SlideShare ist ein Scribd-Unternehmen logo
1 von 21
Fundamentals of Transport Phenomena
ChE 715
Lecture 20
Ch 9
• Convective Heat/Mass Transfer
C fi d Fl• Confined Flows
Spring 2011
Convective Heat/Mass Transfer
To, L
Conc., or temp change at wall
y Vx
Scenario—Flow thru flat plate:
Steady-state conservation equations: 2
v source term(s)A A AC D C⋅∇ = ∇ +
o y
x
x
2
v source term(s), where =
p
k
T T
C
α α
ρ
⋅∇ = ∇ +
Generalized non-dimensional form:
2
Pe source term(s)θ θ⋅∇ = ∇ +v
θ = Dimensionless concentration or temperature
Generalized non dimensional form
2
0
Re P
∇⋅ =
⋅∇ = −∇ + ∇
v
v v v
θ Dimensionless concentration or temperature
Will need velocity
profile and energy eqn
to solve prob
Pe = Peclet#; Re= Reynolds#
to solve prob
Convective Heat/Mass Transfer
Pe˜v⋅ ˜∇θ = ˜∇2
θ +source term(s)
Steady-state conservation equations:
˜∇⋅ ˜v = 0;
Re ˜v⋅ ˜∇˜v = − ˜∇ ˜P + ˜∇2
˜v
UL UL
Pe Pr Re
ν
α α ν
= = =
UL UL
Pe ScRe
i iD D
ν
ν
= = =
Sc: Schmidt #
Pr: Prandt’l #
Sc: Schmidt #
U,L characteristic velocity and length
UL UL U U
Pe
ii
or or
DD αα
= = =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
Note,
Charac. vel. of convection
Charac vel ofii
L L
α ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
Charac. vel. of
conduction/diffusion
Example Problem: Heating on a Plate
Energy Equation:
2 2
T T T
U α
⎛ ⎞∂ ∂ ∂
+⎜ ⎟
Insulated Insulated
Heated
qo
2 2
U
x x y
α= +⎜ ⎟
∂ ∂ ∂⎝ ⎠UTo L y
x
II
I III
K
BC’s:
⎧
II
Heated Plate moving at const. speed
0( , )T y T−∞ = ( , ) 0
dT
y
dx
∞ =; ( ,0) 0
dT
x
dy
= ;
0
0 0
( , )
/ 0
x or x KdT
x L
q k x Kdy
< >⎧
= ⎨
≤ ≤⎩
;
f l h E EDefine cross-sectional avg.
temperature:
1
L
Averaging each term in Energy Eq.:
2 y L
dT d T T
U
α
=
∂
+
0
1
( ) ( , )T x T x y dy
L
= ∫ 2
0y
U
dx dx L y
α
=
= +
∂
Example Problem: Heating on a Plate
Using BC’s at top and
2
2
0, 0
d T U dT
x or x K
dx dxα
− = < >
Regions
I & III
Using BC s at top and
bottom surfaces:
dx dxα
2
0
2
, 0
qd T U dT
x K
dx dx kLα
− = ≤ ≤
Region
II
Plug into eqn. for Region II:
dx dx kLα
Let:
2
x
L
ζ =
Pe
0T T
T
−
Θ =
Δ
2
0
2
q LUL d d
d d k Tα ζ ζ
Θ Θ
= +
Δ Let:
0q L
T
k
Δ =
K
L
λ =
k
For confined fluids in
general, a cross-sectional
dimension is usually they
appropriate length scale
Example Problem: Heating on a Plate
The dimensionless avg. temp. is governed by:
2
2
0, 0
d d
Pe or
d d
ζ ζ λ
ζ ζ
Θ Θ
− = < >
2
2
1, 0
d d
Pe
d d
ζ λ
ζ ζ
Θ Θ
− = − ≤ ≤
BC‘s: ( ) 0Θ −∞ = ( ) 0
d
dζ
Θ
∞ =
0ζ <
The resulting solution is:
( )1 2
( ) 1
Pe
Pee
e
Pe
ζ
λ
ζ −
Θ = −
( )( )
2 2
1
( ) 1 Pe
e
Pe Pe
ζ λ ζ
ζ −
Θ = − + 0 ζ λ< <
3 ( )
Pe
λ
ζΘ = ζ λ>
Convective Heat/Mass Transfer
Dimensional analysis:
θ = θ(˜x,Pe,Re,geometry)g y
Heat transfer coefficient (mass transfer homolog is Sh):
Nu
f
hL
k
=
Dimensionless temp. gradient
at tube wall
Dimensionless temp. difference
Nusselt #
( )S
b S
n∂θ ∂
θ θ
−
= =
−
i
kL
Sh
D
= =
Convective mass transport
Diffusive mass transport
Nusselt #
Sherwood #
For confined flows (flow in the z-direction)
z
A
v dAθ
θ ≡
∫
iD Diffusive mass transportSherwood #
For confined flows (flow in the z-direction), b
z
A
v dA
θ ≡
∫
Example Problem: Hollow-Fiber Dializer
Flux from fluid to wall:
[ ]( , ) ( ) ( ) ( , )i i ib iN R z k z C z C R z= −C r R
Cid Dialysate
M b [ ]( , ) ( ) ( ) ( , )ir ci ib iN R z k z C z C R zCi0
r
z
R
Ci(r,Z)
vz
Membrane
L
Flux of solute i through membrane
[ ]( ) ( )N R z k C R z C
Transport PDE for fluid inside
fiber:
L [ ]( , ) ( , )ir mi i idN R z k C R z C= −
where: kci(z) = mass transfer coeff.
kmi = permeability of
membrane to i
⎛ ⎞
f ber membrane to i
v i i i
z
C D C
r
z r r r
∂ ∂∂
∂ ∂ ∂
⎛ ⎞
= ⎜ ⎟
⎝ ⎠
Integrating over r :
v ( , ) ( , )
R
i i
z i ir
C C
rdr RD R z RN R z
∂ ∂
∂ ∂
= = −∫0
( , ) ( , )z i ir
z r∂ ∂∫
Example Problem: Hollow-Fiber Dializer
C r R
Cid Dialysate
M b
( , ) ( , )
R
i i
z i ir
C C
v rdr RD R z RN R z
z r
∂ ∂
∂ ∂
= = −∫
Recalling that:
Ci0
r
z
R
Ci(r,Z)
vz
Membrane
L
( )
i z
A
ib
Cv dA
C z ≡
∫
∫
0
z r∂ ∂
L
2R R
bC dCd R U∂
∫ ∫
( )ib
z
A
v dA∫
The LHS becomes:
0 0
2
i ib
z i z
C dCd R U
v rdr C v rdr
z dz dz
∂
∂
= =∫ ∫
Th RH i l d i
U= avg. vel
[ ]
2
( ) ( , )ib ci
ib i
dC k
C z C R z
dz RU
= −
The RHS is evaluated using
the equation flux from fluid
to wall eqn:
Example Problem: Hollow-Fiber Dializer
Ci0
r R
Cid Dialysate
Membrane
2
0 0
2
R R
i ib
z i z
C dCd R U
v rdr C v rdr
z dz dz
∂
∂
= =∫ ∫
z Ci(r,Z)
vz
L
How?
0
( )
R
i zi z
A
ib R
Cv rdrCv dA
C z
v dA
≡ =
∫∫
∫ ∫
0
2
2
R
z R
zR
v rdr
U v rdr
R
≡ =
∫
∫
∫
0
2
2
R
zv rdr
UR
=∫
0
z
A z
v dA
v rdr∫ ∫ 0
0
R
rdr∫
0
2R
UR
Cv rdr C∫0
2
i z iCv rdr C=∫
2R R
i ibC dCd R U
d C d
∂
∫ ∫0 0
2
i ib
z i z
d U
v rdr C v rdr
z dz dz∂
= =∫ ∫
Example Problem: Hollow-Fiber Dializer
To eliminate C(r,z) the two equations
for flux are combined to give:C r R
Cid Dialysate
M b
f f m gCi0
r
z
R
Ci(r,Z)
vz
Membrane
L
[ ]( ) ( , ) ( )ci mi
ib i ib id
ci mi
k k
C z C R z C z C
k k
⎛ ⎞
− = −⎜ ⎟
+⎝ ⎠L
The final ODE for the bulk
t ti i
ci mi⎝ ⎠
[ ] 0
2
, (0)ib ci mi
ib id ib i
dC k k
C C C C
⎛ ⎞
= − − =⎜ ⎟
If kci is independent of z then:
concentration is: [ ] 0, (0)ib id ib i
ci mi
C C C C
dz RU k k
⎜ ⎟
+⎝ ⎠
0
( ) 2
expib id ci mi
i id ci mi
C z C k kz
C C RU k k
⎡ ⎤⎛ ⎞−
= −⎢ ⎥⎜ ⎟
− +⎝ ⎠⎣ ⎦
Overall mass transfer coeff.
Example Problem: Hollow-Fiber Dializer
How do we get the following equation?Ci0
r
z
R
Cid
C
Dialysate
Membrane
z Ci(r,Z)
vz
L
[ ]( ) ( , ) ( )ci mi
ib i ib id
ci mi
k k
C z C R z C z C
k k
⎛ ⎞
− = −⎜ ⎟
+⎝ ⎠
Flux from fluid to wall:
[ ]( ) ( ) ( ) ( )N R z k z C z C R z= −
Plug in Ci(R,z)
[ ]( , ) ( ) ( ) ( , )ir ci ib iN R z k z C z C R z=
Flux of solute i through membrane
[ ]( ) ( )N R k C R C
( )
( , ) ci ib mi id
i
ci mi
k C z k C
C R z
k k
+
=
+
rearrange
[ ]( , ) ( , )ir mi i idN R z k C R z C= −
[ ] [ ]( ) ( ) ( , ) ( , )ci ib i mi i idk z C z C R z k C R z C− = −[ ] [ ]( ) ( ) ( , ) ( , )ci ib i mi i idk C C k C C
Convective Heat/Mass Transfer
Materials from this slide onwards is covered in lecture 21
Heat/mass transfer coefficients in confined flows:
vz profile is known, assumed well-developed.
Entrance regime:
uorSh
ll d l d i
Entrance regime:
Nu ~ L/δ(z)
Nu
Well-developed regime:
Nu = constant ~ 3
z
Nusselt # in Tube with Specified Temperatures
T R
Tw At entrance
( )Tk ∂
∂η−
(step change)
Nu
hL
;T0 R
δ
E t
z=0
Fully Developed
( )w
b w
h
T T
∂η
=
−
Nu
k
=
( ) b wT TT∂
∂η δ
−
=
;
Entry
Region
Fully Developed
Region (FD)
Entry FD
( )w
∂η δ
~ at entrance
L
Nu
δ
∴
r
Nu ~ 1
Nu ~ L/δ(z)
logNu
Entrance Region
• Fluid enters at T = T0
• Step change at wall T = Tw
l
log z
Step change at wall T Tw
• Flow is laminar & fully developed for z>0
• Large Pe# (ignore axial conduction)
• Near to entrance (z=0)
Nusselt # in Tube with Specified Temperatures
Dimensional problem is: 2
T T⋅∇ = ∇v
⎡ ⎤2
2 1
r T T
U r
R z r r r
α⎡ ⎤ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞
− =⎢ ⎥⎜ ⎟ ⎜ ⎟
∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
0( ,0)T r T=BC’s: ; (0, ) 0
dT
z
dr
= ; ( , ) wT R z T=
Now nondimensionalizeNow, nondimensionalize
r
R
η = 0
0w
T T
T T
θ
−
=
−
z
z
ζ =
Δ
2
2
2 1
1
U
z R
θ α θ
η η
ζ η η η
⎛ ⎞∂ ∂ ∂
⎡ ⎤− = ⎜ ⎟⎣ ⎦Δ ∂ ∂ ∂⎝ ⎠0w
To be determined
z Rζ η η ηΔ ∂ ∂ ∂⎝ ⎠
2
22 1
1
UR
z
θ θ
η η
α ζ η η η
⎛ ⎞∂ ∂ ∂
⎡ ⎤− = ⎜ ⎟⎣ ⎦Δ ∂ ∂ ∂⎝ ⎠zα ζ η η η⎣ ⎦Δ ∂ ∂ ∂⎝ ⎠
Nusselt # in Tube with Specified Temperatures
Let 2
2 2UR UR
z R R Pe
α α
Δ = = ⋅ = ⋅
2
22 1
1
UR
z
θ θ
η η
α ζ η η η
⎛ ⎞∂ ∂ ∂
⎡ ⎤− = ⎜ ⎟⎣ ⎦Δ ∂ ∂ ∂⎝ ⎠
We get
( )2 1θ θ⎛ ⎞∂ ∂ ∂
2z UR
where Pe
R Pe
ζ
α
∴ = =
⋅
( 0) 0θBC’s: ; (0 ) 0
dθ
ζ ; (1 ) 1θ ζ
( )2 1
1
θ θ
η η
ζ η η η
⎛ ⎞∂ ∂ ∂
− = ⎜ ⎟
∂ ∂ ∂⎝ ⎠
( ,0) 0θ η =BC s: ; (0, ) 0
d
ζ
η
= ; (1, ) 1θ ζ =
Entrance Region
Use similarity solution
For ζ~0, temp.
changes occur near
Use new radial variable
based at the wall:
1χ η= −changes occur near
the tube wall
χ η
Nusselt # in Tube with Specified Temperatures:
Entrance Region
Then
1χ η= −
1
( ) ( )2 1
1 1 2 1
1
θ θ
χ χ χ
ζ χ χ χ
⎛ ⎞∂ ∂ ∂
⎡ ⎤− − + = − − −⎜ ⎟⎣ ⎦ ∂ − ∂ ∂⎝ ⎠
χ η∂ = −∂
1η χ= −
( ) ( ) ( )
2
2
2
1 1
2 1 1
1 1
θ θ θ
χ χ χ
ζ χ χ χ χ
∂ ∂ ∂
− = − + −
∂ − ∂ − ∂
( )
2
2
2
1
2
1
θ θ θ
χ χ
ζ χ χ χ
∂ ∂ ∂
− = −
∂ ∂ − ∂
Let
1
δ
δ
Order of magnitude analysis
1
R
δ ≡ <<
1 1θ∂ ⎛ ⎞
( ) ( )2 1
2 ~
θ
χ χ δ
ζ ζ
⎛ ⎞∂
− ⎜ ⎟
∂ ⎝ ⎠
2
2 2
1
~
θ
χ δ
∂ ⎛ ⎞
⎜ ⎟
∂ ⎝ ⎠
( )
1 1
~ 1
1
θ
χ χ δ
∂ ⎛ ⎞
⎜ ⎟
− ∂ ⎝ ⎠
( )2
χ χ<<
Comparing terms, term is negligible
θ
χ
∂
∂
Nusselt # in Tube with Specified Temperatures:
Entrance Region
Then
2
1 1
~δ
ζ δ
⎛ ⎞
⎜ ⎟
⎝ ⎠
2
2
2
θ θ
χ
ζ χ
∂ ∂
=
∂ ∂
3
~δ ζ 1/3
~δ ζ
Nusselt number (from 9.3-23):
ζ δ⎝ ⎠ζ χ∂ ∂
1/3
1/3z
Nu C Pe
R
−
⎛ ⎞
= ⎜ ⎟
⎝ ⎠
C = constant
with order of
magnitude 1
Describes heat
transfer in
entrance region
To evaluate C
we solve the
energy eq.
g
2
2
2
θ θ
χ
ζ χ
∂ ∂
=
∂ ∂
( ,0) 0θ χ =BC’s: ; (0, ) 1θ ζ = ( , ) 0θ ζ∞ =;
ζ χ∂ ∂
Assume that θ = θ(s)
only, where: χ
Converting to
the similarity 2
2 2
2 ( ') 0
θ θ∂ ∂
+
y
( )
s
g
χ
ζ
≡ variable:
2 2
2
2 ( ') 0s g g
s s
+ =
∂ ∂
Nusselt # in Tube with Specified Temperatures:
Entrance Region
2
2 2
2
2 ( ') 0
d d
s g g
ds ds
θ θ
+ =
Need to have g2g’ = const. for s to be
only independent variableds ds y p
Let
( )2 31 3
' '
3 2
g g g= = ( )3 9
'
2
g =
Using
g(0)=0
1/3
9
2
g ζ
⎛ ⎞
=⎜ ⎟
⎝ ⎠
( )3 2
( ) 2 g(0) 0
1/3
1/3
2
9
s
χ
ζ
⎛ ⎞
∴ =⎜ ⎟
⎝ ⎠
2⎝ ⎠
9 ζ⎝ ⎠
The eqns. for
θ(s) are now: 2
2
3 0
d d
s
θ θ
+ =
( 0) 1sθ = =
2
3 0s
ds ds
+
( ) 0sθ = ∞ =
Let
d
p
θ
=
2
3
dp
s p= −
3
sd
p Ce
θ −
= =p
ds
= 3s p
ds
= 1p Ce
ds
= = −
Nusselt # in Tube with Specified Temperatures:
Entrance Region
3
0
1
s
d C e dsθ
∞
−
=∫ ∫
3
1
sd
p Ce
ds
θ −
= = − BC 1:
sθds
BC 2: 3
0
1
1 0
s
d C e dsθ
∞
−
=∫ ∫ 3
1
1
s
C
e ds
∞
−
= −
∫1 0
0
e ds∫
3 (1/3)
3
s
e ds
∞
− Γ
=∫ 33 s
dθ
∞
−
∫
The Nusselt
b is th :
0
3
(1/3)
s
s
e dsθ∴ =
Γ ∫
θ⎛ ⎞∂number is then:
0
0
2
2 6
2
(1/3) ( )w b
hR
Nu
k g
χ
χ
θ
χ θ
θ θ χ ζ
=
=
⎛ ⎞∂
−⎜ ⎟∂⎝ ⎠ ∂
= = = − =
− ∂ Γχ
θb = 0 since nonisothermal region is thin and almost
all fluid remains at inlet temp.
Nusselt # in Tube with Specified Temperatures:
Entrance Region
(1/3)=2.6789Γ
1/3
1/3
Nu 1.357
R
Pe
z
⎛ ⎞
= ⎜ ⎟
⎝ ⎠
(Tw const.)
For circular tube with
Same form as in previous equation with C=1.357
specified flux (qw) at
the wall: 1/3
1/3
Nu 1.640
R
Pe
z
⎛ ⎞
= ⎜ ⎟
⎝ ⎠
(qw const.)
both have same form with different constant value
z⎝ ⎠

Weitere ähnliche Inhalte

Was ist angesagt?

Magical Short Tricks for JEE(Main).
Magical Short Tricks for JEE(Main).Magical Short Tricks for JEE(Main).
Magical Short Tricks for JEE(Main).Vijay Joglekar
 
Continutiy of Functions.ppt
Continutiy of Functions.pptContinutiy of Functions.ppt
Continutiy of Functions.pptLadallaRajKumar
 
IB Chemistry on Gibbs Free Energy vs Entropy on spontaniety
IB Chemistry on Gibbs Free Energy vs Entropy on spontanietyIB Chemistry on Gibbs Free Energy vs Entropy on spontaniety
IB Chemistry on Gibbs Free Energy vs Entropy on spontanietyLawrence kok
 
introduction to differential equations
introduction to differential equationsintroduction to differential equations
introduction to differential equationsEmdadul Haque Milon
 
Ejercicios de complejos
Ejercicios de complejosEjercicios de complejos
Ejercicios de complejosNorman Rivera
 
The van der waals gas
The van der waals gasThe van der waals gas
The van der waals gasTaral Soliya
 
Diseño de Reactores Clase 1
Diseño de Reactores Clase 1Diseño de Reactores Clase 1
Diseño de Reactores Clase 1andruMB
 
Simulacion Digital Variables y Ecuaciones de estado
Simulacion Digital  Variables y Ecuaciones de estadoSimulacion Digital  Variables y Ecuaciones de estado
Simulacion Digital Variables y Ecuaciones de estadoR.M. M.H.
 
Partial differentiation
Partial differentiationPartial differentiation
Partial differentiationTanuj Parikh
 
Applications of Differential Equations of First order and First Degree
Applications of Differential Equations of First order and First DegreeApplications of Differential Equations of First order and First Degree
Applications of Differential Equations of First order and First DegreeDheirya Joshi
 
Partial differentiation B tech
Partial differentiation B techPartial differentiation B tech
Partial differentiation B techRaj verma
 
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJAPPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJZuhair Bin Jawaid
 
Aplicaciones de la Transformada de Laplace. 3 ejercicios resueltos por Ing. R...
Aplicaciones de la Transformada de Laplace. 3 ejercicios resueltos por Ing. R...Aplicaciones de la Transformada de Laplace. 3 ejercicios resueltos por Ing. R...
Aplicaciones de la Transformada de Laplace. 3 ejercicios resueltos por Ing. R...roscoro
 

Was ist angesagt? (20)

Magical Short Tricks for JEE(Main).
Magical Short Tricks for JEE(Main).Magical Short Tricks for JEE(Main).
Magical Short Tricks for JEE(Main).
 
DiAGRAMAS DE ELLINGHAM.ppt
 DiAGRAMAS DE ELLINGHAM.ppt DiAGRAMAS DE ELLINGHAM.ppt
DiAGRAMAS DE ELLINGHAM.ppt
 
Continutiy of Functions.ppt
Continutiy of Functions.pptContinutiy of Functions.ppt
Continutiy of Functions.ppt
 
IB Chemistry on Gibbs Free Energy vs Entropy on spontaniety
IB Chemistry on Gibbs Free Energy vs Entropy on spontanietyIB Chemistry on Gibbs Free Energy vs Entropy on spontaniety
IB Chemistry on Gibbs Free Energy vs Entropy on spontaniety
 
introduction to differential equations
introduction to differential equationsintroduction to differential equations
introduction to differential equations
 
Ejercicios de complejos
Ejercicios de complejosEjercicios de complejos
Ejercicios de complejos
 
Vectores y tensores para fenómenos de transporte
Vectores y tensores para fenómenos de transporteVectores y tensores para fenómenos de transporte
Vectores y tensores para fenómenos de transporte
 
The van der waals gas
The van der waals gasThe van der waals gas
The van der waals gas
 
Diseño de Reactores Clase 1
Diseño de Reactores Clase 1Diseño de Reactores Clase 1
Diseño de Reactores Clase 1
 
Simulacion Digital Variables y Ecuaciones de estado
Simulacion Digital  Variables y Ecuaciones de estadoSimulacion Digital  Variables y Ecuaciones de estado
Simulacion Digital Variables y Ecuaciones de estado
 
Partial differentiation
Partial differentiationPartial differentiation
Partial differentiation
 
Separation of variables
Separation of variablesSeparation of variables
Separation of variables
 
Applications of Differential Equations of First order and First Degree
Applications of Differential Equations of First order and First DegreeApplications of Differential Equations of First order and First Degree
Applications of Differential Equations of First order and First Degree
 
Partial differentiation B tech
Partial differentiation B techPartial differentiation B tech
Partial differentiation B tech
 
Error propagation
Error propagationError propagation
Error propagation
 
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJAPPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
 
Aplicaciones de la Transformada de Laplace. 3 ejercicios resueltos por Ing. R...
Aplicaciones de la Transformada de Laplace. 3 ejercicios resueltos por Ing. R...Aplicaciones de la Transformada de Laplace. 3 ejercicios resueltos por Ing. R...
Aplicaciones de la Transformada de Laplace. 3 ejercicios resueltos por Ing. R...
 
Topic 8 kft 131
Topic 8 kft 131Topic 8 kft 131
Topic 8 kft 131
 
Interpolation
InterpolationInterpolation
Interpolation
 

Andere mochten auch

Andere mochten auch (10)

Monatomic Ideal Gas Help
Monatomic Ideal Gas HelpMonatomic Ideal Gas Help
Monatomic Ideal Gas Help
 
The monoatomic ideal gas
The monoatomic ideal gasThe monoatomic ideal gas
The monoatomic ideal gas
 
Get 24/7 Physics Assignment Help, 100% error free, money back guarantee, Phd...
Get 24/7 Physics Assignment Help, 100% error free, money back guarantee,  Phd...Get 24/7 Physics Assignment Help, 100% error free, money back guarantee,  Phd...
Get 24/7 Physics Assignment Help, 100% error free, money back guarantee, Phd...
 
Quality Management
Quality ManagementQuality Management
Quality Management
 
Inventory Control
Inventory ControlInventory Control
Inventory Control
 
Project management
Project managementProject management
Project management
 
Quantum state
Quantum stateQuantum state
Quantum state
 
Process analysis
Process analysisProcess analysis
Process analysis
 
Get 24/7 Reliable Medical ScienceAssignment Help, 100% error free, money back...
Get 24/7 Reliable Medical ScienceAssignment Help, 100% error free, money back...Get 24/7 Reliable Medical ScienceAssignment Help, 100% error free, money back...
Get 24/7 Reliable Medical ScienceAssignment Help, 100% error free, money back...
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 

Ähnlich wie Fundamentals of Transport Phenomena ChE 715

Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715HelpWithAssignment.com
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715HelpWithAssignment.com
 
Lecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfLecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfsami717280
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715HelpWithAssignment.com
 
Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineeringPriyanka Anni
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsVjekoslavKovac1
 
Mit2 092 f09_lec11
Mit2 092 f09_lec11Mit2 092 f09_lec11
Mit2 092 f09_lec11Rahman Hakim
 
Waveguiding Structures Part 3 (Parallel Plates).pptx
Waveguiding Structures Part 3 (Parallel Plates).pptxWaveguiding Structures Part 3 (Parallel Plates).pptx
Waveguiding Structures Part 3 (Parallel Plates).pptxPawanKumar391848
 
Heat Conduction Simulation with FDM
Heat Conduction Simulation with FDMHeat Conduction Simulation with FDM
Heat Conduction Simulation with FDMXueer Zhang
 
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptxNotes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptxDibyadipRoy1
 
Commutation techniques in power electronics
Commutation techniques in power electronicsCommutation techniques in power electronics
Commutation techniques in power electronicsAniruddha Gautam
 
Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxPawanKumar391848
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equationsDr.Jagadish Tawade
 
Rhodes solutions-ch4
Rhodes solutions-ch4Rhodes solutions-ch4
Rhodes solutions-ch4sbjhbsbd
 
Air pollution dispersion modelling_P. Goyal _Centre for Atmospheric Sciences ...
Air pollution dispersion modelling_P. Goyal _Centre for Atmospheric Sciences ...Air pollution dispersion modelling_P. Goyal _Centre for Atmospheric Sciences ...
Air pollution dispersion modelling_P. Goyal _Centre for Atmospheric Sciences ...Arvind Kumar
 

Ähnlich wie Fundamentals of Transport Phenomena ChE 715 (20)

Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Lecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfLecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdf
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineering
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
 
Shell theory
Shell theoryShell theory
Shell theory
 
Mit2 092 f09_lec11
Mit2 092 f09_lec11Mit2 092 f09_lec11
Mit2 092 f09_lec11
 
Statistics Homework Help
Statistics Homework HelpStatistics Homework Help
Statistics Homework Help
 
Multiple Linear Regression Homework Help
Multiple Linear Regression Homework HelpMultiple Linear Regression Homework Help
Multiple Linear Regression Homework Help
 
Waveguiding Structures Part 3 (Parallel Plates).pptx
Waveguiding Structures Part 3 (Parallel Plates).pptxWaveguiding Structures Part 3 (Parallel Plates).pptx
Waveguiding Structures Part 3 (Parallel Plates).pptx
 
Ch07a entropy
Ch07a entropyCh07a entropy
Ch07a entropy
 
Heat Conduction Simulation with FDM
Heat Conduction Simulation with FDMHeat Conduction Simulation with FDM
Heat Conduction Simulation with FDM
 
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptxNotes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
 
Commutation techniques in power electronics
Commutation techniques in power electronicsCommutation techniques in power electronics
Commutation techniques in power electronics
 
Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptx
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
Rhodes solutions-ch4
Rhodes solutions-ch4Rhodes solutions-ch4
Rhodes solutions-ch4
 
Air pollution dispersion modelling_P. Goyal _Centre for Atmospheric Sciences ...
Air pollution dispersion modelling_P. Goyal _Centre for Atmospheric Sciences ...Air pollution dispersion modelling_P. Goyal _Centre for Atmospheric Sciences ...
Air pollution dispersion modelling_P. Goyal _Centre for Atmospheric Sciences ...
 

Kürzlich hochgeladen

Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxGrade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxkarenfajardo43
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQuiz Club NITW
 
Mental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young mindsMental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young mindsPooky Knightsmith
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmStan Meyer
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptxmary850239
 
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxDIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxMichelleTuguinay1
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptxmary850239
 
MS4 level being good citizen -imperative- (1) (1).pdf
MS4 level   being good citizen -imperative- (1) (1).pdfMS4 level   being good citizen -imperative- (1) (1).pdf
MS4 level being good citizen -imperative- (1) (1).pdfMr Bounab Samir
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
Scientific Writing :Research Discourse
Scientific  Writing :Research  DiscourseScientific  Writing :Research  Discourse
Scientific Writing :Research DiscourseAnita GoswamiGiri
 
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptxDecoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptxDhatriParmar
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxVanesaIglesias10
 
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxBIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxSayali Powar
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
week 1 cookery 8 fourth - quarter .pptx
week 1 cookery 8  fourth  -  quarter .pptxweek 1 cookery 8  fourth  -  quarter .pptx
week 1 cookery 8 fourth - quarter .pptxJonalynLegaspi2
 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17Celine George
 

Kürzlich hochgeladen (20)

Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxGrade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
 
Mental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young mindsMental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young minds
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and Film
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx
 
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxDIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx
 
MS4 level being good citizen -imperative- (1) (1).pdf
MS4 level   being good citizen -imperative- (1) (1).pdfMS4 level   being good citizen -imperative- (1) (1).pdf
MS4 level being good citizen -imperative- (1) (1).pdf
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
Scientific Writing :Research Discourse
Scientific  Writing :Research  DiscourseScientific  Writing :Research  Discourse
Scientific Writing :Research Discourse
 
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptxDecoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptx
 
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxBIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Faculty Profile prashantha K EEE dept Sri Sairam college of Engineering
Faculty Profile prashantha K EEE dept Sri Sairam college of EngineeringFaculty Profile prashantha K EEE dept Sri Sairam college of Engineering
Faculty Profile prashantha K EEE dept Sri Sairam college of Engineering
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
week 1 cookery 8 fourth - quarter .pptx
week 1 cookery 8  fourth  -  quarter .pptxweek 1 cookery 8  fourth  -  quarter .pptx
week 1 cookery 8 fourth - quarter .pptx
 
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptxINCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17
 
prashanth updated resume 2024 for Teaching Profession
prashanth updated resume 2024 for Teaching Professionprashanth updated resume 2024 for Teaching Profession
prashanth updated resume 2024 for Teaching Profession
 

Fundamentals of Transport Phenomena ChE 715

  • 1. Fundamentals of Transport Phenomena ChE 715 Lecture 20 Ch 9 • Convective Heat/Mass Transfer C fi d Fl• Confined Flows Spring 2011
  • 2. Convective Heat/Mass Transfer To, L Conc., or temp change at wall y Vx Scenario—Flow thru flat plate: Steady-state conservation equations: 2 v source term(s)A A AC D C⋅∇ = ∇ + o y x x 2 v source term(s), where = p k T T C α α ρ ⋅∇ = ∇ + Generalized non-dimensional form: 2 Pe source term(s)θ θ⋅∇ = ∇ +v θ = Dimensionless concentration or temperature Generalized non dimensional form 2 0 Re P ∇⋅ = ⋅∇ = −∇ + ∇ v v v v θ Dimensionless concentration or temperature Will need velocity profile and energy eqn to solve prob Pe = Peclet#; Re= Reynolds# to solve prob
  • 3. Convective Heat/Mass Transfer Pe˜v⋅ ˜∇θ = ˜∇2 θ +source term(s) Steady-state conservation equations: ˜∇⋅ ˜v = 0; Re ˜v⋅ ˜∇˜v = − ˜∇ ˜P + ˜∇2 ˜v UL UL Pe Pr Re ν α α ν = = = UL UL Pe ScRe i iD D ν ν = = = Sc: Schmidt # Pr: Prandt’l # Sc: Schmidt # U,L characteristic velocity and length UL UL U U Pe ii or or DD αα = = = ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ Note, Charac. vel. of convection Charac vel ofii L L α ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ Charac. vel. of conduction/diffusion
  • 4. Example Problem: Heating on a Plate Energy Equation: 2 2 T T T U α ⎛ ⎞∂ ∂ ∂ +⎜ ⎟ Insulated Insulated Heated qo 2 2 U x x y α= +⎜ ⎟ ∂ ∂ ∂⎝ ⎠UTo L y x II I III K BC’s: ⎧ II Heated Plate moving at const. speed 0( , )T y T−∞ = ( , ) 0 dT y dx ∞ =; ( ,0) 0 dT x dy = ; 0 0 0 ( , ) / 0 x or x KdT x L q k x Kdy < >⎧ = ⎨ ≤ ≤⎩ ; f l h E EDefine cross-sectional avg. temperature: 1 L Averaging each term in Energy Eq.: 2 y L dT d T T U α = ∂ + 0 1 ( ) ( , )T x T x y dy L = ∫ 2 0y U dx dx L y α = = + ∂
  • 5. Example Problem: Heating on a Plate Using BC’s at top and 2 2 0, 0 d T U dT x or x K dx dxα − = < > Regions I & III Using BC s at top and bottom surfaces: dx dxα 2 0 2 , 0 qd T U dT x K dx dx kLα − = ≤ ≤ Region II Plug into eqn. for Region II: dx dx kLα Let: 2 x L ζ = Pe 0T T T − Θ = Δ 2 0 2 q LUL d d d d k Tα ζ ζ Θ Θ = + Δ Let: 0q L T k Δ = K L λ = k For confined fluids in general, a cross-sectional dimension is usually they appropriate length scale
  • 6. Example Problem: Heating on a Plate The dimensionless avg. temp. is governed by: 2 2 0, 0 d d Pe or d d ζ ζ λ ζ ζ Θ Θ − = < > 2 2 1, 0 d d Pe d d ζ λ ζ ζ Θ Θ − = − ≤ ≤ BC‘s: ( ) 0Θ −∞ = ( ) 0 d dζ Θ ∞ = 0ζ < The resulting solution is: ( )1 2 ( ) 1 Pe Pee e Pe ζ λ ζ − Θ = − ( )( ) 2 2 1 ( ) 1 Pe e Pe Pe ζ λ ζ ζ − Θ = − + 0 ζ λ< < 3 ( ) Pe λ ζΘ = ζ λ>
  • 7. Convective Heat/Mass Transfer Dimensional analysis: θ = θ(˜x,Pe,Re,geometry)g y Heat transfer coefficient (mass transfer homolog is Sh): Nu f hL k = Dimensionless temp. gradient at tube wall Dimensionless temp. difference Nusselt # ( )S b S n∂θ ∂ θ θ − = = − i kL Sh D = = Convective mass transport Diffusive mass transport Nusselt # Sherwood # For confined flows (flow in the z-direction) z A v dAθ θ ≡ ∫ iD Diffusive mass transportSherwood # For confined flows (flow in the z-direction), b z A v dA θ ≡ ∫
  • 8. Example Problem: Hollow-Fiber Dializer Flux from fluid to wall: [ ]( , ) ( ) ( ) ( , )i i ib iN R z k z C z C R z= −C r R Cid Dialysate M b [ ]( , ) ( ) ( ) ( , )ir ci ib iN R z k z C z C R zCi0 r z R Ci(r,Z) vz Membrane L Flux of solute i through membrane [ ]( ) ( )N R z k C R z C Transport PDE for fluid inside fiber: L [ ]( , ) ( , )ir mi i idN R z k C R z C= − where: kci(z) = mass transfer coeff. kmi = permeability of membrane to i ⎛ ⎞ f ber membrane to i v i i i z C D C r z r r r ∂ ∂∂ ∂ ∂ ∂ ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ Integrating over r : v ( , ) ( , ) R i i z i ir C C rdr RD R z RN R z ∂ ∂ ∂ ∂ = = −∫0 ( , ) ( , )z i ir z r∂ ∂∫
  • 9. Example Problem: Hollow-Fiber Dializer C r R Cid Dialysate M b ( , ) ( , ) R i i z i ir C C v rdr RD R z RN R z z r ∂ ∂ ∂ ∂ = = −∫ Recalling that: Ci0 r z R Ci(r,Z) vz Membrane L ( ) i z A ib Cv dA C z ≡ ∫ ∫ 0 z r∂ ∂ L 2R R bC dCd R U∂ ∫ ∫ ( )ib z A v dA∫ The LHS becomes: 0 0 2 i ib z i z C dCd R U v rdr C v rdr z dz dz ∂ ∂ = =∫ ∫ Th RH i l d i U= avg. vel [ ] 2 ( ) ( , )ib ci ib i dC k C z C R z dz RU = − The RHS is evaluated using the equation flux from fluid to wall eqn:
  • 10. Example Problem: Hollow-Fiber Dializer Ci0 r R Cid Dialysate Membrane 2 0 0 2 R R i ib z i z C dCd R U v rdr C v rdr z dz dz ∂ ∂ = =∫ ∫ z Ci(r,Z) vz L How? 0 ( ) R i zi z A ib R Cv rdrCv dA C z v dA ≡ = ∫∫ ∫ ∫ 0 2 2 R z R zR v rdr U v rdr R ≡ = ∫ ∫ ∫ 0 2 2 R zv rdr UR =∫ 0 z A z v dA v rdr∫ ∫ 0 0 R rdr∫ 0 2R UR Cv rdr C∫0 2 i z iCv rdr C=∫ 2R R i ibC dCd R U d C d ∂ ∫ ∫0 0 2 i ib z i z d U v rdr C v rdr z dz dz∂ = =∫ ∫
  • 11. Example Problem: Hollow-Fiber Dializer To eliminate C(r,z) the two equations for flux are combined to give:C r R Cid Dialysate M b f f m gCi0 r z R Ci(r,Z) vz Membrane L [ ]( ) ( , ) ( )ci mi ib i ib id ci mi k k C z C R z C z C k k ⎛ ⎞ − = −⎜ ⎟ +⎝ ⎠L The final ODE for the bulk t ti i ci mi⎝ ⎠ [ ] 0 2 , (0)ib ci mi ib id ib i dC k k C C C C ⎛ ⎞ = − − =⎜ ⎟ If kci is independent of z then: concentration is: [ ] 0, (0)ib id ib i ci mi C C C C dz RU k k ⎜ ⎟ +⎝ ⎠ 0 ( ) 2 expib id ci mi i id ci mi C z C k kz C C RU k k ⎡ ⎤⎛ ⎞− = −⎢ ⎥⎜ ⎟ − +⎝ ⎠⎣ ⎦ Overall mass transfer coeff.
  • 12. Example Problem: Hollow-Fiber Dializer How do we get the following equation?Ci0 r z R Cid C Dialysate Membrane z Ci(r,Z) vz L [ ]( ) ( , ) ( )ci mi ib i ib id ci mi k k C z C R z C z C k k ⎛ ⎞ − = −⎜ ⎟ +⎝ ⎠ Flux from fluid to wall: [ ]( ) ( ) ( ) ( )N R z k z C z C R z= − Plug in Ci(R,z) [ ]( , ) ( ) ( ) ( , )ir ci ib iN R z k z C z C R z= Flux of solute i through membrane [ ]( ) ( )N R k C R C ( ) ( , ) ci ib mi id i ci mi k C z k C C R z k k + = + rearrange [ ]( , ) ( , )ir mi i idN R z k C R z C= − [ ] [ ]( ) ( ) ( , ) ( , )ci ib i mi i idk z C z C R z k C R z C− = −[ ] [ ]( ) ( ) ( , ) ( , )ci ib i mi i idk C C k C C
  • 13. Convective Heat/Mass Transfer Materials from this slide onwards is covered in lecture 21 Heat/mass transfer coefficients in confined flows: vz profile is known, assumed well-developed. Entrance regime: uorSh ll d l d i Entrance regime: Nu ~ L/δ(z) Nu Well-developed regime: Nu = constant ~ 3 z
  • 14. Nusselt # in Tube with Specified Temperatures T R Tw At entrance ( )Tk ∂ ∂η− (step change) Nu hL ;T0 R δ E t z=0 Fully Developed ( )w b w h T T ∂η = − Nu k = ( ) b wT TT∂ ∂η δ − = ; Entry Region Fully Developed Region (FD) Entry FD ( )w ∂η δ ~ at entrance L Nu δ ∴ r Nu ~ 1 Nu ~ L/δ(z) logNu Entrance Region • Fluid enters at T = T0 • Step change at wall T = Tw l log z Step change at wall T Tw • Flow is laminar & fully developed for z>0 • Large Pe# (ignore axial conduction) • Near to entrance (z=0)
  • 15. Nusselt # in Tube with Specified Temperatures Dimensional problem is: 2 T T⋅∇ = ∇v ⎡ ⎤2 2 1 r T T U r R z r r r α⎡ ⎤ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ − =⎢ ⎥⎜ ⎟ ⎜ ⎟ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦ 0( ,0)T r T=BC’s: ; (0, ) 0 dT z dr = ; ( , ) wT R z T= Now nondimensionalizeNow, nondimensionalize r R η = 0 0w T T T T θ − = − z z ζ = Δ 2 2 2 1 1 U z R θ α θ η η ζ η η η ⎛ ⎞∂ ∂ ∂ ⎡ ⎤− = ⎜ ⎟⎣ ⎦Δ ∂ ∂ ∂⎝ ⎠0w To be determined z Rζ η η ηΔ ∂ ∂ ∂⎝ ⎠ 2 22 1 1 UR z θ θ η η α ζ η η η ⎛ ⎞∂ ∂ ∂ ⎡ ⎤− = ⎜ ⎟⎣ ⎦Δ ∂ ∂ ∂⎝ ⎠zα ζ η η η⎣ ⎦Δ ∂ ∂ ∂⎝ ⎠
  • 16. Nusselt # in Tube with Specified Temperatures Let 2 2 2UR UR z R R Pe α α Δ = = ⋅ = ⋅ 2 22 1 1 UR z θ θ η η α ζ η η η ⎛ ⎞∂ ∂ ∂ ⎡ ⎤− = ⎜ ⎟⎣ ⎦Δ ∂ ∂ ∂⎝ ⎠ We get ( )2 1θ θ⎛ ⎞∂ ∂ ∂ 2z UR where Pe R Pe ζ α ∴ = = ⋅ ( 0) 0θBC’s: ; (0 ) 0 dθ ζ ; (1 ) 1θ ζ ( )2 1 1 θ θ η η ζ η η η ⎛ ⎞∂ ∂ ∂ − = ⎜ ⎟ ∂ ∂ ∂⎝ ⎠ ( ,0) 0θ η =BC s: ; (0, ) 0 d ζ η = ; (1, ) 1θ ζ = Entrance Region Use similarity solution For ζ~0, temp. changes occur near Use new radial variable based at the wall: 1χ η= −changes occur near the tube wall χ η
  • 17. Nusselt # in Tube with Specified Temperatures: Entrance Region Then 1χ η= − 1 ( ) ( )2 1 1 1 2 1 1 θ θ χ χ χ ζ χ χ χ ⎛ ⎞∂ ∂ ∂ ⎡ ⎤− − + = − − −⎜ ⎟⎣ ⎦ ∂ − ∂ ∂⎝ ⎠ χ η∂ = −∂ 1η χ= − ( ) ( ) ( ) 2 2 2 1 1 2 1 1 1 1 θ θ θ χ χ χ ζ χ χ χ χ ∂ ∂ ∂ − = − + − ∂ − ∂ − ∂ ( ) 2 2 2 1 2 1 θ θ θ χ χ ζ χ χ χ ∂ ∂ ∂ − = − ∂ ∂ − ∂ Let 1 δ δ Order of magnitude analysis 1 R δ ≡ << 1 1θ∂ ⎛ ⎞ ( ) ( )2 1 2 ~ θ χ χ δ ζ ζ ⎛ ⎞∂ − ⎜ ⎟ ∂ ⎝ ⎠ 2 2 2 1 ~ θ χ δ ∂ ⎛ ⎞ ⎜ ⎟ ∂ ⎝ ⎠ ( ) 1 1 ~ 1 1 θ χ χ δ ∂ ⎛ ⎞ ⎜ ⎟ − ∂ ⎝ ⎠ ( )2 χ χ<< Comparing terms, term is negligible θ χ ∂ ∂
  • 18. Nusselt # in Tube with Specified Temperatures: Entrance Region Then 2 1 1 ~δ ζ δ ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ 2 2 2 θ θ χ ζ χ ∂ ∂ = ∂ ∂ 3 ~δ ζ 1/3 ~δ ζ Nusselt number (from 9.3-23): ζ δ⎝ ⎠ζ χ∂ ∂ 1/3 1/3z Nu C Pe R − ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ C = constant with order of magnitude 1 Describes heat transfer in entrance region To evaluate C we solve the energy eq. g 2 2 2 θ θ χ ζ χ ∂ ∂ = ∂ ∂ ( ,0) 0θ χ =BC’s: ; (0, ) 1θ ζ = ( , ) 0θ ζ∞ =; ζ χ∂ ∂ Assume that θ = θ(s) only, where: χ Converting to the similarity 2 2 2 2 ( ') 0 θ θ∂ ∂ + y ( ) s g χ ζ ≡ variable: 2 2 2 2 ( ') 0s g g s s + = ∂ ∂
  • 19. Nusselt # in Tube with Specified Temperatures: Entrance Region 2 2 2 2 2 ( ') 0 d d s g g ds ds θ θ + = Need to have g2g’ = const. for s to be only independent variableds ds y p Let ( )2 31 3 ' ' 3 2 g g g= = ( )3 9 ' 2 g = Using g(0)=0 1/3 9 2 g ζ ⎛ ⎞ =⎜ ⎟ ⎝ ⎠ ( )3 2 ( ) 2 g(0) 0 1/3 1/3 2 9 s χ ζ ⎛ ⎞ ∴ =⎜ ⎟ ⎝ ⎠ 2⎝ ⎠ 9 ζ⎝ ⎠ The eqns. for θ(s) are now: 2 2 3 0 d d s θ θ + = ( 0) 1sθ = = 2 3 0s ds ds + ( ) 0sθ = ∞ = Let d p θ = 2 3 dp s p= − 3 sd p Ce θ − = =p ds = 3s p ds = 1p Ce ds = = −
  • 20. Nusselt # in Tube with Specified Temperatures: Entrance Region 3 0 1 s d C e dsθ ∞ − =∫ ∫ 3 1 sd p Ce ds θ − = = − BC 1: sθds BC 2: 3 0 1 1 0 s d C e dsθ ∞ − =∫ ∫ 3 1 1 s C e ds ∞ − = − ∫1 0 0 e ds∫ 3 (1/3) 3 s e ds ∞ − Γ =∫ 33 s dθ ∞ − ∫ The Nusselt b is th : 0 3 (1/3) s s e dsθ∴ = Γ ∫ θ⎛ ⎞∂number is then: 0 0 2 2 6 2 (1/3) ( )w b hR Nu k g χ χ θ χ θ θ θ χ ζ = = ⎛ ⎞∂ −⎜ ⎟∂⎝ ⎠ ∂ = = = − = − ∂ Γχ θb = 0 since nonisothermal region is thin and almost all fluid remains at inlet temp.
  • 21. Nusselt # in Tube with Specified Temperatures: Entrance Region (1/3)=2.6789Γ 1/3 1/3 Nu 1.357 R Pe z ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ (Tw const.) For circular tube with Same form as in previous equation with C=1.357 specified flux (qw) at the wall: 1/3 1/3 Nu 1.640 R Pe z ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ (qw const.) both have same form with different constant value z⎝ ⎠