SlideShare ist ein Scribd-Unternehmen logo
1 von 16
TEMA:
          SEMICONDUCTORES
CURSO:          FÍSICA ELECTRÓNICA
TEMA:           SEMICONDUCTORES
ESPECIALIDAD:   INGENIERÍA DE SISTEMAS E INFORMÁTICA
ESTUDIANTE:     ELIAS EMILIO GARCIA CASTILLO
DOCENTE:        EUSEBIO CARRASCO SAJAMI
SEMICONDUCTOR
   Un semiconductor es un elemento que se comporta
    como un conductor o como aislante dependiendo de
    diversos factores, como por ejemplo el campo eléctrico
    o magnético, la presión, la radiación que le incide, o la
    temperatura del ambiente en el que se encuentre.
SEMICONDUCTORES INTRÍNSECOS
SEMICONDUCTORES INTRÍNSECOS
Un semiconductor es “intrínseco” cuando se encuentra en estado
puro, o sea, que no contiene ninguna impureza, ni átomos de otro
tipo dentro de su estructura.

A temperatura ambiente se comporta como un aislante porque
solo tiene unos pocos electrones libres y huecos debidos a la
energía térmica.
SEMICONDUCTORES INTRÍNSECOS

Como se puede observar en la ilustración, en el caso de los
semiconductores el espacio correspondiente a la banda
prohibida es mucho más estrecho en comparación con los
materiales aislantes. La energía de salto de banda (Eg)
requerida por los electrones para saltar de la banda de valencia
a la de conducción es de 1 eV aproximadamente. En los
semiconductores de silicio (Si), la energía de salto de banda
requerida por los electrones es de 1,21 eV, mientras que en los
de germanio (Ge) es de 0,785 eV.
SEMICONDUCTORES INTRÍNSECOS
También hay flujos de electrones y huecos, aunque la corriente
total resultante sea cero. Esto se debe a que por acción de la
energía térmica se producen los electrones libres y los huecos
por pares, por lo tanto hay tantos electrones libres como huecos
con lo que la corriente total es cero.

La tensión aplicada en la figura forzará a los electrones libres a
circular hacia la derecha (del terminal negativo de la pila al
positivo) y a los huecos hacia la izquierda.
ESTRUCTURA CRISTALINA DE
   UN SEMICONDUCTOR
       INTRÍNSECO
   Compuesta solamente por
    átomos de silicio (Si) que
    forman una celosía. Como
    se puede observar en la
    ilustración, los átomos de
    silicio (que sólo poseen
    cuatro electrones en la
    última órbita o banda de
    valencia), se unen formando
    enlaces covalente para
    completar ocho electrones y
    crear así un cuerpo sólido
    semiconductor. En esas
    condiciones el cristal de
    silicio se comportará igual
    que si fuera un cuerpo
    aislante.
MODELO DE BANDAS DE ENERGÍA:
        CONDUCCIÓN INTRÍNSECA




En un semiconductor perfecto, las concentraciones de electrones(n)
en la banda de conducción y de huecos(p) en la banda de valencia
son iguales (por unidad de volumen); así como la concentración
intrínseca de portadores.
   Adición de un elemento de impureza a un semiconductor
    puro donde los electrones libres y huecos se encuentran en
    igual número y son producidos únicamente por la agitación
    térmica para así cambiar su conductividad.
   Las impurezas donadas o pentavalentes aumentan el
    número de electrones libres
   Si aplicamos una tensión al cristal de silicio,
    el positivo de la pila intentará atraer los
    electrones y el negativo los huecos
    favoreciendo así la aparición de una
    corriente a través del circuito




     Sentido del movimiento de un electrón y un hueco en el silicio
   Dependiendo del tipo de impureza con el
    que se dope al semiconductor puro o
    intrínseco aparecen dos clases de
    semiconductores.

    •   Semiconductor tipo P

    •   Semiconductor tipo N
   Se llama así al material que tiene átomos de
    impurezas que permiten la formación de
    huecos sin que aparezcan electrones
    asociados a los mismos, como ocurre al
    romperse una ligadura. Los átomos de este
    tipo se llaman aceptores, ya que "aceptan" o
    toman un electrón. Suelen ser de valencia
    tres, como el Aluminio, el Indio o el Galio
• Cuando al dopar
introducimos:
 Tipo P = átomo de 3e 
átomo de 4e
• Exceso de carga positiva.
• Se recombinan con el
exceso de átomos.
• Nos quedan un hueco libre
que nos produce atracción.
• Los huecos colaboran en la
circulación de la corriente
   Un Semiconductor tipo N se obtiene llevando a cabo un proceso
    de dopado añadiendo un cierto tipo de átomos al semiconductor
    para poder aumentar el número de portadores de carga libres (en
    este caso negativos o electrones).
   Cuando se añade el material dopante aporta sus electrones más
    débilmente vinculados a los átomos del semiconductor. Este tipo
    de agente dopante es también conocido como material donante
    ya que da algunos de sus electrones.
• Tiene 5e.

• Es potencialmente más negativo.

• No se recombina con los demás átomos.

• Se añade cierto tipo de átomos.

• Se aumenta el número de portadores de
carga libre.

•    Dopaje en N: Producir abundancia de
    electrones portadores en el material.

• Algunos ejemplo: Fósforo, Arsénico,
Antimonio.
http://www.asifunciona.com/fisica/ke_semiconductor/ke_semiconductor_4.htm
http://es.wikipedia.org/wiki/Semiconductor
http://www.ifent.org/lecciones/semiconductor/dopado.asp
http://www.sc.ehu.es/sbweb/electronica/elec_basica/tema2/Paginas/Pagina4.htm
http://enciclopedia.us.es/index.php/Semiconductor
http://fisicauva.galeon.com/aficiones1925812.html

http://www.asifunciona.com/fisica/ke_semiconductor/ke_semiconductor_4.htm

http://www.ifent.org/lecciones/semiconductor/dopado.asp

http://es.wikipedia.org/wiki/Dopaje_(semiconductores)

http://es.wikipedia.org/wiki/Semiconductor

Weitere ähnliche Inhalte

Was ist angesagt? (19)

Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores inga
Semiconductores ingaSemiconductores inga
Semiconductores inga
 
Semiconductores trabajo
Semiconductores trabajoSemiconductores trabajo
Semiconductores trabajo
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
U2 a1 semiconductores
U2 a1 semiconductoresU2 a1 semiconductores
U2 a1 semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Trabajos de semiconductores
Trabajos de semiconductoresTrabajos de semiconductores
Trabajos de semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores_aecs
Semiconductores_aecsSemiconductores_aecs
Semiconductores_aecs
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores Intrínsecos y Dopados
Semiconductores Intrínsecos y DopadosSemiconductores Intrínsecos y Dopados
Semiconductores Intrínsecos y Dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
Semiconductores Semiconductores
Semiconductores
 

Ähnlich wie SemiconductoresUPT

Semiconductores
SemiconductoresSemiconductores
Semiconductores
RogerFidel
 
Semiconductores.isaki
Semiconductores.isakiSemiconductores.isaki
Semiconductores.isaki
isaki2014
 
Semiconductores intrínsecos y dopados
Semiconductores intrínsecos y dopadosSemiconductores intrínsecos y dopados
Semiconductores intrínsecos y dopados
denosorio
 
Teoría de semiconductores
Teoría de semiconductoresTeoría de semiconductores
Teoría de semiconductores
Bella Misa
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
scorass
 
Semiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopadosSemiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopados
castropc
 
Semiconductores intrínsecos y los semiconductores dopados
Semiconductores intrínsecos y los semiconductores dopadosSemiconductores intrínsecos y los semiconductores dopados
Semiconductores intrínsecos y los semiconductores dopados
Luis Lurita Giles
 

Ähnlich wie SemiconductoresUPT (20)

Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores intrinsecos y los dopados
Semiconductores intrinsecos y los dopadosSemiconductores intrinsecos y los dopados
Semiconductores intrinsecos y los dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores.isaki
Semiconductores.isakiSemiconductores.isaki
Semiconductores.isaki
 
Semiconductores intrínsecos y dopados
Semiconductores intrínsecos y dopadosSemiconductores intrínsecos y dopados
Semiconductores intrínsecos y dopados
 
Teoría de semiconductores
Teoría de semiconductoresTeoría de semiconductores
Teoría de semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopadosSemiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopados
 
Semi conductors jorge condor
Semi conductors jorge condorSemi conductors jorge condor
Semi conductors jorge condor
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Wilson s turpo condori
Wilson s turpo condoriWilson s turpo condori
Wilson s turpo condori
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores intrínsecos y los semiconductores dopados
Semiconductores intrínsecos y los semiconductores dopadosSemiconductores intrínsecos y los semiconductores dopados
Semiconductores intrínsecos y los semiconductores dopados
 

Kürzlich hochgeladen

TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
jlorentemartos
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Fernando Solis
 

Kürzlich hochgeladen (20)

Revista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdfRevista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdf
 
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
 
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdfPlan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
 
Factores que intervienen en la Administración por Valores.pdf
Factores que intervienen en la Administración por Valores.pdfFactores que intervienen en la Administración por Valores.pdf
Factores que intervienen en la Administración por Valores.pdf
 
Usos y desusos de la inteligencia artificial en revistas científicas
Usos y desusos de la inteligencia artificial en revistas científicasUsos y desusos de la inteligencia artificial en revistas científicas
Usos y desusos de la inteligencia artificial en revistas científicas
 
Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024
 
Posición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptxPosición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptx
 
La Evaluacion Formativa SM6 Ccesa007.pdf
La Evaluacion Formativa SM6  Ccesa007.pdfLa Evaluacion Formativa SM6  Ccesa007.pdf
La Evaluacion Formativa SM6 Ccesa007.pdf
 
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdf
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdfFICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdf
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdf
 
Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024
 
Louis Jean François Lagrenée. Erotismo y sensualidad. El erotismo en la Hist...
Louis Jean François Lagrenée.  Erotismo y sensualidad. El erotismo en la Hist...Louis Jean François Lagrenée.  Erotismo y sensualidad. El erotismo en la Hist...
Louis Jean François Lagrenée. Erotismo y sensualidad. El erotismo en la Hist...
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
 
La Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalLa Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración Ambiental
 
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIASISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
 
PLAN LECTOR 2024 integrado nivel inicial-miercoles 10.pptx
PLAN LECTOR 2024  integrado nivel inicial-miercoles 10.pptxPLAN LECTOR 2024  integrado nivel inicial-miercoles 10.pptx
PLAN LECTOR 2024 integrado nivel inicial-miercoles 10.pptx
 
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN PARÍS. Por JAVIER SOL...
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN  PARÍS. Por JAVIER SOL...ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN  PARÍS. Por JAVIER SOL...
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN PARÍS. Por JAVIER SOL...
 
1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...
1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...
1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...
 
Los dos testigos. Testifican de la Verdad
Los dos testigos. Testifican de la VerdadLos dos testigos. Testifican de la Verdad
Los dos testigos. Testifican de la Verdad
 
Desarrollo y Aplicación de la Administración por Valores
Desarrollo y Aplicación de la Administración por ValoresDesarrollo y Aplicación de la Administración por Valores
Desarrollo y Aplicación de la Administración por Valores
 

SemiconductoresUPT

  • 1. TEMA: SEMICONDUCTORES CURSO: FÍSICA ELECTRÓNICA TEMA: SEMICONDUCTORES ESPECIALIDAD: INGENIERÍA DE SISTEMAS E INFORMÁTICA ESTUDIANTE: ELIAS EMILIO GARCIA CASTILLO DOCENTE: EUSEBIO CARRASCO SAJAMI
  • 2. SEMICONDUCTOR  Un semiconductor es un elemento que se comporta como un conductor o como aislante dependiendo de diversos factores, como por ejemplo el campo eléctrico o magnético, la presión, la radiación que le incide, o la temperatura del ambiente en el que se encuentre.
  • 4. SEMICONDUCTORES INTRÍNSECOS Un semiconductor es “intrínseco” cuando se encuentra en estado puro, o sea, que no contiene ninguna impureza, ni átomos de otro tipo dentro de su estructura. A temperatura ambiente se comporta como un aislante porque solo tiene unos pocos electrones libres y huecos debidos a la energía térmica.
  • 5. SEMICONDUCTORES INTRÍNSECOS Como se puede observar en la ilustración, en el caso de los semiconductores el espacio correspondiente a la banda prohibida es mucho más estrecho en comparación con los materiales aislantes. La energía de salto de banda (Eg) requerida por los electrones para saltar de la banda de valencia a la de conducción es de 1 eV aproximadamente. En los semiconductores de silicio (Si), la energía de salto de banda requerida por los electrones es de 1,21 eV, mientras que en los de germanio (Ge) es de 0,785 eV.
  • 6. SEMICONDUCTORES INTRÍNSECOS También hay flujos de electrones y huecos, aunque la corriente total resultante sea cero. Esto se debe a que por acción de la energía térmica se producen los electrones libres y los huecos por pares, por lo tanto hay tantos electrones libres como huecos con lo que la corriente total es cero. La tensión aplicada en la figura forzará a los electrones libres a circular hacia la derecha (del terminal negativo de la pila al positivo) y a los huecos hacia la izquierda.
  • 7. ESTRUCTURA CRISTALINA DE UN SEMICONDUCTOR INTRÍNSECO  Compuesta solamente por átomos de silicio (Si) que forman una celosía. Como se puede observar en la ilustración, los átomos de silicio (que sólo poseen cuatro electrones en la última órbita o banda de valencia), se unen formando enlaces covalente para completar ocho electrones y crear así un cuerpo sólido semiconductor. En esas condiciones el cristal de silicio se comportará igual que si fuera un cuerpo aislante.
  • 8. MODELO DE BANDAS DE ENERGÍA: CONDUCCIÓN INTRÍNSECA En un semiconductor perfecto, las concentraciones de electrones(n) en la banda de conducción y de huecos(p) en la banda de valencia son iguales (por unidad de volumen); así como la concentración intrínseca de portadores.
  • 9. Adición de un elemento de impureza a un semiconductor puro donde los electrones libres y huecos se encuentran en igual número y son producidos únicamente por la agitación térmica para así cambiar su conductividad.  Las impurezas donadas o pentavalentes aumentan el número de electrones libres
  • 10. Si aplicamos una tensión al cristal de silicio, el positivo de la pila intentará atraer los electrones y el negativo los huecos favoreciendo así la aparición de una corriente a través del circuito Sentido del movimiento de un electrón y un hueco en el silicio
  • 11. Dependiendo del tipo de impureza con el que se dope al semiconductor puro o intrínseco aparecen dos clases de semiconductores. • Semiconductor tipo P • Semiconductor tipo N
  • 12. Se llama así al material que tiene átomos de impurezas que permiten la formación de huecos sin que aparezcan electrones asociados a los mismos, como ocurre al romperse una ligadura. Los átomos de este tipo se llaman aceptores, ya que "aceptan" o toman un electrón. Suelen ser de valencia tres, como el Aluminio, el Indio o el Galio
  • 13. • Cuando al dopar introducimos:  Tipo P = átomo de 3e  átomo de 4e • Exceso de carga positiva. • Se recombinan con el exceso de átomos. • Nos quedan un hueco libre que nos produce atracción. • Los huecos colaboran en la circulación de la corriente
  • 14. Un Semiconductor tipo N se obtiene llevando a cabo un proceso de dopado añadiendo un cierto tipo de átomos al semiconductor para poder aumentar el número de portadores de carga libres (en este caso negativos o electrones).  Cuando se añade el material dopante aporta sus electrones más débilmente vinculados a los átomos del semiconductor. Este tipo de agente dopante es también conocido como material donante ya que da algunos de sus electrones.
  • 15. • Tiene 5e. • Es potencialmente más negativo. • No se recombina con los demás átomos. • Se añade cierto tipo de átomos. • Se aumenta el número de portadores de carga libre. • Dopaje en N: Producir abundancia de electrones portadores en el material. • Algunos ejemplo: Fósforo, Arsénico, Antimonio.