SlideShare ist ein Scribd-Unternehmen logo
1 von 70
MRI /fMRI Dresden, July 17th, 2009 Fakultätsname XYZ Fachrichtung XYZ Institutsname XYZ, Professur XYZ
MRT? ,[object Object],[object Object],[object Object],[object Object],[object Object],Magnet Resonanz Kern Spin
Kurze MRT Geschichte ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Wer „spin“-nt hier? Spin : eine (quantenmechanische) Eigenschaft von Elementarteilchen „ Eigendrehimpuls“ magnetisches Moment ,[object Object],[object Object],[object Object],www.e-mri.org
Wer „spin“-nt so richtig? ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
WW mit Magnetfeld
Mikro-/Makroskopisch Resonanz Protonen richten sich parallel und antiparallel zum äußeren Magnetfeld aus Nettomagnetisierung: (N+) – (N- ) ~6 ppm !!! (1T)
Prinzip
Elektromagnetische Spektrum MRI X-Ray, CT
Resonanz:
Komponenten
Nettomagnetisierung
Resonanz: Anregungs-HF-Puls
Resonanz: Anregungs-HF-Puls
Koordinatensysteme
Anregung und Relaxation Nach jeder Störung durch einen HF-Puls nehmen die Spins wieder ihren Grundzustand ein, sie »erholen« sich. Diese RELAXATION  können wir durch zwei voneinander unabhängige Prozesse beschreiben, indem wir  Längsmagnetisierung  und  Quermagnetisierung  getrennt betrachten.
T1-Relaxation Eine RELAXATION ist ein dynamischer Prozess: Ein System kehrt aus einem Nichtgleichgewichtszustand in sein Gleichgewicht zurück. Die Energie der angeregten Spins geht durch Wechselwirkung mit dem ➔ Gitter wieder verloren
T1-Relaxation
T2-Relaxation
Quermagnetisierung:T2-Relaxation
Messprinzip
Signaldetektion
Mathematische Beschreibung ,[object Object],Seite  ,[object Object],[object Object],Bloch-Gleichung
180°-Puls
Spin-Echo
Kontraste
Kontraste
Kontraste
Kontraste
T2-Kontraste
MRT-Anlage:Schematischer Aufbau
[object Object],[object Object],Ortsauflösung: Gradienten Seite  ,[object Object],[object Object],[object Object],[object Object]
Ortsauflösung: Gradienten
Ortsauflösung: Gradienten Magnetic gradient fields increase or reduce linearly the static magnetic field B 0 , resulting in a linear change of precessional frequency. The change in precessional frequency is directly proportional to the distance from the center of the magnet
Backprojection
 
Ortsauflösung: Gradienten
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TU Dresden,  21.08.09 Präsentationsname XYZ Folie   von XYZ

Weitere ähnliche Inhalte

Andere mochten auch

Ultrasonography of brain
Ultrasonography of brainUltrasonography of brain
Ultrasonography of brainCibele Carvalho
 
Neurosonology criteria
Neurosonology criteriaNeurosonology criteria
Neurosonology criteriamcamellia
 
fMRI Brain Imaging
fMRI Brain ImagingfMRI Brain Imaging
fMRI Brain ImagingMerrett
 
Brain MRI biomarkers for improved follow up of people with Multiple Sclerosis...
Brain MRI biomarkers for improved follow up of people with Multiple Sclerosis...Brain MRI biomarkers for improved follow up of people with Multiple Sclerosis...
Brain MRI biomarkers for improved follow up of people with Multiple Sclerosis...Wim Van Hecke
 
Ppt parietal lobe
Ppt parietal lobePpt parietal lobe
Ppt parietal lobeqavi786
 
Guidelines in the management of carotid stenosis
Guidelines in the management of carotid stenosisGuidelines in the management of carotid stenosis
Guidelines in the management of carotid stenosisuvcd
 
Doppler ultrasound of carotid arteries
Doppler ultrasound of carotid arteriesDoppler ultrasound of carotid arteries
Doppler ultrasound of carotid arteriesSamir Haffar
 
MRI SECTIONAL ANATOMY OF BRAIN
MRI SECTIONAL ANATOMY OF BRAIN MRI SECTIONAL ANATOMY OF BRAIN
MRI SECTIONAL ANATOMY OF BRAIN Vipin Kumar
 
Magnetic Resonance Imaging
Magnetic Resonance ImagingMagnetic Resonance Imaging
Magnetic Resonance Imagingguest2d52f2
 

Andere mochten auch (16)

Ultrasonography of brain
Ultrasonography of brainUltrasonography of brain
Ultrasonography of brain
 
Neurosonology criteria
Neurosonology criteriaNeurosonology criteria
Neurosonology criteria
 
fMRI Brain Imaging
fMRI Brain ImagingfMRI Brain Imaging
fMRI Brain Imaging
 
New carotid doppler ultrasound
New carotid doppler ultrasoundNew carotid doppler ultrasound
New carotid doppler ultrasound
 
Brain MRI biomarkers for improved follow up of people with Multiple Sclerosis...
Brain MRI biomarkers for improved follow up of people with Multiple Sclerosis...Brain MRI biomarkers for improved follow up of people with Multiple Sclerosis...
Brain MRI biomarkers for improved follow up of people with Multiple Sclerosis...
 
Introduction to fMRI
Introduction to fMRIIntroduction to fMRI
Introduction to fMRI
 
CAROTID ARTERY STENOSIS
CAROTID ARTERY STENOSISCAROTID ARTERY STENOSIS
CAROTID ARTERY STENOSIS
 
Ppt parietal lobe
Ppt parietal lobePpt parietal lobe
Ppt parietal lobe
 
Guidelines in the management of carotid stenosis
Guidelines in the management of carotid stenosisGuidelines in the management of carotid stenosis
Guidelines in the management of carotid stenosis
 
Doppler ultrasound of carotid arteries
Doppler ultrasound of carotid arteriesDoppler ultrasound of carotid arteries
Doppler ultrasound of carotid arteries
 
MRI SECTIONAL ANATOMY OF BRAIN
MRI SECTIONAL ANATOMY OF BRAIN MRI SECTIONAL ANATOMY OF BRAIN
MRI SECTIONAL ANATOMY OF BRAIN
 
MRI
MRIMRI
MRI
 
Compensation & benefit presentation
Compensation & benefit presentation Compensation & benefit presentation
Compensation & benefit presentation
 
BASICS OF MRI
BASICS OF MRIBASICS OF MRI
BASICS OF MRI
 
Magnetic Resonance Imaging
Magnetic Resonance ImagingMagnetic Resonance Imaging
Magnetic Resonance Imaging
 
Mri ppt
Mri pptMri ppt
Mri ppt
 

Mri Fmri

Hinweis der Redaktion

  1. A magnet is a magnetic dipole and it can be represented by a magnetic vector. A moving magnetic field induces a current in a loop of wire. For example, the rotating magnet below induces a sinusoidal current that can be recorded. MRI coils can be used for transmitting and/or receiving. As it is not possible to receive RF signal in the same axis as B 0 , coils are only sensitive to variations of transverse magnetization vector. Quadrature RF coils (circularly polarized coils) consist of at least two coils that are oriented orthogonal to each over (and both are othogonal to B 0 axis). They have a better signal to noise ratio than linear RF coils.
  2. After a 90° RF pulse, net magnetization tips down so that longitudinal magnetization has disappeared and transverse magnetization has appeared. Once the RF transmitter is turned off, relaxation happens : transverse magnetization decays longitudinal magnetization recovers protons re-radiate the absorbed energy Coils can receive the signal in the transverse plane due to variations of transverse magnetization vector. This signal is oscillating at resonance frequency and signal enveloppe is a decay curve described as an exponential curve. In absence of any magnetic gradient, this signal is called Free Induction Decay (FID). FID signal decays faster than T 2 would predict and decreases exponentially at characteristic time constant T 2 * . T 2 * takes into account : tissue specific spin-spin relaxation (random interactions between spins) responsible for pure T 2 decay static inhomogeneities in magnetic fields which accelerate spins dephasing
  3. A 180° RF pulse can rephase spins and reverse static field inhomogeneities. After a 90° RF pulse, spins dephase and transverse magnetization decreases. If we apply a 180° RF pulse, spins rephase and transverse magnetization reappears How can a 180° RF pulse rephase spins? Consider the following race: Once the race starts (the relaxation begins), the turtle and the rabbit are at the same place (the starting line): they are in phase. As the rabbit runs faster, there is a distance between him and the turtle: they dephase. Then both have to turn around and go back (180° RF pulse) Assuming they are both going at the same speed as before, they arrive at the same time at the starting (finish) line : they rephase.