SlideShare ist ein Scribd-Unternehmen logo
1 von 21
Fundamentals of Transport Phenomena
ChE 715
Lecture 20
Ch 9
• Convective Heat/Mass Transfer
C fi d Fl• Confined Flows
Spring 2011
Convective Heat/Mass Transfer
To, L
Conc., or temp change at wall
y Vx
Scenario—Flow thru flat plate:
Steady-state conservation equations: 2
v source term(s)A A AC D C⋅∇ = ∇ +
o y
x
x
2
v source term(s), where =
p
k
T T
C
α α
ρ
⋅∇ = ∇ +
Generalized non-dimensional form:
2
Pe source term(s)θ θ⋅∇ = ∇ +v
θ = Dimensionless concentration or temperature
Generalized non dimensional form
2
0
Re P
∇⋅ =
⋅∇ = −∇ + ∇
v
v v v
θ Dimensionless concentration or temperature
Will need velocity
profile and energy eqn
to solve prob
Pe = Peclet#; Re= Reynolds#
to solve prob
Convective Heat/Mass Transfer
Pe˜v⋅ ˜∇θ = ˜∇2
θ +source term(s)
Steady-state conservation equations:
˜∇⋅ ˜v = 0;
Re ˜v⋅ ˜∇˜v = − ˜∇ ˜P + ˜∇2
˜v
UL UL
Pe Pr Re
ν
α α ν
= = =
UL UL
Pe ScRe
i iD D
ν
ν
= = =
Sc: Schmidt #
Pr: Prandt’l #
Sc: Schmidt #
U,L characteristic velocity and length
UL UL U U
Pe
ii
or or
DD αα
= = =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
Note,
Charac. vel. of convection
Charac vel ofii
L L
α ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
Charac. vel. of
conduction/diffusion
Example Problem: Heating on a Plate
Energy Equation:
2 2
T T T
U α
⎛ ⎞∂ ∂ ∂
+⎜ ⎟
Insulated Insulated
Heated
qo
2 2
U
x x y
α= +⎜ ⎟
∂ ∂ ∂⎝ ⎠UTo L y
x
II
I III
K
BC’s:
⎧
II
Heated Plate moving at const. speed
0( , )T y T−∞ = ( , ) 0
dT
y
dx
∞ =; ( ,0) 0
dT
x
dy
= ;
0
0 0
( , )
/ 0
x or x KdT
x L
q k x Kdy
< >⎧
= ⎨
≤ ≤⎩
;
f l h E EDefine cross-sectional avg.
temperature:
1
L
Averaging each term in Energy Eq.:
2 y L
dT d T T
U
α
=
∂
+
0
1
( ) ( , )T x T x y dy
L
= ∫ 2
0y
U
dx dx L y
α
=
= +
∂
Example Problem: Heating on a Plate
Using BC’s at top and
2
2
0, 0
d T U dT
x or x K
dx dxα
− = < >
Regions
I & III
Using BC s at top and
bottom surfaces:
dx dxα
2
0
2
, 0
qd T U dT
x K
dx dx kLα
− = ≤ ≤
Region
II
Plug into eqn. for Region II:
dx dx kLα
Let:
2
x
L
ζ =
Pe
0T T
T
−
Θ =
Δ
2
0
2
q LUL d d
d d k Tα ζ ζ
Θ Θ
= +
Δ Let:
0q L
T
k
Δ =
K
L
λ =
k
For confined fluids in
general, a cross-sectional
dimension is usually they
appropriate length scale
Example Problem: Heating on a Plate
The dimensionless avg. temp. is governed by:
2
2
0, 0
d d
Pe or
d d
ζ ζ λ
ζ ζ
Θ Θ
− = < >
2
2
1, 0
d d
Pe
d d
ζ λ
ζ ζ
Θ Θ
− = − ≤ ≤
BC‘s: ( ) 0Θ −∞ = ( ) 0
d
dζ
Θ
∞ =
0ζ <
The resulting solution is:
( )1 2
( ) 1
Pe
Pee
e
Pe
ζ
λ
ζ −
Θ = −
( )( )
2 2
1
( ) 1 Pe
e
Pe Pe
ζ λ ζ
ζ −
Θ = − + 0 ζ λ< <
3 ( )
Pe
λ
ζΘ = ζ λ>
Convective Heat/Mass Transfer
Dimensional analysis:
θ = θ(˜x,Pe,Re,geometry)g y
Heat transfer coefficient (mass transfer homolog is Sh):
Nu
f
hL
k
=
Dimensionless temp. gradient
at tube wall
Dimensionless temp. difference
Nusselt #
( )S
b S
n∂θ ∂
θ θ
−
= =
−
i
kL
Sh
D
= =
Convective mass transport
Diffusive mass transport
Nusselt #
Sherwood #
For confined flows (flow in the z-direction)
z
A
v dAθ
θ ≡
∫
iD Diffusive mass transportSherwood #
For confined flows (flow in the z-direction), b
z
A
v dA
θ ≡
∫
Example Problem: Hollow-Fiber Dializer
Flux from fluid to wall:
[ ]( , ) ( ) ( ) ( , )i i ib iN R z k z C z C R z= −C r R
Cid Dialysate
M b [ ]( , ) ( ) ( ) ( , )ir ci ib iN R z k z C z C R zCi0
r
z
R
Ci(r,Z)
vz
Membrane
L
Flux of solute i through membrane
[ ]( ) ( )N R z k C R z C
Transport PDE for fluid inside
fiber:
L [ ]( , ) ( , )ir mi i idN R z k C R z C= −
where: kci(z) = mass transfer coeff.
kmi = permeability of
membrane to i
⎛ ⎞
f ber membrane to i
v i i i
z
C D C
r
z r r r
∂ ∂∂
∂ ∂ ∂
⎛ ⎞
= ⎜ ⎟
⎝ ⎠
Integrating over r :
v ( , ) ( , )
R
i i
z i ir
C C
rdr RD R z RN R z
∂ ∂
∂ ∂
= = −∫0
( , ) ( , )z i ir
z r∂ ∂∫
Example Problem: Hollow-Fiber Dializer
C r R
Cid Dialysate
M b
( , ) ( , )
R
i i
z i ir
C C
v rdr RD R z RN R z
z r
∂ ∂
∂ ∂
= = −∫
Recalling that:
Ci0
r
z
R
Ci(r,Z)
vz
Membrane
L
( )
i z
A
ib
Cv dA
C z ≡
∫
∫
0
z r∂ ∂
L
2R R
bC dCd R U∂
∫ ∫
( )ib
z
A
v dA∫
The LHS becomes:
0 0
2
i ib
z i z
C dCd R U
v rdr C v rdr
z dz dz
∂
∂
= =∫ ∫
Th RH i l d i
U= avg. vel
[ ]
2
( ) ( , )ib ci
ib i
dC k
C z C R z
dz RU
= −
The RHS is evaluated using
the equation flux from fluid
to wall eqn:
Example Problem: Hollow-Fiber Dializer
Ci0
r R
Cid Dialysate
Membrane
2
0 0
2
R R
i ib
z i z
C dCd R U
v rdr C v rdr
z dz dz
∂
∂
= =∫ ∫
z Ci(r,Z)
vz
L
How?
0
( )
R
i zi z
A
ib R
Cv rdrCv dA
C z
v dA
≡ =
∫∫
∫ ∫
0
2
2
R
z R
zR
v rdr
U v rdr
R
≡ =
∫
∫
∫
0
2
2
R
zv rdr
UR
=∫
0
z
A z
v dA
v rdr∫ ∫ 0
0
R
rdr∫
0
2R
UR
Cv rdr C∫0
2
i z iCv rdr C=∫
2R R
i ibC dCd R U
d C d
∂
∫ ∫0 0
2
i ib
z i z
d U
v rdr C v rdr
z dz dz∂
= =∫ ∫
Example Problem: Hollow-Fiber Dializer
To eliminate C(r,z) the two equations
for flux are combined to give:C r R
Cid Dialysate
M b
f f m gCi0
r
z
R
Ci(r,Z)
vz
Membrane
L
[ ]( ) ( , ) ( )ci mi
ib i ib id
ci mi
k k
C z C R z C z C
k k
⎛ ⎞
− = −⎜ ⎟
+⎝ ⎠L
The final ODE for the bulk
t ti i
ci mi⎝ ⎠
[ ] 0
2
, (0)ib ci mi
ib id ib i
dC k k
C C C C
⎛ ⎞
= − − =⎜ ⎟
If kci is independent of z then:
concentration is: [ ] 0, (0)ib id ib i
ci mi
C C C C
dz RU k k
⎜ ⎟
+⎝ ⎠
0
( ) 2
expib id ci mi
i id ci mi
C z C k kz
C C RU k k
⎡ ⎤⎛ ⎞−
= −⎢ ⎥⎜ ⎟
− +⎝ ⎠⎣ ⎦
Overall mass transfer coeff.
Example Problem: Hollow-Fiber Dializer
How do we get the following equation?Ci0
r
z
R
Cid
C
Dialysate
Membrane
z Ci(r,Z)
vz
L
[ ]( ) ( , ) ( )ci mi
ib i ib id
ci mi
k k
C z C R z C z C
k k
⎛ ⎞
− = −⎜ ⎟
+⎝ ⎠
Flux from fluid to wall:
[ ]( ) ( ) ( ) ( )N R z k z C z C R z= −
Plug in Ci(R,z)
[ ]( , ) ( ) ( ) ( , )ir ci ib iN R z k z C z C R z=
Flux of solute i through membrane
[ ]( ) ( )N R k C R C
( )
( , ) ci ib mi id
i
ci mi
k C z k C
C R z
k k
+
=
+
rearrange
[ ]( , ) ( , )ir mi i idN R z k C R z C= −
[ ] [ ]( ) ( ) ( , ) ( , )ci ib i mi i idk z C z C R z k C R z C− = −[ ] [ ]( ) ( ) ( , ) ( , )ci ib i mi i idk C C k C C
Convective Heat/Mass Transfer
Materials from this slide onwards is covered in lecture 21
Heat/mass transfer coefficients in confined flows:
vz profile is known, assumed well-developed.
Entrance regime:
uorSh
ll d l d i
Entrance regime:
Nu ~ L/δ(z)
Nu
Well-developed regime:
Nu = constant ~ 3
z
Nusselt # in Tube with Specified Temperatures
T R
Tw At entrance
( )Tk ∂
∂η−
(step change)
Nu
hL
;T0 R
δ
E t
z=0
Fully Developed
( )w
b w
h
T T
∂η
=
−
Nu
k
=
( ) b wT TT∂
∂η δ
−
=
;
Entry
Region
Fully Developed
Region (FD)
Entry FD
( )w
∂η δ
~ at entrance
L
Nu
δ
∴
r
Nu ~ 1
Nu ~ L/δ(z)
logNu
Entrance Region
• Fluid enters at T = T0
• Step change at wall T = Tw
l
log z
Step change at wall T Tw
• Flow is laminar & fully developed for z>0
• Large Pe# (ignore axial conduction)
• Near to entrance (z=0)
Nusselt # in Tube with Specified Temperatures
Dimensional problem is: 2
T T⋅∇ = ∇v
⎡ ⎤2
2 1
r T T
U r
R z r r r
α⎡ ⎤ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞
− =⎢ ⎥⎜ ⎟ ⎜ ⎟
∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
0( ,0)T r T=BC’s: ; (0, ) 0
dT
z
dr
= ; ( , ) wT R z T=
Now nondimensionalizeNow, nondimensionalize
r
R
η = 0
0w
T T
T T
θ
−
=
−
z
z
ζ =
Δ
2
2
2 1
1
U
z R
θ α θ
η η
ζ η η η
⎛ ⎞∂ ∂ ∂
⎡ ⎤− = ⎜ ⎟⎣ ⎦Δ ∂ ∂ ∂⎝ ⎠0w
To be determined
z Rζ η η ηΔ ∂ ∂ ∂⎝ ⎠
2
22 1
1
UR
z
θ θ
η η
α ζ η η η
⎛ ⎞∂ ∂ ∂
⎡ ⎤− = ⎜ ⎟⎣ ⎦Δ ∂ ∂ ∂⎝ ⎠zα ζ η η η⎣ ⎦Δ ∂ ∂ ∂⎝ ⎠
Nusselt # in Tube with Specified Temperatures
Let 2
2 2UR UR
z R R Pe
α α
Δ = = ⋅ = ⋅
2
22 1
1
UR
z
θ θ
η η
α ζ η η η
⎛ ⎞∂ ∂ ∂
⎡ ⎤− = ⎜ ⎟⎣ ⎦Δ ∂ ∂ ∂⎝ ⎠
We get
( )2 1θ θ⎛ ⎞∂ ∂ ∂
2z UR
where Pe
R Pe
ζ
α
∴ = =
⋅
( 0) 0θBC’s: ; (0 ) 0
dθ
ζ ; (1 ) 1θ ζ
( )2 1
1
θ θ
η η
ζ η η η
⎛ ⎞∂ ∂ ∂
− = ⎜ ⎟
∂ ∂ ∂⎝ ⎠
( ,0) 0θ η =BC s: ; (0, ) 0
d
ζ
η
= ; (1, ) 1θ ζ =
Entrance Region
Use similarity solution
For ζ~0, temp.
changes occur near
Use new radial variable
based at the wall:
1χ η= −changes occur near
the tube wall
χ η
Nusselt # in Tube with Specified Temperatures:
Entrance Region
Then
1χ η= −
1
( ) ( )2 1
1 1 2 1
1
θ θ
χ χ χ
ζ χ χ χ
⎛ ⎞∂ ∂ ∂
⎡ ⎤− − + = − − −⎜ ⎟⎣ ⎦ ∂ − ∂ ∂⎝ ⎠
χ η∂ = −∂
1η χ= −
( ) ( ) ( )
2
2
2
1 1
2 1 1
1 1
θ θ θ
χ χ χ
ζ χ χ χ χ
∂ ∂ ∂
− = − + −
∂ − ∂ − ∂
( )
2
2
2
1
2
1
θ θ θ
χ χ
ζ χ χ χ
∂ ∂ ∂
− = −
∂ ∂ − ∂
Let
1
δ
δ
Order of magnitude analysis
1
R
δ ≡ <<
1 1θ∂ ⎛ ⎞
( ) ( )2 1
2 ~
θ
χ χ δ
ζ ζ
⎛ ⎞∂
− ⎜ ⎟
∂ ⎝ ⎠
2
2 2
1
~
θ
χ δ
∂ ⎛ ⎞
⎜ ⎟
∂ ⎝ ⎠
( )
1 1
~ 1
1
θ
χ χ δ
∂ ⎛ ⎞
⎜ ⎟
− ∂ ⎝ ⎠
( )2
χ χ<<
Comparing terms, term is negligible
θ
χ
∂
∂
Nusselt # in Tube with Specified Temperatures:
Entrance Region
Then
2
1 1
~δ
ζ δ
⎛ ⎞
⎜ ⎟
⎝ ⎠
2
2
2
θ θ
χ
ζ χ
∂ ∂
=
∂ ∂
3
~δ ζ 1/3
~δ ζ
Nusselt number (from 9.3-23):
ζ δ⎝ ⎠ζ χ∂ ∂
1/3
1/3z
Nu C Pe
R
−
⎛ ⎞
= ⎜ ⎟
⎝ ⎠
C = constant
with order of
magnitude 1
Describes heat
transfer in
entrance region
To evaluate C
we solve the
energy eq.
g
2
2
2
θ θ
χ
ζ χ
∂ ∂
=
∂ ∂
( ,0) 0θ χ =BC’s: ; (0, ) 1θ ζ = ( , ) 0θ ζ∞ =;
ζ χ∂ ∂
Assume that θ = θ(s)
only, where: χ
Converting to
the similarity 2
2 2
2 ( ') 0
θ θ∂ ∂
+
y
( )
s
g
χ
ζ
≡ variable:
2 2
2
2 ( ') 0s g g
s s
+ =
∂ ∂
Nusselt # in Tube with Specified Temperatures:
Entrance Region
2
2 2
2
2 ( ') 0
d d
s g g
ds ds
θ θ
+ =
Need to have g2g’ = const. for s to be
only independent variableds ds y p
Let
( )2 31 3
' '
3 2
g g g= = ( )3 9
'
2
g =
Using
g(0)=0
1/3
9
2
g ζ
⎛ ⎞
=⎜ ⎟
⎝ ⎠
( )3 2
( ) 2 g(0) 0
1/3
1/3
2
9
s
χ
ζ
⎛ ⎞
∴ =⎜ ⎟
⎝ ⎠
2⎝ ⎠
9 ζ⎝ ⎠
The eqns. for
θ(s) are now: 2
2
3 0
d d
s
θ θ
+ =
( 0) 1sθ = =
2
3 0s
ds ds
+
( ) 0sθ = ∞ =
Let
d
p
θ
=
2
3
dp
s p= −
3
sd
p Ce
θ −
= =p
ds
= 3s p
ds
= 1p Ce
ds
= = −
Nusselt # in Tube with Specified Temperatures:
Entrance Region
3
0
1
s
d C e dsθ
∞
−
=∫ ∫
3
1
sd
p Ce
ds
θ −
= = − BC 1:
sθds
BC 2: 3
0
1
1 0
s
d C e dsθ
∞
−
=∫ ∫ 3
1
1
s
C
e ds
∞
−
= −
∫1 0
0
e ds∫
3 (1/3)
3
s
e ds
∞
− Γ
=∫ 33 s
dθ
∞
−
∫
The Nusselt
b is th :
0
3
(1/3)
s
s
e dsθ∴ =
Γ ∫
θ⎛ ⎞∂number is then:
0
0
2
2 6
2
(1/3) ( )w b
hR
Nu
k g
χ
χ
θ
χ θ
θ θ χ ζ
=
=
⎛ ⎞∂
−⎜ ⎟∂⎝ ⎠ ∂
= = = − =
− ∂ Γχ
θb = 0 since nonisothermal region is thin and almost
all fluid remains at inlet temp.
Nusselt # in Tube with Specified Temperatures:
Entrance Region
(1/3)=2.6789Γ
1/3
1/3
Nu 1.357
R
Pe
z
⎛ ⎞
= ⎜ ⎟
⎝ ⎠
(Tw const.)
For circular tube with
Same form as in previous equation with C=1.357
specified flux (qw) at
the wall: 1/3
1/3
Nu 1.640
R
Pe
z
⎛ ⎞
= ⎜ ⎟
⎝ ⎠
(qw const.)
both have same form with different constant value
z⎝ ⎠

Weitere ähnliche Inhalte

Was ist angesagt?

Hopf Bifurcations and nonlinear dynamics
Hopf Bifurcations and nonlinear dynamicsHopf Bifurcations and nonlinear dynamics
Hopf Bifurcations and nonlinear dynamicselliptic1
 
Notes nyquist plot and stability criteria
Notes nyquist plot and stability criteriaNotes nyquist plot and stability criteria
Notes nyquist plot and stability criteriaAleksandar Micic
 
Complex analysis
Complex analysisComplex analysis
Complex analysissujathavvv
 
Integration in the complex plane
Integration in the complex planeIntegration in the complex plane
Integration in the complex planeAmit Amola
 
Mcq differential and ordinary differential equation
Mcq differential and ordinary differential equationMcq differential and ordinary differential equation
Mcq differential and ordinary differential equationSayyad Shafi
 
system of algebraic equation by Iteration method
system of algebraic equation by Iteration methodsystem of algebraic equation by Iteration method
system of algebraic equation by Iteration methodAkhtar Kamal
 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equationJUGAL BORAH
 
7-2.Nyquist Stability Criterion.ppt
7-2.Nyquist Stability Criterion.ppt7-2.Nyquist Stability Criterion.ppt
7-2.Nyquist Stability Criterion.pptDummyDummy74
 
Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first orderUzair Saiyed
 
Laplace transform and its application
Laplace transform and its applicationLaplace transform and its application
Laplace transform and its applicationJaydrath Sindhav
 
Applications of Laplace Equation in Gravitational Field.pptx
Applications of Laplace Equation in Gravitational Field.pptxApplications of Laplace Equation in Gravitational Field.pptx
Applications of Laplace Equation in Gravitational Field.pptxIhsanUllah969582
 
Finite DIfference Methods Mathematica
Finite DIfference Methods MathematicaFinite DIfference Methods Mathematica
Finite DIfference Methods Mathematicaguest56708a
 
FEM Introduction: Solving ODE-BVP using the Galerkin's Method
FEM Introduction: Solving ODE-BVP using the Galerkin's MethodFEM Introduction: Solving ODE-BVP using the Galerkin's Method
FEM Introduction: Solving ODE-BVP using the Galerkin's MethodSuddhasheel GHOSH, PhD
 
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONS
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONSNUMERICAL METHODS MULTIPLE CHOICE QUESTIONS
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONSnaveen kumar
 
Numerical methods by Jeffrey R. Chasnov
Numerical methods by Jeffrey R. ChasnovNumerical methods by Jeffrey R. Chasnov
Numerical methods by Jeffrey R. Chasnovankushnathe
 

Was ist angesagt? (20)

Hopf Bifurcations and nonlinear dynamics
Hopf Bifurcations and nonlinear dynamicsHopf Bifurcations and nonlinear dynamics
Hopf Bifurcations and nonlinear dynamics
 
Secant method
Secant methodSecant method
Secant method
 
Notes nyquist plot and stability criteria
Notes nyquist plot and stability criteriaNotes nyquist plot and stability criteria
Notes nyquist plot and stability criteria
 
Complex analysis
Complex analysisComplex analysis
Complex analysis
 
Integration in the complex plane
Integration in the complex planeIntegration in the complex plane
Integration in the complex plane
 
Mcq differential and ordinary differential equation
Mcq differential and ordinary differential equationMcq differential and ordinary differential equation
Mcq differential and ordinary differential equation
 
system of algebraic equation by Iteration method
system of algebraic equation by Iteration methodsystem of algebraic equation by Iteration method
system of algebraic equation by Iteration method
 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equation
 
7-2.Nyquist Stability Criterion.ppt
7-2.Nyquist Stability Criterion.ppt7-2.Nyquist Stability Criterion.ppt
7-2.Nyquist Stability Criterion.ppt
 
Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first order
 
Power series
Power seriesPower series
Power series
 
Laplace transform and its application
Laplace transform and its applicationLaplace transform and its application
Laplace transform and its application
 
Chapter 17
Chapter 17Chapter 17
Chapter 17
 
Complex variables
Complex variablesComplex variables
Complex variables
 
Applications of Laplace Equation in Gravitational Field.pptx
Applications of Laplace Equation in Gravitational Field.pptxApplications of Laplace Equation in Gravitational Field.pptx
Applications of Laplace Equation in Gravitational Field.pptx
 
Finite DIfference Methods Mathematica
Finite DIfference Methods MathematicaFinite DIfference Methods Mathematica
Finite DIfference Methods Mathematica
 
Taylor’s series
Taylor’s   seriesTaylor’s   series
Taylor’s series
 
FEM Introduction: Solving ODE-BVP using the Galerkin's Method
FEM Introduction: Solving ODE-BVP using the Galerkin's MethodFEM Introduction: Solving ODE-BVP using the Galerkin's Method
FEM Introduction: Solving ODE-BVP using the Galerkin's Method
 
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONS
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONSNUMERICAL METHODS MULTIPLE CHOICE QUESTIONS
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONS
 
Numerical methods by Jeffrey R. Chasnov
Numerical methods by Jeffrey R. ChasnovNumerical methods by Jeffrey R. Chasnov
Numerical methods by Jeffrey R. Chasnov
 

Andere mochten auch

Andere mochten auch (10)

Monatomic Ideal Gas Help
Monatomic Ideal Gas HelpMonatomic Ideal Gas Help
Monatomic Ideal Gas Help
 
The monoatomic ideal gas
The monoatomic ideal gasThe monoatomic ideal gas
The monoatomic ideal gas
 
Get 24/7 Physics Assignment Help, 100% error free, money back guarantee, Phd...
Get 24/7 Physics Assignment Help, 100% error free, money back guarantee,  Phd...Get 24/7 Physics Assignment Help, 100% error free, money back guarantee,  Phd...
Get 24/7 Physics Assignment Help, 100% error free, money back guarantee, Phd...
 
Quality Management
Quality ManagementQuality Management
Quality Management
 
Inventory Control
Inventory ControlInventory Control
Inventory Control
 
Project management
Project managementProject management
Project management
 
Quantum state
Quantum stateQuantum state
Quantum state
 
Process analysis
Process analysisProcess analysis
Process analysis
 
Get 24/7 Reliable Medical ScienceAssignment Help, 100% error free, money back...
Get 24/7 Reliable Medical ScienceAssignment Help, 100% error free, money back...Get 24/7 Reliable Medical ScienceAssignment Help, 100% error free, money back...
Get 24/7 Reliable Medical ScienceAssignment Help, 100% error free, money back...
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 

Ähnlich wie Fundamentals of Transport Phenomena ChE 715

Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715HelpWithAssignment.com
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715HelpWithAssignment.com
 
Lecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfLecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfsami717280
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715HelpWithAssignment.com
 
Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineeringPriyanka Anni
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsVjekoslavKovac1
 
Mit2 092 f09_lec11
Mit2 092 f09_lec11Mit2 092 f09_lec11
Mit2 092 f09_lec11Rahman Hakim
 
Waveguiding Structures Part 3 (Parallel Plates).pptx
Waveguiding Structures Part 3 (Parallel Plates).pptxWaveguiding Structures Part 3 (Parallel Plates).pptx
Waveguiding Structures Part 3 (Parallel Plates).pptxPawanKumar391848
 
Heat Conduction Simulation with FDM
Heat Conduction Simulation with FDMHeat Conduction Simulation with FDM
Heat Conduction Simulation with FDMXueer Zhang
 
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptxNotes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptxDibyadipRoy1
 
Commutation techniques in power electronics
Commutation techniques in power electronicsCommutation techniques in power electronics
Commutation techniques in power electronicsAniruddha Gautam
 
Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxPawanKumar391848
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equationsDr.Jagadish Tawade
 
Rhodes solutions-ch4
Rhodes solutions-ch4Rhodes solutions-ch4
Rhodes solutions-ch4sbjhbsbd
 
Air pollution dispersion modelling_P. Goyal _Centre for Atmospheric Sciences ...
Air pollution dispersion modelling_P. Goyal _Centre for Atmospheric Sciences ...Air pollution dispersion modelling_P. Goyal _Centre for Atmospheric Sciences ...
Air pollution dispersion modelling_P. Goyal _Centre for Atmospheric Sciences ...Arvind Kumar
 

Ähnlich wie Fundamentals of Transport Phenomena ChE 715 (20)

Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Lecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfLecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdf
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineering
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
 
Shell theory
Shell theoryShell theory
Shell theory
 
Mit2 092 f09_lec11
Mit2 092 f09_lec11Mit2 092 f09_lec11
Mit2 092 f09_lec11
 
Statistics Homework Help
Statistics Homework HelpStatistics Homework Help
Statistics Homework Help
 
Multiple Linear Regression Homework Help
Multiple Linear Regression Homework HelpMultiple Linear Regression Homework Help
Multiple Linear Regression Homework Help
 
Waveguiding Structures Part 3 (Parallel Plates).pptx
Waveguiding Structures Part 3 (Parallel Plates).pptxWaveguiding Structures Part 3 (Parallel Plates).pptx
Waveguiding Structures Part 3 (Parallel Plates).pptx
 
Ch07a entropy
Ch07a entropyCh07a entropy
Ch07a entropy
 
Heat Conduction Simulation with FDM
Heat Conduction Simulation with FDMHeat Conduction Simulation with FDM
Heat Conduction Simulation with FDM
 
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptxNotes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
 
Commutation techniques in power electronics
Commutation techniques in power electronicsCommutation techniques in power electronics
Commutation techniques in power electronics
 
Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptx
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
Rhodes solutions-ch4
Rhodes solutions-ch4Rhodes solutions-ch4
Rhodes solutions-ch4
 
Air pollution dispersion modelling_P. Goyal _Centre for Atmospheric Sciences ...
Air pollution dispersion modelling_P. Goyal _Centre for Atmospheric Sciences ...Air pollution dispersion modelling_P. Goyal _Centre for Atmospheric Sciences ...
Air pollution dispersion modelling_P. Goyal _Centre for Atmospheric Sciences ...
 

Kürzlich hochgeladen

Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the ClassroomPooky Knightsmith
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxJisc
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Pooja Bhuva
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024Elizabeth Walsh
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxmarlenawright1
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17Celine George
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxPooja Bhuva
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxDr. Ravikiran H M Gowda
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...Amil baba
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jisc
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Pooja Bhuva
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 

Kürzlich hochgeladen (20)

Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 

Fundamentals of Transport Phenomena ChE 715

  • 1. Fundamentals of Transport Phenomena ChE 715 Lecture 20 Ch 9 • Convective Heat/Mass Transfer C fi d Fl• Confined Flows Spring 2011
  • 2. Convective Heat/Mass Transfer To, L Conc., or temp change at wall y Vx Scenario—Flow thru flat plate: Steady-state conservation equations: 2 v source term(s)A A AC D C⋅∇ = ∇ + o y x x 2 v source term(s), where = p k T T C α α ρ ⋅∇ = ∇ + Generalized non-dimensional form: 2 Pe source term(s)θ θ⋅∇ = ∇ +v θ = Dimensionless concentration or temperature Generalized non dimensional form 2 0 Re P ∇⋅ = ⋅∇ = −∇ + ∇ v v v v θ Dimensionless concentration or temperature Will need velocity profile and energy eqn to solve prob Pe = Peclet#; Re= Reynolds# to solve prob
  • 3. Convective Heat/Mass Transfer Pe˜v⋅ ˜∇θ = ˜∇2 θ +source term(s) Steady-state conservation equations: ˜∇⋅ ˜v = 0; Re ˜v⋅ ˜∇˜v = − ˜∇ ˜P + ˜∇2 ˜v UL UL Pe Pr Re ν α α ν = = = UL UL Pe ScRe i iD D ν ν = = = Sc: Schmidt # Pr: Prandt’l # Sc: Schmidt # U,L characteristic velocity and length UL UL U U Pe ii or or DD αα = = = ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ Note, Charac. vel. of convection Charac vel ofii L L α ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ Charac. vel. of conduction/diffusion
  • 4. Example Problem: Heating on a Plate Energy Equation: 2 2 T T T U α ⎛ ⎞∂ ∂ ∂ +⎜ ⎟ Insulated Insulated Heated qo 2 2 U x x y α= +⎜ ⎟ ∂ ∂ ∂⎝ ⎠UTo L y x II I III K BC’s: ⎧ II Heated Plate moving at const. speed 0( , )T y T−∞ = ( , ) 0 dT y dx ∞ =; ( ,0) 0 dT x dy = ; 0 0 0 ( , ) / 0 x or x KdT x L q k x Kdy < >⎧ = ⎨ ≤ ≤⎩ ; f l h E EDefine cross-sectional avg. temperature: 1 L Averaging each term in Energy Eq.: 2 y L dT d T T U α = ∂ + 0 1 ( ) ( , )T x T x y dy L = ∫ 2 0y U dx dx L y α = = + ∂
  • 5. Example Problem: Heating on a Plate Using BC’s at top and 2 2 0, 0 d T U dT x or x K dx dxα − = < > Regions I & III Using BC s at top and bottom surfaces: dx dxα 2 0 2 , 0 qd T U dT x K dx dx kLα − = ≤ ≤ Region II Plug into eqn. for Region II: dx dx kLα Let: 2 x L ζ = Pe 0T T T − Θ = Δ 2 0 2 q LUL d d d d k Tα ζ ζ Θ Θ = + Δ Let: 0q L T k Δ = K L λ = k For confined fluids in general, a cross-sectional dimension is usually they appropriate length scale
  • 6. Example Problem: Heating on a Plate The dimensionless avg. temp. is governed by: 2 2 0, 0 d d Pe or d d ζ ζ λ ζ ζ Θ Θ − = < > 2 2 1, 0 d d Pe d d ζ λ ζ ζ Θ Θ − = − ≤ ≤ BC‘s: ( ) 0Θ −∞ = ( ) 0 d dζ Θ ∞ = 0ζ < The resulting solution is: ( )1 2 ( ) 1 Pe Pee e Pe ζ λ ζ − Θ = − ( )( ) 2 2 1 ( ) 1 Pe e Pe Pe ζ λ ζ ζ − Θ = − + 0 ζ λ< < 3 ( ) Pe λ ζΘ = ζ λ>
  • 7. Convective Heat/Mass Transfer Dimensional analysis: θ = θ(˜x,Pe,Re,geometry)g y Heat transfer coefficient (mass transfer homolog is Sh): Nu f hL k = Dimensionless temp. gradient at tube wall Dimensionless temp. difference Nusselt # ( )S b S n∂θ ∂ θ θ − = = − i kL Sh D = = Convective mass transport Diffusive mass transport Nusselt # Sherwood # For confined flows (flow in the z-direction) z A v dAθ θ ≡ ∫ iD Diffusive mass transportSherwood # For confined flows (flow in the z-direction), b z A v dA θ ≡ ∫
  • 8. Example Problem: Hollow-Fiber Dializer Flux from fluid to wall: [ ]( , ) ( ) ( ) ( , )i i ib iN R z k z C z C R z= −C r R Cid Dialysate M b [ ]( , ) ( ) ( ) ( , )ir ci ib iN R z k z C z C R zCi0 r z R Ci(r,Z) vz Membrane L Flux of solute i through membrane [ ]( ) ( )N R z k C R z C Transport PDE for fluid inside fiber: L [ ]( , ) ( , )ir mi i idN R z k C R z C= − where: kci(z) = mass transfer coeff. kmi = permeability of membrane to i ⎛ ⎞ f ber membrane to i v i i i z C D C r z r r r ∂ ∂∂ ∂ ∂ ∂ ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ Integrating over r : v ( , ) ( , ) R i i z i ir C C rdr RD R z RN R z ∂ ∂ ∂ ∂ = = −∫0 ( , ) ( , )z i ir z r∂ ∂∫
  • 9. Example Problem: Hollow-Fiber Dializer C r R Cid Dialysate M b ( , ) ( , ) R i i z i ir C C v rdr RD R z RN R z z r ∂ ∂ ∂ ∂ = = −∫ Recalling that: Ci0 r z R Ci(r,Z) vz Membrane L ( ) i z A ib Cv dA C z ≡ ∫ ∫ 0 z r∂ ∂ L 2R R bC dCd R U∂ ∫ ∫ ( )ib z A v dA∫ The LHS becomes: 0 0 2 i ib z i z C dCd R U v rdr C v rdr z dz dz ∂ ∂ = =∫ ∫ Th RH i l d i U= avg. vel [ ] 2 ( ) ( , )ib ci ib i dC k C z C R z dz RU = − The RHS is evaluated using the equation flux from fluid to wall eqn:
  • 10. Example Problem: Hollow-Fiber Dializer Ci0 r R Cid Dialysate Membrane 2 0 0 2 R R i ib z i z C dCd R U v rdr C v rdr z dz dz ∂ ∂ = =∫ ∫ z Ci(r,Z) vz L How? 0 ( ) R i zi z A ib R Cv rdrCv dA C z v dA ≡ = ∫∫ ∫ ∫ 0 2 2 R z R zR v rdr U v rdr R ≡ = ∫ ∫ ∫ 0 2 2 R zv rdr UR =∫ 0 z A z v dA v rdr∫ ∫ 0 0 R rdr∫ 0 2R UR Cv rdr C∫0 2 i z iCv rdr C=∫ 2R R i ibC dCd R U d C d ∂ ∫ ∫0 0 2 i ib z i z d U v rdr C v rdr z dz dz∂ = =∫ ∫
  • 11. Example Problem: Hollow-Fiber Dializer To eliminate C(r,z) the two equations for flux are combined to give:C r R Cid Dialysate M b f f m gCi0 r z R Ci(r,Z) vz Membrane L [ ]( ) ( , ) ( )ci mi ib i ib id ci mi k k C z C R z C z C k k ⎛ ⎞ − = −⎜ ⎟ +⎝ ⎠L The final ODE for the bulk t ti i ci mi⎝ ⎠ [ ] 0 2 , (0)ib ci mi ib id ib i dC k k C C C C ⎛ ⎞ = − − =⎜ ⎟ If kci is independent of z then: concentration is: [ ] 0, (0)ib id ib i ci mi C C C C dz RU k k ⎜ ⎟ +⎝ ⎠ 0 ( ) 2 expib id ci mi i id ci mi C z C k kz C C RU k k ⎡ ⎤⎛ ⎞− = −⎢ ⎥⎜ ⎟ − +⎝ ⎠⎣ ⎦ Overall mass transfer coeff.
  • 12. Example Problem: Hollow-Fiber Dializer How do we get the following equation?Ci0 r z R Cid C Dialysate Membrane z Ci(r,Z) vz L [ ]( ) ( , ) ( )ci mi ib i ib id ci mi k k C z C R z C z C k k ⎛ ⎞ − = −⎜ ⎟ +⎝ ⎠ Flux from fluid to wall: [ ]( ) ( ) ( ) ( )N R z k z C z C R z= − Plug in Ci(R,z) [ ]( , ) ( ) ( ) ( , )ir ci ib iN R z k z C z C R z= Flux of solute i through membrane [ ]( ) ( )N R k C R C ( ) ( , ) ci ib mi id i ci mi k C z k C C R z k k + = + rearrange [ ]( , ) ( , )ir mi i idN R z k C R z C= − [ ] [ ]( ) ( ) ( , ) ( , )ci ib i mi i idk z C z C R z k C R z C− = −[ ] [ ]( ) ( ) ( , ) ( , )ci ib i mi i idk C C k C C
  • 13. Convective Heat/Mass Transfer Materials from this slide onwards is covered in lecture 21 Heat/mass transfer coefficients in confined flows: vz profile is known, assumed well-developed. Entrance regime: uorSh ll d l d i Entrance regime: Nu ~ L/δ(z) Nu Well-developed regime: Nu = constant ~ 3 z
  • 14. Nusselt # in Tube with Specified Temperatures T R Tw At entrance ( )Tk ∂ ∂η− (step change) Nu hL ;T0 R δ E t z=0 Fully Developed ( )w b w h T T ∂η = − Nu k = ( ) b wT TT∂ ∂η δ − = ; Entry Region Fully Developed Region (FD) Entry FD ( )w ∂η δ ~ at entrance L Nu δ ∴ r Nu ~ 1 Nu ~ L/δ(z) logNu Entrance Region • Fluid enters at T = T0 • Step change at wall T = Tw l log z Step change at wall T Tw • Flow is laminar & fully developed for z>0 • Large Pe# (ignore axial conduction) • Near to entrance (z=0)
  • 15. Nusselt # in Tube with Specified Temperatures Dimensional problem is: 2 T T⋅∇ = ∇v ⎡ ⎤2 2 1 r T T U r R z r r r α⎡ ⎤ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ − =⎢ ⎥⎜ ⎟ ⎜ ⎟ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦ 0( ,0)T r T=BC’s: ; (0, ) 0 dT z dr = ; ( , ) wT R z T= Now nondimensionalizeNow, nondimensionalize r R η = 0 0w T T T T θ − = − z z ζ = Δ 2 2 2 1 1 U z R θ α θ η η ζ η η η ⎛ ⎞∂ ∂ ∂ ⎡ ⎤− = ⎜ ⎟⎣ ⎦Δ ∂ ∂ ∂⎝ ⎠0w To be determined z Rζ η η ηΔ ∂ ∂ ∂⎝ ⎠ 2 22 1 1 UR z θ θ η η α ζ η η η ⎛ ⎞∂ ∂ ∂ ⎡ ⎤− = ⎜ ⎟⎣ ⎦Δ ∂ ∂ ∂⎝ ⎠zα ζ η η η⎣ ⎦Δ ∂ ∂ ∂⎝ ⎠
  • 16. Nusselt # in Tube with Specified Temperatures Let 2 2 2UR UR z R R Pe α α Δ = = ⋅ = ⋅ 2 22 1 1 UR z θ θ η η α ζ η η η ⎛ ⎞∂ ∂ ∂ ⎡ ⎤− = ⎜ ⎟⎣ ⎦Δ ∂ ∂ ∂⎝ ⎠ We get ( )2 1θ θ⎛ ⎞∂ ∂ ∂ 2z UR where Pe R Pe ζ α ∴ = = ⋅ ( 0) 0θBC’s: ; (0 ) 0 dθ ζ ; (1 ) 1θ ζ ( )2 1 1 θ θ η η ζ η η η ⎛ ⎞∂ ∂ ∂ − = ⎜ ⎟ ∂ ∂ ∂⎝ ⎠ ( ,0) 0θ η =BC s: ; (0, ) 0 d ζ η = ; (1, ) 1θ ζ = Entrance Region Use similarity solution For ζ~0, temp. changes occur near Use new radial variable based at the wall: 1χ η= −changes occur near the tube wall χ η
  • 17. Nusselt # in Tube with Specified Temperatures: Entrance Region Then 1χ η= − 1 ( ) ( )2 1 1 1 2 1 1 θ θ χ χ χ ζ χ χ χ ⎛ ⎞∂ ∂ ∂ ⎡ ⎤− − + = − − −⎜ ⎟⎣ ⎦ ∂ − ∂ ∂⎝ ⎠ χ η∂ = −∂ 1η χ= − ( ) ( ) ( ) 2 2 2 1 1 2 1 1 1 1 θ θ θ χ χ χ ζ χ χ χ χ ∂ ∂ ∂ − = − + − ∂ − ∂ − ∂ ( ) 2 2 2 1 2 1 θ θ θ χ χ ζ χ χ χ ∂ ∂ ∂ − = − ∂ ∂ − ∂ Let 1 δ δ Order of magnitude analysis 1 R δ ≡ << 1 1θ∂ ⎛ ⎞ ( ) ( )2 1 2 ~ θ χ χ δ ζ ζ ⎛ ⎞∂ − ⎜ ⎟ ∂ ⎝ ⎠ 2 2 2 1 ~ θ χ δ ∂ ⎛ ⎞ ⎜ ⎟ ∂ ⎝ ⎠ ( ) 1 1 ~ 1 1 θ χ χ δ ∂ ⎛ ⎞ ⎜ ⎟ − ∂ ⎝ ⎠ ( )2 χ χ<< Comparing terms, term is negligible θ χ ∂ ∂
  • 18. Nusselt # in Tube with Specified Temperatures: Entrance Region Then 2 1 1 ~δ ζ δ ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ 2 2 2 θ θ χ ζ χ ∂ ∂ = ∂ ∂ 3 ~δ ζ 1/3 ~δ ζ Nusselt number (from 9.3-23): ζ δ⎝ ⎠ζ χ∂ ∂ 1/3 1/3z Nu C Pe R − ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ C = constant with order of magnitude 1 Describes heat transfer in entrance region To evaluate C we solve the energy eq. g 2 2 2 θ θ χ ζ χ ∂ ∂ = ∂ ∂ ( ,0) 0θ χ =BC’s: ; (0, ) 1θ ζ = ( , ) 0θ ζ∞ =; ζ χ∂ ∂ Assume that θ = θ(s) only, where: χ Converting to the similarity 2 2 2 2 ( ') 0 θ θ∂ ∂ + y ( ) s g χ ζ ≡ variable: 2 2 2 2 ( ') 0s g g s s + = ∂ ∂
  • 19. Nusselt # in Tube with Specified Temperatures: Entrance Region 2 2 2 2 2 ( ') 0 d d s g g ds ds θ θ + = Need to have g2g’ = const. for s to be only independent variableds ds y p Let ( )2 31 3 ' ' 3 2 g g g= = ( )3 9 ' 2 g = Using g(0)=0 1/3 9 2 g ζ ⎛ ⎞ =⎜ ⎟ ⎝ ⎠ ( )3 2 ( ) 2 g(0) 0 1/3 1/3 2 9 s χ ζ ⎛ ⎞ ∴ =⎜ ⎟ ⎝ ⎠ 2⎝ ⎠ 9 ζ⎝ ⎠ The eqns. for θ(s) are now: 2 2 3 0 d d s θ θ + = ( 0) 1sθ = = 2 3 0s ds ds + ( ) 0sθ = ∞ = Let d p θ = 2 3 dp s p= − 3 sd p Ce θ − = =p ds = 3s p ds = 1p Ce ds = = −
  • 20. Nusselt # in Tube with Specified Temperatures: Entrance Region 3 0 1 s d C e dsθ ∞ − =∫ ∫ 3 1 sd p Ce ds θ − = = − BC 1: sθds BC 2: 3 0 1 1 0 s d C e dsθ ∞ − =∫ ∫ 3 1 1 s C e ds ∞ − = − ∫1 0 0 e ds∫ 3 (1/3) 3 s e ds ∞ − Γ =∫ 33 s dθ ∞ − ∫ The Nusselt b is th : 0 3 (1/3) s s e dsθ∴ = Γ ∫ θ⎛ ⎞∂number is then: 0 0 2 2 6 2 (1/3) ( )w b hR Nu k g χ χ θ χ θ θ θ χ ζ = = ⎛ ⎞∂ −⎜ ⎟∂⎝ ⎠ ∂ = = = − = − ∂ Γχ θb = 0 since nonisothermal region is thin and almost all fluid remains at inlet temp.
  • 21. Nusselt # in Tube with Specified Temperatures: Entrance Region (1/3)=2.6789Γ 1/3 1/3 Nu 1.357 R Pe z ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ (Tw const.) For circular tube with Same form as in previous equation with C=1.357 specified flux (qw) at the wall: 1/3 1/3 Nu 1.640 R Pe z ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ (qw const.) both have same form with different constant value z⎝ ⎠