10bn	
  (£9bn),	
  but	
  the	
  rising	
  price	
  of	
  
raw	
  materials	
  and	
  changes	
  to	
  the	
  initial	
  design	
  are	
  likely	
  to	
  see	
  that	
  bill	
  soar,	
  officials	
  
confirmed	
  today.	
  
The	
  warning	
  came	
  as	
  scientists	
  gathered	
  in	
  Finland	
  to	
  unveil	
  the	
  first	
  component	
  of	
  the	
  
reactor,	
  which	
  will	
  effectively	
  act	
  as	
  its	
  exhaust	
  pipe.	
  The	
  reactor	
  is	
  expected	
  to	
  take	
  
nearly	
  10	
  years	
  to	
  build	
  and	
  is	
  scheduled	
  to	
  be	
  switched	
  on	
  in	
  2018.	
  
It	
  began	
  as	
  a	
  US-­‐Russian	
  project	
  in	
  the	
  1980s,	
  but	
  has	
  since	
  grown	
  to	
  include	
  the	
  EU,	
  
China,	
  India,	
  Japan	
  and	
  South	
  Korea.”	
  (Sample	
  2009)	
  –	
  Ian	
  Sample,	
  The	
  Guardian	
  
SOURCE	
  -­‐	
  http://www.guardian.co.uk/science/2009/jan/29/nuclear-­‐fusion-­‐power-­‐
iter-­‐funding	
  


SOLUTION:	
  CONSIDER	
  THE	
  ALERNATIVES!	
  	
  
There	
  is	
  no	
  ‘real’	
  solution	
  to	
  this.	
  However,	
  there	
  is	
  an	
  alternative	
  way	
  to	
  consider	
  the	
  
issue.	
  
1.	
  Fusion	
  may	
  be	
  expensive	
  but,	
  how	
  expensive	
  would	
  it	
  be	
  to	
  transfer	
  most	
  of	
  
humanity	
  away	
  from	
  low-­‐laying	
  coastal	
  areas,	
  assuming	
  that	
  global	
  warming	
  raises	
  
sea	
  levels	
  over	
  the	
  next	
  100	
  years?	
  
2.	
  Fusion	
  should	
  be	
  considered	
  an	
  investment.	
  Simple	
  economics	
  suggests	
  that	
  the	
  
growing	
  scarcity	
  of	
  fossil	
  fuels	
  will	
  result	
  in	
  rising	
  prices	
  to	
  provide	
  power	
  from	
  these	
  
sources	
  over	
  time,	
  assuming	
  they	
  become	
  harder	
  to	
  source	
  and	
  extract.	
  
Extending	
  this	
  idea	
  further,	
  the	
  raw	
  materials	
  of	
  fusion;	
  deuterium	
  and	
  tritium	
  are	
  
abundant	
  enough	
  to	
  be	
  practically	
  considered	
  infinite.	
  As	
  technology	
  improves,	
  costs	
  
of	
  extracting	
  deuterium	
  and	
  lithium	
  and	
  converting	
  them	
  to	
  energy	
  should	
  fall.	
  
Eventually	
  we	
  could	
  see	
  fusion	
  to	
  be	
  a	
  source	
  of	
  extremely	
  cheap	
  power:	
  no	
  scarcity,	
  
massively	
  efficient	
  energy	
  transfer.	
  
3.	
  Commercial	
  fusion	
  reactors	
  greatly	
  outperform	
  other	
  renewable	
  energy	
  sources.	
  


PROBLEM:	
  Net	
  Energy	
  Gain	
  
In	
  experimental	
  fusion	
  reactors	
  the	
  main	
  goal	
  is	
  to	
  achieve	
  a	
  net	
  energy	
  gain.	
  
Essentially,	
  we	
  want	
  to	
  generate	
  more	
  power	
  from	
  the	
  fusion	
  reactions	
  within	
  reactor	
  
than	
  we	
  put	
  in	
  to	
  start	
  and	
  maintain	
  those	
  reactions.	
  At	
  the	
  moment,	
  incredible	
  
amounts	
  of	
  energy	
  are	
  expended	
  to	
  create	
  the	
  conditions	
  for	
  fusion	
  to	
  occur,	
  and	
  as	
  of	
  
yet,	
  no	
  reactor	
  has	
  yet	
  produced	
  a	
  gain.	
  Running	
  a	
  nuclear	
  fusion	
  reactor	
  costs	
  more	
  
energy	
  than	
  it	
  generates.	
  At	
  the	
  moment,	
  a	
  fusion	
  reactor	
  expends	
  energy.	
  


                   Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                  www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
	
  
SOLUTION:	
  Continue	
  research!	
  	
  
Reactor	
  energy	
  efficiency	
  has	
  increased	
  every	
  decade	
  since	
  fusion	
  research	
  
began(Andreani	
  2000).	
  	
  
In	
  fusion	
  research,	
  achieving	
  a	
  fusion	
  energy	
  gain	
  factor	
  Q	
  =	
  1	
  is	
  called	
  breakeven,	
  
and	
  is	
  the	
  current	
  goal	
  in	
  fusion	
  research.	
  With	
  every	
  year	
  the	
  value	
  of	
  Q	
  that	
  we	
  	
  
obtain	
  climbs	
  closer	
  to	
  1.	
  In	
  a	
  commercial	
  fusion	
  reactor,	
  a	
  value	
  around	
  Q	
  =	
  20	
  would	
  
be	
  more	
  suitable.	
  Some	
  external	
  power	
  will	
  	
  be	
  required	
  for	
  things	
  that	
  help	
  us	
  
regulate	
  the	
  plasma,	
  such	
  as	
  like	
  current	
  drive,	
  refueling,	
  profile	
  control,	
  and	
  burn	
  
control.	
  	
  	
  
	
  
Encouragingly,	
  in	
  1997	
  The	
  JET	
  tokamak	
  at	
  Culham	
  in	
  the	
  UK	
  produced	
  16	
  MW	
  of	
  
fusion	
  power	
  –	
  which	
  is	
  the	
  current	
  world	
  record	
  for	
  fusion	
  power.	
  




                                                                                                	
  
The	
  interior	
  of	
  the	
  JET	
  torus.	
  

PROBLEM:	
  Heat/	
  Thermal	
  Pollution	
  	
  
An	
  unusual	
  yet	
  still	
  valid	
  argument	
  against	
  freely	
  available	
  cheap	
  energy	
  is	
  a	
  
phenomenon	
  known	
  as	
  heat	
  pollution.	
  	
  The	
  idea	
  is	
  that	
  with	
  cheap	
  abundant	
  energy,	
  
most	
  will	
  be	
  wasted	
  as	
  heat.	
  This	
  can	
  have	
  detrimental	
  effects	
  on	
  marine	
  life.	
  
Thermal	
  Pollution’s	
  Implications	
  For	
  Marine	
  Ecosystems	
  
Thermal	
  pollution	
  can	
  have	
  a	
  great	
  influence	
  on	
  the	
  aquatic	
  ecosystem.	
  	
  	
  
There	
  are	
  various	
  effects	
  on	
  the	
  biology	
  of	
  the	
  ecosystems	
  when	
  heated	
  effluents	
  
reach	
  the	
  receiving	
  waters.	
  The	
  species	
  that	
  are	
  intolerant	
  to	
  warm	
  conditions	
  may	
  

                   Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                  www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
disappear,	
  while	
  others,	
  rare	
  in	
  unheated	
  water,	
  may	
  thrive	
  so	
  that	
  the	
  structure	
  of	
  the	
  
community	
  changes.	
  	
  Respiration	
  and	
  growth	
  rates	
  may	
  be	
  changed	
  and	
  these	
  may	
  
alter	
  the	
  feeding	
  rates	
  of	
  organisms.	
  The	
  reproduction	
  period	
  may	
  be	
  brought	
  forward	
  
and	
  development	
  may	
  be	
  speeded	
  up.	
  Parasites	
  and	
  diseases	
  may	
  also	
  be	
  affected.	
  	
  
	
  
An	
  increase	
  of	
  temperature	
  also	
  means	
  a	
  decrease	
  in	
  oxygen	
  solubility.	
  Any	
  reduction	
  
in	
  the	
  oxygen	
  concentration	
  of	
  the	
  water,	
  particularly	
  when	
  organic	
  pollution	
  is	
  also	
  
present,	
  may	
  result	
  in	
  the	
  loss	
  of	
  sensitive	
  species.	
  
For	
  example,	
  in	
  summer	
  fish	
  may	
  have	
  high	
  metabolic	
  rates	
  because	
  their	
  body	
  
temperatures	
  are	
  elevated	
  in	
  the	
  warm	
  water.	
  At	
  the	
  same	
  time	
  they	
  are	
  faced	
  with	
  
relatively	
  low	
  oxygen	
  availability	
  because	
  warm	
  water	
  holds	
  less	
  dissolved	
  oxygen	
  
than	
  cold	
  water.	
  The	
  interaction	
  of	
  these	
  factors	
  may	
  prove	
  critical.	
  	
  
	
  Heated	
  water	
  can	
  kill	
  animals	
  and	
  plants	
  that	
  are	
  accustomed	
  to	
  living	
  at	
  lower	
  
temperatures.	
  	
  
-­‐	
  Source:	
  http://www.lenntech.com/aquatic/heat.htm#ixzz0drT24IFS	
  
	
  
SOLUTION:	
  Ecological	
  Safeguards	
  
The	
  technology	
  already	
  exists	
  to	
  cool	
  water	
  before	
  it	
  is	
  returned	
  to	
  the	
  ecosystem.	
  
Heat	
  pollution	
  isn’t	
  really	
  a	
  problem	
  with	
  effective	
  planning.	
  	
  	
  The	
  problem	
  is	
  not	
  
complicated	
  but	
  may	
  be	
  expensive;	
  redesign	
  of	
  sites	
  which	
  are	
  discharging	
  hot	
  water	
  
may	
  be	
  required.	
  Installing	
  the	
  following	
  hardware	
  at	
  offending	
  sites	
  would	
  be	
  an	
  
effective	
  solution	
  to	
  heat	
  pollution:	
  
Cooling	
  ponds:	
  man-­‐made	
  bodies	
  of	
  water	
  designed	
  for	
  cooling	
  by	
  evaporation,	
  
convection,	
  and	
  radiation	
  
Cooling	
  towers:	
  which	
  transfer	
  waste	
  heat	
  to	
  the	
  atmosphere	
  through	
  evaporation	
  
and/or	
  heat	
  transfer	
  
Cogeneration:	
  a	
  process	
  where	
  waste	
  heat	
  is	
  recycled	
  for	
  domestic	
  and/or	
  industrial	
  
heating	
  purposes.	
  




                  Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                 www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
A	
  cooling	
  pond	
  in	
  Novovoronezh,	
  Russia.	
  Many	
  such	
  sites	
  have	
  secondary,	
  recreational	
  
purposes	
  that	
  include	
  fishing,	
  swimming,	
  boating,	
  camping	
  and	
  picnicking.	
  The	
  warm	
  
waters	
  are	
  often	
  used	
  as	
  a	
  fish	
  hatchery.	
  

PROBLEM:	
  Neutron	
  Production	
  in	
  a	
  DT	
  
Fusion	
  Reaction	
  
DT	
  fusion	
  reactions	
  produce	
  free	
  neutrons	
  moving	
  at	
  high	
  speed.	
  These	
  fast	
  neutrons	
  
create	
   radioactivity	
   when	
   they	
   bombard	
   the	
   materials	
   of	
   which	
   the	
   fusion	
   reactor	
   is	
  
constructed.	
  Thus,	
  while	
  the	
  fusion	
  process	
  does	
  not	
  produce	
  nuclear	
  waste	
  directly,	
  
the	
   fusion	
   reactor	
   itself	
   does	
   become	
   radioactive,	
   and	
   its	
   components	
   must	
   be	
  
disposed	
   of	
   safely	
   when	
   the	
   reactor	
   is	
   finally	
   shut	
   down,	
   after	
   the	
   normal	
   life	
   of	
   an	
  
electric	
  power	
  plant.	
  	
  

	
  	
  
SOLUTION:	
  Utilize	
  Unreactive	
  Materials	
  in	
  
Reactor	
  Construction	
  
Neutron	
  shielding	
  is	
  rather	
  simple.	
  Neutrons	
  are	
  easily	
  shielded	
  with	
  24	
  inches	
  or	
  so	
  
of	
  water,	
  plastic,	
  or	
  anything	
  else	
  with	
  high	
  levels	
  of	
  hydrogen	
  to	
  provide	
  collision	
  
partners	
  of	
  nearly	
  equal	
  mass	
  for	
  the	
  neutrons	
  to	
  collide	
  into.	
  	
  
	
  
The	
  problem	
  with	
  radioactive	
  materials	
  are	
  not	
  a	
  particular	
  hurdle.	
  This	
  problem	
  can	
  
be	
  minimized	
  by	
  deliberately	
  choosing	
  construction	
  materials	
  that	
  either	
  produce	
  less	
  
radioactivity	
  or	
  produce	
  radioactivity	
  that	
  dies	
  away	
  more	
  rapidly.	
  Such	
  materials	
  are	
  
estimated	
  to	
  lose	
  their	
  radioactivity	
  within	
  50-­‐100	
  years,	
  as	
  oppose	
  to	
  the	
  thousands	
  
of	
  years	
  required	
  for	
  fission	
  waste.	
  
	
  




                     Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                    www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  




                                                                                                             	
  
Due	
  to	
  it’s	
  low	
  level	
  of	
  radioactive	
  activation	
  in	
  neutron	
  bombardment,	
  vanadium	
  is	
  a	
  
promising	
  candidate	
  for	
  DT	
  fusion	
  reactors.	
  

Part 3.                                          	
  


Fusion	
  Energy	
  Cycles	
  
The	
  fusion	
  process	
  can	
  occur	
  in	
  a	
  number	
  of	
  different	
  ‘energy	
  cycles’.	
  Each	
  one	
  fuses	
  
different	
  materials,	
  with	
  different	
  quantities	
  of	
  matter,	
  and	
  releases	
  energy	
  in	
  different	
  
ways.	
  
	
  




                  Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                 www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  




                                                                                                                                                                	
  
A	
  graph	
  comparing	
  the	
  performance	
  of	
  the	
  3	
  main	
  reactions;	
  The	
  Deutritium-­‐Tritium	
  
reaction,	
  The	
  Deutirium-­‐Deutrium	
  process	
  and	
  the	
  proton-­‐Boron11	
  process.	
  

Note: A Deuterium – Deuterium (DD) fusion reactor would provide limitless
energy; it requires only water as a resource. However, even higher temperatures
would be required for a DD reaction, it is unlikely to be considered in the near
future.




                 Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  




                                                                                                                                      	
  
Helium	
  3	
  fusion	
  (3He3He)	
  though	
  another	
  promising	
  aneutronic	
  reaction,	
  is	
  rare	
  on	
  the	
  
earth.	
  Helium	
  3	
  fusion	
  has	
  been	
  proposed	
  for	
  confinement	
  in	
  both	
  magnetic	
  or	
  inertial	
  
fusion	
  reactors.	
  This	
  isotope	
  of	
  helium	
  is	
  thought	
  to	
  be	
  common	
  on	
  the	
  moon!	
  

THE	
  DT	
  FUEL	
  CYCLE	
  
	
  




                                                                                                                      	
  
The	
  DT	
  Fusion	
  reaction.	
  The	
  release	
  of	
  the	
  neutron	
  is	
  the	
  main	
  drawback	
  of	
  this	
  power	
  
cycle.	
  
According	
  to	
  the	
  Lawson	
  Criterion,	
  the	
  DT	
  fuel	
  cycle	
  is	
  the	
  easiest	
  fusion	
  process	
  to	
  
start	
  and	
  maintain	
  within	
  a	
  terrestrial	
  reactor.	
  It	
  also	
  has	
  the	
  highest	
  power	
  
production	
  rate	
  of	
  the	
  fusion	
  reactions.	
  The	
  generated	
  power	
  density	
  is	
  about	
  1	
  W	
  per	
  
cm3.	
  
	
  

                   Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                  www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
In	
  simple	
  terms,	
  the	
  ‘extra’	
  neutrons	
  on	
  the	
  D	
  and	
  T	
  nuclei	
  make	
  them	
  "larger"	
  and	
  
less	
  tightly	
  bound,	
  and	
  the	
  result	
  is	
  that	
  the	
  cross-­‐section	
  for	
  the	
  D-­‐T	
  reaction	
  is	
  the	
  
largest.	
  Also,	
  because	
  they	
  are	
  only	
  singly-­‐charged	
  hydrogen	
  isotopes,	
  the	
  electrical	
  
repulsion	
  between	
  them	
  is	
  relatively	
  small.	
  	
  It	
  is	
  relatively	
  easy	
  to	
  throw	
  them	
  at	
  each	
  
other,	
  and	
  it	
  is	
  relatively	
  easy	
  to	
  get	
  them	
  to	
  collide	
  and	
  stick.	
  Furthermore,	
  the	
  D-­‐T	
  
reaction	
  has	
  a	
  relatively	
  high	
  energy	
  yield.(Kobres	
  1994)	
  
	
  
Disadvantages	
  
However,	
  the	
  D-­‐T	
  reaction	
  has	
  the	
  disadvantage	
  that	
  it	
  releases	
  an	
  energetic	
  neutron.	
  
Neutrons	
  can	
  be	
  difficult	
  to	
  handle,	
  because	
  they	
  will	
  "stick"	
  to	
  other	
  nuclei,	
  causing	
  
them	
  to	
  become	
  radioactive,	
  or	
  causing	
  secondary	
  reactions.	
  	
  	
  



ANEUTRONIC	
  FUSION	
  
Aneutronic	
  fusion	
  means	
  fusion	
  that	
  does	
  not	
  produce	
  neutrons	
  as	
  a	
  by-­‐product.	
  
There	
  are	
  several	
  candidates	
  for	
  aneutronic	
  fusion,	
  but	
  at	
  current	
  the	
  Hydrogen	
  and	
  
Boron	
  11	
  cycle	
  seem	
  to	
  be	
  the	
  most	
  credible.	
  	
  	
  
As	
  energy	
  equation	
  below	
  shows	
  -­‐	
  no	
  neutrons	
  are	
  produced,	
  however	
  this	
  cycle	
  
requires	
  more	
  energy	
  to	
  start	
  than	
  the	
  DT	
  cycle.	
  

p	
  +	
  B11	
  -­‐>	
  3	
  He4	
  +	
  8.7	
  MeV	
  
	
  




                                                                                                             	
  
The	
  pB11	
  cycle	
  is	
  the	
  most	
  promising	
  candidate	
  for	
  aneutronic	
  fusion.	
  
The	
  nuclear	
  energy	
  from	
  the	
  p-­‐B	
  reaction	
  is	
  different	
  because	
  it	
  comes	
  from	
  the	
  
proton-­‐	
  triggered	
  fission	
  of	
  a	
  light	
  element,	
  and	
  no	
  neutrons	
  are	
  released.	
  (Light	
  


                        Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                       www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
elements	
  are	
  considered	
  to	
  be	
  those	
  with	
  a	
  mass	
  number	
  less	
  than	
  56,	
  which	
  is	
  the	
  
mass	
  number	
  of	
  iron.)	
  	
  
	
  
This	
  is	
  unusual	
  for	
  at	
  least	
  four	
  reasons:	
  	
  
1.	
  Light	
  elements	
  more	
  often	
  “combine”	
  or	
  fuse	
  to	
  make	
  heavier	
  elements;	
  they	
  don’t	
  
normally	
  fission	
  to	
  make	
  elements	
  that	
  are	
  lighter	
  yet.	
  	
  
2.	
  Heavy	
  elements	
  such	
  as	
  235U	
  (Uranium	
  isotope	
  –	
  mass	
  number	
  235)	
  are	
  
traditionally	
  considered	
  to	
  be	
  the	
  more	
  likely	
  candidates	
  for	
  fission	
  reactions.	
  	
  
3.	
  Fission	
  reactions	
  are	
  normally	
  triggered	
  by	
  the	
  absorption	
  of	
  a	
  neutron,	
  not	
  a	
  
proton.	
  	
  
4.	
  Fissions	
  usually	
  result	
  in	
  the	
  emission	
  of	
  neutrons.	
  
	
  
“Focus	
  Fusion”	
  refers	
  to	
  electricity	
  generation	
  using	
  a	
  Dense	
  Plasma	
  Focus	
  (DPF)	
  
nuclear	
  fusion	
  generator.	
  It	
  uses	
  the	
  aneutronic	
  hydrogen-­‐boron	
  fuel	
  (pB11)	
  cycle.	
  
If	
  Focus	
  Fusion	
  reactors	
  are	
  made	
  to	
  work,	
  they	
  will	
  provide	
  virtually	
  unlimited	
  
supplies	
  of	
  cheap	
  energy	
  in	
  an	
  environmentally	
  sound	
  way	
  -­‐	
  no	
  greenhouse	
  gases,	
  and	
  
no	
  radiation	
  -­‐	
  because	
  the	
  reaction	
  of	
  pB11	
  is	
  aneutronic.	
  	
  	
  

Focus	
  Fusion	
  faces	
  two	
  main	
  technical	
  challenges:	
  	
  
•	
       It	
  requires	
  much	
  higher	
  ion	
  temperatures	
  and	
  plasma	
  density-­‐confinement	
  
time	
  product	
  than	
  Deuterium-­‐Tritium	
  fuel;	
  	
  
•	
         and	
  x-­‐rays	
  produced	
  by	
  the	
  reaction	
  reduce	
  temperatures.	
  
The	
  plasma	
  focus	
  device	
  consists	
  of	
  two	
  cylindrical	
  copper	
  or	
  berillyum	
  electrodes	
  
nested	
  inside	
  each	
  other.	
  The	
  outer	
  electrode	
  is	
  generally	
  no	
  more	
  than	
  6-­‐7	
  inches	
  in	
  
diameter	
  and	
  a	
  foot	
  long.	
  The	
  electrodes	
  are	
  enclosed	
  in	
  a	
  vacuum	
  chamber	
  with	
  a	
  low	
  
pressure	
  gas	
  (the	
  fuel	
  for	
  the	
  reaction)	
  filling	
  the	
  space	
  between	
  them.	
  
Focus	
  fusion	
  reactors	
  are	
  expected	
  to	
  be	
  less	
  expensive	
  for	
  the	
  same	
  amount	
  of	
  power.	
  
Using	
  this	
  power	
  cycle,	
  a	
  wheelbarrow	
  load	
  of	
  the	
  Boron	
  in	
  Boraxo,	
  a	
  brand	
  of	
  
American	
  hand	
  soap	
  would	
  be	
  sufficient	
  to	
  provide	
  all	
  the	
  electrical	
  needs	
  of	
  a	
  small	
  
city	
  for	
  a	
  year.	
  
-­‐Sources:	
  http://focusfusion.org/index.php/site/article/focus_fusion_reactor/	
  
William	
  W.	
  Flint	
  -­‐
http://www.polywellnuclearfusion.com/Clean_Nuclear_Fusion/Download_Book.html	
  	
  

MAGNETISED	
  TARGET	
  FUSION	
  /	
  
SPHEROMAK	
  FUSION	
  




                   Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                  www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  




                                                                         	
  
General	
  Fusion's	
  reactor	
  design	
  consists	
  of	
  220	
  pistons	
  that	
  simultaneously	
  ram	
  a	
  metal	
  
sphere.	
  This	
  creates	
  a	
  shock	
  wave	
  inside	
  the	
  sphere,	
  so	
  that	
  plasma	
  rings	
  in	
  the	
  center	
  
create	
  a	
  fusion	
  reaction.

General	
  Fusion	
  plans	
  to	
  try	
  a	
  relatively	
  low-­‐tech	
  approach	
  to	
  fusion	
  called	
  magnetized	
  
target	
  fusion	
  (MTF).	
  

The	
  reactor	
  consists	
  of	
  a	
  metal	
  sphere	
  with	
  a	
  diameter	
  of	
  three	
  meters.	
  Inside	
  the	
  
sphere,	
  a	
  liquid	
  mixture	
  of	
  lithium	
  and	
  lead	
  spins	
  to	
  create	
  a	
  vortex	
  with	
  a	
  vertical	
  
cavity	
  in	
  the	
  centre.	
  Then,	
  the	
  researchers	
  inject	
  two	
  donut-­‐shaped	
  plasma	
  rings	
  called	
  
spheromaks	
  into	
  the	
  top	
  and	
  bottom	
  of	
  the	
  vertical	
  cavity	
  -­‐	
  like	
  "blowing	
  smoke	
  rings	
  
at	
  each	
  other,"	
  explains	
  Doug	
  Richardson,	
  chief	
  executive	
  of	
  General	
  Fusion,	
  the	
  
Canadian	
  energy	
  company	
  that	
  is	
  driving	
  the	
  MTF	
  project.	
  
	
  
The	
  last	
  step	
  is	
  mainly	
  well-­‐timed	
  brute	
  mechanical	
  force.	
  220	
  pneumatically	
  
controlled	
  pistons	
  on	
  the	
  outer	
  surface	
  of	
  the	
  sphere	
  are	
  programmed	
  to	
  
simultaneously	
  ram	
  the	
  surface	
  of	
  the	
  sphere	
  one	
  time	
  per	
  second.	
  This	
  force	
  sends	
  an	
  
acoustic	
  wave	
  through	
  the	
  spinning	
  liquid	
  that	
  becomes	
  a	
  shock	
  wave	
  when	
  it	
  reaches	
  
the	
  spheromaks	
  in	
  the	
  center,	
  triggering	
  a	
  fusion	
  burst.	
  Specifically,	
  the	
  plasma's	
  
hydrogen	
  isotopes	
  -­‐	
  deuterium	
  and	
  tritium	
  -­‐	
  fuse	
  into	
  helium,	
  releasing	
  neutrons	
  that	
  
are	
  trapped	
  by	
  the	
  lithium	
  and	
  lead	
  mixture.	
  The	
  neutrons	
  cause	
  the	
  liquid	
  to	
  heat	
  up,	
  
and	
  the	
  heat	
  is	
  extracted	
  through	
  a	
  heat	
  exchanger.	
  Part	
  of	
  the	
  resulting	
  heat	
  is	
  used	
  to	
  
make	
  steam	
  to	
  spin	
  a	
  turbine	
  for	
  power	
  generation,	
  while	
  the	
  rest	
  goes	
  back	
  to	
  
recharge	
  the	
  pistons.	
  	
  


General	
  Fusion	
  has	
  just	
  started	
  developing	
  simulations	
  of	
  the	
  project,	
  and	
  hopes	
  to	
  
build	
  a	
  test	
  reactor	
  and	
  demonstrate	
  net	
  gain	
  within	
  five	
  years.	
  If	
  everything	
  goes	
  
according	
  to	
  plan,	
  they	
  will	
  then	
  build	
  a	
  100-­‐megawatt	
  prototype	
  reactor	
  to	
  be	
  


                   Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                  www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
finished	
  five	
  years	
  after	
  that,	
  which	
  would	
  cost	
  an	
  estimated	
  $500	
  million.	
  	
  

Source:	
  Lisa	
  Zyga,	
  Physorg.com	
  |	
  http://www.physorg.com/news168623833.html


INERTIAL CONFINEMENT FUSION/
INERTIAL FUSION ENERGY [IFE]	
  
While	
  magnetic	
  confinement	
  seeks	
  to	
  extend	
  the	
  time	
  that	
  ions	
  spend	
  close	
  to	
  each	
  
other	
  in	
  order	
  to	
  facilitate	
  fusion,	
  the	
  inertial	
  confinement	
  strategy	
  seeks	
  to	
  fuse	
  nuclei	
  
so	
  fast	
  that	
  they	
  don't	
  have	
  time	
  to	
  move	
  apart	
  
	
  
Directed	
  onto	
  a	
  tiny	
  deuterium-­‐tritium	
  pellet,	
  the	
  enormous	
  energy	
  influx	
  evaporates	
  
the	
  outer	
  layer	
  of	
  the	
  pellet,	
  producing	
  energetic	
  collisions	
  that	
  drive	
  part	
  of	
  the	
  pellet	
  
inward.	
  The	
  inner	
  core	
  is	
  increased	
  a	
  thousandfold	
  in	
  density	
  and	
  its	
  temperature	
  is	
  
driven	
  upward	
  to	
  the	
  ignition	
  point	
  for	
  fusion.	
  Accomplishing	
  this	
  in	
  a	
  time	
  interval	
  of	
  
10^-­‐11	
  to	
  10^-­‐9	
  seconds	
  does	
  not	
  allow	
  the	
  ions	
  to	
  move	
  appreciably	
  because	
  of	
  their	
  
own	
  inertia;	
  hence	
  the	
  name	
  inertial	
  confinement.	
  




Atmosphere Formation
Laser beam rapidly heats the surface of the fusion target forming a surrounding plasma envelope.




Compression
Fuel is compressed by the rocket-like blowoff of the hot surface material.




Ignition


                  Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                 www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
During the final part of the laser pulse, the fuel core reaches 20 times the density of lead and ignites at
100,000,000 degrees Celcius.




Burn
Thermonuclear burn spreads rapidly through the compressed fuel, yielding many times the input energy.

Key:
       Laser	
  energy	
  	
  

       Blowoff	
  	
  
       Inward	
  transported	
  thermal	
  energy	
  
	
  	
  
The	
  National	
  Ignition	
  Facility	
  (NIF)	
  at	
  Lawrence	
  Livermore	
  Laboratory	
  is	
  exp-­‐
erimenting	
  with	
  using	
  laser	
  beams	
  to	
  induce	
  fusion.	
  In	
  the	
  NIF	
  device,	
  192	
  laser	
  
beams	
  will	
  focus	
  on	
  single	
  point	
  in	
  a	
  10-­‐meter-­‐diameter	
  target	
  chamber	
  called	
  a	
  
hohlraum.	
  A	
  hohlraum	
  is	
  "a	
  cavity	
  whose	
  walls	
  are	
  in	
  radiative	
  equilibrium	
  with	
  the	
  
radiant	
  energy	
  within	
  the	
  cavity"	
  




                                                                                                     	
  
A	
  hohlraum	
  mock	
  up	
  to	
  be	
  used	
  on	
  the	
  NIF	
  laser	
  
Other	
  effects	
  like	
  the	
  symmetry	
  of	
  the	
  implosion	
  are	
  also	
  important	
  for	
  the	
  ignition.	
  
	
  
The	
  IFE	
  laser	
  must	
  operate	
  at	
  five	
  to	
  ten	
  shots	
  a	
  second	
  depending	
  on	
  the	
  target	
  yield	
  
per	
  shot	
  and	
  the	
  desired	
  electric	
  output	
  of	
  the	
  power	
  plant.	
  Currently	
  two	
  classes	
  of	
  



                         Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                        www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
laser	
  are	
  being	
  considered	
  in	
  the	
  United	
  States:	
  the	
  krypton-­‐fluoride	
  (KrF)	
  gas	
  laser	
  
and	
  the	
  diode-­‐pumped	
  solid	
  state	
  laser	
  (DPSSL).	
  
	
  
Like	
  the	
  magnetic-­‐confinement	
  fusion	
  reactor,	
  the	
  heat	
  from	
  inertial-­‐confinement	
  
fusion	
  will	
  be	
  passed	
  to	
  a	
  heat	
  exchanger	
  to	
  make	
  steam	
  for	
  producing	
  electricity.	
  	
  
	
  
-­‐	
  Source:	
  Rochster	
  University	
  |	
  
http://www.lle.rochester.edu/02_visitors/02_grad_inertialconf.php	
  




                                                                                                                         	
  
In	
  the	
  resulting	
  conditions	
  —	
  a	
  temperature	
  of	
  more	
  than	
  100	
  million	
  degrees	
  Celsius	
  
and	
  pressures	
  100	
  billion	
  times	
  the	
  Earth’s	
  atmosphere	
  —	
  the	
  fuel	
  core	
  will	
  ignite	
  and	
  a	
  
thermonuclear	
  burn	
  will	
  quickly	
  spread	
  through	
  the	
  compressed	
  fuel,	
  releasing	
  ten	
  to	
  
100	
  times	
  more	
  energy	
  than	
  the	
  amount	
  deposited	
  by	
  the	
  laser	
  beams.	
  Only	
  a	
  few	
  NIF	
  
experiments	
  can	
  be	
  conducted	
  in	
  a	
  single	
  day	
  because	
  the	
  facility's	
  optical	
  components	
  
need	
  time	
  to	
  cool	
  down	
  between	
  shots.	
  In	
  an	
  IFE	
  power	
  plant,	
  targets	
  will	
  be	
  ignited	
  
five	
  to	
  ten	
  times	
  a	
  second!	
  




                   Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                  www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  




                                                                                                       	
  
In	
  direct-­‐drive,	
  the	
  capsule	
  is	
  directly	
  irradiated	
  by	
  the	
  laser	
  beams.	
  In	
  indirect-­‐
drive,	
  the	
  capsule	
  is	
  placed	
  inside	
  a	
  hohlraum;	
  made	
  with	
  high-­‐atomic-­‐mass	
  materials	
  
like	
  gold	
  and	
  lead	
  with	
  holes	
  on	
  the	
  ends	
  for	
  beam	
  entry.	
  
Source:	
  Rick	
  Hodgin	
  -­‐	
  http://www.geek.com/articles/chips/national-­‐ignition-­‐facility-­‐
preps-­‐self-­‐sustaining-­‐fusion-­‐tests-­‐for-­‐2010-­‐20090415/	
  

The	
  HiPER	
  Laser	
  Fusion	
  Reactor	
  
HiPER	
  is	
  a	
  European	
  ICF	
  facility	
  being	
  designed	
  to	
  demonstrate	
  the	
  feasibility	
  of	
  laser	
  
driven	
  fusion	
  as	
  a	
  future	
  energy	
  source.	
  	
  This	
  is	
  made	
  feasible	
  by	
  the	
  advent	
  of	
  a	
  
revolutionary	
  approach	
  to	
  laser-­‐driven	
  fusion	
  known	
  as	
  'Fast	
  Ignition'.	
  HiPER	
  will	
  
use	
  a	
  unique	
  laser	
  configuration,	
  currently	
  estimated	
  at	
  200kJ	
  long	
  pulse	
  laser	
  
combined	
  with	
  a	
  70kJ	
  short	
  pulse	
  laser.	
  	
  

The	
  HiPER	
  Science	
  Programme	
  
It	
  will	
  also	
  enable	
  the	
  investigation	
  of	
  the	
  science	
  of	
  truly	
  extreme	
  conditions	
  –	
  creating	
  
environments	
  which	
  cannot	
  be	
  produced	
  elsewhere	
  on	
  Earth	
  (temperatures	
  of	
  hundreds	
  
of	
  millions	
  of	
  degrees,	
  billion	
  atmosphere	
  pressures,	
  and	
  enormous	
  electric	
  and	
  magnetic	
  
fields).	
  

The	
  new	
  research	
  programs	
  will	
  include	
  the	
  following	
  areas	
  
   • Astrophysics	
  in	
  the	
  laboratory	
  	
  
   • Behavior	
  of	
  matter	
  in	
  truly	
  extreme	
  conditions	
  	
   	
  
   • Material	
  science	
  in	
  the	
  challenging	
  “warm	
  dense”	
  regime	
  	
                                        	
  
   • Nuclear	
  physics	
  and	
  nucleosynthesis	
  	
            	
  
   • Atomic	
  physics	
  	
        	
  
   • Turbulent	
  flow	
  at	
  very	
  high	
  Mach	
  numbers	
  	
         	
  


                   Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                  www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
       •   Relativistic	
  particle	
  beam	
  studies	
  and	
  applications	
  •	
                             plasma	
  physics	
  at	
  high	
  
           energy	
  density	
  	
      	
  
       •   Laser	
  plasma	
  interaction	
  physics	
  	
   	
  
       •   Quantum	
  vacuum	
  studies	
  	
   	
  
       •   Fundamental	
  physics	
  in	
  ultra-­‐strong	
  electric	
  fields.	
  




                                                                                                                        	
  
Artist’s	
  impression	
  of	
  the	
  HiPER	
  facility	
  
The	
  project	
  was	
  accepted	
  onto	
  the	
  ‘European	
  Roadmap’	
  in	
  October	
  2006,	
  with	
  the	
  UK	
  
agreeing	
  to	
  take	
  a	
  leadership	
  role	
  in	
  January	
  2007.The	
  HiPER	
  facility	
  is	
  anticipated	
  to	
  
open	
  towards	
  the	
  end	
  of	
  the	
  next	
  decade	
  dependent	
  on	
  the	
  success	
  of	
  the	
  
preparatory	
  phase	
  project.	
  The	
  UK	
  is	
  the	
  leading	
  contender	
  to	
  host	
  the	
  HiPER	
  laser	
  
facility.	
  
Source:	
  The	
  Hiper	
  project	
  |	
  http://www.hiper-­‐laser.org/keyfacts/KeyFacts.asp	
  




Fusion	
  Confinement	
  Devices	
  
Regardless	
  of	
  the	
  energy	
  cycle	
  of	
  nuclear	
  fusion	
  we	
  use,	
  certain	
  conditions	
  are	
  required	
  
to	
  start	
  the	
  reaction	
  and	
  contain	
  the	
  temperamental	
  plasma	
  environment	
  in	
  which	
  the	
  
atomic	
  process	
  takes	
  place.	
  

           	
  




                  Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                 www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  




                                                                                                                                        	
  
Another	
  view	
  inside	
  the	
  JET	
  torus,	
  a	
  tokamak	
  design.	
  

THE	
  TOKAMAK	
  
The	
  Tokamak	
  was	
  first	
  discussed	
  in	
  the	
  1950s	
  by	
  Igor	
  Tamm	
  and	
  Andrei	
  Sakharov	
  in	
  
the	
  Soviet	
  Union.	
  The	
  word	
  Tokamak	
  is	
  actually	
  an	
  acronym	
  derived	
  from	
  the	
  Russian	
  
words	
  toroid-­‐kamera-­‐magnit-­‐katushka,	
  meaning	
  “the	
  toroidal	
  chamber	
  and	
  
magnetic	
  coil.”	
  	
  This	
  donut-­‐shaped	
  configuration	
  is	
  principally	
  characterized	
  by	
  a	
  large	
  
current,	
  up	
  to	
  several	
  million	
  amps,	
  which	
  flows	
  through	
  the	
  plasma.	
  	
  The	
  plasma	
  is	
  
heated	
  to	
  temperatures	
  more	
  than	
  a	
  hundred	
  million	
  degrees	
  centigrade	
  (much	
  
hotter	
  than	
  the	
  core	
  of	
  the	
  sun)	
  by	
  high-­‐energy	
  particle	
  beams	
  or	
  radio-­‐frequency	
  
waves.	
  	
  
	
  
The	
  Problem	
  and	
  Importance	
  of	
  Heat	
  In	
  The	
  Tokamak	
  
In	
  an	
  operating	
  fusion	
  reactor,	
  part	
  of	
  the	
  energy	
  generated	
  will	
  serve	
  to	
  maintain	
  the	
  
plasma	
  temperature	
  as	
  fresh	
  deuterium	
  and	
  tritium	
  are	
  introduced.	
  However,	
  in	
  the	
  
startup	
  of	
  a	
  reactor,	
  either	
  initially	
  or	
  after	
  a	
  temporary	
  shutdown,	
  the	
  plasma	
  will	
  
have	
  to	
  be	
  heated	
  to	
  100	
  million	
  degrees	
  Celsius.	
  
	
  
In	
  current	
  tokamak	
  (and	
  other)	
  magnetic	
  fusion	
  experiments,	
  insufficient	
  fusion	
  
energy	
  is	
  produced	
  to	
  maintain	
  the	
  plasma	
  temperature.	
  Consequently,	
  the	
  devices	
  
operate	
  in	
  short	
  pulses	
  and	
  the	
  plasma	
  must	
  be	
  heated	
  afresh	
  in	
  every	
  pulse.	
  
	
  
Ohmic	
  Heating	
  
Since	
  the	
  plasma	
  is	
  an	
  electrical	
  conductor,	
  it	
  is	
  possible	
  to	
  heat	
  the	
  plasma	
  by	
  passing	
  
a	
  current	
  through	
  it;	
  in	
  fact,	
  the	
  current	
  that	
  generates	
  the	
  poloidal	
  field	
  also	
  heats	
  the	
  
plasma.	
  This	
  is	
  called	
  ohmic	
  (or	
  resistive)	
  heating;	
  it	
  is	
  the	
  same	
  kind	
  of	
  heating	
  that	
  
occurs	
  in	
  an	
  electric	
  light	
  bulb	
  or	
  in	
  an	
  electric	
  heater.	
  
	
  
Neutral-­‐Beam	
  Injection	
  
Neutral-­‐beam	
  injection	
  involves	
  the	
  introduction	
  of	
  high-­‐energy	
  (neutral)	
  atoms	
  into	
  


                   Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                  www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
the	
  ohmically	
  -­‐-­‐	
  heated,	
  magnetically	
  -­‐-­‐	
  confined	
  plasma.	
  The	
  atoms	
  are	
  immediately	
  
ionized	
  and	
  are	
  trapped	
  by	
  the	
  magnetic	
  field.	
  The	
  high-­‐energy	
  ions	
  then	
  transfer	
  part	
  
of	
  their	
  energy	
  to	
  the	
  plasma	
  particles	
  in	
  repeated	
  collisions,	
  thus	
  increasing	
  the	
  
plasma	
  temperature.	
  
	
  
Radio-­‐frequency	
  Heating	
  
In	
  radio-­‐frequency	
  heating,	
  high-­‐frequency	
  waves	
  are	
  generated	
  by	
  oscillators	
  outside	
  
the	
  torus.	
  If	
  the	
  waves	
  have	
  a	
  particular	
  frequency	
  (or	
  wavelength),	
  their	
  energy	
  can	
  
be	
  transferred	
  to	
  the	
  charged	
  particles	
  in	
  the	
  plasma,	
  which	
  in	
  turn	
  collide	
  with	
  other	
  
plasma	
  particles,	
  thus	
  increasing	
  the	
  temperature	
  of	
  the	
  bulk	
  plasma.	
  
	
  
The	
  Magnetic	
  Field	
  In	
  a	
  Tokamak	
  
Because	
  of	
  the	
  electric	
  charges	
  carried	
  by	
  electrons	
  and	
  ions,	
  a	
  plasma	
  can	
  be	
  
confined	
  by	
  a	
  magnetic	
  field.	
  In	
  the	
  absence	
  of	
  a	
  magnetic	
  field,	
  the	
  charged	
  particles	
  
in	
  a	
  plasma	
  move	
  in	
  straight	
  lines	
  and	
  random	
  directions.	
  Since	
  nothing	
  restricts	
  their	
  
motion	
  the	
  charged	
  particles	
  can	
  strike	
  the	
  walls	
  of	
  a	
  containing	
  vessel,	
  thereby	
  
cooling	
  the	
  plasma	
  and	
  inhibiting	
  fusion	
  reactions.	
  But	
  in	
  a	
  magnetic	
  field,	
  the	
  
particles	
  are	
  forced	
  to	
  follow	
  spiral	
  paths	
  about	
  the	
  field	
  lines.	
  Consequently,	
  the	
  
charged	
  particles	
  in	
  the	
  high-­‐temperature	
  plasma	
  are	
  confined	
  by	
  the	
  magnetic	
  field	
  
and	
  prevented	
  from	
  striking	
  the	
  vessel	
  walls.	
  
	
  
The	
  flow	
  in	
  the	
  plasma	
  is	
  mainly	
  used	
  to	
  generate	
  the	
  enclosing	
  magnetic	
  field.	
  In	
  
addition,	
  it	
  provides	
  effective	
  initial	
  heating	
  of	
  the	
  plasma.	
  The	
  flow	
  in	
  the	
  plasma	
  is	
  
normally	
  induced	
  by	
  a	
  transformer	
  coil.	
  
	
  




                                                                                                           	
  
This	
  simplified	
  diagram	
  of	
  a	
  tokamak	
  describes	
  what	
  part	
  each	
  component	
  plays	
  in	
  
confining	
  plasma.
	
  

                  Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                 www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
In	
  order	
  to	
  minimize	
  particle	
  losses	
  caused	
  from	
  leaking	
  along	
  the	
  magnetic	
  field	
  lines,	
  
the	
  chamber	
  is	
  bent,	
  which	
  also	
  bends	
  the	
  magnetic	
  field	
  lines.	
  This	
  creates	
  the	
  
distinctive	
  torus	
  shape	
  also	
  known	
  as	
  a	
  “toroidal	
  pinch”.	
  However,	
  the	
  curvature	
  of	
  the	
  
magnetic	
  field	
  lines	
  introduces	
  new	
  problems.	
  Strong	
  externally	
  produced	
  toroidal	
  
magnetic	
  fields	
  are	
  necessary	
  to	
  stabilize	
  the	
  plasma.	
  These	
  are	
  generated	
  by	
  the	
  
solenoidal	
  magnet	
  
	
  
The	
  solenoid	
  works	
  by	
  passing	
  a	
  current	
  through	
  an	
  electromagnet	
  wrapped,	
  one	
  turn	
  
after	
  the	
  other,	
  along	
  the	
  full	
  length	
  of	
  the	
  tube.	
  It	
  reduces	
  the	
  kinking	
  problem	
  in	
  the	
  
plasma	
  by	
  adding	
  an	
  external	
  source	
  of	
  magnetic	
  field	
  that	
  "stiffens"	
  the	
  plasma	
  
column.	
  	
  
	
  




A	
  solenoid	
  is	
  a	
  3	
  dimensional	
  coil	
  which	
  creates	
  the	
  magnetic	
  field	
  that	
  	
  envelopes	
  the	
  
torus.	
  
	
  
A	
  tokamak	
  consists	
  mainly	
  of	
  a	
  toroidal	
  tube	
  big	
  enough	
  to	
  hold	
  the	
  plasma	
  that	
  serves	
  
as	
  fuel;	
  a	
  solenoidal	
  magnet	
  wrapped	
  around	
  the	
  tube;	
  and	
  a	
  transformer	
  to	
  drive	
  a	
  
current	
  in	
  the	
  plasma.	
  
	
  




                                                                                                                                 	
  

                   Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                  www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
Diagram	
  showing	
  how	
  particles	
  are	
  trapped	
  within	
  the	
  cross	
  section	
  of	
  plasma	
  
constrained	
  within	
  a	
  tokamak.	
  
	
  
The	
  Energy	
  Generation	
  Process	
  Within	
  The	
  Tokamak	
  
     • The	
  fusion	
  reactor	
  heats	
  a	
  stream	
  of	
  deuterium	
  and	
  tritium	
  fuel	
  to	
  form	
  high-­‐
         temperature	
  plasma.	
  It	
  squeezes	
  the	
  plasma	
  so	
  that	
  fusion	
  can	
  take	
  place.	
  	
  
     • The	
  lithium	
  blankets	
  outside	
  the	
  plasma	
  reaction	
  chamber	
  absorb	
  high-­‐energy	
  
         neutrons	
  from	
  the	
  fusion	
  reaction	
  to	
  make	
  (‘breed’)	
  more	
  tritium	
  fuel.	
  The	
  
         blankets	
  will	
  also	
  get	
  heated	
  by	
  the	
  neutrons.	
  	
  
     • The	
  heat	
  will	
  be	
  transferred	
  by	
  a	
  water-­‐cooling	
  loop	
  to	
  a	
  heat	
  exchanger	
  to	
  
         make	
  steam.	
  	
  
     • The	
  steam	
  will	
  drive	
  electrical	
  turbines	
  to	
  produce	
  electricity.	
  	
  
     • The	
  steam	
  will	
  be	
  condensed	
  back	
  into	
  water	
  to	
  absorb	
  more	
  heat	
  from	
  the	
  
         reactor	
  in	
  the	
  heat	
  exchanger.	
  	
  
	
  
Source:	
  Princton	
  Plasma	
  Physics	
  Laboratory	
  |	
  http://www.pppl.gov/fusion_basics/	
  
	
  
At	
  this	
  time,	
  of	
  all	
  the	
  fusion	
  projects,	
  tokamak	
  confinement	
  is	
  getting	
  the	
  most	
  
funding	
  and	
  the	
  most	
  media	
  attention.	
  There	
  are	
  2	
  major	
  new	
  tokamak	
  projects	
  under	
  
construction,	
  ITER	
  in	
  Europe	
  and	
  SST-­‐1	
  in	
  India.	
  Both	
  are	
  designed	
  to	
  showcase	
  
current	
  advancements	
  in	
  magnetic	
  confinement	
  technology	
  to	
  the	
  world,	
  and	
  to	
  
provide	
  the	
  environment	
  to	
  research	
  the	
  next	
  phase	
  of	
  tokamak	
  technology.	
  
	
  
THE	
  POLYWELL/	
  BUSSARD	
  FUSION	
  
REACTOR	
  




                                                                                 	
  

                 Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
Robert	
  W.	
  Bussard	
  (August	
  11,	
  1928	
  –	
  October	
  6,	
  2007)	
  was	
  an	
  American	
  physicist	
  who	
  
worked	
  primarily	
  in	
  nuclear	
  fusion	
  energy	
  research,	
  and	
  who	
  pioneered	
  the	
  polywell	
  
concept.	
  
	
  
The	
  name	
  polywell	
  is	
  a	
  portmanteau	
  of	
  "polyhedron"	
  and	
  "potential	
  well."	
  	
  The	
  
Polywell	
  is	
  spherical	
  instead	
  of	
  the	
  donut	
  shape	
  of	
  the	
  Tokamak.	
  	
  The	
  polywell	
  method	
  
of	
  achieving	
  fusion	
  has	
  often	
  been	
  referred	
  to	
  as	
  the	
  “long	
  shot	
  to	
  fusion”	
  and	
  sadly,	
  
has	
  been	
  treated	
  this	
  way	
  by	
  the	
  fusion	
  community	
  at	
  large	
  	
  
	
  
As	
  a	
  fusion	
  source,	
  polywell	
  researchers	
  compete	
  with	
  tokamak	
  derived	
  technology	
  
for	
  funding.	
  And	
  in	
  the	
  funding	
  battle,	
  the	
  polywell	
  is	
  definitely	
  losing,	
  However	
  in	
  
2009	
  a	
  R&D	
  contract	
  worth	
  $2	
  million	
  a	
  year	
  from	
  the	
  US	
  Navy	
  was	
  issued,	
  who	
  
believe	
  the	
  polywell	
  may	
  be	
  a	
  useful	
  power	
  source	
  for	
  ships.	
  This	
  is	
  promising,	
  and	
  
many	
  polywell	
  advocates	
  have	
  stated	
  that	
  positive	
  results	
  can	
  be	
  seen	
  with	
  a	
  fraction	
  
of	
  the	
  funding	
  expended	
  on	
  Tokamak	
  technology	
  (which	
  is	
  a	
  good	
  thing	
  because	
  it	
  
looks	
  like	
  that’s	
  what	
  they	
  will	
  get!).	
  
	
  
Source:	
  Federal	
  Business	
  Opportunities.gov	
  |	
  
https://www.fbo.gov/index?s=opportunity&mode=form&id=fc9fd44171017393510d
46e2f8154296&tab=core&_cview=0&cck=1&au=&ck=	
  
	
  
The	
  Polywell	
  community	
  is	
  a	
  small	
  but	
  vocal	
  	
  ‘open	
  source‘	
  collective	
  of	
  scientific	
  
enthusiasts	
  and	
  independent	
  researchers.	
  	
  	
  
	
  
Confinement	
  Within	
  The	
  Polywell	
  
The	
  Polywell	
  uses	
  inertial	
  electrostatic	
  confinement	
  (IEC)	
  to	
  create	
  the	
  conditions	
  
for	
  fusion.	
  	
  
	
  	
  
When	
  all	
  six	
  electromagnets	
  within	
  the	
  polywell	
  are	
  energized,	
  the	
  magnetic	
  fields	
  
meld	
  into	
  a	
  nearly	
  perfect	
  sphere.	
  Electrons	
  are	
  injected	
  into	
  the	
  sphere	
  to	
  create	
  a	
  
superdense	
  core	
  of	
  highly	
  negative	
  charge.	
  Given	
  enough	
  electrons,	
  the	
  electrical	
  field	
  
can	
  be	
  made	
  strong	
  enough	
  to	
  induce	
  fusion	
  in	
  selected	
  particles.	
  Positively	
  charged	
  
protons	
  and	
  boron-­‐11	
  ions	
  are	
  injected	
  into	
  the	
  sphere	
  and	
  are	
  quickly	
  accelerated	
  
into	
  the	
  centre	
  of	
  the	
  electron	
  ball	
  by	
  its	
  high	
  negative	
  charge.	
  Protons	
  and	
  boron	
  ions	
  
that	
  overshoot	
  the	
  centre	
  are	
  pulled	
  back	
  with	
  an	
  oscillatory	
  action	
  of	
  a	
  thousand	
  or	
  
more	
  cycles.	
  	
  
Source:	
  R.	
  Colin	
  Johnson	
  |	
  EE	
  Times	
  
http://www.eetimes.com/showArticle.jhtml?articleID=199703602	
  
	
  	
  




                  Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                 www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  




                                                                                                            	
  
The	
  current,	
  third-­‐generation	
  prototype	
  uses	
  six	
  doughnut-­‐shaped	
  electromagnets	
  to	
  
create	
  a	
  cube	
  in	
  which	
  to	
  confine	
  the	
  fusion	
  reactions	
  in	
  a	
  strong	
  magnetic	
  field.	
  The	
  
original	
  prototype	
  operated	
  in	
  air	
  and	
  was	
  just	
  centimetres	
  in	
  diameter;	
  the	
  current	
  
design	
  operates	
  in	
  a	
  vacuum	
  chamber	
  and	
  measures	
  roughly	
  a	
  cubic	
  yard.	
  	
  
	
  




A	
  2D	
  representation	
  of	
  the	
  magnetic	
  fields	
  operating	
  in	
  a	
  polywell.	
  The	
  coils	
  trap	
  
electrons	
  and	
  keep	
  them	
  in	
  a	
  very	
  small,	
  tightly	
  packed	
  group	
  called	
  a	
  potential	
  well.	
  
This	
  well	
  attracts	
  and	
  accelerates	
  the	
  Hydrogen	
  and	
  Boron	
  nuclei.	
  When	
  they	
  collide,	
  the	
  
nuclear	
  reaction	
  is	
  triggered.	
  If	
  there	
  is	
  a	
  system	
  failure,	
  the	
  polywell	
  simply	
  loses	
  its	
  
magnetic	
  field	
  and	
  the	
  process	
  stops.	
  

                   Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                  www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  



Conclusion	
  
It	
  is	
  evident	
  that	
  there	
  are	
  a	
  great	
  many	
  different	
  possibilities	
  for	
  fusion;	
  in	
  both	
  the	
  
choice	
  of	
  fuel	
  cycle	
  and	
  confinement	
  method	
  used.	
  Though	
  now	
  over	
  50	
  years	
  old,	
  the	
  
field	
  is	
  still	
  very	
  young.	
  A	
  great	
  deal	
  of	
  emerging	
  technologies	
  look	
  promising	
  within	
  
fusion.	
  Advances	
  in	
  other	
  areas	
  such	
  as	
  materials	
  technology,	
  could	
  be	
  a	
  boon	
  to	
  the	
  
efforts	
  of	
  fusion	
  researchers	
  looking	
  to	
  create	
  more	
  efficient	
  reactors.	
  Similarly,	
  
disruptive	
  technology	
  such	
  as	
  the	
  polywell	
  and	
  the	
  plethora	
  of	
  projects	
  lumped	
  under	
  the	
  
term	
  ‘cold	
  fusion’	
  could	
  have	
  payoffs,	
  though	
  the	
  odds	
  of	
  this	
  are	
  not	
  considered	
  certain.	
  
It	
  appears	
  that	
  within	
  the	
  fusion	
  community,	
  current	
  preference	
  is	
  towards	
  the	
  DT	
  cycle,	
  
magnetically	
  confined	
  in	
  a	
  tokamak	
  environment.	
  This	
  is	
  obvious	
  in	
  the	
  amounts	
  of	
  
money	
  being	
  spent	
  on	
  in	
  Europe	
  on	
  the	
  ITER	
  project,	
  although	
  the	
  USA	
  is	
  actively	
  
researching	
  a	
  variety	
  of	
  inertial	
  confinement	
  technologies	
  in	
  tandem	
  with	
  their	
  own	
  
tokamak	
  efforts.	
  	
  With	
  advancements	
  in	
  future	
  we	
  may	
  be	
  looking	
  at	
  aneutronic	
  fusion,	
  
though	
  the	
  road	
  to	
  commercial	
  fusion	
  is	
  ‘still’	
  some	
  decades	
  off.	
  
The	
  next	
  section	
  addresses	
  public	
  awareness	
  and	
  opinion	
  of	
  fusion,	
  with	
  data	
  gathered	
  
from	
  Europe	
  and	
  the	
  USA.	
  




Public	
  awareness	
  of	
  fusion	
  -­‐	
  Getting	
  The	
  
Message	
  Out
Obviously,	
  informed	
  public	
  and	
  political	
  awareness	
  of	
  nuclear	
  fusion	
  will	
  be	
  an	
  
extremely	
  important	
  factor	
  in	
  ensuring	
  that	
  fusion	
  gets	
  the	
  attention	
  it	
  deserves.	
  To	
  be	
  
viable	
  as	
  an	
  energy	
  source,	
  fusion	
  must	
  be	
  understood,	
  at	
  least	
  at	
  some	
  level,	
  by	
  the	
  
lay	
  public	
  who	
  would	
  one	
  day	
  reap	
  its	
  benefits.	
  	
  

Policymakers	
  in	
  energy	
  must	
  better	
  understand	
  what	
  the	
  fusion	
  is,	
  its	
  economic	
  
implications,	
  and	
  long	
  term	
  performance	
  predictions.	
  	
  Educators	
  and	
  thought	
  leaders	
  
such	
  as	
  teachers	
  need	
  to	
  be	
  given	
  a	
  clear	
  understanding	
  of	
  the	
  subject	
  so	
  that	
  the	
  
message	
  is	
  communicated	
  properly	
  by	
  these	
  vocal,	
  credible	
  sections	
  of	
  the	
  
population.	
  
Furthermore,	
  it	
  is	
  important	
  to	
  educate	
  the	
  public	
  on	
  the	
  distinctions	
  between	
  fusion	
  
and	
  fission,	
  especially	
  as	
  the	
  definition	
  nuclear	
  (especially	
  thermonuclear)	
  has	
  a	
  
negative	
  association	
  with	
  weaponry,	
  which	
  is	
  unavoidable.	
  	
  
Finally,	
  the	
  obvious	
  benefits	
  of	
  fusion	
  must	
  be	
  communicated	
  in	
  a	
  compelling,	
  but	
  
impartial	
  and	
  factual	
  manner.	
  I	
  believe	
  that	
  encouraging	
  public	
  support	
  and	
  indeed,	
  
approval	
  of	
  fusion	
  could	
  help	
  contribute	
  to	
  maintaining	
  political	
  pressure	
  that	
  ensures	
  
fusion	
  gets	
  the	
  economic	
  support	
  that	
  it	
  needs	
  to	
  become	
  a	
  reality.	
  	
  


                   Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                  www.writing.xijindustries.com	
  	
  
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
However,	
  it	
  is	
  clear	
  that	
  competition	
  for	
  public	
  mindshare	
  is	
  extremely	
  tough.	
  In	
  this	
  
time	
  of	
  mass	
  media	
  the	
  amount	
  of	
  information	
  the	
  average	
  person	
  is	
  exposed	
  to	
  is	
  
greater	
  than	
  ever	
  before.	
  The	
  fusion	
  message	
  has	
  to	
  contend	
  with	
  popular	
  culture,	
  
constant	
  marketing,	
  and	
  the	
  concerns	
  of	
  normal	
  day	
  to	
  day	
  life;	
  a	
  great	
  many	
  global	
  
and	
  personal	
  issues	
  take	
  up	
  the	
  average	
  person’s	
  attention	
  and	
  time.	
  Fusion	
  is	
  simply	
  
not	
  a	
  priority	
  for	
  most	
  people.	
  This	
  is	
  understandable	
  perhaps	
  in	
  the	
  context	
  of	
  a	
  low	
  
awareness	
  of	
  the	
  extent	
  of	
  the	
  energy	
  problem	
  facing	
  us	
  in	
  the	
  coming	
  decades.	
  

Worse	
  still,	
  certain	
  anti	
  nuclear	
  pressure	
  groups	
  approach	
  fusion	
  in	
  the	
  same	
  
combative	
  manner	
  they	
  have	
  reserved	
  for	
  fission.	
  For	
  example,	
  a	
  consortium	
  of	
  French	
  
pressure	
  groups	
  Sortir	
  du	
  Nucleaire	
  (Get	
  Out	
  of	
  Nuclear	
  Energy),claimed	
  that	
  ITER	
  
was	
  a	
  hazard	
  because	
  “scientists	
  did	
  not	
  yet	
  know	
  how	
  to	
  manipulate	
  the	
  high-­‐energy	
  
deuterium	
  and	
  tritium	
  hydrogen	
  isotopes	
  used	
  in	
  the	
  fusion	
  process.”	
  
-­‐	
  Source:	
  Deustch	
  Welle	
  -­‐	
  http://www.dwworld.de/dw/article/0,,1631650,00.html	
  
In a report entitled Public Information in European Fusion Energy Research: Methods
and Challenges, released by specialists working at fusion policy and research institutions
around the EU, the opinions and awareness of the public in the EU towards fusion where
measured. The following social groups where identified as communication targets. Each
requires a different outreach strategy and message.
Note: PI: Public information

•     Decision makers: due to direct link between the EU energy policy and the European
fusion research this group needs to be informed on both European and national levels about
the mission progress. The group consists of judicious, motivated, busy people.
•     Media: as a key intermediate to pro-active communication with general public, media
(TV, radio, newspapers, journals) deserve high priority PI, namely personal relations. In
fusion, media relations are established, as a rule, on national levels.
•     Schools & Universities: Teachers act as efficient intermediates to young people who
will probably decide about the industrial future of fusion. Even before, fusion R&D will
need a supply of new determined experts. Notice that fusion has relatively sparse
professional links to Universities compared to other major research projects.
•     Interested Public: Although fusion cannot hope for a major pro-active influence of
general public, any of those who are interested and request information must feel free to
obtain it, hence the passive PI must be very broad and highly responsive.
•       Industry: Nowadays, the main topics in fusion research have expanded from basic
plasma physics towards more technological tasks, e.g. to material research, which calls for
direct involvement of different industries including their R&D. PI activities have to follow
these developments and promote the opportunities.
 •    Fusion Community: Due to international dimension of the research it is vital to
foster good relations among fusion centres, calling for broad communications.
•     Scientific Community: support from the influential category of “other scientists” can
be expected only if fusion community manages to inform them properly about the fusion
research, its mission, results and strategy, as well as about joint interests.                                            	
  
Source:	
  http://www.iop.org/Jet/fulltext/EFDP05027.pdf	
  

Findings:	
  The	
  report’s	
  findings	
  on	
  the	
  public	
  awareness	
  of	
  nuclear	
  fusion	
  where	
  
not	
  very	
  promising.	
  


                  Material	
  by	
  Jack	
  Oughton	
  –	
  available	
  for	
  writing	
  assignments,	
  contact:	
  |	
  writing@xijindustries.com	
  |	
  
                                                                                                                 www.writing.xijindustries.com	
  	
  
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion
Layman's Guide to Nuclear Fusion

Weitere ähnliche Inhalte

Was ist angesagt?

The anthropocene by lydia and Helen
The anthropocene by lydia and HelenThe anthropocene by lydia and Helen
The anthropocene by lydia and Helenddertili
 
Fossil fuels, technology, environment by eleana dimopoulou
Fossil fuels, technology, environment by eleana dimopoulouFossil fuels, technology, environment by eleana dimopoulou
Fossil fuels, technology, environment by eleana dimopoulouddertili
 
Lecture 5: Research Communication
Lecture 5: Research CommunicationLecture 5: Research Communication
Lecture 5: Research CommunicationESD UNU-IAS
 
Nuclear Energy White Paper
Nuclear Energy White PaperNuclear Energy White Paper
Nuclear Energy White PaperErika Barth
 
Planning for Energy
Planning for EnergyPlanning for Energy
Planning for EnergyKevin Choi
 
Critique_Tanooja
Critique_TanoojaCritique_Tanooja
Critique_TanoojaTanooja Rai
 
Mahattan Institute Report on the Reasons for U.S. Increase in Oil & Gas Produ...
Mahattan Institute Report on the Reasons for U.S. Increase in Oil & Gas Produ...Mahattan Institute Report on the Reasons for U.S. Increase in Oil & Gas Produ...
Mahattan Institute Report on the Reasons for U.S. Increase in Oil & Gas Produ...Marcellus Drilling News
 
Power generattion from thread mill new
Power generattion from thread mill newPower generattion from thread mill new
Power generattion from thread mill newA Iyappan
 
The anthropocene
The anthropoceneThe anthropocene
The anthropoceneddertili
 
Forgotten People and NGS: Securing Environmental and Climate Justice
Forgotten People and NGS: Securing Environmental and Climate JusticeForgotten People and NGS: Securing Environmental and Climate Justice
Forgotten People and NGS: Securing Environmental and Climate Justiceen3pro
 
Forgotten People and NGS - Securing Economic & Climate Justice
Forgotten People and NGS - Securing Economic & Climate JusticeForgotten People and NGS - Securing Economic & Climate Justice
Forgotten People and NGS - Securing Economic & Climate Justiceen3pro
 
Understanding Climategate
Understanding ClimategateUnderstanding Climategate
Understanding ClimategateBennet Kelley
 
Beyond Coal to Clean Energy
Beyond Coal to Clean EnergyBeyond Coal to Clean Energy
Beyond Coal to Clean EnergyElizWard
 
Ch20 lecture 3e
Ch20 lecture 3eCh20 lecture 3e
Ch20 lecture 3eAsma Wasim
 
Ch13 lecture 3e
Ch13 lecture 3eCh13 lecture 3e
Ch13 lecture 3eAsma Wasim
 
Ch21 lecture 3e
Ch21 lecture 3eCh21 lecture 3e
Ch21 lecture 3eAsma Wasim
 

Was ist angesagt? (20)

The anthropocene by lydia and Helen
The anthropocene by lydia and HelenThe anthropocene by lydia and Helen
The anthropocene by lydia and Helen
 
Fossil fuels, technology, environment by eleana dimopoulou
Fossil fuels, technology, environment by eleana dimopoulouFossil fuels, technology, environment by eleana dimopoulou
Fossil fuels, technology, environment by eleana dimopoulou
 
Lecture 5: Research Communication
Lecture 5: Research CommunicationLecture 5: Research Communication
Lecture 5: Research Communication
 
CEI Email 10.29.04 (c)
CEI Email 10.29.04 (c)CEI Email 10.29.04 (c)
CEI Email 10.29.04 (c)
 
Nuclear Energy White Paper
Nuclear Energy White PaperNuclear Energy White Paper
Nuclear Energy White Paper
 
Planning for Energy
Planning for EnergyPlanning for Energy
Planning for Energy
 
Critique_Tanooja
Critique_TanoojaCritique_Tanooja
Critique_Tanooja
 
Mahattan Institute Report on the Reasons for U.S. Increase in Oil & Gas Produ...
Mahattan Institute Report on the Reasons for U.S. Increase in Oil & Gas Produ...Mahattan Institute Report on the Reasons for U.S. Increase in Oil & Gas Produ...
Mahattan Institute Report on the Reasons for U.S. Increase in Oil & Gas Produ...
 
Power generattion from thread mill new
Power generattion from thread mill newPower generattion from thread mill new
Power generattion from thread mill new
 
Energy
EnergyEnergy
Energy
 
The anthropocene
The anthropoceneThe anthropocene
The anthropocene
 
Forgotten People and NGS: Securing Environmental and Climate Justice
Forgotten People and NGS: Securing Environmental and Climate JusticeForgotten People and NGS: Securing Environmental and Climate Justice
Forgotten People and NGS: Securing Environmental and Climate Justice
 
Forgotten People and NGS - Securing Economic & Climate Justice
Forgotten People and NGS - Securing Economic & Climate JusticeForgotten People and NGS - Securing Economic & Climate Justice
Forgotten People and NGS - Securing Economic & Climate Justice
 
Place-based Mitigation of Climate Change
Place-based Mitigation of Climate Change Place-based Mitigation of Climate Change
Place-based Mitigation of Climate Change
 
Understanding Climategate
Understanding ClimategateUnderstanding Climategate
Understanding Climategate
 
Beyond Coal to Clean Energy
Beyond Coal to Clean EnergyBeyond Coal to Clean Energy
Beyond Coal to Clean Energy
 
Ch20 lecture 3e
Ch20 lecture 3eCh20 lecture 3e
Ch20 lecture 3e
 
Ch13 lecture 3e
Ch13 lecture 3eCh13 lecture 3e
Ch13 lecture 3e
 
Ch21 lecture 3e
Ch21 lecture 3eCh21 lecture 3e
Ch21 lecture 3e
 
Energy revision
Energy revisionEnergy revision
Energy revision
 

Andere mochten auch

Nuclear fusion, physics consept 1
Nuclear fusion, physics consept 1Nuclear fusion, physics consept 1
Nuclear fusion, physics consept 1Jason Beedle
 
Nuclear Fusion
Nuclear FusionNuclear Fusion
Nuclear Fusiondpolson
 
Nuclear Fusion
Nuclear FusionNuclear Fusion
Nuclear Fusionecks
 
Nuclear fusion seminar
Nuclear fusion seminarNuclear fusion seminar
Nuclear fusion seminarKSHITIJ NISHAN
 
The Race to Fusion power - what, why and who and how
The Race to Fusion power  - what, why and who and howThe Race to Fusion power  - what, why and who and how
The Race to Fusion power - what, why and who and howOliver Snow
 
Clean fusion power slide share
Clean fusion power slide shareClean fusion power slide share
Clean fusion power slide shareOliver Snow
 
Nuclear Power Taja
Nuclear Power TajaNuclear Power Taja
Nuclear Power TajaRosalmara
 
JINR seminar on cold nuclear fusion, Dubna, Russia, July 2014 (Русский)
JINR seminar on cold nuclear fusion, Dubna, Russia, July 2014 (Русский)JINR seminar on cold nuclear fusion, Dubna, Russia, July 2014 (Русский)
JINR seminar on cold nuclear fusion, Dubna, Russia, July 2014 (Русский)ColdFusionPower
 
Nmt 631 dvt_imaging-1
Nmt 631 dvt_imaging-1Nmt 631 dvt_imaging-1
Nmt 631 dvt_imaging-1ljmcneill33
 
4_RenatoCargill_apresentação
4_RenatoCargill_apresentação4_RenatoCargill_apresentação
4_RenatoCargill_apresentaçãoequipeagroplus
 
Nuclear Fusion Reactor - Eco-friendly Atomic Energy
Nuclear Fusion Reactor - Eco-friendly Atomic EnergyNuclear Fusion Reactor - Eco-friendly Atomic Energy
Nuclear Fusion Reactor - Eco-friendly Atomic Energy"Douglas" F. Palte
 
ultra structure of nucleus
ultra structure of nucleusultra structure of nucleus
ultra structure of nucleusSana Khan
 

Andere mochten auch (20)

Nuclear fusion, physics consept 1
Nuclear fusion, physics consept 1Nuclear fusion, physics consept 1
Nuclear fusion, physics consept 1
 
Nuclear Fusion
Nuclear FusionNuclear Fusion
Nuclear Fusion
 
Nuclear Fusion
Nuclear FusionNuclear Fusion
Nuclear Fusion
 
Nuclear fusion
Nuclear fusionNuclear fusion
Nuclear fusion
 
Nuclear fusion seminar
Nuclear fusion seminarNuclear fusion seminar
Nuclear fusion seminar
 
The Race to Fusion power - what, why and who and how
The Race to Fusion power  - what, why and who and howThe Race to Fusion power  - what, why and who and how
The Race to Fusion power - what, why and who and how
 
Fusion power (2)
Fusion power (2)Fusion power (2)
Fusion power (2)
 
Clean fusion power slide share
Clean fusion power slide shareClean fusion power slide share
Clean fusion power slide share
 
Fusion - Holland Presentation
Fusion - Holland PresentationFusion - Holland Presentation
Fusion - Holland Presentation
 
Nuclear Power Taja
Nuclear Power TajaNuclear Power Taja
Nuclear Power Taja
 
Nicolas Solente:
Nicolas Solente:Nicolas Solente:
Nicolas Solente:
 
DIAS
DIASDIAS
DIAS
 
Atomic structure
Atomic structureAtomic structure
Atomic structure
 
JINR seminar on cold nuclear fusion, Dubna, Russia, July 2014 (Русский)
JINR seminar on cold nuclear fusion, Dubna, Russia, July 2014 (Русский)JINR seminar on cold nuclear fusion, Dubna, Russia, July 2014 (Русский)
JINR seminar on cold nuclear fusion, Dubna, Russia, July 2014 (Русский)
 
Nmt 631 dvt_imaging-1
Nmt 631 dvt_imaging-1Nmt 631 dvt_imaging-1
Nmt 631 dvt_imaging-1
 
EXO_DBD07
EXO_DBD07EXO_DBD07
EXO_DBD07
 
4_RenatoCargill_apresentação
4_RenatoCargill_apresentação4_RenatoCargill_apresentação
4_RenatoCargill_apresentação
 
Nuclear Fusion Reactor - Eco-friendly Atomic Energy
Nuclear Fusion Reactor - Eco-friendly Atomic EnergyNuclear Fusion Reactor - Eco-friendly Atomic Energy
Nuclear Fusion Reactor - Eco-friendly Atomic Energy
 
ultra structure of nucleus
ultra structure of nucleusultra structure of nucleus
ultra structure of nucleus
 
In The Beginning
In The BeginningIn The Beginning
In The Beginning
 

Ähnlich wie Layman's Guide to Nuclear Fusion

Ähnlich wie Layman's Guide to Nuclear Fusion (6)

Nuclear Power – the cons in the debate
Nuclear Power – the cons in the debateNuclear Power – the cons in the debate
Nuclear Power – the cons in the debate
 
Essay On Nuclear Energy
Essay On  Nuclear EnergyEssay On  Nuclear Energy
Essay On Nuclear Energy
 
Ijm 06 09_004
Ijm 06 09_004Ijm 06 09_004
Ijm 06 09_004
 
Ijm 06 09_004
Ijm 06 09_004Ijm 06 09_004
Ijm 06 09_004
 
Energy Crisis Essay
Energy Crisis EssayEnergy Crisis Essay
Energy Crisis Essay
 
22 energy2
22 energy222 energy2
22 energy2
 

Mehr von Jack Oughton

Jack Oughton - Incessant Typing
Jack Oughton - Incessant Typing Jack Oughton - Incessant Typing
Jack Oughton - Incessant Typing Jack Oughton
 
Jack oughton get more better ideas v1.0
Jack oughton   get more better ideas v1.0Jack oughton   get more better ideas v1.0
Jack oughton get more better ideas v1.0Jack Oughton
 
Jack oughton ‘virtuous writing checklist' v1.0
Jack oughton   ‘virtuous writing checklist' v1.0Jack oughton   ‘virtuous writing checklist' v1.0
Jack oughton ‘virtuous writing checklist' v1.0Jack Oughton
 
jack oughton - 05.05.11 - red bull press release assignment.pdf
jack oughton - 05.05.11 - red bull press release assignment.pdfjack oughton - 05.05.11 - red bull press release assignment.pdf
jack oughton - 05.05.11 - red bull press release assignment.pdfJack Oughton
 
Jack Oughton – 21.03.11 - Something Different In Haringey.pdf
Jack Oughton – 21.03.11 - Something Different In Haringey.pdfJack Oughton – 21.03.11 - Something Different In Haringey.pdf
Jack Oughton – 21.03.11 - Something Different In Haringey.pdfJack Oughton
 
Jack Oughton – 15.03.11 – Celebrity Errors and Apologies.pdf
Jack Oughton – 15.03.11 – Celebrity Errors and Apologies.pdfJack Oughton – 15.03.11 – Celebrity Errors and Apologies.pdf
Jack Oughton – 15.03.11 – Celebrity Errors and Apologies.pdfJack Oughton
 
Jack Oughton - 05.04.11 - Cyberwar Short Cut.pdf
Jack Oughton - 05.04.11 - Cyberwar Short Cut.pdfJack Oughton - 05.04.11 - Cyberwar Short Cut.pdf
Jack Oughton - 05.04.11 - Cyberwar Short Cut.pdfJack Oughton
 
jack oughton - 05.05.11 - red bull press release assignment.pdf
jack oughton - 05.05.11 - red bull press release assignment.pdfjack oughton - 05.05.11 - red bull press release assignment.pdf
jack oughton - 05.05.11 - red bull press release assignment.pdfJack Oughton
 
Jack Oughton – 21.03.11 - Something Different In Haringey.pdf
Jack Oughton – 21.03.11 - Something Different In Haringey.pdfJack Oughton – 21.03.11 - Something Different In Haringey.pdf
Jack Oughton – 21.03.11 - Something Different In Haringey.pdfJack Oughton
 
Jack Oughton – 15.03.11 – Celebrity Errors and Apologies.pdf
Jack Oughton – 15.03.11 – Celebrity Errors and Apologies.pdfJack Oughton – 15.03.11 – Celebrity Errors and Apologies.pdf
Jack Oughton – 15.03.11 – Celebrity Errors and Apologies.pdfJack Oughton
 
Jack Oughton - 05.04.11 - Cyberwar Short Cut.pdf
Jack Oughton - 05.04.11 - Cyberwar Short Cut.pdfJack Oughton - 05.04.11 - Cyberwar Short Cut.pdf
Jack Oughton - 05.04.11 - Cyberwar Short Cut.pdfJack Oughton
 
Flyer koukouvaya fine art photography - wales
Flyer   koukouvaya fine art photography - walesFlyer   koukouvaya fine art photography - wales
Flyer koukouvaya fine art photography - walesJack Oughton
 
Flyer koukouvaya fine art photography - liverpool
Flyer   koukouvaya fine art photography - liverpoolFlyer   koukouvaya fine art photography - liverpool
Flyer koukouvaya fine art photography - liverpoolJack Oughton
 
Flyer koukouvaya fine art photography - isle of mann
Flyer   koukouvaya fine art photography - isle of mannFlyer   koukouvaya fine art photography - isle of mann
Flyer koukouvaya fine art photography - isle of mannJack Oughton
 
Flyer koukouvaya fine art photography - spain
Flyer   koukouvaya fine art photography - spainFlyer   koukouvaya fine art photography - spain
Flyer koukouvaya fine art photography - spainJack Oughton
 
Flyer koukouvaya fine art photography - southern usa + mexico
Flyer   koukouvaya fine art photography - southern usa + mexicoFlyer   koukouvaya fine art photography - southern usa + mexico
Flyer koukouvaya fine art photography - southern usa + mexicoJack Oughton
 
Flyer koukouvaya fine art photography - models folio [colour]
Flyer   koukouvaya fine art photography - models folio [colour]Flyer   koukouvaya fine art photography - models folio [colour]
Flyer koukouvaya fine art photography - models folio [colour]Jack Oughton
 
Flyer koukouvaya fine art abstracts 003
Flyer   koukouvaya fine art abstracts 003Flyer   koukouvaya fine art abstracts 003
Flyer koukouvaya fine art abstracts 003Jack Oughton
 
Flyer koukouvaya fine art abstracts 002
Flyer   koukouvaya fine art abstracts 002Flyer   koukouvaya fine art abstracts 002
Flyer koukouvaya fine art abstracts 002Jack Oughton
 
Flyer koukouvaya fine art abstracts 001
Flyer   koukouvaya fine art abstracts 001Flyer   koukouvaya fine art abstracts 001
Flyer koukouvaya fine art abstracts 001Jack Oughton
 

Mehr von Jack Oughton (20)

Jack Oughton - Incessant Typing
Jack Oughton - Incessant Typing Jack Oughton - Incessant Typing
Jack Oughton - Incessant Typing
 
Jack oughton get more better ideas v1.0
Jack oughton   get more better ideas v1.0Jack oughton   get more better ideas v1.0
Jack oughton get more better ideas v1.0
 
Jack oughton ‘virtuous writing checklist' v1.0
Jack oughton   ‘virtuous writing checklist' v1.0Jack oughton   ‘virtuous writing checklist' v1.0
Jack oughton ‘virtuous writing checklist' v1.0
 
jack oughton - 05.05.11 - red bull press release assignment.pdf
jack oughton - 05.05.11 - red bull press release assignment.pdfjack oughton - 05.05.11 - red bull press release assignment.pdf
jack oughton - 05.05.11 - red bull press release assignment.pdf
 
Jack Oughton – 21.03.11 - Something Different In Haringey.pdf
Jack Oughton – 21.03.11 - Something Different In Haringey.pdfJack Oughton – 21.03.11 - Something Different In Haringey.pdf
Jack Oughton – 21.03.11 - Something Different In Haringey.pdf
 
Jack Oughton – 15.03.11 – Celebrity Errors and Apologies.pdf
Jack Oughton – 15.03.11 – Celebrity Errors and Apologies.pdfJack Oughton – 15.03.11 – Celebrity Errors and Apologies.pdf
Jack Oughton – 15.03.11 – Celebrity Errors and Apologies.pdf
 
Jack Oughton - 05.04.11 - Cyberwar Short Cut.pdf
Jack Oughton - 05.04.11 - Cyberwar Short Cut.pdfJack Oughton - 05.04.11 - Cyberwar Short Cut.pdf
Jack Oughton - 05.04.11 - Cyberwar Short Cut.pdf
 
jack oughton - 05.05.11 - red bull press release assignment.pdf
jack oughton - 05.05.11 - red bull press release assignment.pdfjack oughton - 05.05.11 - red bull press release assignment.pdf
jack oughton - 05.05.11 - red bull press release assignment.pdf
 
Jack Oughton – 21.03.11 - Something Different In Haringey.pdf
Jack Oughton – 21.03.11 - Something Different In Haringey.pdfJack Oughton – 21.03.11 - Something Different In Haringey.pdf
Jack Oughton – 21.03.11 - Something Different In Haringey.pdf
 
Jack Oughton – 15.03.11 – Celebrity Errors and Apologies.pdf
Jack Oughton – 15.03.11 – Celebrity Errors and Apologies.pdfJack Oughton – 15.03.11 – Celebrity Errors and Apologies.pdf
Jack Oughton – 15.03.11 – Celebrity Errors and Apologies.pdf
 
Jack Oughton - 05.04.11 - Cyberwar Short Cut.pdf
Jack Oughton - 05.04.11 - Cyberwar Short Cut.pdfJack Oughton - 05.04.11 - Cyberwar Short Cut.pdf
Jack Oughton - 05.04.11 - Cyberwar Short Cut.pdf
 
Flyer koukouvaya fine art photography - wales
Flyer   koukouvaya fine art photography - walesFlyer   koukouvaya fine art photography - wales
Flyer koukouvaya fine art photography - wales
 
Flyer koukouvaya fine art photography - liverpool
Flyer   koukouvaya fine art photography - liverpoolFlyer   koukouvaya fine art photography - liverpool
Flyer koukouvaya fine art photography - liverpool
 
Flyer koukouvaya fine art photography - isle of mann
Flyer   koukouvaya fine art photography - isle of mannFlyer   koukouvaya fine art photography - isle of mann
Flyer koukouvaya fine art photography - isle of mann
 
Flyer koukouvaya fine art photography - spain
Flyer   koukouvaya fine art photography - spainFlyer   koukouvaya fine art photography - spain
Flyer koukouvaya fine art photography - spain
 
Flyer koukouvaya fine art photography - southern usa + mexico
Flyer   koukouvaya fine art photography - southern usa + mexicoFlyer   koukouvaya fine art photography - southern usa + mexico
Flyer koukouvaya fine art photography - southern usa + mexico
 
Flyer koukouvaya fine art photography - models folio [colour]
Flyer   koukouvaya fine art photography - models folio [colour]Flyer   koukouvaya fine art photography - models folio [colour]
Flyer koukouvaya fine art photography - models folio [colour]
 
Flyer koukouvaya fine art abstracts 003
Flyer   koukouvaya fine art abstracts 003Flyer   koukouvaya fine art abstracts 003
Flyer koukouvaya fine art abstracts 003
 
Flyer koukouvaya fine art abstracts 002
Flyer   koukouvaya fine art abstracts 002Flyer   koukouvaya fine art abstracts 002
Flyer koukouvaya fine art abstracts 002
 
Flyer koukouvaya fine art abstracts 001
Flyer   koukouvaya fine art abstracts 001Flyer   koukouvaya fine art abstracts 001
Flyer koukouvaya fine art abstracts 001
 

Kürzlich hochgeladen

Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 

Kürzlich hochgeladen (20)

Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 

Layman's Guide to Nuclear Fusion

  • 1.
  • 2. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   .∞§ §∞. Part 1: Why Fusion? Humanity’s Growing Resource Problem Part 2: Fusion – A Primer Part 3: Fusion Energy Cycles Part 4: Fusion Confinement Devices Part 5: Public Awareness Of Fusion Part 6: Conclusion Part 7: Appendixes “But if you wanted to know what the perfect energy source is? The perfect energy source is one that doesn't take up much space, has a virtually inexhaustible supply, is safe, doesn't put any carbon into the atmosphere, doesn't leave any long lived radioactive waste, it's fusion. But there is a catch. Of course there is always a catch in these cases. Fusion is very hard to do. We've been trying for 50 years. .. And we have 30 million years worth of fusion fuel in sea water..” – Prof. Steven Cowley – Director of the United Kingdom Atomic Energy Authority's Culham Laboratory - Source: TED Talks http://www.ted.com/talks/steven_cowley_fusion_is_energy_s_future.html   Introduction:       This   project   is   intended   as   a   primer   on   nuclear   fusion   and   is   written   in   mostly   non-­‐ technical   language   for   the   non   scientific   reader.   It   is   a   research   project   on   the   applications  of      nuclear  fusion  as  a  power  source.    This  is  a  large  area  of  science,  but  I   have   done   my   best   to   condense   the   large   amount   of   available   information   into   an   easily  understandable  format.      As  a  research  document  this  work  is  compiled  from  a  variety  of  sources,  adding  my   own  commentary  in  the  context  of  this  work.  Though  much  of  this  is  my  own  work,  I   make  no  assumptions  or  claims  to  any  of  it  –  I  have  credited  the  authors  whenever  I   have  used  information  they  have  provided     I  will  not  discuss  the  application  of  fusion  in  weaponry.  The  world  has  seen  the  effects   of  this  already  and  there  is  ample  information  on  it.     This  document  is  not  intended  to  discuss  the  entire  field  in  great  detail,  which  is   far   beyond   the   scope   of   a   short   document   like   this.   It   is   instead   a   carefully   arranged,   ordered   primer   and   a   signpost.     Ample   links   provide   further   roads   for   the   intrigued   reader   to   explore   fusion   on   his   own   terms.   There   is   far   more   coherent   information   than  I  could  reasonably  express,  or  fit  in  to  the  document.     On  another  note,  I  am  not  a  fusion  scientist,  simply  a  very  interested  undergraduate.    I   have  done  my  best,  but  have  probably  made  mistakes,  I  acknowledge  this.     I  hope  that  you  find  this  information  both  useful  and  informative.  The  energy  shortfall   and   pollution   problems   are   huge   hurdles   to   human   progress.   The   realisation   of   commercially  viable  fusion  presents  a  very  real  solution.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 3. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   Why  fusion?  Humanity’s  worsening   resource  problem   In grossly simple terms, there are two problems quickly becoming apparent that effect modern civilization. These problems are: 1) Increasing energy costs due to limited availability of fuels with finite deposits. 2) Increasing pollution due to increased economic development and global energy usage Both problems clearly derive from the our reliance upon, and the burning of fossil fuels, which are finite, cause atmospheric pollution and in some areas are unable to be obtained in quantities fully able to satisfy demand. In 2007, the world consumed an estimated 531 exajoules of energy [one exajoule, [denoted as EJ], is 10 exponential 18 joules]. This is equivalent to the energy released by detonating about 9.73 million A-bombs. Sources: EIA:  www.eia.doe.gov/   BP:  www.bp.com/         World  Energy  Shortfall  Predictions  –     Note:  prediction  around  2050  of  a  beginning  of  a  shortfall.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 4. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     Even  an  ‘acceptable’  release  of  C02  is  double  the  amount  the  world  faced  before  fossil   fuels  became  widely  used  in  industry!     Modern  man  consumes  around  35  times  the  amount  of  yearly  energy  of  primitive,  pre-­‐ agricultural  man.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 5. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     World  Energy  Consumption  2006  by  Fuel  Type  [Sources:  BP,  EIA]   Note:  In  2006  around  86%  of  our  energy  came  from  fossil  sources.     Evolution  of  World  Total  Fuel  Consumption  by  type   Note:  energy  usage  roughly  doubles  between  1972  and  2005.     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 6. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     World  Energy  Use  and  Reserves  circa  2001  –  Source:  WEA   Note:  in  2001  renewables  comprised  less  than  14%  of  our  energy  supply.       UN  Predicted  world  growth  1950-­‐2050.  Note  that  the  scale  is  logarithmic  and   the  population  value  is  given  in  millions!  -­‐  Source  data  calculated  from:   http://esa.un.org/unpp/     According  to  the  U.S.  Energy  Information  Administration  (EIA),  the  demand  for   global  energy  is  projected  to  grow  44%  between  2005  and  2030.  This  will  be   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 7. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   caused  by  a  number  of  factors,  such  as  continuing  economic  growth  and   increasing  populations  in  developing  countries.       -­‐  Source:  http://www.eia.doe.gov/oiaf/ieo/highlights.html     This  same  report  also  stated  that  China  is  the  largest  consumer  of  the  world’s   coal  supply,  and  since  2000  it’s  coal  usage  has  doubled.  Given  the  country’s   expanding  economy,  and  large  coal  reserves,  China’s  demand  for  coal  is   expected  to  remain  strong.  In  the  reference  case,  world  coal  usage  grows  by  2%   every  year,  between  2005  and  2030,  with  coal’s  share  of  the  world’s  total  needs   reaching  29%  by  2030.    Two  of  the  main  consumers  of  energy  will  be  China  and   India,  as  they  are  both  developing  very  quickly  and  have  very  large   populations.  In  1990  both  the  countries  where  consuming  on  average,  10%  of   the  world’s  total  energy  expenditure,  but  in  2006  their  combined  share  had   grown  to  19%.  It  is  expected  that  with  continued  strong  economic  growth,   both  countries  will  increase  their  energy  consumption  twofold,  making  up   28%  of  total  world  consumption  by  2030.      Fission  reactors  have  been  suggested  as  an  alternative  to  this  problem.  But   nuclear  fission  power  has  its  own  problems.  Licensing  and  building  reactors   take  a  very  long  time.  If  the  fuel  were  used  directly  (non-­‐breeder  reactors),  the   finite  Uranium  sources  would  limit  the  available  operation  in  a  relative  short   time  (several  decades).  Going  to  breeder  reactors  can  greatly  extend  this  time,   breeder  reactors  can  utilize  more  abundant  Thorium  in  fission,  and  consume   Uranium  at  a  slower  rate.  However,  these  reactors  produce  Plutonium,  which  is   very,  very  dangerous.  Concerns  about  the  safety  of  nuclear  fission  reactors   include  the  possibility  of  radiation-­‐releasing  nuclear  accidents,  the  problems  of   radioactive  waste  disposal,  and  the  possibility  of  contributing  to  nuclear   weapon  proliferation.  Spent  fuel  elements  contain  plutonium-­‐239.  This   plutonium  could  be  separated  chemically  and  diverted  to  nuclear  weapons   production.           Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 8. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     Remaining  oil  reserves  by  source.   Over  38%  is  unrecoverable.       Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 9. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   Chernobyl  Nuclear  Power  Plant,  reactor  4–  site  of  the  April  1986  disaster  and   along  with  Three  Mile  Island  in  the  USA,  a  significant  reason  why  nuclear   fission’s  reputation  amongst  the  lay  public  (at  least  in  the  USA)  retains  a   negative  stain.  (Yim  2003)         Decay  timeline  of  fission  biproducts.     Note:  the  immense  amounts  of  time  taken  for  radioactivity  to  decay  to  0.         Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 10. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     Diagram  comparing  radiotoxocity  of  materials  in  various  fission  and  fusion  reactors.     Note  two  points.     1.    The  extremely  steep  decline  in  fusion  radiotoxicity  relative  to  fission  radiotoxicity.   Fusion  reactors  have  much  shorter  radioactive  half  lives    than  fission  reactors   2.    A  fusion  reactor  with  a  vanadium  alloy  is  no  more  radioactive  than  coal  plant  ashes   after  around  50  years.   Renewables   Renewable  energy  sources  are  an  excellent  alternative  to  finite  and  polluting  fuels,   being  sustainable  and  a  lot  more  environmentally  friendly.  However  on  average  they   do  not  provide  energy  as  cheaply  as  fission  or  other  finite  resources.  Furthermore,  they   are  not  always  suitable  in  many  locations.  For  example,  geothermal  plants  can  only  be   sighted  in  areas  where  geological  conditions  allow  for  subterranean  heat  to  be   accessed.  Solar  panels  are  not  as  effective  in  countries  which  receive  on  average,  less   sunlight,  and  wind  farms,  obviously  require  a  significant  amount  of  wind.     It  should  be  emphasized  that  all  alternative  methods  of  generation  of  electricity  on   Earth,  wind  energy,  wave  energy  from  the  sea,  solar  radiation  converted  by  solar  cells,   etc,  are  all  indirectly  derived  from  the  energy  emitted  by  the  Sun,  i.e.  they  originate   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 11. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   from  solar  fusion.  Even  the  atmosphere,  the  rivers  and  the  forests  providing  other   energy  alternatives  for  electric  power  are  driven  by  heat  and  light  from  solar  fusion.     Great  efforts  will  be  needed  to  achieve  the  sustainable  energy  surplus  we  require  in   the  time  we  have  available,  before  other  options  begin  to  run  down.       -­‐Source:  Met  Office  Hadley  –  Datasets  |   http://hadobs.metoffice.com/hadcrut3/diagnostics/global/nh+sh/     Environmentally  speaking,  I  believe  it  would  be  prudent  to  hedge  our  bets  in  regards   to  climate  change,  as  the  many  of  the  predictions  brought  about  by  climate  change   could  be  disastrous  if  they  turn  out  to  be  accurate.    One  must  remember  that  a   reduction  in  atmospheric  CO2  levels  would  take  many  years  even  if  emissions  were   drastically  reduced  today.  Economically  speaking;  we  require  the  economic   infrastructure  in  place  to  make  up  the  shortfall  that  a  combination  of  increased   consumption  and  declining  fossil  stocks  will  present  in  the  coming  decades.       Energy  is  undoubtedly  the  food  of  civilization.  With  enough  cheap  and  clean  energy,   we  can  produce  unlimited  clean  drinking  water  from  desalinating  the  oceans,  grow   almost  unlimited  food  in  the  desert,  and  reverse  environmental  damage  through   terraforming.  We  can  easily  power  the  technological,  electronic  systems  that  are  so   essential  in  both  our  personal  lives,  and  to  society  as  a  whole.  With  planning  we  can   live  in  a  world  where  our  needs  are  met,  and  not  at  the  expense  of  the  environment.   The  path  to  an  infinitely  abundant  energy  source?  Nuclear  Fusion.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 12. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   Fusion  –  a  primer  on  possibly  the  world’s   most  useful  energy  source   It  may  almost  seem  too  good  to  be  true,  but  fusion  has  a  number  of  properties  that,   technological  challenges  aside,  make  it  the  most  promising  energy  source  yet.     Plasma  being  channelled  in  a  fusion  torus   Fusion  –  The  Benefits     SAFE   • If  there  is  an  accident  and  the  magnetic  containment  is  breached,  the  reaction   immediately  stops!  The  metallic  walls  of  the  vessel  surrounding  the  plasma  would   cool  the  expanding  plasma  in  a  short  period,  collapsing  the  reaction  cleanly  and   quickly.     • A  fusion  reactor  is  like  a  gas  burner  –  the  fuel  which  is  injected  into  the  system  is   burnt  off.  There  is  very  little  fuel  in  the  reaction  chamber  at  any  given  moment  (about   1g  in  a  volume  of  1000  m3)  and  if  the  fuel  supply  is  interrupted,  the  reactions  only   continue  for  a  few  seconds.  Any  malfunction  of  the  device  would  cause  the  reactor  to   cool  and  the  reactions  would  stop.       • These  instabilities  in  the  plasma  act  as  an  inherent  safety  mechanism.  A  fusion  reactor   cannot  melt  down  like  a  conventional  nuclear  reactor,  it  simply  degrades  to  gas     • Though  fusion  is  the  main  energy  source  of  hydrogen  bombs,  fusion  alone  has  never   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 13. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   produced  a  bomb;  the  hydrogen  bomb  requires  a  fission-­‐  based  atomic  bomb  to  set  it   off.    This  uncontrolled  fusion  reaction  used  in  a  bomb  is  a  completely  different   mechanism  to  the  controlled  fusion  which  is  utilized  in  peaceful  fusion.     • Day-­‐to-­‐day-­‐operation  of  a  fusion  power  station  would  not  require  the  transport  of   radio-­‐active  materials       •    There  are  no  byproducts  that  could  be  adapted  for  military  purposes.       CLEAN  AND  ABUNDANT   • No  carbon  emissions  are  generated  by  fusion.     • The  raw  fuels  are  abundant  and  equally  distributed  around  the  globe.  This  prevents   geopolitical  and  economic  issues  such  as  countries  gaining  political  advantages  from   the  scarcity  of  the  resource     •  It  also  prevents  economic  inequalities.  Fusion’s  raw  materials  are  available  to  all.     • Raw  materials  for  hydrogen  will  last  for  millions  of  years.  They  are  a  type  (isotope)  of   hydrogen  –  deuterium  (found  in  seawater)  –  and  lithium  (a  light  metal  which  is  found   in  the  Earth’s  crust  and  in  seawater).  The  lithium  in  the  fusion  reactor  wall  produces   tritium  (another  isotope  of  hydrogen)     • The  waste  product  from  a  deuterium-­‐tritium  fusion  reactor  is  ordinary  (and  harmless)   helium.    There  are  no  complicated  nuclear  byproducts  and  therefore  no  nuclear   reprocessing,  or  complicated  fuel  cycling  is  required.     • Although  radioactive  materials  will  be  generated  in  the  walls  of  a  fusion  power  plant   they  would  decay  with  half-­‐lives  of  about  10  years  and  the  whole  plant  could  be  re-­‐ cycled  within  100  years.  There  is  no  long-­‐lasting  radioactive  waste  to  burden  future   generations.   EFFICIENT   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 14. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     The  oceans  offer  us  an  effectively  limitless  source  of  Deutirium.   • Fusion  is  a  very  efficient  form  of  energy  production.  1  kg  of  deuterium  and  tritium   would  supply  the  same  amount  of  energy  as  10  million  kg  of  coal.       • The  fuel  consumption  of  a  fusion  power  station  will  be  extremely  low.  A  1  GW  fusion   plant  will  need  about  100  kg  of  deuterium  and  3  tons  of  natural  lithium  to  operate  for   a  whole  year,  generating  about  7  billion  kWh.     • The  lithium  in  one  laptop  battery  plus  the  deuterium  from  half  a  bathtub  of  water   would  provide  the  UK’s  per  capita  electricity  production  for  30  years.   Source  -­‐    Culham  Centre  For  Fusion  Energy-­‐  fusion.org.uk/fusion_energy.pdf     Fusion  –  The  Drawbacks   Though  I  argue  that  fusion  is  extremely  promising,  it  would  not  be  balanced  for  me  to   leave  out  the  shortcomings  of  nuclear  fusion.   As  an  energy  source,  fusion  has  very  few  fundamental  shortcomings.  The  main   problem  with  fusion  today  is  that,  technologically  it  is  still  beyond  our  grasp.  Though   great  advancements  have  been  made,  most  expert  sources  believe  that  commercially   viable  fusion  is  many  decades  away.  And  at  the  current  rate  of  funding,  this  will   remain  to  be  a  problem…     PROBLEM:  Escalating  research  costs     Many  countries  perceive  fusion  funding  as  a  research  risk.  Essentially  it  is   seen  to  have  a  huge  possible  payoff  in  the  far  future,  and  the  timescales   involved  are  too  long.  The  energy  problem  is  pressing  and  we  need   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 15. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   results  now!  Other  renewable  energy  sources  compete  with  fusion  for   finite  R&D  funding.  Sadly,  many  green  energy  advocates  have  yet  to  catch   on.  Many  commentators,  particularly  those  greens  who  have  fought  long   campaigns  against  nuclear  fission,  are  deeply  suspicious  of  fusion.  They   doubt  fusion  will  deliver  and  believe  the  money  earmarked  for  research   would  be  better  spent  on  renewables,  such  as  wind,  wave  and  solar   energy.  Many  of  these  other  resources  are  already  in  commercial  use,   which  makes  them  perceived  as  a  more  credible  source  of  funding.           “The  ITER  fusion  reactor  was  originally  costed  at  €10bn  (£9bn),  but  the  rising  price  of   raw  materials  and  changes  to  the  initial  design  are  likely  to  see  that  bill  soar,  officials   confirmed  today.   The  warning  came  as  scientists  gathered  in  Finland  to  unveil  the  first  component  of  the   reactor,  which  will  effectively  act  as  its  exhaust  pipe.  The  reactor  is  expected  to  take   nearly  10  years  to  build  and  is  scheduled  to  be  switched  on  in  2018.   It  began  as  a  US-­‐Russian  project  in  the  1980s,  but  has  since  grown  to  include  the  EU,   China,  India,  Japan  and  South  Korea.”  (Sample  2009)  –  Ian  Sample,  The  Guardian   SOURCE  -­‐  http://www.guardian.co.uk/science/2009/jan/29/nuclear-­‐fusion-­‐power-­‐ iter-­‐funding   SOLUTION:  CONSIDER  THE  ALERNATIVES!     There  is  no  ‘real’  solution  to  this.  However,  there  is  an  alternative  way  to  consider  the   issue.   1.  Fusion  may  be  expensive  but,  how  expensive  would  it  be  to  transfer  most  of   humanity  away  from  low-­‐laying  coastal  areas,  assuming  that  global  warming  raises   sea  levels  over  the  next  100  years?   2.  Fusion  should  be  considered  an  investment.  Simple  economics  suggests  that  the   growing  scarcity  of  fossil  fuels  will  result  in  rising  prices  to  provide  power  from  these   sources  over  time,  assuming  they  become  harder  to  source  and  extract.   Extending  this  idea  further,  the  raw  materials  of  fusion;  deuterium  and  tritium  are   abundant  enough  to  be  practically  considered  infinite.  As  technology  improves,  costs   of  extracting  deuterium  and  lithium  and  converting  them  to  energy  should  fall.   Eventually  we  could  see  fusion  to  be  a  source  of  extremely  cheap  power:  no  scarcity,   massively  efficient  energy  transfer.   3.  Commercial  fusion  reactors  greatly  outperform  other  renewable  energy  sources.   PROBLEM:  Net  Energy  Gain   In  experimental  fusion  reactors  the  main  goal  is  to  achieve  a  net  energy  gain.   Essentially,  we  want  to  generate  more  power  from  the  fusion  reactions  within  reactor   than  we  put  in  to  start  and  maintain  those  reactions.  At  the  moment,  incredible   amounts  of  energy  are  expended  to  create  the  conditions  for  fusion  to  occur,  and  as  of   yet,  no  reactor  has  yet  produced  a  gain.  Running  a  nuclear  fusion  reactor  costs  more   energy  than  it  generates.  At  the  moment,  a  fusion  reactor  expends  energy.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 16. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     SOLUTION:  Continue  research!     Reactor  energy  efficiency  has  increased  every  decade  since  fusion  research   began(Andreani  2000).     In  fusion  research,  achieving  a  fusion  energy  gain  factor  Q  =  1  is  called  breakeven,   and  is  the  current  goal  in  fusion  research.  With  every  year  the  value  of  Q  that  we     obtain  climbs  closer  to  1.  In  a  commercial  fusion  reactor,  a  value  around  Q  =  20  would   be  more  suitable.  Some  external  power  will    be  required  for  things  that  help  us   regulate  the  plasma,  such  as  like  current  drive,  refueling,  profile  control,  and  burn   control.         Encouragingly,  in  1997  The  JET  tokamak  at  Culham  in  the  UK  produced  16  MW  of   fusion  power  –  which  is  the  current  world  record  for  fusion  power.     The  interior  of  the  JET  torus.   PROBLEM:  Heat/  Thermal  Pollution     An  unusual  yet  still  valid  argument  against  freely  available  cheap  energy  is  a   phenomenon  known  as  heat  pollution.    The  idea  is  that  with  cheap  abundant  energy,   most  will  be  wasted  as  heat.  This  can  have  detrimental  effects  on  marine  life.   Thermal  Pollution’s  Implications  For  Marine  Ecosystems   Thermal  pollution  can  have  a  great  influence  on  the  aquatic  ecosystem.       There  are  various  effects  on  the  biology  of  the  ecosystems  when  heated  effluents   reach  the  receiving  waters.  The  species  that  are  intolerant  to  warm  conditions  may   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 17. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   disappear,  while  others,  rare  in  unheated  water,  may  thrive  so  that  the  structure  of  the   community  changes.    Respiration  and  growth  rates  may  be  changed  and  these  may   alter  the  feeding  rates  of  organisms.  The  reproduction  period  may  be  brought  forward   and  development  may  be  speeded  up.  Parasites  and  diseases  may  also  be  affected.       An  increase  of  temperature  also  means  a  decrease  in  oxygen  solubility.  Any  reduction   in  the  oxygen  concentration  of  the  water,  particularly  when  organic  pollution  is  also   present,  may  result  in  the  loss  of  sensitive  species.   For  example,  in  summer  fish  may  have  high  metabolic  rates  because  their  body   temperatures  are  elevated  in  the  warm  water.  At  the  same  time  they  are  faced  with   relatively  low  oxygen  availability  because  warm  water  holds  less  dissolved  oxygen   than  cold  water.  The  interaction  of  these  factors  may  prove  critical.      Heated  water  can  kill  animals  and  plants  that  are  accustomed  to  living  at  lower   temperatures.     -­‐  Source:  http://www.lenntech.com/aquatic/heat.htm#ixzz0drT24IFS     SOLUTION:  Ecological  Safeguards   The  technology  already  exists  to  cool  water  before  it  is  returned  to  the  ecosystem.   Heat  pollution  isn’t  really  a  problem  with  effective  planning.      The  problem  is  not   complicated  but  may  be  expensive;  redesign  of  sites  which  are  discharging  hot  water   may  be  required.  Installing  the  following  hardware  at  offending  sites  would  be  an   effective  solution  to  heat  pollution:   Cooling  ponds:  man-­‐made  bodies  of  water  designed  for  cooling  by  evaporation,   convection,  and  radiation   Cooling  towers:  which  transfer  waste  heat  to  the  atmosphere  through  evaporation   and/or  heat  transfer   Cogeneration:  a  process  where  waste  heat  is  recycled  for  domestic  and/or  industrial   heating  purposes.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 18. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   A  cooling  pond  in  Novovoronezh,  Russia.  Many  such  sites  have  secondary,  recreational   purposes  that  include  fishing,  swimming,  boating,  camping  and  picnicking.  The  warm   waters  are  often  used  as  a  fish  hatchery.   PROBLEM:  Neutron  Production  in  a  DT   Fusion  Reaction   DT  fusion  reactions  produce  free  neutrons  moving  at  high  speed.  These  fast  neutrons   create   radioactivity   when   they   bombard   the   materials   of   which   the   fusion   reactor   is   constructed.  Thus,  while  the  fusion  process  does  not  produce  nuclear  waste  directly,   the   fusion   reactor   itself   does   become   radioactive,   and   its   components   must   be   disposed   of   safely   when   the   reactor   is   finally   shut   down,   after   the   normal   life   of   an   electric  power  plant.         SOLUTION:  Utilize  Unreactive  Materials  in   Reactor  Construction   Neutron  shielding  is  rather  simple.  Neutrons  are  easily  shielded  with  24  inches  or  so   of  water,  plastic,  or  anything  else  with  high  levels  of  hydrogen  to  provide  collision   partners  of  nearly  equal  mass  for  the  neutrons  to  collide  into.       The  problem  with  radioactive  materials  are  not  a  particular  hurdle.  This  problem  can   be  minimized  by  deliberately  choosing  construction  materials  that  either  produce  less   radioactivity  or  produce  radioactivity  that  dies  away  more  rapidly.  Such  materials  are   estimated  to  lose  their  radioactivity  within  50-­‐100  years,  as  oppose  to  the  thousands   of  years  required  for  fission  waste.     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 19. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     Due  to  it’s  low  level  of  radioactive  activation  in  neutron  bombardment,  vanadium  is  a   promising  candidate  for  DT  fusion  reactors.   Part 3.   Fusion  Energy  Cycles   The  fusion  process  can  occur  in  a  number  of  different  ‘energy  cycles’.  Each  one  fuses   different  materials,  with  different  quantities  of  matter,  and  releases  energy  in  different   ways.     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 20. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     A  graph  comparing  the  performance  of  the  3  main  reactions;  The  Deutritium-­‐Tritium   reaction,  The  Deutirium-­‐Deutrium  process  and  the  proton-­‐Boron11  process.   Note: A Deuterium – Deuterium (DD) fusion reactor would provide limitless energy; it requires only water as a resource. However, even higher temperatures would be required for a DD reaction, it is unlikely to be considered in the near future. Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 21. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     Helium  3  fusion  (3He3He)  though  another  promising  aneutronic  reaction,  is  rare  on  the   earth.  Helium  3  fusion  has  been  proposed  for  confinement  in  both  magnetic  or  inertial   fusion  reactors.  This  isotope  of  helium  is  thought  to  be  common  on  the  moon!   THE  DT  FUEL  CYCLE       The  DT  Fusion  reaction.  The  release  of  the  neutron  is  the  main  drawback  of  this  power   cycle.   According  to  the  Lawson  Criterion,  the  DT  fuel  cycle  is  the  easiest  fusion  process  to   start  and  maintain  within  a  terrestrial  reactor.  It  also  has  the  highest  power   production  rate  of  the  fusion  reactions.  The  generated  power  density  is  about  1  W  per   cm3.     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 22. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   In  simple  terms,  the  ‘extra’  neutrons  on  the  D  and  T  nuclei  make  them  "larger"  and   less  tightly  bound,  and  the  result  is  that  the  cross-­‐section  for  the  D-­‐T  reaction  is  the   largest.  Also,  because  they  are  only  singly-­‐charged  hydrogen  isotopes,  the  electrical   repulsion  between  them  is  relatively  small.    It  is  relatively  easy  to  throw  them  at  each   other,  and  it  is  relatively  easy  to  get  them  to  collide  and  stick.  Furthermore,  the  D-­‐T   reaction  has  a  relatively  high  energy  yield.(Kobres  1994)     Disadvantages   However,  the  D-­‐T  reaction  has  the  disadvantage  that  it  releases  an  energetic  neutron.   Neutrons  can  be  difficult  to  handle,  because  they  will  "stick"  to  other  nuclei,  causing   them  to  become  radioactive,  or  causing  secondary  reactions.       ANEUTRONIC  FUSION   Aneutronic  fusion  means  fusion  that  does  not  produce  neutrons  as  a  by-­‐product.   There  are  several  candidates  for  aneutronic  fusion,  but  at  current  the  Hydrogen  and   Boron  11  cycle  seem  to  be  the  most  credible.       As  energy  equation  below  shows  -­‐  no  neutrons  are  produced,  however  this  cycle   requires  more  energy  to  start  than  the  DT  cycle.   p  +  B11  -­‐>  3  He4  +  8.7  MeV       The  pB11  cycle  is  the  most  promising  candidate  for  aneutronic  fusion.   The  nuclear  energy  from  the  p-­‐B  reaction  is  different  because  it  comes  from  the   proton-­‐  triggered  fission  of  a  light  element,  and  no  neutrons  are  released.  (Light   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 23. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   elements  are  considered  to  be  those  with  a  mass  number  less  than  56,  which  is  the   mass  number  of  iron.)       This  is  unusual  for  at  least  four  reasons:     1.  Light  elements  more  often  “combine”  or  fuse  to  make  heavier  elements;  they  don’t   normally  fission  to  make  elements  that  are  lighter  yet.     2.  Heavy  elements  such  as  235U  (Uranium  isotope  –  mass  number  235)  are   traditionally  considered  to  be  the  more  likely  candidates  for  fission  reactions.     3.  Fission  reactions  are  normally  triggered  by  the  absorption  of  a  neutron,  not  a   proton.     4.  Fissions  usually  result  in  the  emission  of  neutrons.     “Focus  Fusion”  refers  to  electricity  generation  using  a  Dense  Plasma  Focus  (DPF)   nuclear  fusion  generator.  It  uses  the  aneutronic  hydrogen-­‐boron  fuel  (pB11)  cycle.   If  Focus  Fusion  reactors  are  made  to  work,  they  will  provide  virtually  unlimited   supplies  of  cheap  energy  in  an  environmentally  sound  way  -­‐  no  greenhouse  gases,  and   no  radiation  -­‐  because  the  reaction  of  pB11  is  aneutronic.       Focus  Fusion  faces  two  main  technical  challenges:     •   It  requires  much  higher  ion  temperatures  and  plasma  density-­‐confinement   time  product  than  Deuterium-­‐Tritium  fuel;     •   and  x-­‐rays  produced  by  the  reaction  reduce  temperatures.   The  plasma  focus  device  consists  of  two  cylindrical  copper  or  berillyum  electrodes   nested  inside  each  other.  The  outer  electrode  is  generally  no  more  than  6-­‐7  inches  in   diameter  and  a  foot  long.  The  electrodes  are  enclosed  in  a  vacuum  chamber  with  a  low   pressure  gas  (the  fuel  for  the  reaction)  filling  the  space  between  them.   Focus  fusion  reactors  are  expected  to  be  less  expensive  for  the  same  amount  of  power.   Using  this  power  cycle,  a  wheelbarrow  load  of  the  Boron  in  Boraxo,  a  brand  of   American  hand  soap  would  be  sufficient  to  provide  all  the  electrical  needs  of  a  small   city  for  a  year.   -­‐Sources:  http://focusfusion.org/index.php/site/article/focus_fusion_reactor/   William  W.  Flint  -­‐ http://www.polywellnuclearfusion.com/Clean_Nuclear_Fusion/Download_Book.html     MAGNETISED  TARGET  FUSION  /   SPHEROMAK  FUSION   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 24. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     General  Fusion's  reactor  design  consists  of  220  pistons  that  simultaneously  ram  a  metal   sphere.  This  creates  a  shock  wave  inside  the  sphere,  so  that  plasma  rings  in  the  center   create  a  fusion  reaction. General  Fusion  plans  to  try  a  relatively  low-­‐tech  approach  to  fusion  called  magnetized   target  fusion  (MTF).   The  reactor  consists  of  a  metal  sphere  with  a  diameter  of  three  meters.  Inside  the   sphere,  a  liquid  mixture  of  lithium  and  lead  spins  to  create  a  vortex  with  a  vertical   cavity  in  the  centre.  Then,  the  researchers  inject  two  donut-­‐shaped  plasma  rings  called   spheromaks  into  the  top  and  bottom  of  the  vertical  cavity  -­‐  like  "blowing  smoke  rings   at  each  other,"  explains  Doug  Richardson,  chief  executive  of  General  Fusion,  the   Canadian  energy  company  that  is  driving  the  MTF  project.     The  last  step  is  mainly  well-­‐timed  brute  mechanical  force.  220  pneumatically   controlled  pistons  on  the  outer  surface  of  the  sphere  are  programmed  to   simultaneously  ram  the  surface  of  the  sphere  one  time  per  second.  This  force  sends  an   acoustic  wave  through  the  spinning  liquid  that  becomes  a  shock  wave  when  it  reaches   the  spheromaks  in  the  center,  triggering  a  fusion  burst.  Specifically,  the  plasma's   hydrogen  isotopes  -­‐  deuterium  and  tritium  -­‐  fuse  into  helium,  releasing  neutrons  that   are  trapped  by  the  lithium  and  lead  mixture.  The  neutrons  cause  the  liquid  to  heat  up,   and  the  heat  is  extracted  through  a  heat  exchanger.  Part  of  the  resulting  heat  is  used  to   make  steam  to  spin  a  turbine  for  power  generation,  while  the  rest  goes  back  to   recharge  the  pistons.     General  Fusion  has  just  started  developing  simulations  of  the  project,  and  hopes  to   build  a  test  reactor  and  demonstrate  net  gain  within  five  years.  If  everything  goes   according  to  plan,  they  will  then  build  a  100-­‐megawatt  prototype  reactor  to  be   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 25. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   finished  five  years  after  that,  which  would  cost  an  estimated  $500  million.     Source:  Lisa  Zyga,  Physorg.com  |  http://www.physorg.com/news168623833.html INERTIAL CONFINEMENT FUSION/ INERTIAL FUSION ENERGY [IFE]   While  magnetic  confinement  seeks  to  extend  the  time  that  ions  spend  close  to  each   other  in  order  to  facilitate  fusion,  the  inertial  confinement  strategy  seeks  to  fuse  nuclei   so  fast  that  they  don't  have  time  to  move  apart     Directed  onto  a  tiny  deuterium-­‐tritium  pellet,  the  enormous  energy  influx  evaporates   the  outer  layer  of  the  pellet,  producing  energetic  collisions  that  drive  part  of  the  pellet   inward.  The  inner  core  is  increased  a  thousandfold  in  density  and  its  temperature  is   driven  upward  to  the  ignition  point  for  fusion.  Accomplishing  this  in  a  time  interval  of   10^-­‐11  to  10^-­‐9  seconds  does  not  allow  the  ions  to  move  appreciably  because  of  their   own  inertia;  hence  the  name  inertial  confinement.   Atmosphere Formation Laser beam rapidly heats the surface of the fusion target forming a surrounding plasma envelope. Compression Fuel is compressed by the rocket-like blowoff of the hot surface material. Ignition Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 26. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   During the final part of the laser pulse, the fuel core reaches 20 times the density of lead and ignites at 100,000,000 degrees Celcius. Burn Thermonuclear burn spreads rapidly through the compressed fuel, yielding many times the input energy. Key: Laser  energy     Blowoff     Inward  transported  thermal  energy       The  National  Ignition  Facility  (NIF)  at  Lawrence  Livermore  Laboratory  is  exp-­‐ erimenting  with  using  laser  beams  to  induce  fusion.  In  the  NIF  device,  192  laser   beams  will  focus  on  single  point  in  a  10-­‐meter-­‐diameter  target  chamber  called  a   hohlraum.  A  hohlraum  is  "a  cavity  whose  walls  are  in  radiative  equilibrium  with  the   radiant  energy  within  the  cavity"     A  hohlraum  mock  up  to  be  used  on  the  NIF  laser   Other  effects  like  the  symmetry  of  the  implosion  are  also  important  for  the  ignition.     The  IFE  laser  must  operate  at  five  to  ten  shots  a  second  depending  on  the  target  yield   per  shot  and  the  desired  electric  output  of  the  power  plant.  Currently  two  classes  of   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 27. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   laser  are  being  considered  in  the  United  States:  the  krypton-­‐fluoride  (KrF)  gas  laser   and  the  diode-­‐pumped  solid  state  laser  (DPSSL).     Like  the  magnetic-­‐confinement  fusion  reactor,  the  heat  from  inertial-­‐confinement   fusion  will  be  passed  to  a  heat  exchanger  to  make  steam  for  producing  electricity.       -­‐  Source:  Rochster  University  |   http://www.lle.rochester.edu/02_visitors/02_grad_inertialconf.php     In  the  resulting  conditions  —  a  temperature  of  more  than  100  million  degrees  Celsius   and  pressures  100  billion  times  the  Earth’s  atmosphere  —  the  fuel  core  will  ignite  and  a   thermonuclear  burn  will  quickly  spread  through  the  compressed  fuel,  releasing  ten  to   100  times  more  energy  than  the  amount  deposited  by  the  laser  beams.  Only  a  few  NIF   experiments  can  be  conducted  in  a  single  day  because  the  facility's  optical  components   need  time  to  cool  down  between  shots.  In  an  IFE  power  plant,  targets  will  be  ignited   five  to  ten  times  a  second!   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 28. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     In  direct-­‐drive,  the  capsule  is  directly  irradiated  by  the  laser  beams.  In  indirect-­‐ drive,  the  capsule  is  placed  inside  a  hohlraum;  made  with  high-­‐atomic-­‐mass  materials   like  gold  and  lead  with  holes  on  the  ends  for  beam  entry.   Source:  Rick  Hodgin  -­‐  http://www.geek.com/articles/chips/national-­‐ignition-­‐facility-­‐ preps-­‐self-­‐sustaining-­‐fusion-­‐tests-­‐for-­‐2010-­‐20090415/   The  HiPER  Laser  Fusion  Reactor   HiPER  is  a  European  ICF  facility  being  designed  to  demonstrate  the  feasibility  of  laser   driven  fusion  as  a  future  energy  source.    This  is  made  feasible  by  the  advent  of  a   revolutionary  approach  to  laser-­‐driven  fusion  known  as  'Fast  Ignition'.  HiPER  will   use  a  unique  laser  configuration,  currently  estimated  at  200kJ  long  pulse  laser   combined  with  a  70kJ  short  pulse  laser.     The  HiPER  Science  Programme   It  will  also  enable  the  investigation  of  the  science  of  truly  extreme  conditions  –  creating   environments  which  cannot  be  produced  elsewhere  on  Earth  (temperatures  of  hundreds   of  millions  of  degrees,  billion  atmosphere  pressures,  and  enormous  electric  and  magnetic   fields).   The  new  research  programs  will  include  the  following  areas   • Astrophysics  in  the  laboratory     • Behavior  of  matter  in  truly  extreme  conditions       • Material  science  in  the  challenging  “warm  dense”  regime       • Nuclear  physics  and  nucleosynthesis       • Atomic  physics       • Turbulent  flow  at  very  high  Mach  numbers       Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 29. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   • Relativistic  particle  beam  studies  and  applications  •   plasma  physics  at  high   energy  density       • Laser  plasma  interaction  physics       • Quantum  vacuum  studies       • Fundamental  physics  in  ultra-­‐strong  electric  fields.     Artist’s  impression  of  the  HiPER  facility   The  project  was  accepted  onto  the  ‘European  Roadmap’  in  October  2006,  with  the  UK   agreeing  to  take  a  leadership  role  in  January  2007.The  HiPER  facility  is  anticipated  to   open  towards  the  end  of  the  next  decade  dependent  on  the  success  of  the   preparatory  phase  project.  The  UK  is  the  leading  contender  to  host  the  HiPER  laser   facility.   Source:  The  Hiper  project  |  http://www.hiper-­‐laser.org/keyfacts/KeyFacts.asp   Fusion  Confinement  Devices   Regardless  of  the  energy  cycle  of  nuclear  fusion  we  use,  certain  conditions  are  required   to  start  the  reaction  and  contain  the  temperamental  plasma  environment  in  which  the   atomic  process  takes  place.     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 30. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     Another  view  inside  the  JET  torus,  a  tokamak  design.   THE  TOKAMAK   The  Tokamak  was  first  discussed  in  the  1950s  by  Igor  Tamm  and  Andrei  Sakharov  in   the  Soviet  Union.  The  word  Tokamak  is  actually  an  acronym  derived  from  the  Russian   words  toroid-­‐kamera-­‐magnit-­‐katushka,  meaning  “the  toroidal  chamber  and   magnetic  coil.”    This  donut-­‐shaped  configuration  is  principally  characterized  by  a  large   current,  up  to  several  million  amps,  which  flows  through  the  plasma.    The  plasma  is   heated  to  temperatures  more  than  a  hundred  million  degrees  centigrade  (much   hotter  than  the  core  of  the  sun)  by  high-­‐energy  particle  beams  or  radio-­‐frequency   waves.       The  Problem  and  Importance  of  Heat  In  The  Tokamak   In  an  operating  fusion  reactor,  part  of  the  energy  generated  will  serve  to  maintain  the   plasma  temperature  as  fresh  deuterium  and  tritium  are  introduced.  However,  in  the   startup  of  a  reactor,  either  initially  or  after  a  temporary  shutdown,  the  plasma  will   have  to  be  heated  to  100  million  degrees  Celsius.     In  current  tokamak  (and  other)  magnetic  fusion  experiments,  insufficient  fusion   energy  is  produced  to  maintain  the  plasma  temperature.  Consequently,  the  devices   operate  in  short  pulses  and  the  plasma  must  be  heated  afresh  in  every  pulse.     Ohmic  Heating   Since  the  plasma  is  an  electrical  conductor,  it  is  possible  to  heat  the  plasma  by  passing   a  current  through  it;  in  fact,  the  current  that  generates  the  poloidal  field  also  heats  the   plasma.  This  is  called  ohmic  (or  resistive)  heating;  it  is  the  same  kind  of  heating  that   occurs  in  an  electric  light  bulb  or  in  an  electric  heater.     Neutral-­‐Beam  Injection   Neutral-­‐beam  injection  involves  the  introduction  of  high-­‐energy  (neutral)  atoms  into   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 31. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   the  ohmically  -­‐-­‐  heated,  magnetically  -­‐-­‐  confined  plasma.  The  atoms  are  immediately   ionized  and  are  trapped  by  the  magnetic  field.  The  high-­‐energy  ions  then  transfer  part   of  their  energy  to  the  plasma  particles  in  repeated  collisions,  thus  increasing  the   plasma  temperature.     Radio-­‐frequency  Heating   In  radio-­‐frequency  heating,  high-­‐frequency  waves  are  generated  by  oscillators  outside   the  torus.  If  the  waves  have  a  particular  frequency  (or  wavelength),  their  energy  can   be  transferred  to  the  charged  particles  in  the  plasma,  which  in  turn  collide  with  other   plasma  particles,  thus  increasing  the  temperature  of  the  bulk  plasma.     The  Magnetic  Field  In  a  Tokamak   Because  of  the  electric  charges  carried  by  electrons  and  ions,  a  plasma  can  be   confined  by  a  magnetic  field.  In  the  absence  of  a  magnetic  field,  the  charged  particles   in  a  plasma  move  in  straight  lines  and  random  directions.  Since  nothing  restricts  their   motion  the  charged  particles  can  strike  the  walls  of  a  containing  vessel,  thereby   cooling  the  plasma  and  inhibiting  fusion  reactions.  But  in  a  magnetic  field,  the   particles  are  forced  to  follow  spiral  paths  about  the  field  lines.  Consequently,  the   charged  particles  in  the  high-­‐temperature  plasma  are  confined  by  the  magnetic  field   and  prevented  from  striking  the  vessel  walls.     The  flow  in  the  plasma  is  mainly  used  to  generate  the  enclosing  magnetic  field.  In   addition,  it  provides  effective  initial  heating  of  the  plasma.  The  flow  in  the  plasma  is   normally  induced  by  a  transformer  coil.       This  simplified  diagram  of  a  tokamak  describes  what  part  each  component  plays  in   confining  plasma.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 32. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   In  order  to  minimize  particle  losses  caused  from  leaking  along  the  magnetic  field  lines,   the  chamber  is  bent,  which  also  bends  the  magnetic  field  lines.  This  creates  the   distinctive  torus  shape  also  known  as  a  “toroidal  pinch”.  However,  the  curvature  of  the   magnetic  field  lines  introduces  new  problems.  Strong  externally  produced  toroidal   magnetic  fields  are  necessary  to  stabilize  the  plasma.  These  are  generated  by  the   solenoidal  magnet     The  solenoid  works  by  passing  a  current  through  an  electromagnet  wrapped,  one  turn   after  the  other,  along  the  full  length  of  the  tube.  It  reduces  the  kinking  problem  in  the   plasma  by  adding  an  external  source  of  magnetic  field  that  "stiffens"  the  plasma   column.       A  solenoid  is  a  3  dimensional  coil  which  creates  the  magnetic  field  that    envelopes  the   torus.     A  tokamak  consists  mainly  of  a  toroidal  tube  big  enough  to  hold  the  plasma  that  serves   as  fuel;  a  solenoidal  magnet  wrapped  around  the  tube;  and  a  transformer  to  drive  a   current  in  the  plasma.       Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 33. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   Diagram  showing  how  particles  are  trapped  within  the  cross  section  of  plasma   constrained  within  a  tokamak.     The  Energy  Generation  Process  Within  The  Tokamak   • The  fusion  reactor  heats  a  stream  of  deuterium  and  tritium  fuel  to  form  high-­‐ temperature  plasma.  It  squeezes  the  plasma  so  that  fusion  can  take  place.     • The  lithium  blankets  outside  the  plasma  reaction  chamber  absorb  high-­‐energy   neutrons  from  the  fusion  reaction  to  make  (‘breed’)  more  tritium  fuel.  The   blankets  will  also  get  heated  by  the  neutrons.     • The  heat  will  be  transferred  by  a  water-­‐cooling  loop  to  a  heat  exchanger  to   make  steam.     • The  steam  will  drive  electrical  turbines  to  produce  electricity.     • The  steam  will  be  condensed  back  into  water  to  absorb  more  heat  from  the   reactor  in  the  heat  exchanger.       Source:  Princton  Plasma  Physics  Laboratory  |  http://www.pppl.gov/fusion_basics/     At  this  time,  of  all  the  fusion  projects,  tokamak  confinement  is  getting  the  most   funding  and  the  most  media  attention.  There  are  2  major  new  tokamak  projects  under   construction,  ITER  in  Europe  and  SST-­‐1  in  India.  Both  are  designed  to  showcase   current  advancements  in  magnetic  confinement  technology  to  the  world,  and  to   provide  the  environment  to  research  the  next  phase  of  tokamak  technology.     THE  POLYWELL/  BUSSARD  FUSION   REACTOR     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 34. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   Robert  W.  Bussard  (August  11,  1928  –  October  6,  2007)  was  an  American  physicist  who   worked  primarily  in  nuclear  fusion  energy  research,  and  who  pioneered  the  polywell   concept.     The  name  polywell  is  a  portmanteau  of  "polyhedron"  and  "potential  well."    The   Polywell  is  spherical  instead  of  the  donut  shape  of  the  Tokamak.    The  polywell  method   of  achieving  fusion  has  often  been  referred  to  as  the  “long  shot  to  fusion”  and  sadly,   has  been  treated  this  way  by  the  fusion  community  at  large       As  a  fusion  source,  polywell  researchers  compete  with  tokamak  derived  technology   for  funding.  And  in  the  funding  battle,  the  polywell  is  definitely  losing,  However  in   2009  a  R&D  contract  worth  $2  million  a  year  from  the  US  Navy  was  issued,  who   believe  the  polywell  may  be  a  useful  power  source  for  ships.  This  is  promising,  and   many  polywell  advocates  have  stated  that  positive  results  can  be  seen  with  a  fraction   of  the  funding  expended  on  Tokamak  technology  (which  is  a  good  thing  because  it   looks  like  that’s  what  they  will  get!).     Source:  Federal  Business  Opportunities.gov  |   https://www.fbo.gov/index?s=opportunity&mode=form&id=fc9fd44171017393510d 46e2f8154296&tab=core&_cview=0&cck=1&au=&ck=     The  Polywell  community  is  a  small  but  vocal    ‘open  source‘  collective  of  scientific   enthusiasts  and  independent  researchers.         Confinement  Within  The  Polywell   The  Polywell  uses  inertial  electrostatic  confinement  (IEC)  to  create  the  conditions   for  fusion.         When  all  six  electromagnets  within  the  polywell  are  energized,  the  magnetic  fields   meld  into  a  nearly  perfect  sphere.  Electrons  are  injected  into  the  sphere  to  create  a   superdense  core  of  highly  negative  charge.  Given  enough  electrons,  the  electrical  field   can  be  made  strong  enough  to  induce  fusion  in  selected  particles.  Positively  charged   protons  and  boron-­‐11  ions  are  injected  into  the  sphere  and  are  quickly  accelerated   into  the  centre  of  the  electron  ball  by  its  high  negative  charge.  Protons  and  boron  ions   that  overshoot  the  centre  are  pulled  back  with  an  oscillatory  action  of  a  thousand  or   more  cycles.     Source:  R.  Colin  Johnson  |  EE  Times   http://www.eetimes.com/showArticle.jhtml?articleID=199703602       Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 35. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     The  current,  third-­‐generation  prototype  uses  six  doughnut-­‐shaped  electromagnets  to   create  a  cube  in  which  to  confine  the  fusion  reactions  in  a  strong  magnetic  field.  The   original  prototype  operated  in  air  and  was  just  centimetres  in  diameter;  the  current   design  operates  in  a  vacuum  chamber  and  measures  roughly  a  cubic  yard.       A  2D  representation  of  the  magnetic  fields  operating  in  a  polywell.  The  coils  trap   electrons  and  keep  them  in  a  very  small,  tightly  packed  group  called  a  potential  well.   This  well  attracts  and  accelerates  the  Hydrogen  and  Boron  nuclei.  When  they  collide,  the   nuclear  reaction  is  triggered.  If  there  is  a  system  failure,  the  polywell  simply  loses  its   magnetic  field  and  the  process  stops.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 36. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   Conclusion   It  is  evident  that  there  are  a  great  many  different  possibilities  for  fusion;  in  both  the   choice  of  fuel  cycle  and  confinement  method  used.  Though  now  over  50  years  old,  the   field  is  still  very  young.  A  great  deal  of  emerging  technologies  look  promising  within   fusion.  Advances  in  other  areas  such  as  materials  technology,  could  be  a  boon  to  the   efforts  of  fusion  researchers  looking  to  create  more  efficient  reactors.  Similarly,   disruptive  technology  such  as  the  polywell  and  the  plethora  of  projects  lumped  under  the   term  ‘cold  fusion’  could  have  payoffs,  though  the  odds  of  this  are  not  considered  certain.   It  appears  that  within  the  fusion  community,  current  preference  is  towards  the  DT  cycle,   magnetically  confined  in  a  tokamak  environment.  This  is  obvious  in  the  amounts  of   money  being  spent  on  in  Europe  on  the  ITER  project,  although  the  USA  is  actively   researching  a  variety  of  inertial  confinement  technologies  in  tandem  with  their  own   tokamak  efforts.    With  advancements  in  future  we  may  be  looking  at  aneutronic  fusion,   though  the  road  to  commercial  fusion  is  ‘still’  some  decades  off.   The  next  section  addresses  public  awareness  and  opinion  of  fusion,  with  data  gathered   from  Europe  and  the  USA.   Public  awareness  of  fusion  -­‐  Getting  The   Message  Out Obviously,  informed  public  and  political  awareness  of  nuclear  fusion  will  be  an   extremely  important  factor  in  ensuring  that  fusion  gets  the  attention  it  deserves.  To  be   viable  as  an  energy  source,  fusion  must  be  understood,  at  least  at  some  level,  by  the   lay  public  who  would  one  day  reap  its  benefits.     Policymakers  in  energy  must  better  understand  what  the  fusion  is,  its  economic   implications,  and  long  term  performance  predictions.    Educators  and  thought  leaders   such  as  teachers  need  to  be  given  a  clear  understanding  of  the  subject  so  that  the   message  is  communicated  properly  by  these  vocal,  credible  sections  of  the   population.   Furthermore,  it  is  important  to  educate  the  public  on  the  distinctions  between  fusion   and  fission,  especially  as  the  definition  nuclear  (especially  thermonuclear)  has  a   negative  association  with  weaponry,  which  is  unavoidable.     Finally,  the  obvious  benefits  of  fusion  must  be  communicated  in  a  compelling,  but   impartial  and  factual  manner.  I  believe  that  encouraging  public  support  and  indeed,   approval  of  fusion  could  help  contribute  to  maintaining  political  pressure  that  ensures   fusion  gets  the  economic  support  that  it  needs  to  become  a  reality.     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 37. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   However,  it  is  clear  that  competition  for  public  mindshare  is  extremely  tough.  In  this   time  of  mass  media  the  amount  of  information  the  average  person  is  exposed  to  is   greater  than  ever  before.  The  fusion  message  has  to  contend  with  popular  culture,   constant  marketing,  and  the  concerns  of  normal  day  to  day  life;  a  great  many  global   and  personal  issues  take  up  the  average  person’s  attention  and  time.  Fusion  is  simply   not  a  priority  for  most  people.  This  is  understandable  perhaps  in  the  context  of  a  low   awareness  of  the  extent  of  the  energy  problem  facing  us  in  the  coming  decades.   Worse  still,  certain  anti  nuclear  pressure  groups  approach  fusion  in  the  same   combative  manner  they  have  reserved  for  fission.  For  example,  a  consortium  of  French   pressure  groups  Sortir  du  Nucleaire  (Get  Out  of  Nuclear  Energy),claimed  that  ITER   was  a  hazard  because  “scientists  did  not  yet  know  how  to  manipulate  the  high-­‐energy   deuterium  and  tritium  hydrogen  isotopes  used  in  the  fusion  process.”   -­‐  Source:  Deustch  Welle  -­‐  http://www.dwworld.de/dw/article/0,,1631650,00.html   In a report entitled Public Information in European Fusion Energy Research: Methods and Challenges, released by specialists working at fusion policy and research institutions around the EU, the opinions and awareness of the public in the EU towards fusion where measured. The following social groups where identified as communication targets. Each requires a different outreach strategy and message. Note: PI: Public information • Decision makers: due to direct link between the EU energy policy and the European fusion research this group needs to be informed on both European and national levels about the mission progress. The group consists of judicious, motivated, busy people. • Media: as a key intermediate to pro-active communication with general public, media (TV, radio, newspapers, journals) deserve high priority PI, namely personal relations. In fusion, media relations are established, as a rule, on national levels. • Schools & Universities: Teachers act as efficient intermediates to young people who will probably decide about the industrial future of fusion. Even before, fusion R&D will need a supply of new determined experts. Notice that fusion has relatively sparse professional links to Universities compared to other major research projects. • Interested Public: Although fusion cannot hope for a major pro-active influence of general public, any of those who are interested and request information must feel free to obtain it, hence the passive PI must be very broad and highly responsive. • Industry: Nowadays, the main topics in fusion research have expanded from basic plasma physics towards more technological tasks, e.g. to material research, which calls for direct involvement of different industries including their R&D. PI activities have to follow these developments and promote the opportunities. • Fusion Community: Due to international dimension of the research it is vital to foster good relations among fusion centres, calling for broad communications. • Scientific Community: support from the influential category of “other scientists” can be expected only if fusion community manages to inform them properly about the fusion research, its mission, results and strategy, as well as about joint interests.   Source:  http://www.iop.org/Jet/fulltext/EFDP05027.pdf   Findings:  The  report’s  findings  on  the  public  awareness  of  nuclear  fusion  where   not  very  promising.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com