SlideShare ist ein Scribd-Unternehmen logo
1 von 15
• Cycle analysis and calculation of inlet and outlet conditions
  of each components, component work, SHP, Thermal
  efficiency and SFC



• From the ranges given, choose the best combination that
  can match or approach the required efficiency.
• Generate the Geometry(No of vanes and blades, gas and
  metal angles etc..)
• Off design performance



• Factory standard cost Vs stage efficiency
• Acquisition cost Vs operational cost
• Optimum design (compromise between efficiency and
  cost)
From the cycle calculation we obtained the key parameters,
   At the Inlet of the LPC we are using the International      HPT entry                1233 K
   Standard Atmosphere table to obtain the static pressure and temperature
   assuming static pressure = stagnation pressure
                                                                   PT work              952.89 KW
   • We are considering the effect of the HPT Vane cooling
     air to obtain To at the blade inlet                           SFC                  .38 Kg/Kwh
   • At LPT inlet we are neglecting the effect in temperature of
     disk cooling air                                              Thermal Efficiency   25 %
HPT   HPT HPT                                               Exhaus
                          LPC              HPC Combustor Combust                                 LPT             PT Exhaus
  Variable   LPC Inlet          HPC Inlet                          Inlet Inlet Outlet LPT Inlet        PT Inlet                   t
                         Outlet           Outlet Inlet   or Outlet                              Outlet          Outlet t Inlet
                                                                   Vane Blade Blade                                            Outlet




Mass flow
              12.00      12.00    12.00     12.00    10.80     11.02   11.02 11.62 11.62         11.80   11.80    11.92   11.92    12.04 12.04
(lb/sec)


Po (bar)      0.875       3.50     3.50     10.50    10.50     10.34   10.34     9.99    4.24    4.24     2.10    2.08    0.888    0.888 0.875


                                                                                1200.1 1017.0
To (K)       296.48      462.10   462.10   662.56    662.56   1233.90 1233.90                 1017.00 868.02 868.02 714.25 714.25 714.25
                                                                                  3      0

                                                                                        1106.2
W (kW)                   904.80            1095.16                                                       913.94           952.89
                                                                                          2
HPT DESIGN

                                                                                                                                                                                                   INSTALLATION NETWORK TEAM

                                         START
                                                    GASPATH
        INPUT DATA




                                                   SCHEMATICS

                                                   PART A CYCLE    DESIGN VARIABLES
                                                  CALCULATIONS          SET-UP
                                                 CHARACTERISTICS
                                                     (GIVEN)
 PARAMETERS PARAMETERS




                                                                              VELOCITY TRIANGLES
             MEANLINE
              DESIGN




                                                                               AT INLET & EXIT OF
                                                                               EACH COMPONENT

                                                                                           FREE VORTEX
                                                                                             DESIGN
  HUB & TIP
   DESIGN




                                                                                                         HUB & TIP
                                                                                                          VELOCITY
                                                                                                         TRIANGLES

                                                                                                                     BLADE GEOMETRY
        GEOMETRIC PARAMETERS




                                                                                                                      HUB, MEANLINE
                                                                                                                         AND TIP               ηtt
                                                                                                                     VANE GEOMETRY         CALCULATION
                                                                                                                     HUB, MEANLINE
                                                                                                                        AND TIP                ηtt
                                                                                                                                      NO   & GEOMETRY
                                                                                                                                            OPTIMAL?
                                                                                                                                              YES
                                                                                                                                           AMDC LOSS
                                                                                                                                            SYSTEM
        LOSS CALCULATIONS & EFFICIENCY




                                                                                                                                                              BLADE
                                                                                                                                                        LOSS COEFFICIENTS
                                                                                                                                                         Kp*fRe + Ks + KTE           ηtto
                                                                                                                                                                             (Tip Clearance = 0)
                                                                                                                                                              VANE                             Kclr
                                                                                                                                                        LOSS COEFFICIENTS                  calculation
                                                                                                                                                         Kp*fRe + Ks + KTE
                                                                                                                                                                                                         ηtt


                                                                                                                                                                                                    END DESIGN
HPT Design – Input data
                           START
                                                                              GIVEN CHARACTERISTICS
                                                            Component                  Parameter                     Value
                                                                           Inlet Mach number                          0,125
                                                                           Inlet Swirl relative to axial (deg)         -10
CHARACTERISTICS      PART A – HPT CYCLE    GASPATH
    (GIVEN)            CALCULATIONS       SCHEMATICS
                                                               Stage       Exit Mach number                        0,3 to 0,45
                                                                           Exit Swirl (deg)                         10 to 30
                                                                           Target field life (hours)                  5000
                                                                           Aspect ratio                                0,7
                                                                Vane       Zweifel Coefficient at mean            0,70 to 0,80
                                                                           Trailing edge thickness minimum (in)       0,045
                                                                           Aspect ratio                                1,45
                     DESIGN VARIABLES                          Blade       Zweifel Coefficient at mean            0,85 to 0,95
                          SET-UP                                           Trailing edge thickness minimum (in)       0,025
                                                         Blade Containment             AN^2 NOT exceed 4 x 10^10
                                                            Consideration                Rim Speed limit 1200 ft/s
                  Design Variables Set-up
                    VELOCITY TRIANGLES
                  Parameter EXIT OF
                     AT INLET &
                     EACH COMPONENT
                                             Value
  Exit Mach number                           0,45
  Exit Swirl (deg)                            20
  Zweifel Coefficient at mean vane           0,70
  Zweifel Coefficient at mean blade           0,85
  Reaction: (T2-T3) / (T1-T3)                 0,4
  AN^2                                       4E+10
  Rim Speed (ft/s)                           1200
Assumptions
•   Po,To at Vane outlet = Po, To at Blade Inlet
•   Cx Hub = Cx Mean = Cx Tip ( applying free vortex theory)
•   Incidence and deviation = 0 (as design conditions)
•   Because of variable section at vanes we are using r average and h average for vane design
•   For Loss Calculation we are following the Kacker & Okapuu Loss Prediction Model
    explained in class.
•   Delta tc/h = 1,8%


Critical values
•   AN^2=maximal (4 x10^10) to obtain the high efficiency
•   Rim speed (U hub) maximal = 1200 ft/s to obtain high efficiency
•   Vane Zweifel coefficient at mean=0,7 (using minimum value to maximize quantity of
    vanes)
•   Blade Zweifel coefficient at mean=0,85 to reduce blade loading
Meanline Design
Parameters
                    VELOCITY DIAGRAM (meanline)
                                 1          2            3
             Variable
                             Vane Inlet Blade Inlet Blade Outlet
         mass flow (lb/s)      11,02       11,62       11,62
              To (R)          2221,02     2160,23     1830,61
               T (R)          2215,26     1944,42     1770,91
             Po (bar)          10,34       9,99         4,24
              P (bar)          10,23       6,56         3,71
                Mn              0,13       0,82         0,45
              Mn rel                       0,28        0,94
         densité (lb/ft^3)     0,1809      0,123       0,082
             A (in^2)          31,654     23,957       23,957
             U (ft/s)                     1376,00     1376,00
           alpha (deg)         -10,00      72,10       20,00
            beta (deg)                     26,35       63,21
             C (ft/s)          281,40     1721,35      905,76
             Ca (ft/s)         277,13     529,02       851,14
             Cw (ft/s)         -48,86     1638,04      309,79
              V (ft/s)                    590,36      1888,47
                 φ                         0,38         0,62
                 ψ                                      2,83
                R                                       0,40
Hub & Tip Design
                            Parameters


   FREE VORTEX DESIGN



Ca constant with radius r
           &
 Cw * radius = constant


       HUB & TIP
   VELOCITY TRIANGLES
Geometric Parameters
                          HUB & TIP
                      VELOCITY TRIANGLES




  VANE GEOMETRY                         BLADE GEOMETRY
HUB, MEANLINE AND TIP                 HUB, MEANLINE AND TIP




                        ηtt CALCULATION


                              ηtt
                NO        & GEOMETRY
                           OPTIMAL?


                                YES


               Vane geometry                      Hub                        Mean                          Tip
  Airfoil count                                    22                          22                           22
  Axial chord (in)                                0,88                        0,88                         1,01
  Leading edge diameter (in)                      0,04                        0,04                         0,04
  Trailing edge diameter (in)                     0,05                        0,05                         0,05
  Stagger angle (deg)                            56,78                       56,78                        51,22
  Metal angle (deg)                     inlet= -10 ; exit = 74,27   inlet= -10 ; exit = 72,10    inlet= -10 ; exit = 69,98
  Throat opening (in)                             0,34                        0,34                         0,40
  Radio (in)                                      3,36                        3,93                         4,49


               Blade geometry                     Hub                        Mean                          Tip
  Airfoil count                                    49                          49                           49
  Axial chord (in)                                0,65                        0,59                         0,42
  Leading edge diameter (in)                      0,02                        0,02                         0,02
  Trailing edge diameter (in)                     0,03                        0,03                         0,03
  Stagger angle (deg)                            18,47                       29,73                        51,56
  Metal angle (deg)                    inlet= 52,07 ; exit = 61,31 inlet= 26,35 ; exit = 63,21 inlet= -10,71 ; exit = 65,02
  Throat opening (in)                             0,18                        0,23                         0,22
  Radio (in)                                      3,36                        3,86                         4,35
Loss Calculation and
                                                       Efficiency
                         ηtt
                     & GEOMETRY
                      OPTIMAL?


                        YES


               AMDC LOSS SYSTEM




      VANE                              BLADE
LOSS COEFFICIENTS                 LOSS COEFFICIENTS
 Kp*fRe + Ks + KTE                 Kp*fRe + Ks + KTE




                         ηtto
                 (Tip Clearance = 0)


                  Kclr calculation
            (Assuming delta tc/h = 1.8%)


                         ηtt


                        END
                       DESIGN
Off-Design


Considerations
•   U at meanline reduced by 10%
•   Mass flow = Mass flow design
•   Alpha2 = Alpha 2 Design
•   Beta 3 = Beta 3 Design
•   C2 = C2 Design
•   Ca2= Ca2 Design              Methodology
•   Pitch = Pitch Design         • Kp and Ks are calculated from Moustapha et al.
                                   Correlation for Turbine Airfoils
                                 • fRe, KTE and Kclr are calculated from the
                                   results from the new velocity triangles
          Results
          • Incidence of 10.72 degrees
          • KT in the blades increase from 0.1 to 0.16
          • Efficiency reduces to 85,6%
MATERIAL and FSC TO CUTOMER
Blade   Acquisit              Overhaulin               TOTAL
materia ion Cost              g Cost
l
X            16660            2,40,000                 256660
Y            12495            3,20,000                 332495
Z            29155            1,60,000                 189155

    350000
                                                                Blade stress
    300000                                                               ρ
                                                                 σ = (2⫪ AN²)
    250000
    200000                                                X
    150000                                                Y
                                                                 Economical benefits
    100000                                                Z
     50000
         0
              Acquisition   Overhauling   Total cost
                 cost          cost
Selection of best concept.




 300000
             Savings ($)
 250000
 200000
Fuel
 150000
cost
 100000
  50000
($)
      0                           Savings ($)
 -50000 86   88        90    92
-100000
-150000
              HPT
              efficiency(%
              )
THANK YOU !

Weitere ähnliche Inhalte

Andere mochten auch

Gas turbines working ppt
Gas turbines working pptGas turbines working ppt
Gas turbines working pptluckyvarsha
 
How Gas Turbines Work
How Gas Turbines WorkHow Gas Turbines Work
How Gas Turbines Workalidouceur
 
Aircraft propulsion (5)
Aircraft propulsion (5)Aircraft propulsion (5)
Aircraft propulsion (5)Priyank Peter
 
Gas turbine and Jet Propulsion
Gas turbine and Jet PropulsionGas turbine and Jet Propulsion
Gas turbine and Jet PropulsionChinmay Paranjpe
 
Turbine Fundamentals
Turbine FundamentalsTurbine Fundamentals
Turbine FundamentalsChoong KW
 
Gas turbine power plants
Gas turbine power plantsGas turbine power plants
Gas turbine power plantsNishkam Dhiman
 

Andere mochten auch (6)

Gas turbines working ppt
Gas turbines working pptGas turbines working ppt
Gas turbines working ppt
 
How Gas Turbines Work
How Gas Turbines WorkHow Gas Turbines Work
How Gas Turbines Work
 
Aircraft propulsion (5)
Aircraft propulsion (5)Aircraft propulsion (5)
Aircraft propulsion (5)
 
Gas turbine and Jet Propulsion
Gas turbine and Jet PropulsionGas turbine and Jet Propulsion
Gas turbine and Jet Propulsion
 
Turbine Fundamentals
Turbine FundamentalsTurbine Fundamentals
Turbine Fundamentals
 
Gas turbine power plants
Gas turbine power plantsGas turbine power plants
Gas turbine power plants
 

Ähnlich wie Gas Turbine Project

Spreadsheet windturbine design cost model (NREL)
Spreadsheet windturbine design cost model (NREL)Spreadsheet windturbine design cost model (NREL)
Spreadsheet windturbine design cost model (NREL)Amapola Munuera
 
Tsl Capabilities Short Form Rev
Tsl Capabilities   Short Form RevTsl Capabilities   Short Form Rev
Tsl Capabilities Short Form RevEd Arcemont
 
Integrated Design and Modeling of Passenger Aircraft
Integrated Design and Modeling of Passenger AircraftIntegrated Design and Modeling of Passenger Aircraft
Integrated Design and Modeling of Passenger AircraftMazhalai Priyan
 
Cfd analysis of flow charateristics in a gas turbine a viable approach
Cfd analysis of flow charateristics in a gas turbine  a viable approachCfd analysis of flow charateristics in a gas turbine  a viable approach
Cfd analysis of flow charateristics in a gas turbine a viable approachIAEME Publication
 
Elevetor eng
Elevetor engElevetor eng
Elevetor engREDA SRL
 
WQD2011 - INNOVATION - EMAL - Torque measuring device
WQD2011 - INNOVATION - EMAL - Torque measuring deviceWQD2011 - INNOVATION - EMAL - Torque measuring device
WQD2011 - INNOVATION - EMAL - Torque measuring deviceDubai Quality Group
 
Gi Micro Electronics Data Catalog 1978 Index
Gi Micro Electronics Data Catalog 1978 IndexGi Micro Electronics Data Catalog 1978 Index
Gi Micro Electronics Data Catalog 1978 IndexTom Terlizzi
 
Capacitance Sensing - Migrating from CSR to CSA
Capacitance Sensing - Migrating from CSR to CSACapacitance Sensing - Migrating from CSR to CSA
Capacitance Sensing - Migrating from CSR to CSAemilyjoseph444
 
Technical Data Sheet 2
Technical Data Sheet 2Technical Data Sheet 2
Technical Data Sheet 2Brian Nam
 
Daejin specification brochure
Daejin specification brochureDaejin specification brochure
Daejin specification brochureBrian Nam
 
Cfd fem-09 compatibility-and_accuracy_of_mesh_valeo
Cfd fem-09 compatibility-and_accuracy_of_mesh_valeoCfd fem-09 compatibility-and_accuracy_of_mesh_valeo
Cfd fem-09 compatibility-and_accuracy_of_mesh_valeoAnand Kumar Chinni
 
Turbomachinery: Industrial Pump Design Optimization
Turbomachinery: Industrial Pump Design OptimizationTurbomachinery: Industrial Pump Design Optimization
Turbomachinery: Industrial Pump Design OptimizationSimScale
 
Sem Company Profile Nov 15 09
Sem Company Profile Nov 15 09Sem Company Profile Nov 15 09
Sem Company Profile Nov 15 09ESA Italia Srl
 
LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン)
LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン)LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン)
LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン)Tsuyoshi Horigome
 

Ähnlich wie Gas Turbine Project (20)

Spreadsheet windturbine design cost model (NREL)
Spreadsheet windturbine design cost model (NREL)Spreadsheet windturbine design cost model (NREL)
Spreadsheet windturbine design cost model (NREL)
 
Tsl Capabilities Short Form Rev
Tsl Capabilities   Short Form RevTsl Capabilities   Short Form Rev
Tsl Capabilities Short Form Rev
 
Integrated Design and Modeling of Passenger Aircraft
Integrated Design and Modeling of Passenger AircraftIntegrated Design and Modeling of Passenger Aircraft
Integrated Design and Modeling of Passenger Aircraft
 
Solido Pvt Corner Package Datasheet
Solido Pvt Corner Package DatasheetSolido Pvt Corner Package Datasheet
Solido Pvt Corner Package Datasheet
 
Ktaa19 g7英文数据单
Ktaa19 g7英文数据单Ktaa19 g7英文数据单
Ktaa19 g7英文数据单
 
Acquisition management
Acquisition managementAcquisition management
Acquisition management
 
Cfd analysis of flow charateristics in a gas turbine a viable approach
Cfd analysis of flow charateristics in a gas turbine  a viable approachCfd analysis of flow charateristics in a gas turbine  a viable approach
Cfd analysis of flow charateristics in a gas turbine a viable approach
 
Elevetor eng
Elevetor engElevetor eng
Elevetor eng
 
WQD2011 - INNOVATION - EMAL - Torque measuring device
WQD2011 - INNOVATION - EMAL - Torque measuring deviceWQD2011 - INNOVATION - EMAL - Torque measuring device
WQD2011 - INNOVATION - EMAL - Torque measuring device
 
Gi Micro Electronics Data Catalog 1978 Index
Gi Micro Electronics Data Catalog 1978 IndexGi Micro Electronics Data Catalog 1978 Index
Gi Micro Electronics Data Catalog 1978 Index
 
Capacitance Sensing - Migrating from CSR to CSA
Capacitance Sensing - Migrating from CSR to CSACapacitance Sensing - Migrating from CSR to CSA
Capacitance Sensing - Migrating from CSR to CSA
 
Technical Data Sheet 2
Technical Data Sheet 2Technical Data Sheet 2
Technical Data Sheet 2
 
Daejin specification brochure
Daejin specification brochureDaejin specification brochure
Daejin specification brochure
 
Cfd fem-09 compatibility-and_accuracy_of_mesh_valeo
Cfd fem-09 compatibility-and_accuracy_of_mesh_valeoCfd fem-09 compatibility-and_accuracy_of_mesh_valeo
Cfd fem-09 compatibility-and_accuracy_of_mesh_valeo
 
Turbomachinery: Industrial Pump Design Optimization
Turbomachinery: Industrial Pump Design OptimizationTurbomachinery: Industrial Pump Design Optimization
Turbomachinery: Industrial Pump Design Optimization
 
Br24457460
Br24457460Br24457460
Br24457460
 
Sem Company Profile Nov 15 09
Sem Company Profile Nov 15 09Sem Company Profile Nov 15 09
Sem Company Profile Nov 15 09
 
01 prosedur perencanaan kapal
01 prosedur perencanaan kapal01 prosedur perencanaan kapal
01 prosedur perencanaan kapal
 
My PG Project presentation
My PG Project presentationMy PG Project presentation
My PG Project presentation
 
LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン)
LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン)LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン)
LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン)
 

Gas Turbine Project

  • 1.
  • 2. • Cycle analysis and calculation of inlet and outlet conditions of each components, component work, SHP, Thermal efficiency and SFC • From the ranges given, choose the best combination that can match or approach the required efficiency. • Generate the Geometry(No of vanes and blades, gas and metal angles etc..) • Off design performance • Factory standard cost Vs stage efficiency • Acquisition cost Vs operational cost • Optimum design (compromise between efficiency and cost)
  • 3. From the cycle calculation we obtained the key parameters, At the Inlet of the LPC we are using the International HPT entry 1233 K Standard Atmosphere table to obtain the static pressure and temperature assuming static pressure = stagnation pressure PT work 952.89 KW • We are considering the effect of the HPT Vane cooling air to obtain To at the blade inlet SFC .38 Kg/Kwh • At LPT inlet we are neglecting the effect in temperature of disk cooling air Thermal Efficiency 25 %
  • 4. HPT HPT HPT Exhaus LPC HPC Combustor Combust LPT PT Exhaus Variable LPC Inlet HPC Inlet Inlet Inlet Outlet LPT Inlet PT Inlet t Outlet Outlet Inlet or Outlet Outlet Outlet t Inlet Vane Blade Blade Outlet Mass flow 12.00 12.00 12.00 12.00 10.80 11.02 11.02 11.62 11.62 11.80 11.80 11.92 11.92 12.04 12.04 (lb/sec) Po (bar) 0.875 3.50 3.50 10.50 10.50 10.34 10.34 9.99 4.24 4.24 2.10 2.08 0.888 0.888 0.875 1200.1 1017.0 To (K) 296.48 462.10 462.10 662.56 662.56 1233.90 1233.90 1017.00 868.02 868.02 714.25 714.25 714.25 3 0 1106.2 W (kW) 904.80 1095.16 913.94 952.89 2
  • 5. HPT DESIGN INSTALLATION NETWORK TEAM START GASPATH INPUT DATA SCHEMATICS PART A CYCLE DESIGN VARIABLES CALCULATIONS SET-UP CHARACTERISTICS (GIVEN) PARAMETERS PARAMETERS VELOCITY TRIANGLES MEANLINE DESIGN AT INLET & EXIT OF EACH COMPONENT FREE VORTEX DESIGN HUB & TIP DESIGN HUB & TIP VELOCITY TRIANGLES BLADE GEOMETRY GEOMETRIC PARAMETERS HUB, MEANLINE AND TIP ηtt VANE GEOMETRY CALCULATION HUB, MEANLINE AND TIP ηtt NO & GEOMETRY OPTIMAL? YES AMDC LOSS SYSTEM LOSS CALCULATIONS & EFFICIENCY BLADE LOSS COEFFICIENTS Kp*fRe + Ks + KTE ηtto (Tip Clearance = 0) VANE Kclr LOSS COEFFICIENTS calculation Kp*fRe + Ks + KTE ηtt END DESIGN
  • 6. HPT Design – Input data START GIVEN CHARACTERISTICS Component Parameter Value Inlet Mach number 0,125 Inlet Swirl relative to axial (deg) -10 CHARACTERISTICS PART A – HPT CYCLE GASPATH (GIVEN) CALCULATIONS SCHEMATICS Stage Exit Mach number 0,3 to 0,45 Exit Swirl (deg) 10 to 30 Target field life (hours) 5000 Aspect ratio 0,7 Vane Zweifel Coefficient at mean 0,70 to 0,80 Trailing edge thickness minimum (in) 0,045 Aspect ratio 1,45 DESIGN VARIABLES Blade Zweifel Coefficient at mean 0,85 to 0,95 SET-UP Trailing edge thickness minimum (in) 0,025 Blade Containment AN^2 NOT exceed 4 x 10^10 Consideration Rim Speed limit 1200 ft/s Design Variables Set-up VELOCITY TRIANGLES Parameter EXIT OF AT INLET & EACH COMPONENT Value Exit Mach number 0,45 Exit Swirl (deg) 20 Zweifel Coefficient at mean vane 0,70 Zweifel Coefficient at mean blade 0,85 Reaction: (T2-T3) / (T1-T3) 0,4 AN^2 4E+10 Rim Speed (ft/s) 1200
  • 7. Assumptions • Po,To at Vane outlet = Po, To at Blade Inlet • Cx Hub = Cx Mean = Cx Tip ( applying free vortex theory) • Incidence and deviation = 0 (as design conditions) • Because of variable section at vanes we are using r average and h average for vane design • For Loss Calculation we are following the Kacker & Okapuu Loss Prediction Model explained in class. • Delta tc/h = 1,8% Critical values • AN^2=maximal (4 x10^10) to obtain the high efficiency • Rim speed (U hub) maximal = 1200 ft/s to obtain high efficiency • Vane Zweifel coefficient at mean=0,7 (using minimum value to maximize quantity of vanes) • Blade Zweifel coefficient at mean=0,85 to reduce blade loading
  • 8. Meanline Design Parameters VELOCITY DIAGRAM (meanline) 1 2 3 Variable Vane Inlet Blade Inlet Blade Outlet mass flow (lb/s) 11,02 11,62 11,62 To (R) 2221,02 2160,23 1830,61 T (R) 2215,26 1944,42 1770,91 Po (bar) 10,34 9,99 4,24 P (bar) 10,23 6,56 3,71 Mn 0,13 0,82 0,45 Mn rel 0,28 0,94 densité (lb/ft^3) 0,1809 0,123 0,082 A (in^2) 31,654 23,957 23,957 U (ft/s) 1376,00 1376,00 alpha (deg) -10,00 72,10 20,00 beta (deg) 26,35 63,21 C (ft/s) 281,40 1721,35 905,76 Ca (ft/s) 277,13 529,02 851,14 Cw (ft/s) -48,86 1638,04 309,79 V (ft/s) 590,36 1888,47 φ 0,38 0,62 ψ 2,83 R 0,40
  • 9. Hub & Tip Design Parameters FREE VORTEX DESIGN Ca constant with radius r & Cw * radius = constant HUB & TIP VELOCITY TRIANGLES
  • 10. Geometric Parameters HUB & TIP VELOCITY TRIANGLES VANE GEOMETRY BLADE GEOMETRY HUB, MEANLINE AND TIP HUB, MEANLINE AND TIP ηtt CALCULATION ηtt NO & GEOMETRY OPTIMAL? YES Vane geometry Hub Mean Tip Airfoil count 22 22 22 Axial chord (in) 0,88 0,88 1,01 Leading edge diameter (in) 0,04 0,04 0,04 Trailing edge diameter (in) 0,05 0,05 0,05 Stagger angle (deg) 56,78 56,78 51,22 Metal angle (deg) inlet= -10 ; exit = 74,27 inlet= -10 ; exit = 72,10 inlet= -10 ; exit = 69,98 Throat opening (in) 0,34 0,34 0,40 Radio (in) 3,36 3,93 4,49 Blade geometry Hub Mean Tip Airfoil count 49 49 49 Axial chord (in) 0,65 0,59 0,42 Leading edge diameter (in) 0,02 0,02 0,02 Trailing edge diameter (in) 0,03 0,03 0,03 Stagger angle (deg) 18,47 29,73 51,56 Metal angle (deg) inlet= 52,07 ; exit = 61,31 inlet= 26,35 ; exit = 63,21 inlet= -10,71 ; exit = 65,02 Throat opening (in) 0,18 0,23 0,22 Radio (in) 3,36 3,86 4,35
  • 11. Loss Calculation and Efficiency ηtt & GEOMETRY OPTIMAL? YES AMDC LOSS SYSTEM VANE BLADE LOSS COEFFICIENTS LOSS COEFFICIENTS Kp*fRe + Ks + KTE Kp*fRe + Ks + KTE ηtto (Tip Clearance = 0) Kclr calculation (Assuming delta tc/h = 1.8%) ηtt END DESIGN
  • 12. Off-Design Considerations • U at meanline reduced by 10% • Mass flow = Mass flow design • Alpha2 = Alpha 2 Design • Beta 3 = Beta 3 Design • C2 = C2 Design • Ca2= Ca2 Design Methodology • Pitch = Pitch Design • Kp and Ks are calculated from Moustapha et al. Correlation for Turbine Airfoils • fRe, KTE and Kclr are calculated from the results from the new velocity triangles Results • Incidence of 10.72 degrees • KT in the blades increase from 0.1 to 0.16 • Efficiency reduces to 85,6%
  • 13. MATERIAL and FSC TO CUTOMER Blade Acquisit Overhaulin TOTAL materia ion Cost g Cost l X 16660 2,40,000 256660 Y 12495 3,20,000 332495 Z 29155 1,60,000 189155 350000 Blade stress 300000 ρ σ = (2⫪ AN²) 250000 200000 X 150000 Y  Economical benefits 100000 Z 50000 0 Acquisition Overhauling Total cost cost cost
  • 14. Selection of best concept. 300000 Savings ($) 250000 200000 Fuel 150000 cost 100000 50000 ($) 0 Savings ($) -50000 86 88 90 92 -100000 -150000 HPT efficiency(% )