SlideShare ist ein Scribd-Unternehmen logo
1 von 22
© 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-1
LAN Connections
Constructing a
Network
Addressing
Scheme
© 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-2
Flat Topology
Problems
 All devices share the same bandwidth.
 All devices share the same broadcast domain.
 It is difficult to apply a security policy.
© 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-3
Subnetworks
 Smaller networks are
easier to manage.
 Overall traffic is
reduced.
 You can more easily
apply network security
policies.
© 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-4
What a Subnet Mask Does
 Tells the router the number of bits to look at when routing
 Defines the number of bits that are significant
 Used as a measuring tool, not to hide anything
© 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-5
Possible Subnets and Hosts for a Class
C Network
© 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-6
Possible Subnets and Hosts for a Class
B Network
© 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-7
Possible Subnets and Hosts for a Class
A Network
© 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-8
End System Subnet Mask Operation
© 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-9
How Routers Use Subnet Masks
© 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-10
Applying the Subnet Address Scheme
© 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-11
Octet Values of a Subnet Mask
Subnet masks, like IP addresses, are represented in the dotted decimal
format like 255.255.255.0
© 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-12
Default Subnet Masks
Example Class A address (decimal): 10.0.0.0
Example Class A address (binary): 00001010.00000000.00000000.00000000
Default Class A mask (binary): 11111111.00000000.00000000.00000000
Default Class A mask (decimal): 255.0.0.0
Default classful prefix length: /8
Example Class C address (decimal): 192.168.42.0
Example Class C address (binary): 11000000.10101000.00101010.00000000
Default Class C mask (binary): 11111111.11111111.11111111.00000000
Default Class C mask (decimal): 255.255.255.0
Default classful prefix length: /24
Example Class B address (decimal): 172.16.0.0
Example Class B address (binary): 10010001.10101000.00000000.00000000
Default Class B mask (binary): 11111111.11111111.00000000.00000000
Default Class B mask (decimal): 255.255.0.0
Default classful prefix length: /16
© 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-13
Procedure for Implementing Subnets
1. Determine the IP address assigned by the registry authority.
2. Based on the organizational and administrative structure,
determine the number of subnets required.
3. Based on the address class and required number of subnets,
determine the number of bits you need to borrow from the
host ID.
4. Determine the binary and decimal value of the subnet mask.
5. Apply the subnet mask to the network IP address to
determine the subnet and host addresses.
6. Assign subnet addresses to specific interfaces.
© 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-14
Eight Easy Steps for Determining Subnet
Addresses
© 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-15
Eight Easy Steps for Determining Subnet
Addresses (Cont.)
© 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-16
Example: Applying a Subnet Mask for a
Class C Address
© 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-17
Example: Applying a Subnet Mask for a
Class B Address
© 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-18
Example: Applying a Subnet Mask for a
Class A Address
© 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-19
Summary
 Networks, particularly large networks, are often divided into
smaller subnetworks, or subnets. Subnets can improve network
performance and control.
 A subnet address extends the network portion, and is created by
borrowing bits from the original host portion and designating them
as the subnet field.
 Determining the optimal number of subnets and hosts depends
on the type of network and the number of host addresses
required.
 The algorithm for computing a number of subnets is 2s
, where s is
the number of subnet bits.
© 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-20
Summary (Cont.)
 The subnet mask is the tool that the router uses to determine
which bits are routing (network and subnet) bits and which bits
are host bits.
 End systems use subnet masks to compare the network portion
of the local network addresses with the destination addresses of
the packets to be sent.
 Routers use subnet masks to determine if the network portion of
an IP address is on the corresponding routing table or if the
packet needs to be sent to the next router.
© 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-21
Summary (Cont.)
Follow these steps to determine the subnetwork and host
addresses using a subnet mask:
1. Write the octet being split in binary.
2. Write the mask in binary and draw a line to delineate the significant
bits.
3. Cross out the mask so you can view the significant bits.
4. Copy the subnet bits four times.
5. Define the network address by placing all zeroes in the
host bits.
6. Define the broadcast address by placing all ones in the
host bits.
7. Define the first and last host numbers.
8. Increment the subnet bits by one.
© 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-22

Weitere ähnliche Inhalte

Was ist angesagt? (20)

CCNA Icnd110 s05l02
CCNA Icnd110 s05l02CCNA Icnd110 s05l02
CCNA Icnd110 s05l02
 
CCNA Icnd110 s04l02
CCNA Icnd110 s04l02CCNA Icnd110 s04l02
CCNA Icnd110 s04l02
 
CCNA Icnd110 s02l07
CCNA Icnd110 s02l07CCNA Icnd110 s02l07
CCNA Icnd110 s02l07
 
CCNA Icnd110 s05l05
CCNA Icnd110 s05l05CCNA Icnd110 s05l05
CCNA Icnd110 s05l05
 
CCNA Icnd110 s02l06
CCNA Icnd110 s02l06CCNA Icnd110 s02l06
CCNA Icnd110 s02l06
 
CCNA Icnd110 s05l01
CCNA Icnd110 s05l01CCNA Icnd110 s05l01
CCNA Icnd110 s05l01
 
CCNA Icnd110 s01l06
CCNA Icnd110 s01l06CCNA Icnd110 s01l06
CCNA Icnd110 s01l06
 
CCNA Icnd110 s01l08
CCNA Icnd110 s01l08CCNA Icnd110 s01l08
CCNA Icnd110 s01l08
 
CCNA Icnd110 s02l02
CCNA Icnd110 s02l02CCNA Icnd110 s02l02
CCNA Icnd110 s02l02
 
CCNA Icnd110 s02l04
CCNA Icnd110 s02l04CCNA Icnd110 s02l04
CCNA Icnd110 s02l04
 
CCNA Icnd110 s04l10
CCNA Icnd110 s04l10CCNA Icnd110 s04l10
CCNA Icnd110 s04l10
 
CCNA Icnd110 lg
CCNA Icnd110 lgCCNA Icnd110 lg
CCNA Icnd110 lg
 
Icnd210 s08l05
Icnd210 s08l05Icnd210 s08l05
Icnd210 s08l05
 
CCNA Icnd110 s02l03
CCNA Icnd110 s02l03CCNA Icnd110 s02l03
CCNA Icnd110 s02l03
 
CCNA Icnd110 s03l01
CCNA Icnd110 s03l01CCNA Icnd110 s03l01
CCNA Icnd110 s03l01
 
CCNA Icnd110 s01l09
CCNA Icnd110 s01l09CCNA Icnd110 s01l09
CCNA Icnd110 s01l09
 
CCNA Icnd110 s02l01
CCNA Icnd110 s02l01CCNA Icnd110 s02l01
CCNA Icnd110 s02l01
 
CCNA Icnd110 s01l03
CCNA Icnd110 s01l03CCNA Icnd110 s01l03
CCNA Icnd110 s01l03
 
CCNA Icnd110 s04l06
CCNA Icnd110 s04l06CCNA Icnd110 s04l06
CCNA Icnd110 s04l06
 
CCNA Icnd110 s02l05
CCNA Icnd110 s02l05CCNA Icnd110 s02l05
CCNA Icnd110 s02l05
 

Ähnlich wie CCNA Icnd110 s04l03

IP Addressing and Subnetting
IP Addressing and SubnettingIP Addressing and Subnetting
IP Addressing and SubnettingAtakan ATAK
 
Rashmi T S-Intrenship PPT.pptx
Rashmi T S-Intrenship PPT.pptxRashmi T S-Intrenship PPT.pptx
Rashmi T S-Intrenship PPT.pptxManojGowdaKb
 
Microsoft windows server 2003
Microsoft windows server 2003Microsoft windows server 2003
Microsoft windows server 2003bishal mahat
 
Junos routing overview from Juniper
Junos routing overview from JuniperJunos routing overview from Juniper
Junos routing overview from JuniperNam Nguyen
 
CCNA 1 Routing and Switching v5.0 Chapter 9
CCNA 1 Routing and Switching v5.0 Chapter 9CCNA 1 Routing and Switching v5.0 Chapter 9
CCNA 1 Routing and Switching v5.0 Chapter 9Nil Menon
 
CCNA RS_NB - Chapter 8
CCNA RS_NB - Chapter 8CCNA RS_NB - Chapter 8
CCNA RS_NB - Chapter 8Irsandi Hasan
 
CCNA RS_ITN - Chapter 9
CCNA RS_ITN - Chapter 9CCNA RS_ITN - Chapter 9
CCNA RS_ITN - Chapter 9Irsandi Hasan
 
Free CCNA workbook by networkers home pdf
Free CCNA workbook by networkers home pdfFree CCNA workbook by networkers home pdf
Free CCNA workbook by networkers home pdfNetworkershome
 
Ip Addressing Basics
Ip Addressing BasicsIp Addressing Basics
Ip Addressing Basicstmavroidis
 
IP Concept in LTE
IP Concept in LTEIP Concept in LTE
IP Concept in LTESofian .
 
CCNA ppt Day 3
CCNA ppt Day 3CCNA ppt Day 3
CCNA ppt Day 3VISHNU N
 
[Ccna] subnetting & vlsm
[Ccna] subnetting & vlsm[Ccna] subnetting & vlsm
[Ccna] subnetting & vlsm1 2d
 
Chapter 9 : Subnetting IP networks
Chapter 9 : Subnetting IP networksChapter 9 : Subnetting IP networks
Chapter 9 : Subnetting IP networksteknetir
 

Ähnlich wie CCNA Icnd110 s04l03 (20)

IP Addressing and Subnetting
IP Addressing and SubnettingIP Addressing and Subnetting
IP Addressing and Subnetting
 
Subnetting
SubnettingSubnetting
Subnetting
 
Rashmi T S-Intrenship PPT.pptx
Rashmi T S-Intrenship PPT.pptxRashmi T S-Intrenship PPT.pptx
Rashmi T S-Intrenship PPT.pptx
 
Microsoft windows server 2003
Microsoft windows server 2003Microsoft windows server 2003
Microsoft windows server 2003
 
Junos routing overview from Juniper
Junos routing overview from JuniperJunos routing overview from Juniper
Junos routing overview from Juniper
 
CCNA IP Addressing
CCNA IP AddressingCCNA IP Addressing
CCNA IP Addressing
 
CCNA 1 Routing and Switching v5.0 Chapter 9
CCNA 1 Routing and Switching v5.0 Chapter 9CCNA 1 Routing and Switching v5.0 Chapter 9
CCNA 1 Routing and Switching v5.0 Chapter 9
 
CCNA RS_NB - Chapter 8
CCNA RS_NB - Chapter 8CCNA RS_NB - Chapter 8
CCNA RS_NB - Chapter 8
 
Lecture 06
Lecture 06Lecture 06
Lecture 06
 
CCNA 200-120 Exam Quick Notes
CCNA 200-120 Exam Quick NotesCCNA 200-120 Exam Quick Notes
CCNA 200-120 Exam Quick Notes
 
CCNA RS_ITN - Chapter 9
CCNA RS_ITN - Chapter 9CCNA RS_ITN - Chapter 9
CCNA RS_ITN - Chapter 9
 
Free CCNA workbook by networkers home pdf
Free CCNA workbook by networkers home pdfFree CCNA workbook by networkers home pdf
Free CCNA workbook by networkers home pdf
 
Chapter06
Chapter06Chapter06
Chapter06
 
Ip Addressing Basics
Ip Addressing BasicsIp Addressing Basics
Ip Addressing Basics
 
IP Concept in LTE
IP Concept in LTEIP Concept in LTE
IP Concept in LTE
 
CCNA ppt Day 3
CCNA ppt Day 3CCNA ppt Day 3
CCNA ppt Day 3
 
Subnetting class C
Subnetting class CSubnetting class C
Subnetting class C
 
[Ccna] subnetting & vlsm
[Ccna] subnetting & vlsm[Ccna] subnetting & vlsm
[Ccna] subnetting & vlsm
 
CCNA 1 Chapter 9 v5.0 2014
CCNA 1 Chapter 9 v5.0 2014CCNA 1 Chapter 9 v5.0 2014
CCNA 1 Chapter 9 v5.0 2014
 
Chapter 9 : Subnetting IP networks
Chapter 9 : Subnetting IP networksChapter 9 : Subnetting IP networks
Chapter 9 : Subnetting IP networks
 

Mehr von computerlenguyen (20)

Icnd210 s08l04
Icnd210 s08l04Icnd210 s08l04
Icnd210 s08l04
 
Icnd210 s08l03
Icnd210 s08l03Icnd210 s08l03
Icnd210 s08l03
 
Icnd210 s08l02
Icnd210 s08l02Icnd210 s08l02
Icnd210 s08l02
 
Icnd210 s08l01
Icnd210 s08l01Icnd210 s08l01
Icnd210 s08l01
 
Icnd210 s07l03
Icnd210 s07l03Icnd210 s07l03
Icnd210 s07l03
 
Icnd210 s07l02
Icnd210 s07l02Icnd210 s07l02
Icnd210 s07l02
 
Icnd210 s07l01
Icnd210 s07l01Icnd210 s07l01
Icnd210 s07l01
 
Icnd210 s06l03
Icnd210 s06l03Icnd210 s06l03
Icnd210 s06l03
 
Icnd210 s06l02
Icnd210 s06l02Icnd210 s06l02
Icnd210 s06l02
 
Icnd210 s06l01
Icnd210 s06l01Icnd210 s06l01
Icnd210 s06l01
 
Icnd210 s05l03
Icnd210 s05l03Icnd210 s05l03
Icnd210 s05l03
 
Icnd210 s05l02
Icnd210 s05l02Icnd210 s05l02
Icnd210 s05l02
 
Icnd210 s04l03
Icnd210 s04l03Icnd210 s04l03
Icnd210 s04l03
 
Icnd210 s04l02
Icnd210 s04l02Icnd210 s04l02
Icnd210 s04l02
 
Icnd210 s04l01
Icnd210 s04l01Icnd210 s04l01
Icnd210 s04l01
 
Icnd210 s03l03
Icnd210 s03l03Icnd210 s03l03
Icnd210 s03l03
 
Icnd210 s03l02
Icnd210 s03l02Icnd210 s03l02
Icnd210 s03l02
 
Icnd210 s03l01
Icnd210 s03l01Icnd210 s03l01
Icnd210 s03l01
 
Icnd210 s02l06
Icnd210 s02l06Icnd210 s02l06
Icnd210 s02l06
 
Icnd210 s02l05
Icnd210 s02l05Icnd210 s02l05
Icnd210 s02l05
 

Kürzlich hochgeladen

Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 

Kürzlich hochgeladen (20)

Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 

CCNA Icnd110 s04l03

  • 1. © 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-1 LAN Connections Constructing a Network Addressing Scheme
  • 2. © 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-2 Flat Topology Problems  All devices share the same bandwidth.  All devices share the same broadcast domain.  It is difficult to apply a security policy.
  • 3. © 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-3 Subnetworks  Smaller networks are easier to manage.  Overall traffic is reduced.  You can more easily apply network security policies.
  • 4. © 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-4 What a Subnet Mask Does  Tells the router the number of bits to look at when routing  Defines the number of bits that are significant  Used as a measuring tool, not to hide anything
  • 5. © 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-5 Possible Subnets and Hosts for a Class C Network
  • 6. © 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-6 Possible Subnets and Hosts for a Class B Network
  • 7. © 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-7 Possible Subnets and Hosts for a Class A Network
  • 8. © 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-8 End System Subnet Mask Operation
  • 9. © 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-9 How Routers Use Subnet Masks
  • 10. © 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-10 Applying the Subnet Address Scheme
  • 11. © 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-11 Octet Values of a Subnet Mask Subnet masks, like IP addresses, are represented in the dotted decimal format like 255.255.255.0
  • 12. © 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-12 Default Subnet Masks Example Class A address (decimal): 10.0.0.0 Example Class A address (binary): 00001010.00000000.00000000.00000000 Default Class A mask (binary): 11111111.00000000.00000000.00000000 Default Class A mask (decimal): 255.0.0.0 Default classful prefix length: /8 Example Class C address (decimal): 192.168.42.0 Example Class C address (binary): 11000000.10101000.00101010.00000000 Default Class C mask (binary): 11111111.11111111.11111111.00000000 Default Class C mask (decimal): 255.255.255.0 Default classful prefix length: /24 Example Class B address (decimal): 172.16.0.0 Example Class B address (binary): 10010001.10101000.00000000.00000000 Default Class B mask (binary): 11111111.11111111.00000000.00000000 Default Class B mask (decimal): 255.255.0.0 Default classful prefix length: /16
  • 13. © 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-13 Procedure for Implementing Subnets 1. Determine the IP address assigned by the registry authority. 2. Based on the organizational and administrative structure, determine the number of subnets required. 3. Based on the address class and required number of subnets, determine the number of bits you need to borrow from the host ID. 4. Determine the binary and decimal value of the subnet mask. 5. Apply the subnet mask to the network IP address to determine the subnet and host addresses. 6. Assign subnet addresses to specific interfaces.
  • 14. © 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-14 Eight Easy Steps for Determining Subnet Addresses
  • 15. © 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-15 Eight Easy Steps for Determining Subnet Addresses (Cont.)
  • 16. © 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-16 Example: Applying a Subnet Mask for a Class C Address
  • 17. © 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-17 Example: Applying a Subnet Mask for a Class B Address
  • 18. © 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-18 Example: Applying a Subnet Mask for a Class A Address
  • 19. © 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-19 Summary  Networks, particularly large networks, are often divided into smaller subnetworks, or subnets. Subnets can improve network performance and control.  A subnet address extends the network portion, and is created by borrowing bits from the original host portion and designating them as the subnet field.  Determining the optimal number of subnets and hosts depends on the type of network and the number of host addresses required.  The algorithm for computing a number of subnets is 2s , where s is the number of subnet bits.
  • 20. © 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-20 Summary (Cont.)  The subnet mask is the tool that the router uses to determine which bits are routing (network and subnet) bits and which bits are host bits.  End systems use subnet masks to compare the network portion of the local network addresses with the destination addresses of the packets to be sent.  Routers use subnet masks to determine if the network portion of an IP address is on the corresponding routing table or if the packet needs to be sent to the next router.
  • 21. © 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-21 Summary (Cont.) Follow these steps to determine the subnetwork and host addresses using a subnet mask: 1. Write the octet being split in binary. 2. Write the mask in binary and draw a line to delineate the significant bits. 3. Cross out the mask so you can view the significant bits. 4. Copy the subnet bits four times. 5. Define the network address by placing all zeroes in the host bits. 6. Define the broadcast address by placing all ones in the host bits. 7. Define the first and last host numbers. 8. Increment the subnet bits by one.
  • 22. © 2007 Cisco Systems, Inc. All rights reserved. ICND1 v1.0—4-22

Hinweis der Redaktion

  1. Tổng quan Mạng con (subnet hay subnetwork) là một khái niệm rất phổ biến. Ttrong môi trường mạng, đó là khái niệm phân đoạn hệ thống mạng thành những bộ phận nhỏ có những địa chỉ riêng của nó. Để tạo ra các subnet, một số bit nằm trong phần host của địa chỉ IP sẽ được mượn để tạo ra các subnet. Bài học sẽ mô tả về chức năng của subnet và cách tính toán các subnet. Nhiệm vụ Cung cấp khả năng tính toán địa chỉ subnet thông qua các nhiệm vụ sau: Mô tả mục tiêu và chức năng của subnet Mô tả tiến trình tính toán những địa chỉ subnet và host khả dụng Mô tả làm cách cách thiết bị đầu cuối sử dụng subnet mask để định vị trí thiết bị đích Mô tả cách router sử dụng subnet mask để định tuyến cho dữ liệu đến đích Mô tả cơ cấu vận hành của subnet mask Áp dụng nguyên tắc vận hành này vào các lớp địa chỉ A, B, C
  2. Quản trị mạng thông thường sẽ chia nhỏ hệ thống mạng, đặc biệt là trong môi trường mạng lớn, thành nhiều subnet khác nhau nhằm tạo ra khả năng phân địa chỉ một các linh động. Chủ dề này mô tả mục tiêu, chức năng của subnet và cách định ra kế hoạch về địa chỉ. Một công ty chiếm hũu 3 tầng lầu của một toàn nhà sẽ có hệ thống mạng được chia theo các tầng, trên mỗi tầng lại được chia nhỏ thành từng văn phòng nhỏ. Suy nghĩ một toà nhà này như một hệ thống mạng với 3 tầng là 3 subnet và mỗi văn phòng như một host trong hệ thống mạng này. Subnet sẽ phân đoạn các host trong hệ thống mạng. Nếu không có khái niệm subnet, hệ thống mạng chỉ là một mô hình phẳng. Một mô hình phẳng như vậy sẽ làm bảng định tuyến của chúng ta ngắn hơn và chỉ dựa trên địa chỉ MAC lớp 2 để phân phối dữ liệu. MAC là dạng địa chỉ không phân cấp và khi hệ thống mạng càng lớn, băng thông của hệ thống mạng sẽ ít dần và trở nên kém hiệu quả. Những bất lợi của một mạng phẳng: Tất cả các thiết bị sẽ chia sẻ cùng một băng thông Tất cả các thiết bị chia sẻ cùng một vùng broadcast Rất khó để áp đặt các chính sách bảo mật bởi vì hầu như không tồn tại một sự ngăn cách nào giữa các thiết bị Trong hệ thống mạng Ethernet gắn kết với nhau bởi HUB, mỗi host trong môi trường mạng này sẽ thấy tất cả các gói dữ liệu khác trên mạng. Trong môi trường gắn qua hệ thống chuyển mạch (switched-connected network) các host sẽ thấy gói dữ liệu broadcast. Trong trường hợp dữ liệu đưa ra lớn, khả năng va chạm là hoàn toàn có thề khi các thiết bị gởi dữ liệu ra đồng thời. Thiết bị phát hiện được va đụng sẽ phải ngưng truyền và sẽ cố gắng truyền lại trong một khoản thời gian ngẫu nhiên sau đó. Về phía người dùng, họ chỉ có thể cảm nhận được tiến trình này qua sự chậm đi của hệ thống mạng. Router có thể được sử dụng trong trường hơp này để chia cách mạng thành những những subnet khác nhau.
  3. Những lợi điểm của việc subnet hệ thống mạng được thể hiện như dưới: Hệ thống mạng càng nhỏ càng dễ quản lý và dễ dàng gắn kết với các nhu cầu chức năng cũng như phạm vi địa lý Tổng lưu lượng hệ thống mạng sẽ được giảm xuống do đó sẽ làm tăng khả năng hoạt động của hệ thống Bạn có thể dễ dàng áp dụng các chính sách bảo mật mạng tại những điểm liên kết nối giữa các subnet thay vì phải dặt trên toàn bộ hệ thống mạng Trong môi trường tồn tại nhiều hệ thống mạng, mỗi subnet có thể được gắn vào Internet qua một router như hình trên. Trong ví dụ này, hệ thống mạng được chia nhỏ thành nhiều subnet. Chi tiết bên trong môi trường mạng và làm cách nào hệ thống mang được chia thành nhiều subnet sẽ trở nên không quan trọng đối với cách nhìn từ hệ thống mạng khác. Giá trị subnet mask xác định phần quan trọng trong địa chỉ IP, tầm quan trọng ở đây chính là ranh giới giữa phần network và phần host. Giá trị này sẽ ảnh hưởng đến quá trình định tuyến trong hệ thống mạng.
  4. Địa chỉ 2 cấp và 3 cấp Khi phương pháp xác định địa chỉ và các lớp địa chỉ IPv4 được phát triển, địa chỉ 2 lớp (bao gồm network và host) thoạt đầu tỏ ra khá hiệu quả. Mỗi lớp địa chỉ (A, B và C) có giá trị subnet mask mặc định đi liền, và do subnet mask được định nghĩa trước, do vậy không cần phải bắt buộc cấu hình giá trị này. Khi số lượng các thiết bị gắn kết vào mạng ngày càng tăng, vấn đề không hiệu quả trong việc sử dụng địa chỉ mạng ngày càng trở nên rõ ràng hơn. Để giải quyết vấn đề này, cấp địa chỉ thứ 3, bao gồm subnet, đã được phát triển. Một địa chỉ subnet bao gồm phần mạng đầy đủ của lớp mạng nguyên gốc cộng thêm phần subnet. Đây cũng được xem như là phần mở rộng tiền tố mạng. Vùng subnet và vùng host được tạo ra từ phần host cũ của lớp mạng ban đầu. Để tạo ra các địa chỉ subnet, chúng ta mượn những bit từ vùng host nguyên gốc và phân định chúng thành những bit thuộc vùng subnet. Tuy nhiên, subnet sẽ không vận hành được nếu không có cách xác định phần địa chỉ nào giờ đây sẽ thuộc về phần mạng và phần nào là phần host. Do vậy, subnet mask cần phải được cấu hình rõ ràng. Quá trình tạo subnet Địa chỉ subnet được tạo ra bằng cách lấy đi những bit của phần host thuộc về các lớp A, B hay C. Thông thường quản trị mạng sẽ phân định các địa chỉ subnet một cách cục bộ. Và cũng như địa chỉ IP, mỗi subnet phải là duy nhất. Khi tạo ra các subnet, một số địa chỉ IP sẽ bị mất đi, do vậy phải lường trước được tỷ lệ địa chỉ bị mất đi khi tạo ra các subnet. Phương pháp được sử dụng để tính toán số lượng của các subnet là lũy thừa của 2. Khi lấy đi một số bit từ vùng host, cần phẩi chú ý về số lượng subnet mới được tạo ra. Khi mượn 2 bit ta có thể tạo ra 4 subnet (2^2 = 4). Mỗi khi có một bit được mượn từ vùng host, số lượng subnet sẽ được tăng lên bằng với lũy thừa 2 số lượng bit mượn được đồng thời số lượng host cũng giảm đi theo công thức lũy thừa 2 như vậy. Một số ví dụ được đưa ra như sau: Sử dụng 3 bit cho vùng subnet sẽ tạo ra 8 subnet (2^3 = 8) Sử dụng 4 bit cho vùng subnet sẽ tạo ra 8 subnet (2^4 = 16) Sử dụng 5 bit cho vùng subnet sẽ tạo ra 8 subnet (2^5 = 32) Sử dụng 6 bit cho vùng subnet sẽ tạo ra 8 subnet (2^6 = 64) Nói tóm lại, công thức sau đây được sử dụng để tính toán số lượng subnet Số lượng subnet = 2^s (s là số lượng số bit làm subnet)
  5. Tính số lượng host cho địa chỉ lớp C Mỗi khi 1 bit được mượn từ vùng host, vùng host lại bị giảm đi 1 bit có thể được sử dụng cho các host và số lượng địa chỉ host dùng để gán cho các host bị giảm đi theo công thức lũy thừa 2. Như ví dụ trên, xét một địa chỉ lớp C trong đó tất cả 8 bit trong octet cuối được sử dụng cho phần xác định host. Do vậy, có khoản 256 địa chỉ có thể. Trên thực tế, giá trị thực sự để có thể phân định cho các host là 254 (256 -2 địa chỉ để dành). Hãy tường tượng rắng địa chỉ lớp C được chia thành các subnet, nếu 2 bit được mượn từ 8 bit mặc định ban đầu, kích cỡ vùng host sẽ giảm xuống còn 6 bit. Sự kết hợp của tất cả các giá trị bit 0 và bit 1 xảy ra ở 6 bit còn lại sẽ tạo ra các địa chỉ để gán cho host trong mỗi subnet đó. Số lượng này, ban đầu là 256 giờ giảm xuống còn 64. Giá trị thực tế lúc này lại chỉ giảm còn 62 (64 -2 địa chỉ để dành) Trong cùng một mạng lớp C, nếu 3 bit được mượn, kích cỡ vùng host sẽ giảm còn 5 bit và số lượng địa chỉ tổng cộng cho các host là 32 (2^5). Trong đó chỉ có 30 địa chỉ sử dụng được (32-2). Số lượng địa chỉ host có thể sử dụng được để gán cho subnet thì liên quan đến số lượng subnet được tạo ra. Ví dụ trong địa chỉ mạng lớp C số lượng subnet được tạo ra là 8 thì mỗi subnet bao gồm khoản 30 địa chỉ host
  6. Computing Hosts for a Class B Subnetwork Now consider a Class B network address, in which 16 bits are used for the network ID and 16 bits are used for the host ID. Therefore, there are 65,536 (216) possible addresses available to assign to hosts (65,534 usable addresses, after subtracting the two addresses, the broadcast and the subnet addresses, that cannot be used). Now, imagine that this Class B network is divided into subnets. If 2 bits are borrowed from the default 16-bit host field, the size of the host field decreases to 14 bits. All possible combinations of 0s and 1s that could occur in the remaining 14 bits produce a total number of possible hosts that could be assigned in each subnet. Thus, the number of hosts assigned to each subnet is now 16,382. In the same Class B network, if 3 bits are borrowed, the size of the host field decreases to 13 bits and the total number of assignable hosts for each subnet decreases to 8,192 (213). The number of usable host numbers decreases to 8,190 (8,192 – 2). In a Class B network, for example, the usable subnets created are 6 (8 – 2), each having 8,190 (8,192 – 2) usable host addresses.
  7. Computing Hosts for a Class A Subnetwork Finally, consider a Class A network address, in which 8 bits are used for the network ID and 24 bits are used for the host ID. Therefore, there are 16,777,216 (224) possible addresses available to assign to hosts (16,777,214 usable addresses, after subtracting the two addresses, the broadcast and the subnet addresses, that cannot be used). Now, imagine that this Class A network is divided into subnets. If 6 bits are borrowed from the default 24-bit host field, the size of the host field decreases to 18 bits. All possible combinations of 0s and 1s that could occur in the remaining 18 bits produce a total number of possible hosts that could be assigned in each subnet. This number is now 262,142, while it was formerly 16,777,216. The number of usable hosts decreases to 262,140 (262,142 – 2).
  8. How End Systems Use Subnet Masks The end system uses the subnet mask to compare the network portion of the local network address with the destination network address of the packet to be sent. This topic describes the process that end systems follow in using subnet masks. Before an end system can send a packet to its destination, it must first determine if the destination address is on the local network. If it is, the end system will use the Address Resolution Protocol (ARP) process to bind the IP address to the MAC address. If it is not, the packet must be forwarded to the default gateway router for transmission to the destination network.
  9. How Routers Use Subnet Masks The subnet mask identifies the network-significant part of an IP address. Routers need this information to determine how to get a packet to the desired destination. This topic describes how routers use subnet masks. All routers have routing tables. Depending on the location of the router in the network hierarchy, the table may be small and simple or large and complex. The router populates the routing table with the network-significant part of all known networks, to compare the destination network addresses of packets that need to be forwarded. If the network is not directly attached to the router, the router stores the address of the next-hop router to which the packet should be forwarded. For routers to function without the need to store all destination networks in their tables, they use a default route to which packets not matching any entry in the route table are forwarded. Procedure for Routing with Subnet Masks Step Action Notes 1. Host A determines that the destination network requires the use of its default gateway router (Router A). Router A has a route to the destination network 10.3.1.0 and forwards the packet to Router B through the indicated interface. 2. Because the 10.3.1.0/24 network is directly connected to Router B interface fa0/2, Router B will use ARP to determine the MAC address of Host B.
  10. When configuring routers, each interface is connected to a different network or subnet segment. An available host address from each different network or subnet must be assigned to the interface of the router that connects to that network or subnet (see figure). In this example, the router has two Ethernet interfaces. The interface that is connected to the 172.16.2.0 subnetwork is assigned the IP address of 172.16.2.1, and the other interface that is connected to the 172.16.3.0 subnetwork is assigned the IP address of 172.16.3.1. All of the attached hosts need to have their addresses within the range of the subnet. Any host configured with an address outside of this would not be reachable.
  11. Mechanics of Subnet Mask Operation You have learned why subnet masks exist and how end systems and routers use subnet masks. This topic describes how subnet masks are created and how they work. Although subnet masks use the same format as IP addresses, they are not IP addresses themselves. Each subnet mask is 32 bits long, divided into four octets, and is usually represented in the dotted decimal notation like IP addresses. In their binary representation, subnet masks have all 1s in the network and subnetwork portions and all 0s in the host portion. Octet Values of a Subnet Mask There are only eight valid subnet mask values per octet. The subnet field always immediately follows the network number. That is, the borrowed bits must be the first n bits, starting with the most significant bit (MSB) of the default host field, where n is the desired size of the new subnet field (see figure). The subnet mask is the tool used by the router to determine which bits are routing (network and subnet) bits and which bits are host bits. If all 8 bits in any octet are binary 1s, the octet has a decimal equivalent of 255. This is why there is a “255” in a decimal representation of a default subnet. In Class A, the default subnet address is 255.0.0.0 or 11111111.00000000.00000000.00000000. If the three highest order bits from the next highest order host octet are borrowed, they add up to 224. This translates to 255.224.0.0, or 11111111.11100000.00000000.00000000.
  12. With IP addressing, the subnet mask identifies the addressing information that is necessary to send packets toward their final destinations. The subnet mask identifies which bits within the IP address are the network and subnet bits. The figure shows the default subnet masks for Class A, Class B, and Class C addresses. The subnet mask itself is indicated with 1s in the binary notation for the mask, with all other bits indicated as 0s.
  13. Applying Subnet Mask Operation Most network administrators work with existing networks, complete with subnets and subnet masks in place. Network administrators need to be able to determine, from an existing IP address, which part of the address is the network and which part is the subnet. Applying the subnet mask operation provides this information. This topic describes how to apply the subnet mask operation. The procedure described in the figure explains how to select the number of subnets you need for a particular network and then apply a mask to implement subnets. Procedure for Implementing Subnets Step Action Example 1. Determine the IP address for your network as assigned by the registry authority. Assume you are assigned a Class B address of 172.16.0.0. 2. Based on your organization and administrative requirements and structure, determine the number of subnets required for the network. Be sure to plan for future growth. Assume that you are managing a worldwide network in 25 countries. Each country has an average of four locations. Therefore, you will need 100 subnets. 3. Based on the address class and the number of subnets you selected, determine the number of bits you need to borrow from the host ID. To create 100 subnets, you need to borrow 7 bits (27 – 2 = 126). Step Action Example 4. Determine the binary and decimal values of the subnet mask you select. For a Class B address with 16 bits in the network ID, when you borrow 7 bits, the mask is /23. Binary value of the mask: 11111111.11111111.11111110.00000000 Decimal value of the mask: 255.255.254.0 5. Apply the subnet mask for the network IP address to determine the subnet and host addresses. You will also determine the network and broadcast addresses for each subnet. 6. Assign subnet addresses to specific subnets on your network.
  14. Determining the Network Addressing Scheme When working in a classful networking environment that uses fixed-length subnet masks, you can determine the entire network addressing scheme based on a single IP address and its corresponding subnet mask. The figure shows the first three of eight steps used to determine the subnet of a given IP address. In this example, the IP address and subnet mask are as follows: 􀂄 Network address: 192.168.221.37 􀂄 Subnet mask: 255.255.255.248
  15. The figure shows the last five of eight steps used to determine the subnet of a given IP address. After converting the addresses from binary to decimal, the addresses for the subnets are as follows: 􀂄 First subnet address: 192.168.221.32 􀂄 First host address: 192.168.221.33 􀂄 Last host address: 192.168.221.38 􀂄 Broadcast address: 192.168.221.39 􀂄 Next subnet address: 192.168.221.40 Notice that the range of the address block, including the subnet address and directed-broadcast address in this example, is from 192.168.221.32 through 192.168.221.39, which includes eight addresses. The address block is the same size as the number of host bits (2h = 23 = 8).
  16. Class C Example Given the address of 192.168.5.139 and knowing that the subnet mask is 255.255.255.224, the subnet number is 11111111.11111111.11111111.11100000, or /27. Steps to Determine Class C Subnet Addresses Step Description Example 1. Write down the octet that is being split in binary. 10001011 2. Write the mask or classful prefix length in binary. 11100000 3. Draw a line to delineate the significant bits in the assigned IP address. Cross out the mask so you can view the significant bits in the IP address. 100 | 01011 111 | 00000 4. Copy the significant bits four times. 5. In the first line, define the network address by placing 0s in the remaining host bits. 6. In the last line, define the directed-broadcast address by placing 1s in the host bits. 7. In the middle lines, define the first and last host ID for this subnet. 100 00000 (first subnet address) 100 00001 (first host address) 100 11110 (last host address) 100 11111 (broadcast address) 8. Increment the subnet bits by 1 to determine the next subnet address. Repeat Steps 4 through 8 for all subnets. 101 00000 (next subnet address) Subnet Addresses Table Subnet No. Subnet ID Host Range Broadcast Address All 0s 192.168.5.0 192.168.5.1 to 192.168.5.30 192.168.5.31 1 192.168.5.32 192.168.5.33 to 192.168.5.62 192.168.5.63 2 192.168.5.64 192.168.5.65 to 192.168.5.94 192.168.5.95 3 192.168.5.96 192.168.5.97 to 192.168.5.126 192.168.5.127 4 192.168.5.128 192.168.5.129 to 192.168.5.158 192.168.5.159 5 192.168.5.160 192.168.5.161 to 192.168.5.190 192.168.5.191 6 192.168.5.192 192.168.5.193 to 192.168.5.222 192.168.5.223 All 1s 192.168.5.224 192.168.5.225 to 192.168.5.254 192.168.5.255
  17. Class B Example Given the address of 172.16.139.46 and knowing that the subnet mask is 255.255.240.0, or /20, you can determine the subnet and host addresses for this network. Steps to Determine Class B Subnet Addresses Step Description Example 1. Write down the octet that is being split in binary. 10001011 2. Write the mask or classful prefix length in binary. 11110000 3. Draw a line to delineate the significant bits in the assigned IP address. Cross out the mask so you can view the significant bits in the IP address. 1000 | 1011 1111 | 0000 4. Copy the significant bits four times. 5. In the first line, define the network address by placing 0s in the remaining host bits. 6. In the last line, define the directed-broadcast address by placing 1s in the host bits. 7. In the middle lines, define the first and last host ID for this subnet. 1000 0000 (first subnet address) 1000 0001 (first host address) 1000 1110 (last host address) 1000 1111 (broadcast address) 8. Increment the subnet bits by 1 to determine the next subnet address. Repeat Steps 4 through 8 for all subnets. 1001 0000 (next subnet address) Subnet Addresses Table Subnet No. Subnet ID Host Range Broadcast All 0s 172.16.0.0 172.16.0.1 to 172.16.15.254 172.16.15.255 1 172.16.16.0 172.16.16.1 to 172.16.31.254 172.16.31.255 2 172.16.32.0 172.16.32.1 to 172.16.47.254 172.16.47.255 ………. 13 172.16.208.0 172.16.208.1 to 172.16.223.254 172.16.223.255 14 172.16.224.0 172.16.224.1 to 172.16.239.254 172.16.239.255 All 1s 172.16.240.0 172.16.240.1 to 172.16.255.254 172.16.255.255
  18. Class A Example Given the address of 10.172.16.211 and knowing that the subnet mask is /18, you can determine the subnet and host addresses for this network. Steps to Determine Class A Subnet Addresses Step Description Example 1. Write down the octet that is being split in binary. 00010000 2. Write the mask or classful prefix length in binary. 11000000 3. Draw a line to delineate the significant bits in the assigned IP address. Cross out the mask so you can view the significant bits in the IP address. 00 | 010000 11 | 000000 4. Copy the significant bits four times. 5. In the first line, define the network address by placing 0s in the remaining host bits. 6. In the last line, define the directed-broadcast address by placing 1s in the host bits. 7. In the middle lines, define the first and last host ID for this subnet. 00 000000 (first subnet address) 00 000001 (first host address) 00 111110 (last host address) 00 111111 (broadcast address) 8. Increment the subnet bits by 1 to determine the next subnet address. Repeat Steps 4 through 8 for all subnets. 01 000000 (next subnet address) Subnet Addresses Table Subnet No. Subnet ID Host Range Broadcast All 0s 10.0.0.0 10.0.0.1 to 10.0.63.254 10.0.63.255 1 10.0.64.0 10.0.64.1 to 10.0.127.254 10.0.127.255 2 10.0.128.0 10.0.128.1 to 10.0.191.254 10.0.191.255 ………. 1021 10.255.64.0 10.255.64.1 to 10.255.127.254 10.255.127.255 1022 10.255.128.0 10.255.128.1 to 10.255.191.254 10.255.191.255 All 1s 10.255.192.0 10.255.192.1 to 10.255.255.254 10.255.255.255