SlideShare ist ein Scribd-Unternehmen logo
1 von 18
Downloaden Sie, um offline zu lesen
International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013
DOI : 10.5121/ijait.2013.3202 17
ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID
SYNCHRONIZATION OF HYPERCHAOTIC XU AND
HYPERCHAOTIC LI SYSTEMS
Sundarapandian Vaidyanathan1
1
Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University
Avadi, Chennai-600 062, Tamil Nadu, INDIA
sundarvtu@gmail.com
ABSTRACT
This paper derives new adaptive results for the hybrid synchronization of hyperchaotic Xi systems (2009)
and hyperchaotic Li systems (2005). In the hybrid synchronization design of master and slave systems, one
part of the systems, viz. their odd states, are completely synchronized (CS), while the other part, viz. their
even states, are completely anti-synchronized (AS) so that CS and AS co-exist in the process of
synchronization. The research problem gets even more complicated, when the parameters of the
hyperchaotic systems are unknown and we tackle this problem using adaptive control. The main results of
this research work are proved using adaptive control theory and Lyapunov stability theory. MATLAB
simulations using classical fourth-order Runge-Kutta method are shown for the new adaptive hybrid
synchronization results for the hyperchaotic Xu and hyperchaotic Li systems.
KEYWORDS
Hybrid Synchronization, Adaptive Control, Chaos, Hyperchaos, Hyperchaotic Systems.
1. INTRODUCTION
The hyperchaotic system was first discovered by the German scientist, O.E. Rössler ([1], 1979). It
is a nonlinear chaotic system having two or more positive Lyapunov exponents. Hyperchaotic
systems have many attractive features and hence they are applicable in areas like neural networks
[2], oscillators [3], communication [4-5], encryption [6], synchronization [7], etc.
For the synchronization of chaotic systems, there are many methods available in the chaos
literature like OGY method [8], PC method [9], backstepping method [10-12], sliding control
method [13-15], active control method [16-17], adaptive control method [18-19], sampled-data
feedback control [20], time-delay feedback method [21], etc.
In the hybrid synchronization of a pair of chaotic systems called the master and slave systems,
one part of the systems, viz. the odd states, are completely synchronized (CS), while the other
part of the systems, viz. the even states, are anti-synchronized so that CS and AS co-exist in the
process of synchronization of the two systems.
This paper focuses upon adaptive controller design for the hybrid synchronization of hyperchaotic
Xu systems ([22], 2009) and hyperchaotic Li systems ([23], 2005) with unknown parameters. The
International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013
18
main results derived in this paper have been proved using adaptive control theory [24] and
Lyapunov stability theory [25].
2. ADAPTIVE CONTROL METHODOLOGY FOR HYBRID SYNCHRONIZATION
The master system is described by the chaotic dynamics
( )x Ax f x= + (1)
where A is the n n× matrix of the system parameters and : n n
f →R R is the nonlinear part.
The slave system is described by the chaotic dynamics
( )y By g y u= + + (2)
where B is the n n× matrix of the system parameters and : n n
g →R R is the nonlinear part
For the pair of chaotic systems (1) and (2), the hybrid synchronization error is defined as
, if is odd
, if is even
i i
i
i i
y x i
e
y x i
−
= 
+
(3)
The error dynamics is obtained as
1
1
( ) ( ) ( ) if is odd
( ) ( ) ( ) if is even
n
ij j ij j i i i
j
i n
ij j ij j i i i
j
b y a x g y f x u i
e
b y a x g y f x u i
=
=

− + − +

= 
 + + + +

∑
∑
 (4)
The design goal is to find a feedback controller uso that
lim ( ) 0
t
e t
→∞
= for all (0)e ∈Rn
(5)
Using the matrix method, we consider a candidate Lyapunov function
( ) ,T
V e e Pe= (6)
where P is a positive definite matrix. It is noted that : n
V →R R is a positive definite function.
If we find a feedback controller uso that
( ) ,T
V e e Qe= − (7)
where Q is a positive definite matrix, then : n
V → R R is a negative definite function.
Thus, by Lyapunov stability theory [25], the error dynamics (4) is globally exponentially stable.
Hence, the states of the chaotic systems (1) and (2) will be globally and exponentially
hybrid synchronized for all initial conditions (0), (0) .n
x y ∈R When the system parameters are
unknown, we use estimates for them and find a parameter update law using Lyapunov approach.
International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013
19
3. HYPERCHAOTIC SYSTEMS
The hyperchaotic Xu system ([22], 2009) has the 4-D dynamics
1 2 1 4
2 1 1 3
3 3 1 2
4 1 3 2
( )x a x x x
x bx rx x
x cx x x
x x x dx
= − +
= +
= − −
= −




(8)
where , , , ,a b c r d are constant, positive parameters of the system.
The Xu system (8) exhibits a hyperchaotic attractor for the parametric values
10, 40, 2.5, 16, 2a b c r d= = = = = (9)
The Lyapunov exponents of the system (8) for the parametric values in (9) are
1 2 3 41.0088, 0.1063, 0, 13.6191   = = = = − (10)
Since there are two positive Lyapunov exponents in (10), the Xu system (8) is hyperchaotic for
the parametric values (9).
The strange attractor of the hyperchaotic Xu system is displayed in Figure 1.
The hyperchaotic Li system ([23], 2005) has the 4-D dynamics
1 2 1 4
2 1 1 3 2
3 3 1 2
4 2 3 4
( )x x x x
x x x x x
x x x x
x x x x

 


= − +
= − +
= − +
= +




(11)
where , , , ,     are constant, positive parameters of the system.
The Li system (11) exhibits a hyperchaotic attractor for the parametric values
35, 3, 12, 7, 0.58    = = = = = (12)
The Lyapunov exponents of the system (11) for the parametric values in (12) are
1 2 3 40.5011, 0.1858, 0, 26.1010   = = = = − (13)
Since there are two positive Lyapunov exponents in (13), the Li system (11) is hyperchaotic for
the parametric values (12).
The strange attractor of the hyperchaotic Li system is displayed in Figure 2.
International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013
20
Figure 1. The State Portrait of the Hyperchaotic Xu System
Figure 2. The State Portrait of the Hyperchaotic Li System
4. ADAPTIVE CONTROL DESIGN FOR THE HYBRID SYNCHRONIZATION OF
HYPERCHAOTIC XU SYSTEMS
In this section, we design an adaptive controller for the hybrid synchronization of two identical
hyperchaotic Xu systems (2009) with unknown parameters.
The hyperchaotic Xu system is taken as the master system, whose dynamics is given by
1 2 1 4
2 1 1 3
3 3 1 2
4 1 3 2
( )x a x x x
x bx rx x
x cx x x
x x x dx
= − +
= +
= − −
= −




(14)
where , , , ,a b c d r are unknown parameters of the system and 4
x∈ R is the state of the system.
International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013
21
The hyperchaotic Xu system is also taken as the slave system, whose dynamics is given by
1 2 1 4 1
2 1 1 3 2
3 3 1 2 3
4 1 3 2 4
( )y a y y y u
y by ry y u
y cy y y u
y y y dy u
= − + +
= + +
= − − +
= − +




(15)
where 4
y ∈ R is the state and 1 2 3 4, , ,u u u u are the adaptive controllers to be designed using
estimates ˆ ˆˆ ˆ ˆ( ), ( ), ( ), ( ), ( )a t b t c t d t r t of the unknown parameters , , , ,a b c d r , respectively.
For the hybrid synchronization, the error e is defined as
1 1 1 2 2 2 3 3 3 4 4 4, , ,e y x e y x e y x e y x= − = + = − = + (16)
A simple calculation gives the error dynamics
1 2 2 1 4 4 1
2 1 1 1 3 1 3 2
3 3 1 2 1 2 3
4 2 1 3 1 3 4
( ) 2
( ) ( )
e a y x e e x u
e b y x r y y x x u
e ce y y x x u
e de y y x x u
= − − + − +
= + + + +
= − − + +
= − + + +




(17)
Next, we choose a nonlinear controller for achieving hybrid synchronization as
1 2 2 1 4 4 1 1
2 1 1 1 3 1 3 2 2
3 3 1 2 1 2 3 3
4 2 1 3 1 3 4 4
ˆ( )( ) 2
ˆ ˆ( )( ) ( )( )
ˆ( )
ˆ( )
u a t y x e e x k e
u b t y x r t y y x x k e
u c t e y y x x k e
u d t e y y x x k e
= − − − − + −
= − + − + −
= + − −
= − − −
(18)
In Eq. (18), , ( 1,2,3,4)ik i = are positive gains and ˆ ˆˆ ˆ ˆ( ), ( ), ( ), ( ), ( )a t b t c t d t r t are estimates of the
unknown parameters , , , ,a b c d r , respectively.
By the substitution of (18) into (17), the error dynamics is simplified as
1 2 2 1 1 1
2 1 1 1 3 1 3 2 2
3 3 3 3
4 2 4 4
ˆ( ( ))( )
ˆ ˆ( ( ))( ) ( ( ))( )
ˆ( ( ))
ˆ( ( ))
e a a t y x e k e
e b b t y x r r t y y x x k e
e c c t e k e
e d d t e k e
= − − − −
= − + + − + −
= − − −
= − − −




(19)
Next, we define the parameter estimation errors as
ˆ ˆˆ ˆ ˆ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( )a b c d re t a a t e t b b t e t c c t e t d d t e t r r t= − = − = − = − = − (20)
International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013
22
Differentiating (20) with respect to ,t we get
ˆ ˆˆ ˆ ˆ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( )a b c d re t a t e t b t e t c t e t d t e t r t= − = − = − = − = −
        (21)
In view of (20), we can simplify the error dynamics (19) as
1 2 2 1 1 1
2 1 1 1 3 1 3 2 2
3 3 3 3
4 2 4 4
( )
( ) ( )
a
b r
c
d
e e y x e k e
e e y x e y y x x k e
e e e k e
e e e k e
= − − −
= + + + −
= − −
= − −




(22)
We take the quadratic Lyapunov function
( )2 2 2 2 2 2 2 2 2
1 2 3 4
1
,
2
a b c d rV e e e e e e e e e= + + + + + + + + (23)
which is a positive definite function on
9
.R
When we differentiate (22) along the trajectories of (19) and (21), we get
2 2 2 2
1 1 2 2 3 3 4 4 1 2 2 1 2 1 1
2
3 2 4 2 1 3 1 3
ˆˆ( ) ( )
ˆˆ ˆ( )
a b
c d r
V k e k e k e k e e e y x e a e e y x b
e e c e e e d e e y y x x r
  = − − − − + − − − + + −    
    + − − + − − + + −     

 
(24)
In view of Eq. (24), we take the parameter update law as
2
1 2 2 1 5 2 1 1 6 3 7
2 4 8 2 1 3 1 3 9
ˆˆ ˆ( ) , ( ) ,
ˆ ˆ, ( )
a b c
d r
a e y x e k e b e y x k e c e k e
d e e k e r e y y x x k e
= − − + = + + = − +
= − + = + +
 
 
(25)
Theorem 4.1 The adaptive control law (18) along with the parameter update law (25), where
,( 1,2, ,9)ik i =  are positive gains, achieves global and exponential hybrid synchronization of
the identical hyperchaotic Xu systems (14) and (15), where ˆ ˆˆ ˆ ˆ( ), ( ), ( ), ( ), ( )a t b t c t d t r t are estimates
of the unknown parameters , , , , ,a b c d r respectively. Moreover, all the parameter estimation
errors converge to zero exponentially for all initial conditions.
Proof. We prove the above result using Lyapunov stability theory [25].
Substituting the parameter update law (25) into (24), we get
2 2 2 2 2 2 2 2 2
1 1 2 2 3 3 4 4 5 6 7 8 9a b c d rV k e k e k e k e k e k e k e k e k e= − − − − − − − − − (26)
which is a negative definite function on
9
.R
This shows that the hybrid synchronization errors 1 2 3 4( ), ( ), ( ), ( )e t e t e t e t and the parameter
estimation errors ( ), ( ), ( ), ( ), ( )a b c d re t e t e t e t e t are globally exponentially stable for all initial
conditions.
International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013
23
This completes the proof.
Next, we demonstrate our hybrid synchronization results with MATLAB simulations.
The classical fourth order Runge-Kutta method with time-step 8
10h −
= has been applied to solve
the hyperchaotic Xu systems (14) and (15) with the adaptive nonlinear controller (18) and the
parameter update law (25). The feedback gains are taken as 5, ( 1,2, ,9).ik i= = 
The parameters of the hyperchaotic Xu systems are taken as in the hyperchaotic case, i.e.
10, 40, 2.5, 16, 2a b c r d= = = = =
For simulations, the initial conditions of the hyperchaotic Xu system (14) are chosen as
1 2 3 4(0) 11, (0) 7, (0) 9, (0) 5x x x x= = = = −
Also, the initial conditions of the hyperchaotic Xu system (15) are chosen as
1 2 3 4(0) 3, (0) 4, (0) 6, (0) 12y y y y= = = − =
Also, the initial conditions of the parameter estimates are chosen as
ˆ ˆˆ ˆ ˆ(0) 4, (0) 11, (0) 2, (0) 5, (0) 16a b c d r= = = − = − =
Figure 3 depicts the hybrid synchronization of the identical hyperchaotic Xu systems.
Figure 4 depicts the time-history of the hybrid synchronization errors 1 2 3 4, , , .e e e e
Figure 5 depicts the time-history of the parameter estimation errors , , , , .a b c d re e e e e
Figure 3. Hybrid Synchronization of Identical Hyperchaotic Xu Systems
International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013
24
Figure 4. Time-History of the Hybrid Synchronization Errors 1 2 3 4, , ,e e e e
Figure 5. Time-History of the Parameter Estimation Errors , , , ,a b c d re e e e e
5. ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION
DESIGN OF HYPERCHAOTIC LI SYSTEMS
In this section, we design an adaptive controller for the hybrid synchronization of two identical
hyperchaotic Li systems (2005) with unknown parameters.
The hyperchaotic Li system is taken as the master system, whose dynamics is given by
1 2 1 4
2 1 1 3 2
3 3 1 2
4 2 3 4
( )x x x x
x x x x x
x x x x
x x x x

 


= − +
= − +
= − +
= +




(27)
where , , , ,     are unknown parameters of the system and 4
x∈ R is the state of the system.
The hyperchaotic Li system is also taken as the slave system, whose dynamics is given by
International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013
25
1 2 1 4 1
2 1 1 3 2 2
3 3 1 2 3
4 2 3 4 4
( )y y y y u
y y y y y u
y y y y u
y y y y u

 


= − + +
= − + +
= − + +
= + +




(28)
where 4
y ∈ R is the state and 1 2 3 4, , ,u u u u are the adaptive controllers to be designed using
estimates ˆ ˆˆ ˆ ˆ( ), ( ), ( ), ( ), ( )t t t t t     of the unknown parameters , , , , ,     respectively.
For the hybrid synchronization, the error e is defined as
1 1 1 2 2 2 3 3 3 4 4 4, , ,e y x e y x e y x e y x= − = + = − = + (29)
A simple calculation gives the error dynamics
1 2 2 1 4 4 1
2 1 1 2 1 3 1 3 2
3 3 1 2 1 2 3
4 4 2 3 2 3 4
( ) 2
( )
e y x e e x u
e y x e y y x x u
e e y y x x u
e e y y x x u

 


= − − + − +
= + + − − +
= − + − +
= + + +




(30)
Next, we choose a nonlinear controller for achieving hybrid synchronization as
1 2 2 1 4 4 1 1
2 1 1 2 1 3 1 3 2 2
3 3 1 2 1 2 3 3
4 4 2 3 2 3 4 4
ˆ( )( ) 2
ˆ ˆ( )( ) ( )
ˆ( )
ˆ( )
u t y x e e x k e
u t y x t e y y x x k e
u t e y y x x k e
u t e y y x x k e

 


= − − − − + −
= − + − + + −
= − + −
= − − − −
(31)
In Eq. (31), , ( 1,2,3,4)ik i = are positive gains.
By the substitution of (31) into (30), the error dynamics is simplified as
1 2 2 1 1 1
2 1 1 2 2 2
3 3 3 3
4 4 4 4
ˆ( ( ))( )
ˆ ˆ( ( ))( ) ( ( ))
ˆ( ( ))
ˆ( ( ))
e t y x e k e
e t y x t e k e
e t e k e
e t e k e
 
   
 
 
= − − − −
= − + + − −
= − − −
= − −




(32)
Next, we define the parameter estimation errors as
ˆˆ ˆ( ) ( ), ( ) ( ), ( ) ( )
ˆ ˆ( ) ( ), ( ) ( )
e t t e t t e t t
e t t e t t
  
 
     
   
= − = − = −
= − = −
(33)
Differentiating (33) with respect to ,t we get
International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013
26
ˆ ˆˆ ˆ ˆ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( )e t t e t t e t t e t t e t t        = − = − = − = − = −
        (34)
In view of (33), we can simplify the error dynamics (32) as
1 2 2 1 1 1
2 1 1 2 2 2
3 3 3 3
4 4 4 4
( )
( )
e e y x e k e
e e y x e e k e
e e e k e
e e e k e

 


= − − −
= + + −
= − −
= −




(35)
We take the quadratic Lyapunov function
( )2 2 2 2 2 2 2 2 2
1 2 3 4
1
,
2
V e e e e e e e e e    = + + + + + + + + (36)
which is a positive definite function on
9
.R
When we differentiate (35) along the trajectories of (32) and (33), we get
2 2 2 2 2
1 1 2 2 3 3 4 4 1 2 2 1 3
2 2
2 2 1 1 4
ˆˆ( )
ˆˆ ˆ( )
V k e k e k e k e e e y x e e e
e e e e y x e e
 
  
 
  
  = − − − − + − − − + − −    
    + − + + − + −     

 
(37)
In view of Eq. (37), we take the parameter update law as
2 2
1 2 2 1 5 3 6 2 7
2
2 1 1 8 4 9
ˆˆ ˆ( ) , ,
ˆ ˆ( ) ,
e y x e k e e k e e k e
e y x k e e k e
  
 
  
 
= − − + = − + = +
= + + = +
 
 
(38)
Theorem 5.1 The adaptive control law (31) along with the parameter update law (38), where
,( 1,2, ,9)ik i =  are positive gains, achieves global and exponential hybrid synchronization of
the identical hyperchaotic Li systems (27) and (28), where ˆ ˆˆ ˆ ˆ( ), ( ), ( ), ( ), ( )t t t t t     are
estimates of the unknown parameters , , , , ,     respectively. Moreover, all the parameter
estimation errors converge to zero exponentially for all initial conditions.
Proof. We prove the above result using Lyapunov stability theory [25].
Substituting the parameter update law (38) into (37), we get
2 2 2 2 2 2 2 2 2
1 1 2 2 3 3 4 4 5 6 7 8 9V k e k e k e k e k e k e k e k e k e    = − − − − − − − − − (39)
which is a negative definite function on
9
.R
This shows that the hybrid synchronization errors 1 2 3 4( ), ( ), ( ), ( )e t e t e t e t and the parameter
estimation errors ( ), ( ), ( ), ( ), ( )e t e t e t e t e t     are globally exponentially stable for all initial
conditions. This completes the proof. 
International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013
27
Next, we demonstrate our hybrid synchronization results with MATLAB simulations.
The classical fourth order Runge-Kutta method with time-step 8
10h −
= has been applied to solve
the hyperchaotic Li systems (27) and (28) with the adaptive nonlinear controller (31) and the
parameter update law (38). The feedback gains are taken as 5, ( 1,2, ,9).ik i= = 
The parameters of the hyperchaotic Li systems are taken as in the hyperchaotic case, i.e.
35, 3, 12, 7, 0.58    = = = = =
For simulations, the initial conditions of the hyperchaotic Li system (27) are chosen as
1 2 3 4(0) 6, (0) 7, (0) 15, (0) 22x x x x= = − = = −
Also, the initial conditions of the hyperchaotic Li system (28) are chosen as
1 2 3 4(0) 12, (0) 4, (0) 9, (0) 6y y y y= = = = −
Also, the initial conditions of the parameter estimates are chosen as
ˆ ˆˆ ˆ ˆ(0) 7, (0) 8, (0) 2, (0) 9, (0) 12    = = = − = − =
Figure 6 depicts the hybrid synchronization of the identical hyperchaotic Li systems.
Figure 7 depicts the time-history of the hybrid synchronization errors 1 2 3 4, , , .e e e e
Figure 8 depicts the time-history of the parameter estimation errors , , , , .e e e e e    
Figure 6. Hybrid Synchronization of Identical Hyperchaotic Li Systems
International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013
28
Figure 7. Time-History of the Hybrid Synchronization Errors 1 2 3 4, , ,e e e e
Figure 8. Time-History of the Parameter Estimation Errors , , , ,e e e e e    
6. ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION
DESIGN OF HYPERCHAOTIC XU AND HYPERCHAOTIC LI SYSTEMS
In this section, we design an adaptive controller for the hybrid synchronization of hyperchaotic
Xu system (2009) and hyperchaotic Li system (2005) with unknown parameters.
The hyperchaotic Xu system is taken as the master system, whose dynamics is given by
1 2 1 4
2 1 1 3
3 3 1 2
4 1 3 2
( )x a x x x
x bx rx x
x cx x x
x x x dx
= − +
= +
= − −
= −




(40)
where , , , ,a b c d r are unknown parameters of the system.
The hyperchaotic Li system is also taken as the slave system, whose dynamics is given by
International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013
29
1 2 1 4 1
2 1 1 3 2 2
3 3 1 2 3
4 2 3 4 4
( )y y y y u
y y y y y u
y y y y u
y y y y u

 


= − + +
= − + +
= − + +
= + +




(41)
where , , , ,     are unknown parameters and 1 2 3 4, , ,u u u u are the adaptive controllers.
For the hybrid synchronization, the error e is defined as
1 1 1 2 2 2 3 3 3 4 4 4, , ,e y x e y x e y x e y x= − = + = − = + (42)
A simple calculation gives the error dynamics
1 2 1 2 1 4 4 1
2 1 2 1 1 3 1 3 2
3 3 3 1 2 1 2 3
4 4 2 2 3 2 3 4
( ) ( )e y y a x x y x u
e y y bx rx x y y u
e y cx y y x x u
e y dx y y x x u

 


= − − − + − +
= + + + − +
= − + + + +
= − + + +




(43)
Next, we choose a nonlinear controller for achieving hybrid synchronization as
1 2 1 2 1 4 4 1 1
2 1 2 1 1 3 1 3 2 2
3 3 3 1 2 1 2 3 3
4 4 2 2 3 2 3 4 4
ˆ ˆ( )( ) ( )( )
ˆˆ ˆ ˆ( ) ( ) ( ) ( )
ˆ ˆ( ) ( )
ˆˆ( ) ( )
u t y y a t x x y x k e
u t y t y b t x r t x x y y k e
u t y c t x y y x x k e
u t y d t x y y x x k e

 


= − − + − − + −
= − − − − + −
= − − − −
= − + − − −
(44)
where , ( 1,2,3,4)ik i = are positive gains.
By the substitution of (44) into (43), the error dynamics is simplified as
1 2 1 2 1 1 1
2 1 2 1 1 3 2 2
3 3 3 3 3
4 4 2 4 4
ˆ ˆ( ( ))( ) ( ( ))( )
ˆˆ ˆ ˆ( ( )) ( ( )) ( ( )) ( ( ))
ˆ ˆ( ( )) ( ( ))
ˆˆ( ( )) ( ( ))
e t y y a a t x x k e
e t y t y b b t x r r t x x k e
e t y c c t x k e
e t y d d t x k e
 
   
 
 
= − − − − − −
= − + − + − + − −
= − − + − −
= − − − −




(45)
Next, we define the parameter estimation errors as
ˆ ˆˆ ˆ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( )
ˆˆ ˆˆ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( )
ˆ ˆ( ) ( ), ( ) ( )
a b c d
r
e t a a t e t b b t e t c c t e t d d t
e t r r t e t t e t t e t t
e t t e t t
  
 
     
   
= − = − = − = −
= − = − = − = −
= − = −
(46)
Differentiating (46) with respect to ,t we get
International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013
30
ˆ ˆˆ ˆ ˆ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( )
ˆ ˆˆ ˆ ˆ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( )
a b c d re t a t e t b t e t c t e t d t e t r t
e t t e t t e t t e t t e t t        
= − = − = − = − = −
= − = − = − = − = −
       
       
(47)
In view of (46), we can simplify the error dynamics (45) as
1 2 1 2 1 1 1
2 1 2 1 1 3 2 2
3 3 3 3 3
4 4 2 4 4
( ) ( )a
b r
c
d
e e y y e x x k e
e e y e y e x e x x k e
e e y e x k e
e e y e x k e

 


= − − − −
= + + + −
= − + −
= − −




(48)
We take the quadratic Lyapunov function
( )2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 2 3 4
1
,
2
a b c d rV e e e e e e e e e e e e e e    = + + + + + + + + + + + + + (49)
which is a positive definite function on 14
.R
When we differentiate (48) along the trajectories of (45) and (46), we get
2 2 2 2
1 1 2 2 3 3 4 4 1 2 1 2 1 3 3
4 2 2 1 3 1 2 1 3 3
2 2 2 1
ˆˆ ˆ( )
ˆ ˆˆˆ ( )
ˆˆ
a b c
d r
V k e k e k e k e e e x x a e e x b e e x c
e e x d e e x x r e e y y e e y
e e y e e y e
 
 
 
 
    = − − − − + − − − + − + −     
     + − − + − + − − + − −         
  + − + − +    
 
 

4 4
ˆe y  − 

(50)
In view of Eq. (50), we take the parameter update law as
1 2 1 5 2 1 6 3 3 7
4 2 8 2 1 3 9 1 2 1 10
3 3 11 2 2 12
ˆˆ ˆ( ) , , ,
ˆ ˆˆ, , ( ) ,
ˆ ˆ, ,
a b c
d r
a e x x k e b e x k e c e x k e
d e x k e r e x x k e e y y k e
e y k e e y k e

 

 
= − − + = + = +
= − + = + = − +
= − + = +
 
 
 
2 1 13
4 4 14
ˆ ,
ˆ
e y k e
e y k e




= +
= +


(51)
Theorem 6.1 The adaptive control law (44) along with the parameter update law (51), where
,( 1,2, ,14)ik i =  are positive gains, achieves global and exponential hybrid synchronization of
the hyperchaotic Xu system (40) hyperchaotic Li system (41), where ˆ( ),a t ˆ( ),b t ˆ( ),c t ˆ( ),d t ˆ( ),r t
ˆ( ),t ˆ( ),t ˆ( ),t ˆ( ),t ˆ( )t are estimates of the unknown parameters , , , , ,a b c d r , , , , ,    
respectively. Moreover, all the parameter estimation errors converge to zero exponentially for all
initial conditions.
Proof. We prove the above result using Lyapunov stability theory [25].
Substituting the parameter update law (51) into (50), we get
International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013
31
2 2 2 2 2 2 2 2 2
1 1 2 2 3 3 4 4 5 6 7 8 9
2 2 2 2 2
10 11 12 13 14
a b c d rV k e k e k e k e k e k e k e k e k e
k e k e k e k e k e    
= − − − − − − − − −
− − − − −

(52)
which is a negative definite function on 14
.R
This shows that the hybrid synchronization errors 1 2 3 4( ), ( ), ( ), ( )e t e t e t e t and the parameter
estimation errors ( ), ( ), ( ), ( ), ( ),a b c d re t e t e t e t e t ( ), ( ), ( ), ( ), ( )e t e t e t e t e t     are globally
exponentially stable for all initial conditions. This completes the proof. 
Next, we demonstrate our hybrid synchronization results with MATLAB simulations.
The classical fourth order Runge-Kutta method with time-step 8
10h −
= has been applied to solve
the hyperchaotic Li systems (27) and (28) with the adaptive nonlinear controller (31) and the
parameter update law (38). The feedback gains are taken as 5, ( 1,2, ,9).ik i= = 
The parameters of the hyperchaotic Xu and Li systems are taken as in the hyperchaotic case, i.e.
10, 40, 2.5, 16, 2, 35, 3, 12, 7, 0.58a b c r d     = = = = = = = = = =
For simulations, the initial conditions of the hyperchaotic Xu system (27) are chosen as
1 2 3 4(0) 12, (0) 4, (0) 8, (0) 20x x x x= = − = = −
Also, the initial conditions of the hyperchaotic Li system (28) are chosen as
1 2 3 4(0) 21, (0) 7, (0) 19, (0) 12y y y y= = = = −
Also, the initial conditions of the parameter estimates are chosen as
ˆ ˆˆ ˆ ˆ(0) 7, (0) 14, (0) 12, (0) 8, (0) 15
ˆ ˆˆ ˆ ˆ(0) 12, (0) 5, (0) 4, (0) 11, (0) 6
a b c d r
    
= − = = = − =
= = = = = −
Figure 9 depicts the hybrid synchronization of hyperchaotic Xu and hyperchaotic Li systems.
Figure 10 depicts the time-history of the hybrid synchronization errors 1 2 3 4, , , .e e e e
Figure 11 depicts the time-history of the parameter estimation errors , , , .a b c de e e e
Figure 12 depicts the time-history of the parameter estimation errors , , , , .e e e e e    
International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013
32
Figure 9. Hybrid Synchronization of Hyperchaotic Xu and Lu Systems
Figure 10. Time-History of the Hybrid Synchronization Errors 1 2 3 4, , ,e e e e
Figure 11. Time-History of the Parameter Estimation Errors , , ,a b c de e e e
International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013
33
Figure 12. Time-History of the Parameter Estimation Errors , , , ,e e e e e    
7. CONCLUSIONS
In this paper, using adaptive control method, we derived new results for the adaptive controller
design for the hybrid synchronization of hyperchaotic Xu systems (2009) and hyperchaotic Li
systems (2005) with unknown parameters. Using Lyapunov control theory, adaptive control laws
were derived for globally hybrid synchronizing the states of identical hyperchaotic Xu systems,
identical hyperchaotic Li systems and non-identical hyperchaotic Xu and Li systems. MATLAB
simulations were displayed in detail to demonstrate the adaptive hybrid synchronization results
derived in this paper for hyperchaotic Xu and Li systems.
REFERENCES
[1] Rössler, O.E. (1979) “An equation for hyperchaos,” Physics Letters A, Vol. 71, pp 155-157.
[2] Huang, Y. & Yang, X.S. (2006) “Hyperchaos and bifurcation in a new class of four-dimensional
Hopfield neural networks,” Neurocomputing, Vol. 69, pp 13-15.
[3] Machado, L.G., Savi, M.A. & Pacheco, P.M.C.L. (2003) “Nonlinear dynamics and chaos in coupled
shape memory oscillators,” International Journal of Solids and Structures, Vol. 40, No. 19, pp. 5139-
5156.
[4] Tao, Y. (1999) “Chaotic secure communication systems – history and new results”, Telecommun.
Review, Vol. 9, pp 597-634.
[5] Li, C., Liao, X. & Wong, K.W. (2005) “Lag synchronization of hyperchaos with applications to
secure communications,” Chaos, Solitons & Fractals, Vol. 23, No. 1, pp 183-193.
[6] Prokhorov, M.D. & Ponomarenko, V.I. (2008) “Encryption and decryption of information in chaotic
communication systems governed by delay-differential equations,” Chaos, Solitons & Fractals, Vol.
35, No. 5, pp 871-877.
[7] Yassen, M.T. (2008) “Synchronization hyperchaos of hyperchaotic systems”, Chaos, Solitons and
Fractals, Vol. 37, pp 465-475.
[8] Ott, E., Grebogi, C. & Yorke, J.A. (1990) “Controlling chaos”, Phys. Rev. Lett., Vol. 64, pp 1196-
1199.
[9] Pecora, L.M. & Carroll, T.L. (1990) “Synchronization in chaotic systems”, Phys. Rev. Lett., Vol. 64,
pp 821-824.
[10] Bowong, S. & Kakmeni, F.M.M. (2004) “Synchronization of uncertain chaotic systems via
backstepping approach,” Chaos, Solitons & Fractals, Vol. 21, No. 4, pp 999-1011.
[11] Suresh, R, & Sundarapandian, V. (2012) “Global chaos synchronization of WINDMI and Coullet
chaotic systems by backstepping control”, Far East J. Math. Sciences, Vol. 67, No. 2, pp 265-287.
International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013
34
[12] Suresh, R. & Sundarapandian, V. (2012) “Hybrid synchronization of n-scroll Chua and Lur’e chaotic
systems via backstepping control with novel feedback”, Arch. Control Sciences, Vol. 22, No. 3, pp
255-278.
[13] Senejohnny, D.M. & Delavari, H. (2012) “Active sliding observer scheme based fractional chaos
synchronization,” Comm. Nonlinear Sci. Numerical Simulation, Vol. 17, No. 11, pp 4373-4383.
[14] Sundarapandian, V. (2012) “Anti-synchronization of hyperchaotic Xu systems via sliding mode
control”, International Journal of Embedded Systems, Vol. 2, No. 2, pp 51-61.
[15] Sundarapandian, V. (2013) “Anti-synchronizing sliding controller design for identical Pan systems,”
International Journal of Computational Science and Information Technology, Vol. 1, No. 1, pp 1-9.
[16] Huang, L. Feng, R. & Wang, M. (2004) “Synchronization of chaotic systems via nonlinear control,”
Physics Letters A, Vol. 320, No. 4, pp 271-275.
[17] Lei, Y., Xu, W. & Zheng, H. (2005) “Synchronization of two chaotic nonlinear gyros using active
control,” Physics Letters A, Vol. 343, pp 153-158.
[18] Sundarapandian, V. (2012) “Adaptive control and synchronization of a generalized Lotka-Volterra
system,” International Journal of Bioinformatics & Biosciences, Vol. 1, No. 1, pp 1-12.
[19] Sundarapandian, V. (2013) “Adaptive controller and synchronizer design for hyperchaotic Zhou
system with unknown parameters,” International Journal of Information Technology, Modeling and
Computing, Vol. 1, No. 1, pp 18-32.
[20] Zhao, J. & Lü, J. (2006) “Using sampled-data feedback control and linear feedback synchronization in
a new hyperchaotic system,” Chaos, Solitons & Fractals, Vol. 35, pp. 376-382.
[21] Ma, H., Deshmukh, V., Butcher, E. & Averina, V. (2005) “Delayed state feedback and chaos control
for time-periodic systems via a symbolic approach”, Communications in Nonlinear Science and
Numerical Simulation, Vol. 10, No. 5, pp 479-497.
[22] Xu, J., Cai, G. & Zheng, S. (2009) “A novel hyperchaotic system and its control”, Journal of
Uncertain Systems, Vol. 3, No. 2, pp 137-144.
[23] Li, Y., Tang, W.K.S. & Chen, G. (2005) “Generating hyperchaos via state feedback control”,
International Journal of Bifurcation and Chaos, Vol. 15, No. 10, pp 3367-3375.
[24] Sastry, S. & Bodson, M. (2011) Adaptive Control: Stability, Convergence and Robustness, Dover.
[25] Hahn, W. (1967) The Stability of Motion, Springer, Berlin.

Weitere ähnliche Inhalte

Was ist angesagt?

International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
THE ACTIVE CONTROLLER DESIGN FOR ACHIEVING GENERALIZED PROJECTIVE SYNCHRONIZA...
THE ACTIVE CONTROLLER DESIGN FOR ACHIEVING GENERALIZED PROJECTIVE SYNCHRONIZA...THE ACTIVE CONTROLLER DESIGN FOR ACHIEVING GENERALIZED PROJECTIVE SYNCHRONIZA...
THE ACTIVE CONTROLLER DESIGN FOR ACHIEVING GENERALIZED PROJECTIVE SYNCHRONIZA...ijait
 
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEMSTATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEMijistjournal
 
Research on 4-dimensional Systems without Equilibria with Application
Research on 4-dimensional Systems without Equilibria with ApplicationResearch on 4-dimensional Systems without Equilibria with Application
Research on 4-dimensional Systems without Equilibria with ApplicationTELKOMNIKA JOURNAL
 
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...ijtsrd
 
Output Regulation of SPROTT-F Chaotic System by State Feedback Control
Output Regulation of SPROTT-F Chaotic System by State Feedback ControlOutput Regulation of SPROTT-F Chaotic System by State Feedback Control
Output Regulation of SPROTT-F Chaotic System by State Feedback ControlAlessioAmedeo
 
Measures of different reliability parameters for a complex redundant system u...
Measures of different reliability parameters for a complex redundant system u...Measures of different reliability parameters for a complex redundant system u...
Measures of different reliability parameters for a complex redundant system u...Alexander Decker
 
Maneuvering target track prediction model
Maneuvering target track prediction modelManeuvering target track prediction model
Maneuvering target track prediction modelIJCI JOURNAL
 
Simultaneous State and Actuator Fault Estimation With Fuzzy Descriptor PMID a...
Simultaneous State and Actuator Fault Estimation With Fuzzy Descriptor PMID a...Simultaneous State and Actuator Fault Estimation With Fuzzy Descriptor PMID a...
Simultaneous State and Actuator Fault Estimation With Fuzzy Descriptor PMID a...Waqas Tariq
 
G03402048053
G03402048053G03402048053
G03402048053theijes
 
Point symmetries of lagrangians
Point symmetries of lagrangiansPoint symmetries of lagrangians
Point symmetries of lagrangiansorajjournal
 
optimal solution method of integro-differential equaitions under laplace tran...
optimal solution method of integro-differential equaitions under laplace tran...optimal solution method of integro-differential equaitions under laplace tran...
optimal solution method of integro-differential equaitions under laplace tran...INFOGAIN PUBLICATION
 
Projective and hybrid projective synchronization of 4-D hyperchaotic system v...
Projective and hybrid projective synchronization of 4-D hyperchaotic system v...Projective and hybrid projective synchronization of 4-D hyperchaotic system v...
Projective and hybrid projective synchronization of 4-D hyperchaotic system v...TELKOMNIKA JOURNAL
 
Survival and hazard estimation of weibull distribution based on
Survival and hazard estimation of weibull distribution based onSurvival and hazard estimation of weibull distribution based on
Survival and hazard estimation of weibull distribution based onAlexander Decker
 
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...toukaigi
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...Matthew Leingang
 

Was ist angesagt? (19)

International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
THE ACTIVE CONTROLLER DESIGN FOR ACHIEVING GENERALIZED PROJECTIVE SYNCHRONIZA...
THE ACTIVE CONTROLLER DESIGN FOR ACHIEVING GENERALIZED PROJECTIVE SYNCHRONIZA...THE ACTIVE CONTROLLER DESIGN FOR ACHIEVING GENERALIZED PROJECTIVE SYNCHRONIZA...
THE ACTIVE CONTROLLER DESIGN FOR ACHIEVING GENERALIZED PROJECTIVE SYNCHRONIZA...
 
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEMSTATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
 
Research on 4-dimensional Systems without Equilibria with Application
Research on 4-dimensional Systems without Equilibria with ApplicationResearch on 4-dimensional Systems without Equilibria with Application
Research on 4-dimensional Systems without Equilibria with Application
 
Ap4103260265
Ap4103260265Ap4103260265
Ap4103260265
 
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
 
Output Regulation of SPROTT-F Chaotic System by State Feedback Control
Output Regulation of SPROTT-F Chaotic System by State Feedback ControlOutput Regulation of SPROTT-F Chaotic System by State Feedback Control
Output Regulation of SPROTT-F Chaotic System by State Feedback Control
 
Measures of different reliability parameters for a complex redundant system u...
Measures of different reliability parameters for a complex redundant system u...Measures of different reliability parameters for a complex redundant system u...
Measures of different reliability parameters for a complex redundant system u...
 
Maneuvering target track prediction model
Maneuvering target track prediction modelManeuvering target track prediction model
Maneuvering target track prediction model
 
Simultaneous State and Actuator Fault Estimation With Fuzzy Descriptor PMID a...
Simultaneous State and Actuator Fault Estimation With Fuzzy Descriptor PMID a...Simultaneous State and Actuator Fault Estimation With Fuzzy Descriptor PMID a...
Simultaneous State and Actuator Fault Estimation With Fuzzy Descriptor PMID a...
 
G03402048053
G03402048053G03402048053
G03402048053
 
Point symmetries of lagrangians
Point symmetries of lagrangiansPoint symmetries of lagrangians
Point symmetries of lagrangians
 
optimal solution method of integro-differential equaitions under laplace tran...
optimal solution method of integro-differential equaitions under laplace tran...optimal solution method of integro-differential equaitions under laplace tran...
optimal solution method of integro-differential equaitions under laplace tran...
 
Presentation esa udrescu
Presentation esa udrescuPresentation esa udrescu
Presentation esa udrescu
 
Projective and hybrid projective synchronization of 4-D hyperchaotic system v...
Projective and hybrid projective synchronization of 4-D hyperchaotic system v...Projective and hybrid projective synchronization of 4-D hyperchaotic system v...
Projective and hybrid projective synchronization of 4-D hyperchaotic system v...
 
Survival and hazard estimation of weibull distribution based on
Survival and hazard estimation of weibull distribution based onSurvival and hazard estimation of weibull distribution based on
Survival and hazard estimation of weibull distribution based on
 
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
 
Control assignment#3
Control assignment#3Control assignment#3
Control assignment#3
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
 

Ähnlich wie ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU AND HYPERCHAOTIC LI SYSTEMS

International Journal of Instrumentation and Control Systems (IJICS)
International Journal of Instrumentation and Control Systems (IJICS)International Journal of Instrumentation and Control Systems (IJICS)
International Journal of Instrumentation and Control Systems (IJICS)ijcisjournal
 
International Journal of Computer Science, Engineering and Information Techno...
International Journal of Computer Science, Engineering and Information Techno...International Journal of Computer Science, Engineering and Information Techno...
International Journal of Computer Science, Engineering and Information Techno...ijcseit
 
Adaptive Controller and Synchronizer Design for Hyperchaotic Zhou System with...
Adaptive Controller and Synchronizer Design for Hyperchaotic Zhou System with...Adaptive Controller and Synchronizer Design for Hyperchaotic Zhou System with...
Adaptive Controller and Synchronizer Design for Hyperchaotic Zhou System with...Zac Darcy
 
HYBRID SLIDING SYNCHRONIZER DESIGN OF IDENTICAL HYPERCHAOTIC XU SYSTEMS
HYBRID SLIDING SYNCHRONIZER DESIGN OF  IDENTICAL HYPERCHAOTIC XU SYSTEMS HYBRID SLIDING SYNCHRONIZER DESIGN OF  IDENTICAL HYPERCHAOTIC XU SYSTEMS
HYBRID SLIDING SYNCHRONIZER DESIGN OF IDENTICAL HYPERCHAOTIC XU SYSTEMS ijitjournal
 
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTOR
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTORADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTOR
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTORijcseit
 
ANALYSIS AND SLIDING CONTROLLER DESIGN FOR HYBRID SYNCHRONIZATION OF HYPERCHA...
ANALYSIS AND SLIDING CONTROLLER DESIGN FOR HYBRID SYNCHRONIZATION OF HYPERCHA...ANALYSIS AND SLIDING CONTROLLER DESIGN FOR HYBRID SYNCHRONIZATION OF HYPERCHA...
ANALYSIS AND SLIDING CONTROLLER DESIGN FOR HYBRID SYNCHRONIZATION OF HYPERCHA...IJCSEA Journal
 
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...ijistjournal
 
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...ijistjournal
 
SLIDING CONTROLLER DESIGN FOR THE GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL H...
SLIDING CONTROLLER DESIGN FOR THE GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL H...SLIDING CONTROLLER DESIGN FOR THE GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL H...
SLIDING CONTROLLER DESIGN FOR THE GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL H...ijait
 
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...ijistjournal
 
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...ijistjournal
 
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...ijistjournal
 
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...ijistjournal
 
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC PANG AND HYPERCHAOTIC WANG-CHEN SYSTEMS ...
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC PANG AND HYPERCHAOTIC WANG-CHEN SYSTEMS ...ANTI-SYNCHRONIZATION OF HYPERCHAOTIC PANG AND HYPERCHAOTIC WANG-CHEN SYSTEMS ...
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC PANG AND HYPERCHAOTIC WANG-CHEN SYSTEMS ...ijctcm
 
GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS ...
GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS ...GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS ...
GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS ...ijistjournal
 
GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS ...
GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS ...GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS ...
GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS ...ijistjournal
 
Global Chaos Synchronization of Hyperchaotic Pang and Hyperchaotic Wang Syste...
Global Chaos Synchronization of Hyperchaotic Pang and Hyperchaotic Wang Syste...Global Chaos Synchronization of Hyperchaotic Pang and Hyperchaotic Wang Syste...
Global Chaos Synchronization of Hyperchaotic Pang and Hyperchaotic Wang Syste...CSEIJJournal
 
Adaptive Control and Synchronization of Hyperchaotic Cai System
Adaptive Control and Synchronization of Hyperchaotic Cai SystemAdaptive Control and Synchronization of Hyperchaotic Cai System
Adaptive Control and Synchronization of Hyperchaotic Cai Systemijctcm
 
Adaptive Stabilization and Synchronization of Hyperchaotic QI System
Adaptive Stabilization and Synchronization of Hyperchaotic QI SystemAdaptive Stabilization and Synchronization of Hyperchaotic QI System
Adaptive Stabilization and Synchronization of Hyperchaotic QI SystemCSEIJJournal
 
HYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROL
HYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROLHYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROL
HYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROLijait
 

Ähnlich wie ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU AND HYPERCHAOTIC LI SYSTEMS (20)

International Journal of Instrumentation and Control Systems (IJICS)
International Journal of Instrumentation and Control Systems (IJICS)International Journal of Instrumentation and Control Systems (IJICS)
International Journal of Instrumentation and Control Systems (IJICS)
 
International Journal of Computer Science, Engineering and Information Techno...
International Journal of Computer Science, Engineering and Information Techno...International Journal of Computer Science, Engineering and Information Techno...
International Journal of Computer Science, Engineering and Information Techno...
 
Adaptive Controller and Synchronizer Design for Hyperchaotic Zhou System with...
Adaptive Controller and Synchronizer Design for Hyperchaotic Zhou System with...Adaptive Controller and Synchronizer Design for Hyperchaotic Zhou System with...
Adaptive Controller and Synchronizer Design for Hyperchaotic Zhou System with...
 
HYBRID SLIDING SYNCHRONIZER DESIGN OF IDENTICAL HYPERCHAOTIC XU SYSTEMS
HYBRID SLIDING SYNCHRONIZER DESIGN OF  IDENTICAL HYPERCHAOTIC XU SYSTEMS HYBRID SLIDING SYNCHRONIZER DESIGN OF  IDENTICAL HYPERCHAOTIC XU SYSTEMS
HYBRID SLIDING SYNCHRONIZER DESIGN OF IDENTICAL HYPERCHAOTIC XU SYSTEMS
 
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTOR
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTORADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTOR
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTOR
 
ANALYSIS AND SLIDING CONTROLLER DESIGN FOR HYBRID SYNCHRONIZATION OF HYPERCHA...
ANALYSIS AND SLIDING CONTROLLER DESIGN FOR HYBRID SYNCHRONIZATION OF HYPERCHA...ANALYSIS AND SLIDING CONTROLLER DESIGN FOR HYBRID SYNCHRONIZATION OF HYPERCHA...
ANALYSIS AND SLIDING CONTROLLER DESIGN FOR HYBRID SYNCHRONIZATION OF HYPERCHA...
 
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
 
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
 
SLIDING CONTROLLER DESIGN FOR THE GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL H...
SLIDING CONTROLLER DESIGN FOR THE GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL H...SLIDING CONTROLLER DESIGN FOR THE GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL H...
SLIDING CONTROLLER DESIGN FOR THE GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL H...
 
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
 
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
 
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
 
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
 
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC PANG AND HYPERCHAOTIC WANG-CHEN SYSTEMS ...
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC PANG AND HYPERCHAOTIC WANG-CHEN SYSTEMS ...ANTI-SYNCHRONIZATION OF HYPERCHAOTIC PANG AND HYPERCHAOTIC WANG-CHEN SYSTEMS ...
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC PANG AND HYPERCHAOTIC WANG-CHEN SYSTEMS ...
 
GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS ...
GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS ...GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS ...
GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS ...
 
GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS ...
GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS ...GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS ...
GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS ...
 
Global Chaos Synchronization of Hyperchaotic Pang and Hyperchaotic Wang Syste...
Global Chaos Synchronization of Hyperchaotic Pang and Hyperchaotic Wang Syste...Global Chaos Synchronization of Hyperchaotic Pang and Hyperchaotic Wang Syste...
Global Chaos Synchronization of Hyperchaotic Pang and Hyperchaotic Wang Syste...
 
Adaptive Control and Synchronization of Hyperchaotic Cai System
Adaptive Control and Synchronization of Hyperchaotic Cai SystemAdaptive Control and Synchronization of Hyperchaotic Cai System
Adaptive Control and Synchronization of Hyperchaotic Cai System
 
Adaptive Stabilization and Synchronization of Hyperchaotic QI System
Adaptive Stabilization and Synchronization of Hyperchaotic QI SystemAdaptive Stabilization and Synchronization of Hyperchaotic QI System
Adaptive Stabilization and Synchronization of Hyperchaotic QI System
 
HYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROL
HYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROLHYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROL
HYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROL
 

Kürzlich hochgeladen

Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 

Kürzlich hochgeladen (20)

Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 

ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU AND HYPERCHAOTIC LI SYSTEMS

  • 1. International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013 DOI : 10.5121/ijait.2013.3202 17 ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU AND HYPERCHAOTIC LI SYSTEMS Sundarapandian Vaidyanathan1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University Avadi, Chennai-600 062, Tamil Nadu, INDIA sundarvtu@gmail.com ABSTRACT This paper derives new adaptive results for the hybrid synchronization of hyperchaotic Xi systems (2009) and hyperchaotic Li systems (2005). In the hybrid synchronization design of master and slave systems, one part of the systems, viz. their odd states, are completely synchronized (CS), while the other part, viz. their even states, are completely anti-synchronized (AS) so that CS and AS co-exist in the process of synchronization. The research problem gets even more complicated, when the parameters of the hyperchaotic systems are unknown and we tackle this problem using adaptive control. The main results of this research work are proved using adaptive control theory and Lyapunov stability theory. MATLAB simulations using classical fourth-order Runge-Kutta method are shown for the new adaptive hybrid synchronization results for the hyperchaotic Xu and hyperchaotic Li systems. KEYWORDS Hybrid Synchronization, Adaptive Control, Chaos, Hyperchaos, Hyperchaotic Systems. 1. INTRODUCTION The hyperchaotic system was first discovered by the German scientist, O.E. Rössler ([1], 1979). It is a nonlinear chaotic system having two or more positive Lyapunov exponents. Hyperchaotic systems have many attractive features and hence they are applicable in areas like neural networks [2], oscillators [3], communication [4-5], encryption [6], synchronization [7], etc. For the synchronization of chaotic systems, there are many methods available in the chaos literature like OGY method [8], PC method [9], backstepping method [10-12], sliding control method [13-15], active control method [16-17], adaptive control method [18-19], sampled-data feedback control [20], time-delay feedback method [21], etc. In the hybrid synchronization of a pair of chaotic systems called the master and slave systems, one part of the systems, viz. the odd states, are completely synchronized (CS), while the other part of the systems, viz. the even states, are anti-synchronized so that CS and AS co-exist in the process of synchronization of the two systems. This paper focuses upon adaptive controller design for the hybrid synchronization of hyperchaotic Xu systems ([22], 2009) and hyperchaotic Li systems ([23], 2005) with unknown parameters. The
  • 2. International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013 18 main results derived in this paper have been proved using adaptive control theory [24] and Lyapunov stability theory [25]. 2. ADAPTIVE CONTROL METHODOLOGY FOR HYBRID SYNCHRONIZATION The master system is described by the chaotic dynamics ( )x Ax f x= + (1) where A is the n n× matrix of the system parameters and : n n f →R R is the nonlinear part. The slave system is described by the chaotic dynamics ( )y By g y u= + + (2) where B is the n n× matrix of the system parameters and : n n g →R R is the nonlinear part For the pair of chaotic systems (1) and (2), the hybrid synchronization error is defined as , if is odd , if is even i i i i i y x i e y x i − =  + (3) The error dynamics is obtained as 1 1 ( ) ( ) ( ) if is odd ( ) ( ) ( ) if is even n ij j ij j i i i j i n ij j ij j i i i j b y a x g y f x u i e b y a x g y f x u i = =  − + − +  =   + + + +  ∑ ∑  (4) The design goal is to find a feedback controller uso that lim ( ) 0 t e t →∞ = for all (0)e ∈Rn (5) Using the matrix method, we consider a candidate Lyapunov function ( ) ,T V e e Pe= (6) where P is a positive definite matrix. It is noted that : n V →R R is a positive definite function. If we find a feedback controller uso that ( ) ,T V e e Qe= − (7) where Q is a positive definite matrix, then : n V → R R is a negative definite function. Thus, by Lyapunov stability theory [25], the error dynamics (4) is globally exponentially stable. Hence, the states of the chaotic systems (1) and (2) will be globally and exponentially hybrid synchronized for all initial conditions (0), (0) .n x y ∈R When the system parameters are unknown, we use estimates for them and find a parameter update law using Lyapunov approach.
  • 3. International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013 19 3. HYPERCHAOTIC SYSTEMS The hyperchaotic Xu system ([22], 2009) has the 4-D dynamics 1 2 1 4 2 1 1 3 3 3 1 2 4 1 3 2 ( )x a x x x x bx rx x x cx x x x x x dx = − + = + = − − = −     (8) where , , , ,a b c r d are constant, positive parameters of the system. The Xu system (8) exhibits a hyperchaotic attractor for the parametric values 10, 40, 2.5, 16, 2a b c r d= = = = = (9) The Lyapunov exponents of the system (8) for the parametric values in (9) are 1 2 3 41.0088, 0.1063, 0, 13.6191   = = = = − (10) Since there are two positive Lyapunov exponents in (10), the Xu system (8) is hyperchaotic for the parametric values (9). The strange attractor of the hyperchaotic Xu system is displayed in Figure 1. The hyperchaotic Li system ([23], 2005) has the 4-D dynamics 1 2 1 4 2 1 1 3 2 3 3 1 2 4 2 3 4 ( )x x x x x x x x x x x x x x x x x      = − + = − + = − + = +     (11) where , , , ,     are constant, positive parameters of the system. The Li system (11) exhibits a hyperchaotic attractor for the parametric values 35, 3, 12, 7, 0.58    = = = = = (12) The Lyapunov exponents of the system (11) for the parametric values in (12) are 1 2 3 40.5011, 0.1858, 0, 26.1010   = = = = − (13) Since there are two positive Lyapunov exponents in (13), the Li system (11) is hyperchaotic for the parametric values (12). The strange attractor of the hyperchaotic Li system is displayed in Figure 2.
  • 4. International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013 20 Figure 1. The State Portrait of the Hyperchaotic Xu System Figure 2. The State Portrait of the Hyperchaotic Li System 4. ADAPTIVE CONTROL DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU SYSTEMS In this section, we design an adaptive controller for the hybrid synchronization of two identical hyperchaotic Xu systems (2009) with unknown parameters. The hyperchaotic Xu system is taken as the master system, whose dynamics is given by 1 2 1 4 2 1 1 3 3 3 1 2 4 1 3 2 ( )x a x x x x bx rx x x cx x x x x x dx = − + = + = − − = −     (14) where , , , ,a b c d r are unknown parameters of the system and 4 x∈ R is the state of the system.
  • 5. International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013 21 The hyperchaotic Xu system is also taken as the slave system, whose dynamics is given by 1 2 1 4 1 2 1 1 3 2 3 3 1 2 3 4 1 3 2 4 ( )y a y y y u y by ry y u y cy y y u y y y dy u = − + + = + + = − − + = − +     (15) where 4 y ∈ R is the state and 1 2 3 4, , ,u u u u are the adaptive controllers to be designed using estimates ˆ ˆˆ ˆ ˆ( ), ( ), ( ), ( ), ( )a t b t c t d t r t of the unknown parameters , , , ,a b c d r , respectively. For the hybrid synchronization, the error e is defined as 1 1 1 2 2 2 3 3 3 4 4 4, , ,e y x e y x e y x e y x= − = + = − = + (16) A simple calculation gives the error dynamics 1 2 2 1 4 4 1 2 1 1 1 3 1 3 2 3 3 1 2 1 2 3 4 2 1 3 1 3 4 ( ) 2 ( ) ( ) e a y x e e x u e b y x r y y x x u e ce y y x x u e de y y x x u = − − + − + = + + + + = − − + + = − + + +     (17) Next, we choose a nonlinear controller for achieving hybrid synchronization as 1 2 2 1 4 4 1 1 2 1 1 1 3 1 3 2 2 3 3 1 2 1 2 3 3 4 2 1 3 1 3 4 4 ˆ( )( ) 2 ˆ ˆ( )( ) ( )( ) ˆ( ) ˆ( ) u a t y x e e x k e u b t y x r t y y x x k e u c t e y y x x k e u d t e y y x x k e = − − − − + − = − + − + − = + − − = − − − (18) In Eq. (18), , ( 1,2,3,4)ik i = are positive gains and ˆ ˆˆ ˆ ˆ( ), ( ), ( ), ( ), ( )a t b t c t d t r t are estimates of the unknown parameters , , , ,a b c d r , respectively. By the substitution of (18) into (17), the error dynamics is simplified as 1 2 2 1 1 1 2 1 1 1 3 1 3 2 2 3 3 3 3 4 2 4 4 ˆ( ( ))( ) ˆ ˆ( ( ))( ) ( ( ))( ) ˆ( ( )) ˆ( ( )) e a a t y x e k e e b b t y x r r t y y x x k e e c c t e k e e d d t e k e = − − − − = − + + − + − = − − − = − − −     (19) Next, we define the parameter estimation errors as ˆ ˆˆ ˆ ˆ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( )a b c d re t a a t e t b b t e t c c t e t d d t e t r r t= − = − = − = − = − (20)
  • 6. International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013 22 Differentiating (20) with respect to ,t we get ˆ ˆˆ ˆ ˆ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( )a b c d re t a t e t b t e t c t e t d t e t r t= − = − = − = − = −         (21) In view of (20), we can simplify the error dynamics (19) as 1 2 2 1 1 1 2 1 1 1 3 1 3 2 2 3 3 3 3 4 2 4 4 ( ) ( ) ( ) a b r c d e e y x e k e e e y x e y y x x k e e e e k e e e e k e = − − − = + + + − = − − = − −     (22) We take the quadratic Lyapunov function ( )2 2 2 2 2 2 2 2 2 1 2 3 4 1 , 2 a b c d rV e e e e e e e e e= + + + + + + + + (23) which is a positive definite function on 9 .R When we differentiate (22) along the trajectories of (19) and (21), we get 2 2 2 2 1 1 2 2 3 3 4 4 1 2 2 1 2 1 1 2 3 2 4 2 1 3 1 3 ˆˆ( ) ( ) ˆˆ ˆ( ) a b c d r V k e k e k e k e e e y x e a e e y x b e e c e e e d e e y y x x r   = − − − − + − − − + + −         + − − + − − + + −         (24) In view of Eq. (24), we take the parameter update law as 2 1 2 2 1 5 2 1 1 6 3 7 2 4 8 2 1 3 1 3 9 ˆˆ ˆ( ) , ( ) , ˆ ˆ, ( ) a b c d r a e y x e k e b e y x k e c e k e d e e k e r e y y x x k e = − − + = + + = − + = − + = + +     (25) Theorem 4.1 The adaptive control law (18) along with the parameter update law (25), where ,( 1,2, ,9)ik i =  are positive gains, achieves global and exponential hybrid synchronization of the identical hyperchaotic Xu systems (14) and (15), where ˆ ˆˆ ˆ ˆ( ), ( ), ( ), ( ), ( )a t b t c t d t r t are estimates of the unknown parameters , , , , ,a b c d r respectively. Moreover, all the parameter estimation errors converge to zero exponentially for all initial conditions. Proof. We prove the above result using Lyapunov stability theory [25]. Substituting the parameter update law (25) into (24), we get 2 2 2 2 2 2 2 2 2 1 1 2 2 3 3 4 4 5 6 7 8 9a b c d rV k e k e k e k e k e k e k e k e k e= − − − − − − − − − (26) which is a negative definite function on 9 .R This shows that the hybrid synchronization errors 1 2 3 4( ), ( ), ( ), ( )e t e t e t e t and the parameter estimation errors ( ), ( ), ( ), ( ), ( )a b c d re t e t e t e t e t are globally exponentially stable for all initial conditions.
  • 7. International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013 23 This completes the proof. Next, we demonstrate our hybrid synchronization results with MATLAB simulations. The classical fourth order Runge-Kutta method with time-step 8 10h − = has been applied to solve the hyperchaotic Xu systems (14) and (15) with the adaptive nonlinear controller (18) and the parameter update law (25). The feedback gains are taken as 5, ( 1,2, ,9).ik i= =  The parameters of the hyperchaotic Xu systems are taken as in the hyperchaotic case, i.e. 10, 40, 2.5, 16, 2a b c r d= = = = = For simulations, the initial conditions of the hyperchaotic Xu system (14) are chosen as 1 2 3 4(0) 11, (0) 7, (0) 9, (0) 5x x x x= = = = − Also, the initial conditions of the hyperchaotic Xu system (15) are chosen as 1 2 3 4(0) 3, (0) 4, (0) 6, (0) 12y y y y= = = − = Also, the initial conditions of the parameter estimates are chosen as ˆ ˆˆ ˆ ˆ(0) 4, (0) 11, (0) 2, (0) 5, (0) 16a b c d r= = = − = − = Figure 3 depicts the hybrid synchronization of the identical hyperchaotic Xu systems. Figure 4 depicts the time-history of the hybrid synchronization errors 1 2 3 4, , , .e e e e Figure 5 depicts the time-history of the parameter estimation errors , , , , .a b c d re e e e e Figure 3. Hybrid Synchronization of Identical Hyperchaotic Xu Systems
  • 8. International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013 24 Figure 4. Time-History of the Hybrid Synchronization Errors 1 2 3 4, , ,e e e e Figure 5. Time-History of the Parameter Estimation Errors , , , ,a b c d re e e e e 5. ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION DESIGN OF HYPERCHAOTIC LI SYSTEMS In this section, we design an adaptive controller for the hybrid synchronization of two identical hyperchaotic Li systems (2005) with unknown parameters. The hyperchaotic Li system is taken as the master system, whose dynamics is given by 1 2 1 4 2 1 1 3 2 3 3 1 2 4 2 3 4 ( )x x x x x x x x x x x x x x x x x      = − + = − + = − + = +     (27) where , , , ,     are unknown parameters of the system and 4 x∈ R is the state of the system. The hyperchaotic Li system is also taken as the slave system, whose dynamics is given by
  • 9. International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013 25 1 2 1 4 1 2 1 1 3 2 2 3 3 1 2 3 4 2 3 4 4 ( )y y y y u y y y y y u y y y y u y y y y u      = − + + = − + + = − + + = + +     (28) where 4 y ∈ R is the state and 1 2 3 4, , ,u u u u are the adaptive controllers to be designed using estimates ˆ ˆˆ ˆ ˆ( ), ( ), ( ), ( ), ( )t t t t t     of the unknown parameters , , , , ,     respectively. For the hybrid synchronization, the error e is defined as 1 1 1 2 2 2 3 3 3 4 4 4, , ,e y x e y x e y x e y x= − = + = − = + (29) A simple calculation gives the error dynamics 1 2 2 1 4 4 1 2 1 1 2 1 3 1 3 2 3 3 1 2 1 2 3 4 4 2 3 2 3 4 ( ) 2 ( ) e y x e e x u e y x e y y x x u e e y y x x u e e y y x x u      = − − + − + = + + − − + = − + − + = + + +     (30) Next, we choose a nonlinear controller for achieving hybrid synchronization as 1 2 2 1 4 4 1 1 2 1 1 2 1 3 1 3 2 2 3 3 1 2 1 2 3 3 4 4 2 3 2 3 4 4 ˆ( )( ) 2 ˆ ˆ( )( ) ( ) ˆ( ) ˆ( ) u t y x e e x k e u t y x t e y y x x k e u t e y y x x k e u t e y y x x k e      = − − − − + − = − + − + + − = − + − = − − − − (31) In Eq. (31), , ( 1,2,3,4)ik i = are positive gains. By the substitution of (31) into (30), the error dynamics is simplified as 1 2 2 1 1 1 2 1 1 2 2 2 3 3 3 3 4 4 4 4 ˆ( ( ))( ) ˆ ˆ( ( ))( ) ( ( )) ˆ( ( )) ˆ( ( )) e t y x e k e e t y x t e k e e t e k e e t e k e           = − − − − = − + + − − = − − − = − −     (32) Next, we define the parameter estimation errors as ˆˆ ˆ( ) ( ), ( ) ( ), ( ) ( ) ˆ ˆ( ) ( ), ( ) ( ) e t t e t t e t t e t t e t t                = − = − = − = − = − (33) Differentiating (33) with respect to ,t we get
  • 10. International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013 26 ˆ ˆˆ ˆ ˆ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( )e t t e t t e t t e t t e t t        = − = − = − = − = −         (34) In view of (33), we can simplify the error dynamics (32) as 1 2 2 1 1 1 2 1 1 2 2 2 3 3 3 3 4 4 4 4 ( ) ( ) e e y x e k e e e y x e e k e e e e k e e e e k e      = − − − = + + − = − − = −     (35) We take the quadratic Lyapunov function ( )2 2 2 2 2 2 2 2 2 1 2 3 4 1 , 2 V e e e e e e e e e    = + + + + + + + + (36) which is a positive definite function on 9 .R When we differentiate (35) along the trajectories of (32) and (33), we get 2 2 2 2 2 1 1 2 2 3 3 4 4 1 2 2 1 3 2 2 2 2 1 1 4 ˆˆ( ) ˆˆ ˆ( ) V k e k e k e k e e e y x e e e e e e e y x e e             = − − − − + − − − + − −         + − + + − + −         (37) In view of Eq. (37), we take the parameter update law as 2 2 1 2 2 1 5 3 6 2 7 2 2 1 1 8 4 9 ˆˆ ˆ( ) , , ˆ ˆ( ) , e y x e k e e k e e k e e y x k e e k e           = − − + = − + = + = + + = +     (38) Theorem 5.1 The adaptive control law (31) along with the parameter update law (38), where ,( 1,2, ,9)ik i =  are positive gains, achieves global and exponential hybrid synchronization of the identical hyperchaotic Li systems (27) and (28), where ˆ ˆˆ ˆ ˆ( ), ( ), ( ), ( ), ( )t t t t t     are estimates of the unknown parameters , , , , ,     respectively. Moreover, all the parameter estimation errors converge to zero exponentially for all initial conditions. Proof. We prove the above result using Lyapunov stability theory [25]. Substituting the parameter update law (38) into (37), we get 2 2 2 2 2 2 2 2 2 1 1 2 2 3 3 4 4 5 6 7 8 9V k e k e k e k e k e k e k e k e k e    = − − − − − − − − − (39) which is a negative definite function on 9 .R This shows that the hybrid synchronization errors 1 2 3 4( ), ( ), ( ), ( )e t e t e t e t and the parameter estimation errors ( ), ( ), ( ), ( ), ( )e t e t e t e t e t     are globally exponentially stable for all initial conditions. This completes the proof. 
  • 11. International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013 27 Next, we demonstrate our hybrid synchronization results with MATLAB simulations. The classical fourth order Runge-Kutta method with time-step 8 10h − = has been applied to solve the hyperchaotic Li systems (27) and (28) with the adaptive nonlinear controller (31) and the parameter update law (38). The feedback gains are taken as 5, ( 1,2, ,9).ik i= =  The parameters of the hyperchaotic Li systems are taken as in the hyperchaotic case, i.e. 35, 3, 12, 7, 0.58    = = = = = For simulations, the initial conditions of the hyperchaotic Li system (27) are chosen as 1 2 3 4(0) 6, (0) 7, (0) 15, (0) 22x x x x= = − = = − Also, the initial conditions of the hyperchaotic Li system (28) are chosen as 1 2 3 4(0) 12, (0) 4, (0) 9, (0) 6y y y y= = = = − Also, the initial conditions of the parameter estimates are chosen as ˆ ˆˆ ˆ ˆ(0) 7, (0) 8, (0) 2, (0) 9, (0) 12    = = = − = − = Figure 6 depicts the hybrid synchronization of the identical hyperchaotic Li systems. Figure 7 depicts the time-history of the hybrid synchronization errors 1 2 3 4, , , .e e e e Figure 8 depicts the time-history of the parameter estimation errors , , , , .e e e e e     Figure 6. Hybrid Synchronization of Identical Hyperchaotic Li Systems
  • 12. International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013 28 Figure 7. Time-History of the Hybrid Synchronization Errors 1 2 3 4, , ,e e e e Figure 8. Time-History of the Parameter Estimation Errors , , , ,e e e e e     6. ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION DESIGN OF HYPERCHAOTIC XU AND HYPERCHAOTIC LI SYSTEMS In this section, we design an adaptive controller for the hybrid synchronization of hyperchaotic Xu system (2009) and hyperchaotic Li system (2005) with unknown parameters. The hyperchaotic Xu system is taken as the master system, whose dynamics is given by 1 2 1 4 2 1 1 3 3 3 1 2 4 1 3 2 ( )x a x x x x bx rx x x cx x x x x x dx = − + = + = − − = −     (40) where , , , ,a b c d r are unknown parameters of the system. The hyperchaotic Li system is also taken as the slave system, whose dynamics is given by
  • 13. International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013 29 1 2 1 4 1 2 1 1 3 2 2 3 3 1 2 3 4 2 3 4 4 ( )y y y y u y y y y y u y y y y u y y y y u      = − + + = − + + = − + + = + +     (41) where , , , ,     are unknown parameters and 1 2 3 4, , ,u u u u are the adaptive controllers. For the hybrid synchronization, the error e is defined as 1 1 1 2 2 2 3 3 3 4 4 4, , ,e y x e y x e y x e y x= − = + = − = + (42) A simple calculation gives the error dynamics 1 2 1 2 1 4 4 1 2 1 2 1 1 3 1 3 2 3 3 3 1 2 1 2 3 4 4 2 2 3 2 3 4 ( ) ( )e y y a x x y x u e y y bx rx x y y u e y cx y y x x u e y dx y y x x u      = − − − + − + = + + + − + = − + + + + = − + + +     (43) Next, we choose a nonlinear controller for achieving hybrid synchronization as 1 2 1 2 1 4 4 1 1 2 1 2 1 1 3 1 3 2 2 3 3 3 1 2 1 2 3 3 4 4 2 2 3 2 3 4 4 ˆ ˆ( )( ) ( )( ) ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ˆ ˆ( ) ( ) ˆˆ( ) ( ) u t y y a t x x y x k e u t y t y b t x r t x x y y k e u t y c t x y y x x k e u t y d t x y y x x k e      = − − + − − + − = − − − − + − = − − − − = − + − − − (44) where , ( 1,2,3,4)ik i = are positive gains. By the substitution of (44) into (43), the error dynamics is simplified as 1 2 1 2 1 1 1 2 1 2 1 1 3 2 2 3 3 3 3 3 4 4 2 4 4 ˆ ˆ( ( ))( ) ( ( ))( ) ˆˆ ˆ ˆ( ( )) ( ( )) ( ( )) ( ( )) ˆ ˆ( ( )) ( ( )) ˆˆ( ( )) ( ( )) e t y y a a t x x k e e t y t y b b t x r r t x x k e e t y c c t x k e e t y d d t x k e           = − − − − − − = − + − + − + − − = − − + − − = − − − −     (45) Next, we define the parameter estimation errors as ˆ ˆˆ ˆ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ) ˆˆ ˆˆ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ) ˆ ˆ( ) ( ), ( ) ( ) a b c d r e t a a t e t b b t e t c c t e t d d t e t r r t e t t e t t e t t e t t e t t                = − = − = − = − = − = − = − = − = − = − (46) Differentiating (46) with respect to ,t we get
  • 14. International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013 30 ˆ ˆˆ ˆ ˆ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ) ˆ ˆˆ ˆ ˆ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ) a b c d re t a t e t b t e t c t e t d t e t r t e t t e t t e t t e t t e t t         = − = − = − = − = − = − = − = − = − = −                 (47) In view of (46), we can simplify the error dynamics (45) as 1 2 1 2 1 1 1 2 1 2 1 1 3 2 2 3 3 3 3 3 4 4 2 4 4 ( ) ( )a b r c d e e y y e x x k e e e y e y e x e x x k e e e y e x k e e e y e x k e      = − − − − = + + + − = − + − = − −     (48) We take the quadratic Lyapunov function ( )2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 3 4 1 , 2 a b c d rV e e e e e e e e e e e e e e    = + + + + + + + + + + + + + (49) which is a positive definite function on 14 .R When we differentiate (48) along the trajectories of (45) and (46), we get 2 2 2 2 1 1 2 2 3 3 4 4 1 2 1 2 1 3 3 4 2 2 1 3 1 2 1 3 3 2 2 2 1 ˆˆ ˆ( ) ˆ ˆˆˆ ( ) ˆˆ a b c d r V k e k e k e k e e e x x a e e x b e e x c e e x d e e x x r e e y y e e y e e y e e y e             = − − − − + − − − + − + −           + − − + − + − − + − −            + − + − +          4 4 ˆe y  −   (50) In view of Eq. (50), we take the parameter update law as 1 2 1 5 2 1 6 3 3 7 4 2 8 2 1 3 9 1 2 1 10 3 3 11 2 2 12 ˆˆ ˆ( ) , , , ˆ ˆˆ, , ( ) , ˆ ˆ, , a b c d r a e x x k e b e x k e c e x k e d e x k e r e x x k e e y y k e e y k e e y k e       = − − + = + = + = − + = + = − + = − + = +       2 1 13 4 4 14 ˆ , ˆ e y k e e y k e     = + = +   (51) Theorem 6.1 The adaptive control law (44) along with the parameter update law (51), where ,( 1,2, ,14)ik i =  are positive gains, achieves global and exponential hybrid synchronization of the hyperchaotic Xu system (40) hyperchaotic Li system (41), where ˆ( ),a t ˆ( ),b t ˆ( ),c t ˆ( ),d t ˆ( ),r t ˆ( ),t ˆ( ),t ˆ( ),t ˆ( ),t ˆ( )t are estimates of the unknown parameters , , , , ,a b c d r , , , , ,     respectively. Moreover, all the parameter estimation errors converge to zero exponentially for all initial conditions. Proof. We prove the above result using Lyapunov stability theory [25]. Substituting the parameter update law (51) into (50), we get
  • 15. International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013 31 2 2 2 2 2 2 2 2 2 1 1 2 2 3 3 4 4 5 6 7 8 9 2 2 2 2 2 10 11 12 13 14 a b c d rV k e k e k e k e k e k e k e k e k e k e k e k e k e k e     = − − − − − − − − − − − − − −  (52) which is a negative definite function on 14 .R This shows that the hybrid synchronization errors 1 2 3 4( ), ( ), ( ), ( )e t e t e t e t and the parameter estimation errors ( ), ( ), ( ), ( ), ( ),a b c d re t e t e t e t e t ( ), ( ), ( ), ( ), ( )e t e t e t e t e t     are globally exponentially stable for all initial conditions. This completes the proof.  Next, we demonstrate our hybrid synchronization results with MATLAB simulations. The classical fourth order Runge-Kutta method with time-step 8 10h − = has been applied to solve the hyperchaotic Li systems (27) and (28) with the adaptive nonlinear controller (31) and the parameter update law (38). The feedback gains are taken as 5, ( 1,2, ,9).ik i= =  The parameters of the hyperchaotic Xu and Li systems are taken as in the hyperchaotic case, i.e. 10, 40, 2.5, 16, 2, 35, 3, 12, 7, 0.58a b c r d     = = = = = = = = = = For simulations, the initial conditions of the hyperchaotic Xu system (27) are chosen as 1 2 3 4(0) 12, (0) 4, (0) 8, (0) 20x x x x= = − = = − Also, the initial conditions of the hyperchaotic Li system (28) are chosen as 1 2 3 4(0) 21, (0) 7, (0) 19, (0) 12y y y y= = = = − Also, the initial conditions of the parameter estimates are chosen as ˆ ˆˆ ˆ ˆ(0) 7, (0) 14, (0) 12, (0) 8, (0) 15 ˆ ˆˆ ˆ ˆ(0) 12, (0) 5, (0) 4, (0) 11, (0) 6 a b c d r      = − = = = − = = = = = = − Figure 9 depicts the hybrid synchronization of hyperchaotic Xu and hyperchaotic Li systems. Figure 10 depicts the time-history of the hybrid synchronization errors 1 2 3 4, , , .e e e e Figure 11 depicts the time-history of the parameter estimation errors , , , .a b c de e e e Figure 12 depicts the time-history of the parameter estimation errors , , , , .e e e e e    
  • 16. International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013 32 Figure 9. Hybrid Synchronization of Hyperchaotic Xu and Lu Systems Figure 10. Time-History of the Hybrid Synchronization Errors 1 2 3 4, , ,e e e e Figure 11. Time-History of the Parameter Estimation Errors , , ,a b c de e e e
  • 17. International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013 33 Figure 12. Time-History of the Parameter Estimation Errors , , , ,e e e e e     7. CONCLUSIONS In this paper, using adaptive control method, we derived new results for the adaptive controller design for the hybrid synchronization of hyperchaotic Xu systems (2009) and hyperchaotic Li systems (2005) with unknown parameters. Using Lyapunov control theory, adaptive control laws were derived for globally hybrid synchronizing the states of identical hyperchaotic Xu systems, identical hyperchaotic Li systems and non-identical hyperchaotic Xu and Li systems. MATLAB simulations were displayed in detail to demonstrate the adaptive hybrid synchronization results derived in this paper for hyperchaotic Xu and Li systems. REFERENCES [1] Rössler, O.E. (1979) “An equation for hyperchaos,” Physics Letters A, Vol. 71, pp 155-157. [2] Huang, Y. & Yang, X.S. (2006) “Hyperchaos and bifurcation in a new class of four-dimensional Hopfield neural networks,” Neurocomputing, Vol. 69, pp 13-15. [3] Machado, L.G., Savi, M.A. & Pacheco, P.M.C.L. (2003) “Nonlinear dynamics and chaos in coupled shape memory oscillators,” International Journal of Solids and Structures, Vol. 40, No. 19, pp. 5139- 5156. [4] Tao, Y. (1999) “Chaotic secure communication systems – history and new results”, Telecommun. Review, Vol. 9, pp 597-634. [5] Li, C., Liao, X. & Wong, K.W. (2005) “Lag synchronization of hyperchaos with applications to secure communications,” Chaos, Solitons & Fractals, Vol. 23, No. 1, pp 183-193. [6] Prokhorov, M.D. & Ponomarenko, V.I. (2008) “Encryption and decryption of information in chaotic communication systems governed by delay-differential equations,” Chaos, Solitons & Fractals, Vol. 35, No. 5, pp 871-877. [7] Yassen, M.T. (2008) “Synchronization hyperchaos of hyperchaotic systems”, Chaos, Solitons and Fractals, Vol. 37, pp 465-475. [8] Ott, E., Grebogi, C. & Yorke, J.A. (1990) “Controlling chaos”, Phys. Rev. Lett., Vol. 64, pp 1196- 1199. [9] Pecora, L.M. & Carroll, T.L. (1990) “Synchronization in chaotic systems”, Phys. Rev. Lett., Vol. 64, pp 821-824. [10] Bowong, S. & Kakmeni, F.M.M. (2004) “Synchronization of uncertain chaotic systems via backstepping approach,” Chaos, Solitons & Fractals, Vol. 21, No. 4, pp 999-1011. [11] Suresh, R, & Sundarapandian, V. (2012) “Global chaos synchronization of WINDMI and Coullet chaotic systems by backstepping control”, Far East J. Math. Sciences, Vol. 67, No. 2, pp 265-287.
  • 18. International Journal of Advanced Information Technology (IJAIT) Vol. 3, No.2, April2013 34 [12] Suresh, R. & Sundarapandian, V. (2012) “Hybrid synchronization of n-scroll Chua and Lur’e chaotic systems via backstepping control with novel feedback”, Arch. Control Sciences, Vol. 22, No. 3, pp 255-278. [13] Senejohnny, D.M. & Delavari, H. (2012) “Active sliding observer scheme based fractional chaos synchronization,” Comm. Nonlinear Sci. Numerical Simulation, Vol. 17, No. 11, pp 4373-4383. [14] Sundarapandian, V. (2012) “Anti-synchronization of hyperchaotic Xu systems via sliding mode control”, International Journal of Embedded Systems, Vol. 2, No. 2, pp 51-61. [15] Sundarapandian, V. (2013) “Anti-synchronizing sliding controller design for identical Pan systems,” International Journal of Computational Science and Information Technology, Vol. 1, No. 1, pp 1-9. [16] Huang, L. Feng, R. & Wang, M. (2004) “Synchronization of chaotic systems via nonlinear control,” Physics Letters A, Vol. 320, No. 4, pp 271-275. [17] Lei, Y., Xu, W. & Zheng, H. (2005) “Synchronization of two chaotic nonlinear gyros using active control,” Physics Letters A, Vol. 343, pp 153-158. [18] Sundarapandian, V. (2012) “Adaptive control and synchronization of a generalized Lotka-Volterra system,” International Journal of Bioinformatics & Biosciences, Vol. 1, No. 1, pp 1-12. [19] Sundarapandian, V. (2013) “Adaptive controller and synchronizer design for hyperchaotic Zhou system with unknown parameters,” International Journal of Information Technology, Modeling and Computing, Vol. 1, No. 1, pp 18-32. [20] Zhao, J. & Lü, J. (2006) “Using sampled-data feedback control and linear feedback synchronization in a new hyperchaotic system,” Chaos, Solitons & Fractals, Vol. 35, pp. 376-382. [21] Ma, H., Deshmukh, V., Butcher, E. & Averina, V. (2005) “Delayed state feedback and chaos control for time-periodic systems via a symbolic approach”, Communications in Nonlinear Science and Numerical Simulation, Vol. 10, No. 5, pp 479-497. [22] Xu, J., Cai, G. & Zheng, S. (2009) “A novel hyperchaotic system and its control”, Journal of Uncertain Systems, Vol. 3, No. 2, pp 137-144. [23] Li, Y., Tang, W.K.S. & Chen, G. (2005) “Generating hyperchaos via state feedback control”, International Journal of Bifurcation and Chaos, Vol. 15, No. 10, pp 3367-3375. [24] Sastry, S. & Bodson, M. (2011) Adaptive Control: Stability, Convergence and Robustness, Dover. [25] Hahn, W. (1967) The Stability of Motion, Springer, Berlin.