SlideShare ist ein Scribd-Unternehmen logo
1 von 21
Downloaden Sie, um offline zu lesen
Home   Search    Collections   Journals   About   Contact us    My IOPscience




       Nonlinear electrodynamics and CMB polarization




       This article has been downloaded from IOPscience. Please scroll down to see the full text article.

       JCAP03(2011)033

       (http://iopscience.iop.org/1475-7516/2011/03/033)

       View the table of contents for this issue, or go to the journal homepage for more




       Download details:
       IP Address: 201.39.176.35
       The article was downloaded on 22/03/2011 at 21:17



       Please note that terms and conditions apply.
J   ournal of Cosmology and Astroparticle Physics
   An IOP and SISSA journal




Nonlinear electrodynamics and CMB
polarization
Herman J. Mosquera Cuestaa,b,c,d and G. Lambiasee,f




                                                                                              JCAP03(2011)033
a Departmento   de F´ısica Universidade Estadual Vale do Acara´,
                                                               u
  Avenida da Universidade 850, Campus da Betˆnia, CEP 62.040-370, Sobral, Cear´, Brazil
                                                 a                                  a
b Instituto de Cosmologia, Relatividade e Astrof´ ısica (ICRA-BR),
  Centro Brasileiro de Pesquisas F´ ısicas,
  Rua Dr. Xavier Sigaud 150, CEP 22290-180, Urca Rio de Janeiro, RJ, Brazil
c International Center for Relativistic Astrophysics Network (ICRANet),

  International Coordinating Center, Piazzalle della Repubblica 10, 065112, Pescara, Italy
d International Institute for Theoretical Physics and Mathematics Einstein-Galilei,

  via Bruno Buozzi 47, 59100 Prato, Italy
e Dipartimento di Fisica “E.R. Caianiello”, Universit` di Salerno,
                                                       a
  84081 Baronissi (SA), Italy
f INFN, Sezione di Napoli,

  Napoli, Italy
 E-mail: herman@icra.it, lambiase@sa.infn.it

Received July 1, 2010
Revised January 23, 2011
Accepted February 8, 2011
Published March 22, 2011

Abstract. Recently WMAP and BOOMERanG experiments have set stringent constraints
on the polarization angle of photons propagating in an expanding universe: ∆α = (−2.4 ±
1.9)◦ . The polarization of the Cosmic Microwave Background radiation (CMB) is reviewed
in the context of nonlinear electrodynamics (NLED). We compute the polarization angle of
photons propagating in a cosmological background with planar symmetry. For this purpose,
we use the Pagels-Tomboulis (PT) Lagrangian density describing NLED, which has the form
                                1
L ∼ (X/Λ4 )δ−1 X, where X = 4 Fαβ F αβ , and δ the parameter featuring the non-Maxwellian
character of the PT nonlinear description of the electromagnetic interaction. After looking
at the polarization components in the plane orthogonal to the (x)-direction of propagation
of the CMB photons, the polarization angle is defined in terms of the eccentricity of the
universe, a geometrical property whose evolution on cosmic time (from the last scattering
surface to the present) is constrained by the strength of magnetic fields over extragalactic
distances.

Keywords: CMBR polarisation, CMBR theory, extragalactic magnetic fields, cosmic mag-
netic fields theory




c 2011 IOP Publishing Ltd and SISSA                       doi:10.1088/1475-7516/2011/03/033
Contents

1 Introduction                                                                             1

2 Minimally coupling gravity to nonlinear electrodynamics                                  2

3 Cosmological setting: Space-time with planar symmetry −→ universe ec-
  centricity −→ polarization angle                                                4




                                                                                                JCAP03(2011)033
  3.1 Space-time anisotropy and magnetic energy density evolution                 4
  3.2 Space-time eccentricity and polarization angle                              5
  3.3 Eccentricity evolution on cosmic time                                       6
  3.4 Constraints on parameter Λ from extragalactic B strengths in an ellipsoidal
      Universe                                                                    7

4 Light propagation in NLED and birefringence                                              8

5 Stokes parameters, rotated CMB spectra and constraints on parameter Λ 9
  5.1 Estimative of Λ                                                   10

6 Discussion and closing remarks                                                          11


1   Introduction

Modifications to the standard (Maxwell) electrodynamics were proposed in the literature in
order to avoid infinite physical quantities from theoretical descriptions of electromagnetic
interactions. Born and Infeld [1], for instance, proposed a model in which the infinite self
energy of point particles (typical of Maxwell’s electrodynamics) are removed by introducing
an upper limit on the electric field strength, and by considering the electron as an electric
particle with finite radius. Along this line, other models of nonlinear electrodynamics (NLED)
Lagrangians were proposed by Plebanski, who also showed that Born-Infeld model satisfies
physically acceptable requirements [2]. Consequences of nonlinear electrodynamics have been
studied in many contexts, such a, for example, cosmological models [3], black holes and
wormhole physics [4, 5], primordial magnetic fields in the Universe [8, 9, 11], gravitational
baryogenesis [8], and astrophysics [12, 17].
      In this paper we investigate the CMB polarization of photons described by nonlinear
electrodynamics. We compute the polarization angle of photons propagating in an expand-
ing Universe, by considering in particular cosmological models with planar symmetry. The
polarization angle does depend on the parameter characterizing the nonlinearity of electro-
dynamics, which will be constrained by making use of the recent data from WMAP and
BOOMERANG. This kind of investigations has received a lot of interest because they rep-
resent a probe of models beyond the standard model, which may violate the fundamental
symmetries such as CPT and Lorentz invariance [13, 14]. In what follows we will follow
the main lines of the paper on “Cosmological CPT violation, baryo/leptogenesis and CMB
polarization” by Li-Xia-Li-Zhang [6].




                                           –1–
2   Minimally coupling gravity to nonlinear electrodynamics

The action of (nonlinear) electrodynamics coupled minimally to gravity is
                             1        √       1               √
                       S=         d4 x −gR +              d4 x −gL(X, Y ) ,                (2.1)
                            2κ               4π
where κ = 8πG, L is the Lagrangian of nonlinear electrodynamics depending on the invariant
X = 1 Fµν F µν = −2(E2 − B2 ) and Y = 4 Fµν ∗ F µν , where F µν ≡ µ Aν − ν Aµ , and
       4
                                            1
∗ F µν = µνρσ F                             αβγδ = √  1
               ρσ is the dual bivector, and         2 −g
                                                         εαβγδ , with εαβγδ the Levi-Civita
tensor (ε0123 = +1).




                                                                                                   JCAP03(2011)033
      The equations of motion are [9]
                                             µν
                                  µ (−LX F        − LY ∗ F µν ) = 0 ,                      (2.2)

where LX = ∂L/∂X and LY = ∂L/∂Y ,

                                 µ Fνλ   +   ν Fλµ   +   λ Fµν   = 0.                      (2.3)

      After a swift grasp on this set of equations one realizes that is difficult to find solutions
in closed form of these equations. Therefore to study the effects of nonlinear electrodynamics,
we confine ourselves to consider the abelian Pagels-Tomboulis theory [16], proposed as an
effective model of low energy QCD. The Lagrangian density of this theory involves only the
invariant X in the form                          δ−1
                                            X2 2
                               L(X) = −              X = −γX δ ,                           (2.4)
                                            Λ8
where γ (or Λ) and δ are free parameters that, with appropriate choice, reproduce the well
known Lagrangian already studied in the literature. γ has dimensions [energy]4(1−δ) .
     Following Kunze [9], the energy momentum tensor corresponding to the Lagrangian
density L(X) is given by
                                       1
                              Tµν =      LX gαβ Fµα Fβν + gµν L                            (2.5)
                                      4π
and the decomposition of the electromagnetic tensor with respect to a fundamental observer
with 4-velocity uµ (uµ uµ = −1)
                                        ˆ                  ˆ
                                 Fµν = 2E[µ uν] − ηµνςτ uς B τ .                           (2.6)

                                                                    ˆ        ˆ
      The electric and magnetic fields are therefore given by Eµ = Fµν uν and Bµ =
1         ν F κλ (η       √
2 ηµνκλ u          αβγδ =  −g εαβγδ ). The energy density turns out to be

                                          1 L         ˆ ˆ      ˆ ˆ
                     ρ = Tµν uµ uν = −        (2δ − 1)Eα E α + Bα B α .                    (2.7)
                                         8π X
The positivity of ρ (weak energy condition) imposes, in general, the constraint on δ. For
the Lagrangian (2.4) one gets δ ≥ 1 . However, this condition can be relaxed because we
                                       2
shall consider cosmological scenarios in which the electric field is zero, and only the magnetic
fields survive (this is justified by the fact that during the radiation dominated era the plasma
effects induce a rapid decay of the electric field, whereas magnetic field remains (see the
paper by Turner and Widrow in [23])).




                                              –2–
The equation of motion for the Pagels-Tomboulis theory follows from eq. (2.2) with
Y =0
                                      µν             µX
                                   µF    = −(δ − 1)      F µν .                         (2.8)
                                                     X
In terms of the potential vector Aµ , and imposing the Lorentz gauge µ Aµ = 0, eq. (2.8)
becomes
                          µ ν                       µX
                       µ   A + Rνµ Aµ = −(δ − 1)        ( µ Aν − ν Aµ ) ,               (2.9)
                                                    X
where the Ricci tensor Rνµ appears because the relation [ µ , ν ]Aν = −Rµ Aµ .
                                                                            µ
     To proceed onward, we apply the geometrical optics approximation. This means that
the scales of variation of the electromagnetic fields are smaller than the cosmological scales




                                                                                                            JCAP03(2011)033
we consider next. In this approximation, the 4-vector Aµ (x) can be written as [18]

                            Aµ (x) = Re (aµ (x) + bµ (x) + . . .)eiS(x)/                           (2.10)

with      1 so that the phase S/ varies faster than the amplitude. By defining the wave
vector kµ = µ S, which defines the direction of the photon propagation, one finds that the
gauge condition implies kµ aµ = 0 and kµ bµ = 0. It turns out to be convenient to introduce
the normalized polarization vector εµ so that the vector aµ can be written as
                                  aµ (x) = A(x)εµ ,                   εµ εµ = 1 .                  (2.11)
As a consequence of (2.11), one also finds kµ εµ = 0, i.e. the wave vector is orthogonal to the
polarization vector.
     By making use of eq. (2.10), one obtains
                                        µX         2ikµ
                                               =             [1 + Ω( )] ,                          (2.12)
                                        X
where
                                        ik[α aβ]             [α aβ]   + O( 2 )
                                                      µk
                   Ω≡                                                                          .
                        −(k[α aβ] )2 + i 2k[α aβ] (           [α aβ]   + ik[α aβ] ) + O( 2 )
To leading order in , the term depending on the Ricci tensors can be neglected in (2.9).
Inserting (2.10) into (2.9) and collecting all terms proportional to −2 and −1 , one obtains
                       1
                        2
                            : kµ kµ aσ = 2(δ − 1)kµ k[µ aσ] ,                                      (2.13)
                        1            µ σ
                            : 2kµ     a + aσ        µk
                                                         µ
                                                             = −2(δ − 1)kµ            [µ σ]
                                                                                       a .         (2.14)

     Taking into account the gauge condition kµ aµ = 0, the first equation implies
                                                                      1
                   (2δ − 1)k2 = 0          →       kµ kµ = 0 ,          ,provided δ =  (2.15)
                                                                      2
hence photons propagate along null geodesics. Multiplying eq. (2.14) by aσ , and using (2.11)
one obtains
                         1      µ       µ                      σ   µ
                             µ k = −δk     µ ln A + (δ − 1)kµ ε  σε ,
                         2
so that eq. (2.14) can be recast in the form
                                                             δ−1 σ
                                        kµ     µε
                                                 σ
                                                     =          Υ                                  (2.16)
                                                              δ
where
                                  Υσ ≡ kµ [     σ µ
                                                    ε − (ερ               µ σ
                                                                       ρ ε )ε ]   .                (2.17)




                                                    –3–
3     Cosmological setting: Space-time with planar symmetry −→ universe
      eccentricity −→ polarization angle

3.1    Space-time anisotropy and magnetic energy density evolution
Let us consider cosmological models with planar symmetry, i.e., having a similar scale factor
on the first two spatial coordinates. The most general line-element of a geometry with plane-
symmetry is [19]
                             ds2 = dt2 − b2 (dx2 + dy 2 ) − c2 dz 2 ,                   (3.1)
where b(t) and c(t) are the scale factors, which are normalized in order that b(t0 ) = 1 = c(t0 )




                                                                                                                     JCAP03(2011)033
at the present time t0 . As eq. (3.1) shows, the symmetry is on the (xy)-plane. The coherent
temperature and polarization patterns produced in homogeneous but anisotropic cosmological
models (Bianchi type with a Friedman-Robertson-Walker limit has been studied in [15]).
     The Christoffel symbols corresponding to the metric (3.1) are

                                                   ˙
                                       Γ0 = Γ0 = bb , Γ0 = cc ,
                                                             ˙                                              (3.2)
                                        11   22         33
                                                 ˙
                                                 b         c
                                                           ˙
                                       Γ1 = Γ2 = , Γ3 = .
                                        01   02        03
                                                 b         c
     The dot stands for derivative with respect to the cosmic time t.
     To make an estimate on the parameter δ, we have to investigate in more detail the
geometry with planar symmetry. As pointed out by Campanelli-Cea-Tedesco (CCT) in [20],
the most general tensor consistent with the geometry (3.1) is
                                                             µ       µ
                            T µ = diag(ρ, −p , −p , −p⊥ ) = T(I)ν + T(A)ν ,
                              ν

            µ
in which T(I)ν = diag(ρ, −p, −p, −p) is the standard isotropic energy-momentum tensor de-
                                                            µ
scribing matter, radiation, or cosmological constant, and T(A)ν = diag(ρA , −pA , −pA . − pA )
represents the anisotropic contribution which induces the planar symmetry, and can be given
by a uniform magnetic field, a cosmic string, a domain wall.1 In what follows, we shall con-
sider a Universe matter dominated (p = 0) with planar symmetry generated by a uniform
magnetic field B(t).
      Magnetic fields have been observed in galaxies, galaxy clusters, and extragalactic struc-
tures [22], and it is assumed that they may have a primordial origin [9, 23]. Due to the
high conductivity of the primordial plasma, the magnetic field evolves as B(t) ∼ b−2 be-
ing frozen into the plasma [21, 22] (see below). Denoting with ρB the magnetic field
density, the energy-momentum tensor for a uniform magnetic field can be written as
  µ
T(B) ν = ρB diag(1, −1, −1, −1).
      According to (2.7), we find that the energy density of the magnetic field is given by
                                                                δ−1
                                                  B2     B2
                                           ρB =                       .                                     (3.3)
                                                  8π     2Λ4
   1
     Notice that the cases discussed in [20], i.e. the magnetic fields or the topological defects as responsible of
the planar symmetry of the Universe, allow to explain the anomaly concerning the low quadruple amplitude
probed by WMAP. The interesting analysis performed by CCT leads to the conclusion that an eccentricity
at the decoupling of the order of e ∼ 10−2 is indeed able to explain the drastic reduction in the quadruple
anisotropy without affecting higher multiples of the angular power spectrum of the temperature anisotropies.




                                                     –4–
The evolution law of the energy density ρB is given by [10]
                                    4
                                ρB + ΘρB + 16πσab Πab = 0 ,
                                ˙                                                         (3.4)
                                    3
where Θ is the volume expansion (contraction) scalar, σab is the shear, and Πab the anisotropic
pressure of the fluid. In a highly conducting medium we still have with good approximation
B ∼ b−2 provided that anisotropies can be neglected (this means that we neglect radiative
effect of the primordial fluid).

3.2     Space-time eccentricity and polarization angle




                                                                                                  JCAP03(2011)033
We shall assume that photons propagate along the (positive) x-direction, so that kµ =
(k0 , k1 , 0, 0) [7]. Gauge invariance assures that the polarization vector of photons has only
two independent components, which are orthogonal to the direction of the photons motion.
                                                                                       ˆ
Therefore, we are only interested in how the components of the polarization vector (Iµ 2 and
ˆ
Iµ3) change. It then follows that Υ     σ defined in (2.17) assumes the form


                               ˙
                               b        c
                                        ˙      ˙
                   Υσ = −k0 δσ2 ε2 + δσ3 ε3 + bb(ε2 )2 + cc(εc )2 εσ
                                                          ˙                               (3.5)
                               b        c

      The components of Υσ given by (3.5) vanish in the case of a Friedman-Robertson-Walker
geometry.
      By defining the affine parameter λ which measures the distance along the line-element,
kµ ≡ dxµ /dλ, one obtains that ε2 and ε3 satisfy the following geodesic equation (from
eq. (2.16))

                      dε2  ˙
                           b                ˙
                                      δ−1 0 b
                          + k0 ε2 = −    k       ˙
                                              + bb(ε2 )2 + cc(ε3 )2 ε2
                                                            ˙
                      dλ   b           δ    b
                      dε3  c˙         δ−1 0 c
                                            ˙    ˙
                          + k0 ε3 = −    k    + bb(ε2 )2 + cc(ε3 )2 ε3
                                                            ˙
                      dλ   c           δ    c

These equations can be further simplified if one observes that k0 = dt/dλ

                    1                d ln(bε2 )    δ−1            ˙
                                                                  b c˙
                      0
                        D ln(bε2 ) =            =−               − +     (cε3 )2 ,        (3.6)
                    k                    dt         δ             b c

                    1                d ln(cε3 )    δ−1            c b
                                                                  ˙  ˙
                      0
                        D ln(cε3 ) =            =−               − +     (bε2 )2 .        (3.7)
                    k                    dt         δ             c b

where
                                         D ≡ kµ     µ.                                    (3.8)
                                                     ˙
Moreover, the difference of the Hubble expansion rate b/b and c/c can be written as
                                                             ˙
                                    ˙
                                    b c˙      1     de2
                                      − =        2 ) dt
                                                                                          (3.9)
                                    b c   2(1 − e
where we have introduced the eccentricity

                                                     c   2
                                     e(t) =    1−            .                          (3.10)
                                                     b



                                              –5–
The polarization angle α is defined as α = arctan[(cε3 )/(bε2 )]. Its time evolution is
governed by equation

                                   δ−1 0        ˙
                                                b c ˙
                            Dα −       k          −       [(bε2 )3 + (cε3 )3 ] = 0 .                   (3.11)
                                    2δ          b c

     However, eqs. (3.6) and (3.7) implies that both bε2 and cε3 evolves as Ai + (δ − 1)fi (t),
i = 2, 3 , where fi (t) is a function of time and Ai are constant of integration. Therefore, to
leading order (δ − 1) eq. (3.11) reads

                                                  ˙




                                                                                                                  JCAP03(2011)033
                                   δ−1 K 0        b c ˙
                           Dα −         k           −       + O((δ − 1)2 ) = 0 .                       (3.12)
                                    δ 2           b c

where K = A2 + A3 .
     To compute the rotation of the polarization angle, one needs to evaluate α at two distinct
instants. In the cosmological context that we are considering is assumed that the reference
time t corresponds to the moment in which photons are emitted from the last scattering
surface, and the instant t0 corresponds to the present time. One, therefore, gets2
                                                            δ−1
                                  ∆α = α(t) − α(t0 ) =          Ke2 (z) ,                              (3.13)
                                                             4δ
where we have used e(t0 ) = 0 because of the normalization condition b(t0 ) = c(t0 ) = 1 and
log(1 − e2 ) ∼ −e2 .
      Notice that for δ = 1 or e2 = 0 there is no rotation of the polarization angle, as expected.
Moreover, in the case in which photons propagate along the direction z-direction, so that
¯
ka = (ω0 , 0, 0, k), we find that the NLED have no effects as concerns to the rotation of the
polarization angle.
      As arises from (3.13), ∆α vanishes in the limit δ = 1, so that no rotation of the
polarization angle occurs in the standard electrodynamics, even if the background is described
by a geometry with planar symmetry. Moreover, even if δ = 1, ∆α still vanishes for an
isotropic and homogeneous cosmology described by the Friedman-Robertson-Walker element
line (b = c) ds2 = dt2 − b2 (dx2 + dy 2 + dz 2 ), because in such a case the eccentricity vanishes
(this agrees with the fact that for this background the components of Υσ , eq. (3.5), are zero).

3.3    Eccentricity evolution on cosmic time
The time evolution of the eccentricity is determined from the Einstein field equations

                              1 d(ee)
                                    ˙                (ee)2
                                                       ˙
                                2 dt
                                      + 3Hb (ee) +
                                              ˙               = 2κρB ,                                 (3.14)
                             1−e                   (1 − e2 )2

           ˙
where Hb = b/b.
   2
     Preliminary calculations [38] performed in terms of the electromagnetic field Fµν and of time evolution of
the Stokes parameters I, Q, U, V (this approach is alternative to one presented in the section II of the paper
where the analysis is performed in terms of the 4-potential Aµ ) yield again the result (3.13). Calculations
show that the total flux I is not the same along the three spatial directions, as expected owing to the different
expansion of the Universe along the x, y and z directions. Moreover the time evolution of the Stokes parameters
turns out to be a mixture of each others, which reduce to standard results as δ = 1. The polarization angle
is defined as 2α = arctan(U/Q).




                                                    –6–
It is extremely difficult to exactly solve this equation. We shall therefore assume that
the    e2 -terms
              can be neglected. Since b(t) ∼ t2/3 during the matter-dominated era, eq. (3.14)
implies
                                                       (0)
                                    e2 (z) = 18Fδ (z)ΩB ,                              (3.15)
where we used 1 + z = b(t0 )/b(t), e(t0 ) = 0, and
                                     3               3(1 + z)4δ−3              3
                       Fδ ≡                    −2−                  + 2(1 + z) 2 .                           (3.16)
                              (9 − 8δ)(4δ − 3)     (9 − 8δ)(4δ − 3)
  (0)
ΩB is the present energy density ratio




                                                                                                                      JCAP03(2011)033
                                                   δ−1                             2               δ−1
            (0)      ρB    B 2 (t0 )   B 2 (t0 )             −11      B(t0 )           B 2 (t0 )
           ΩB      =     =                                10                                             ,   (3.17)
                     ρcr   8πρcr        2Λ4                           10−9 G            2Λ4
with ρcr = 3Hb (t0 )/κ = 8.1h2 10−47 GeV4 (h = 0.72 is the little-h constant), and B(t0 ) is the
             2

present magnetic field amplitude.
     From eq. (3.13) then follows
                                                    δ−1
                                           ∆α =         K e2 (zdec ) .                                       (3.18)
                                                     4δ
where e(zdec )2 the eccentricity (3.15) evaluated at the decoupling z = 1100.

3.4      Constraints on parameter Λ from extragalactic B strengths in an ellipsoidal
         Universe
To make an estimate on the parameter δ, we need the order of amplitude of the present
magnetic field strength B(t0 ). In this respect, observations indicate that there exist, in
cluster of galaxies, magnetic fields with field strength (10−7 − 10−6 ) G on 10 kpc - 1 Mpc
scales, whereas in galaxies of all types and at cosmological distances, the order of magnitude
of the magnetic field strength is ∼ 10−6 G on (1-10) kpc scales. The present accepted
estimations is [22]3
                                        B(t0 ) 10−9 G .                                 (3.20)
Moreover, for an ellipsoidal Universe the eccentricity satisfies the relation 0 ≤ e2 < 1. The
condition e2 > 0 means Fδ > 0, with Fδ defined in (3.16). The function Fδ given by eq. (3.16)
is represented in figure 1. Clearly the allowed region where Fδ is positive does depend on
the redshift z. On the other hand, the condition e2 < 1 poses constraints on the magnetic
field strength. By requiring e2 < 10−1 (in order that our approximation to neglect e2 -terms
in (3.14) holds), from eqs. (3.15)–(3.17) it follows

                                              B(t0 )     9 × 10−8 G .                                        (3.21)
   3
    The bound (3.19) is consistent with the estimation on the present value of the magnetic field strength
obtained from Big Bang Nucleosynthesis (BBN). As before pointed out, the magnetic fields scales as B ∼ b−2
where the scale factor does depend on the temperature T and on the total number of effectively massless
                                 −1/3
degree of freedom g∗S as b ∝ g∗S T −1 [26]. The upper bound on the magnetic field at the epoch of the
BBN is given by [27] B(TBBN ) 1011 G, where according to the standard cosmology TBBN = 109 K 0.1MeV.
Referred to the present value of the magnetic field, the bound on B(TBBN ) becomes [20, 24]
                                 „             «2/3 „      «2
                                     g∗S (T0 )         T0
                        B(t0 ) =                              B(TBBN ) 6 × 10−7 G ,                 (3.19)
                                   g∗S (TBBN )        TBBN
where T0 = T (t0 )     2.35 × 10−4 eV and g∗S (TBBN )     g∗S (T0 )   3.91 [26].




                                                         –7–
F∆

                        73 000



                        72 800      z 1100



                        72 600



                        72 400

                                                                          ∆
                                     0.85      0.90      0.95      1.00




                                                                                                   JCAP03(2011)033
                               F∆
                         1. 106
                         800 000

                         600 000     z 1100

                         400 000

                         200 000

                                                                          ∆
                                      1.05      1.10      1.15     1.20
                         200 000

                         400 000




Figure 1. In this plot is represented Fδ vs δ for δ ≤ 1 (upper plot) and δ ≥ 1 (lower plot). The
condition that the eccentricity is positive follows for Fδ > 0.


     It must also be noted that such magnetic fields does not affect the expansion rate of the
universe and the CMB fluctuations because the corresponding energy density is negligible
with respect to the energy density of CMB.

4   Light propagation in NLED and birefringence

In this section we discuss the modification of the light velocity (birefringence effect) for the
model of nonlinear electrodynamics L(X, Y ). We shall follow the paper [32] (see also [2, 33]),
in which is studied the propagation of wave in local nonlinear electrodynamics by making use
of the Fresnel equation for the wave covectors kµ . The latter are related to phase velocity
                                                   k0 ˆ           ˆ
v of the wave propagation by the relation ki =        ki , where ki are the components of the
                                                    v
unit 3-covector. Thus, in what follows we confine ourselves to the phase velocity. It is
straightforward to show that for the models under consideration (2.4) the group velocity is
always greater or equal to the phase velocity [32].
      The main result in ref. [32] corresponds to the optic metric tensors
                               µν                 √
                             g1 = X gµν + (Y + Y − X Z)tµν ,                              (4.1)
                               µν       µν
                                                  √            µν
                             g2 = X g + (Y − Y − X Z)t ,                                  (4.2)

which describe the effect of birefringent light propagation in a generic model for nonlinear
electrodynamics. The quantities X , Y, and Z are related to the derivatives of the Lagrangian
L(X, Y ) with respect to the invariant X and Y , and tµν = F µα F ν .
                                                                  α




                                              –8–
For our model, expressed by eq. (2.4), the quantities X , Y, and Z are given by

              2       γ 2 δ2 2(δ−1)                   γ 2 δ2
         X ≡ K1 =           X       ,   Y ≡ K1 K2 =          (δ − 1)X 2(δ−1)−1 ,   Z = 0,
                        4                               4
               ∂L            ∂2L
where K1 = 4      and K2 = 8      , while the metrics (4.1) and (4.2) are
               ∂X            ∂X 2
                            µν                              µν
                           g1 = K1 (K1 gµν + 2K2 tµν ) ,   g2 = K1 gµν .
                                                                 2


As a consequence, birefringence is present in our model. This means that some photons prop-




                                                                                                      JCAP03(2011)033
agate along the standard null rays of spacetime metric gµν , whereas other photons propagate
along rays null with respect to the optical metric K1 gµν + 2K2 tµν .
     The velocities of the light wave can be derived by using the light cone equations (effective
metric)
                                 µν                  µν
                               g1 kµ kν = 0 and g2 kµ kν = 0 .
It is worthwhile to report the general expression for the average value of the velocity scalar [32]

                         4   T 00 (Y + Zt00 )   2 2Y 2 − X Z + Z(t00 )2 + 2YZt00
           v2 = 1 +                            + S2
                         3 X + 2Yt00 + Z(t00 )2 3     [X + 2Yt00 + Z(t00 )2 ]2

where T 00 = −t00 + X = (E2 + B2 )/2 (t00 = −E2 ), and S2 = δµν t0µ t0ν , where S = E × B
                             γ     γ              γ
is the energy flux density. The subscript γ is introduced for distinguishing the photon field
from the magnetic background. The value of the mean velocity has been derived averaging
over the directions of propagation and polarization. For our model, we get

                    v2   1 + (δ − 1)R + (δ − 1)2 S ,                                         (4.3)
                         4        T 00               4         S2
                      R≡                    , S=
                         3 4X + 2(δ − 1)t00          3 [4X + 2(δ − 1)t00 ]2

     The high accuracy of optical experiments in laboratories requires tiny deviations from
standard electrodynamics. This condition is satisfied provided |δ − 1|    1. Moreover, there
are two aspects related to (4.3):

    • The average velocity does depend on (only) the parameter δ, so that γ or Λ in our
      model can be fixed independently. This task is addressed in the next section.

    • Because R is positive, one has to demand that δ − 1 < 0 in order that v 2 < 1.

The above considerations hold for flat spacetime, and can be straightforwardly generalized
to the case of curved space time [32].

5   Stokes parameters, rotated CMB spectra and constraints on parameter
    Λ

The propagation of photons can be described in terms of the Stokes parameters I, Q, U ,
and V . The parameters Q and V can be decomposed in gradient-like (G) and a curl-like
(C) components [30] (G and C are also indicated in literature as E and B), and characterize
the orthogonal modes of the linear polarization (they depend on the axes where the linear




                                               –9–
polarization are defined, contrarily to the physical observable I and V which are independent
on the choice of coordinate system).
      The polarization G and C and the temperature (T ) are crucial because they allow to
completely characterize the CMB on the sky. If the Universe is isotropic and homogeneous
and the electrodynamics is the standard one, then the T C and GC cross-correlations power
spectrum vanish owing to the absence of the cosmological birefringence. In presence of the
latter, on the contrary, the polarization vector of each photons turns out to be rotated by
the angle ∆α, giving rise to T C and GC correlations.
      Using the expression for the power spectra ClXY ∼ dk[k2 ∆X (t0 )∆Y (t0 )], where X, Y =
T, G, C and ∆X are the polarization perturbations whose time evolution is controlled by the
Boltzman equation, one can derive the correlation for T , G and C in terms of ∆α [14]4




                                                                                                                    JCAP03(2011)033
                          Cl T C = ClT C sin 2∆α , Cl T G = ClT G cos 2∆α ,                                 (5.1)
                                   1
                          Cl GC =      C GG − ClCC sin 4∆α ,                                                (5.2)
                                   2 l
                          Cl GG = ClGG cos2 2∆α + ClCC sin2 2∆α ,                                           (5.3)
                               CC
                          Cl        =   ClCC      2
                                               cos 2∆α +     ClGG sin2 2∆α .                                (5.4)

     The prime indicates the rotated quantities. Notice that the CMB temperature power
spectrum remains unchanged under the rotation.
     Experimental constraints on ∆α have been put from the observation of CMB polariza-
tion by WMAP and BOOMERanG [14, 25].

                            ∆α = (−2.4 ± 1.9)◦ = [−0.0027π, −0.0238π] .                                     (5.5)

The combination of eqs. (5.5) and (3.18), and the laboratory constraints |δ − 1|                       1 allow to
estimate Λ.

5.1     Estimative of Λ
To estimate Λ we shall write

                                    B = 10−9+b G                 b    2,                                    (5.6)
                                               3/2
                                    Fδ = 2z                      z = 1100       1.                          (5.7)

The bound (5.5) can be therefore rewritten in the form

                                           10−3                      10−2
                                                       |δ − 1|            ,                                 (5.8)
                                            A                         A
where
                                                                                           4 δ−1
                     9K     (0)                 −6+2b                  −56+2b        GeV
                  A≡    Fδ ΩB             K 10             0.24 × 10                               .        (5.9)
                     14                                                               Λ
The condition |δ − 1|          1 requires A           1. It turns out convenient to set

                                          A = 10a ,          a > O(1) .                                    (5.10)
   4
    Notice that in ref. [29] the analysis did not include the rotation of the CMB spectra, and in ref. [30] the
analysis focused on only the TC and TG modes. Other approximated approaches to discuss the rotation angle
can be found in refs. [28, 31].




                                                        – 10 –
Log    GeV                                                                         Log       GeV

                                                 ∆ 1        10   7                       35                                                                        7
                                                                                                                                             ∆ 1              10
      25                                               b 0
                                                                                         30                                                          b    1
                                                        a 4
                                                                                         25                                                          a    4
      20

                           x   19                                                        20
                                                                                                             x    19
      15                                                                                 15

                                                                                         10
      10
                                                                                             5

                                                                               K                                                                                              K
                          22 026.2    22 026.2     22 026.3            22 026.3                             2980.91          2980.92             2980.93               2980.94

    Log    GeV                                                                         Log       GeV

    1000                                         ∆ 1       10    10                                                                    ∆ 1       10      10




                                                                                                                                                                                            JCAP03(2011)033
                                                       b   0                            3000                                                 b   1
     500                                               a   7                                                                                 a   7
                                                                                        2000
                 x   19
                                                                               K
                          442 413     442 413       442 414             442 414         1000

                                                                                                        x   19
     500                                                                                                                                                                       K
                                                                                                       59 874.1   59 874.1   59 874.1    59 874.1         59 874.2     59 874.2

    1000                                                                                1000




Figure 2. Λ vs K for different values of the parameter δ − 1, a and b. The parameter a is related to
the range in which δ − 1 varies, i.e. −10−3−a δ − 1 −10−2−a , while b parameterizes the magnetic
field strength B = 10−9+b G. The red-shift is z = 1100. Plot refers to Planck scale Λ = 10Λx GeV,
with Λx=P l = 19. Similar plots can be also obtained for GUT (ΛGUT = 16) and EW (ΛEW = 3)
scales.


From eqs. (5.9) and (5.10) it then follows
                                                                                                                        1
                                                                                                                   − 4(δ−1)
                                                                      −14+b/2          1 a−2b+6
                                                  Λ = 10                                 10                                        GeV ,                                           (5.11)
                                                                                       K

or equivalently

                                              Λ                                    b                (−1)
                                     Log         =                    −14 +              +                 [a − 2b + 6 − LogK] .                                                   (5.12)
                                             GeV                                   2              4(δ − 1)

      The constant K can now be determined to fix the characteristic scale Λ. Writing
Λ = 10Λx GeV, where Λx=P l = 19, ΛGUT = 16 and ΛEW = 3 for the Planck, GUT and
electroweak (EW) scales, respectively, eq. (5.12) yields

                                                                                                            4(δ − 1)Λx
                                                 K = 10a−2b+6− ,                                       ≡                                         1.                                (5.13)
                                                                                                             14 − b/2

In figure 2 is plotted Log(Λ/GeV) vs K for fixed values of the parameters a, b and δ − 1.
Similar plots can be derived for GUT and EW scales

6         Discussion and closing remarks

In conclusion, in this paper we have calculated, in the framework of the nonlinear electro-
dynamics, the rotation of the polarization angle of photons propagating in a Universe with
planar symmetry. We have found that the rotation of the polarization angle does depend on




                                                                                         – 11 –
the parameter δ, which characterizes the degree of nonlinearity of the electrodynamics. This
parameter can be constrained by making use of recent data from WMAP and BOOMERang.
Results show that the CMB polarization signature, if detected by future CMB observations,
would be an important test in favor of models going beyond the standard model, including
the nonlinear electrodynamics.
     Some comments are in order. In our investigation we have assumed that the planar-
symmetry is induced by a magnetic field. This is not the unique case. In fact, a planar
geometry can also be induced by topological defects, such as cosmic string (cs) or domain
wall (dw) [20]. In such a case, one has [20]

                                        2 (0)    3




                                                                                                                JCAP03(2011)033
                            e2         = Ωdw           + 4(1 + z)3/2 − 7 ,                             (6.1)
                                        7     (1 + z)2
                                  dw

and
                                        4        3
                             e2        = Ω(0)
                                          cs          + 2(1 + z)3/2 − 5 ,                              (6.2)
                                        5     (1 + z)
                                  cs
        (0)
where         are the present energy densities, in units of critical density, of the domain wall
       Ω(dw,cs)
and cosmic string. At the decoupling, one obtains
                                                                          (0)
                                                                        Ωdw
                                         e2 (zdec )            10−4            ,                       (6.3)
                                                                      5 × 10−7
                                                        dw

and
                                                                          (0)
                                                                        Ωcs
                                         e2 (zdec )            10−4            .                       (6.4)
                                                                      4 × 10−7
                                                        cs
The analysis leading to determine the bounds on δ from CMB polarization goes along the
line above traced.
      Moreover, a complete analysis of the planar-geometry is required to fix the parameter
δ. From a side, in our calculations in fact we have assumed that the Universe is matter
dominated. A more precise calculation should require to use (to solve (3.14)) the relation
                                                    z
                                         1                       1+z
                                   t=                                              dz ,                (6.5)
                                         H0     0            Ωm (1 + z)3 + ΩΛ
where Ωm = 0.3, ΩΛ = 0.7 and H0 = 72 km sec−1 Mpc−1 (z = 1100). From the other side,
a complete study of the eq. (3.14) is necessary in order to put stringent constraints on the
parameter δ.
      As closing remark, we would like to point out that the approach to analyze the CMB
polarization in the context of NLED that we have presented above can also be applied to
discuss the extreme-scale alignments of quasar polarization vectors [36], a cosmic phenomenon
that was discovered by Hutsemekers [34] in the late 1990’s, who presented paramount evidence
for very large-scale coherent orientations of quasar polarization vectors (see also Hutsemekers
and Lamy [35]).5 As far as the authors of the present paper are awared of, the issue has
   5
     Hutsemekers and Lamy, and collaborators, have presented, in a long series of papers (not all cited here)
published over the period 1998 to 2008, a tantamount evidence that the alignment of quasar polarization
vectors is a factual cosmological enigma deserving to be properly addressed in the framework of the standard
model of cosmology. The papers quoted here are intended to call to the attention of attentive readers the
paramount evidence presenting this cosmic phenomenon.




                                                             – 12 –
remained as an open cosmological connundrum, with a few workers in the field having focused
their attention on to those intriguing observations. Nonetheless, we quote “en passant” that
in a recent paper [37] Hutsemekers et al. discussed the possibility of such phenomenon to be
understood by invoking very light pseudoscalar particles mixing with photons. They claimed
that the observations of a sample of 355 quasars with significant optical polarization present
strong evidence that quasar polarization vectors are not randomly oriented over the sky, as
naturally expected. Those authors suggest that the phenomenon can be understood in terms
of a cosmological-size effect, where the dichroism and birefringence predicted by a mixing
between photons and very light pseudoscalar particles within a background magnetic field
can qualitatively reproduce the observations. They also point out at a finding indicating that




                                                                                                     JCAP03(2011)033
circular polarization measurements could help constrain their mechanism.
      Since cosmic magnetic fields have a typical strength of ∼ 10−7 − 10−8 G, on average,
for a characteristic distance scale of 10-30 Mpc, it is our view that such phenomenology can
be understood in the framework of a nonlinear description of photon propagation (NLED)
over cosmic background magnetic fields and the use of a planar symmetry for the space-time.
Specifically, phenomena involving light propagation as dichroism and birefringence can be
inscribed on to the framework of Heisenberg-Euler NLED, which predicts the occurrence of
birefringence on cosmological distance scales. We plan to present such analysis in a forth-
coming communication [38].

Acknowledgments

The authors express their gratitude to the referee for relevant comments. The authors also
thank Prof. Xin-min Zhang, and Dr. Mingzhe Li for reading the manuscript and their
suggestions. H.J.M.C. thanks ICRANet International Coordinating Center, Pescara, Italy
for hospitality during the early stages of this work. G.L. acknowledges the financial support
of MIUR through PRIN 2006 Prot. 1006023491− 003, and of research funds provided by the
University of Salerno. H.J.M.C. is fellow of the Ceara State Foundation for the Development
of Science and Technology (FUNCAP), Fortaleza, Ceara, Brazil.

References
 [1] M. Born, Modified Field Equations with a Finite Radius of the Electron, Nature 132 (1933)
     282; On the Quantum Theory of the Electromagnetic Field, Proc. Roy. Soc. A 143 (1934) 410;
     M. Born and L. Infeld, Electromagnetic Mass, Nature 132 (1933) 970;
     M. Born and L. Infeld, Foundations of the New Field Theory, Proc. Roy. Soc. A 144 (1934)
     425;
     W. Heisenberg and H. Euler, Consequences of Dirac’s theory of positrons, Z. Phys. 98 (1936)
     714 [physics/0605038]. J.S. Schwinger, On gauge invariance and vacuum polarization,
     Phys. Rev. 82 (1951) 664 [SPIRES].
 [2] S.A. Gutierrez, A.L. Dudley and J.F. Plebanski, Signals and discontinuities in general
     relativistic nonlinear electrodynamics, J. Math. Phys. 22 (1981) 2835 [SPIRES];
     J.F. Plebanski, Lectures on nonlinear electrodynamics, monograph of the Niels Bohr Institute,
     Nordita, Copenhagen (1968).
 [3] P.V. Moniz, Quintessence and Born-Infeld cosmology, Phys. Rev. D 66 (2002) 103501
     [SPIRES];
     R. Garcia-Salcedo and N. Breton, Born-Infeld cosmologies,
     Int. J. Mod. Phys. A 15 (2000) 4341 [gr-qc/0004017] [SPIRES];




                                              – 13 –
R. Garcia-Salcedo and N. Breton, Born-Infeld inflates Bianchi cosmologies,
    Class. Quant. Grav. 20 (2003) 5425 [hep-th/0212130] [SPIRES];
    R. Garcia-Salcedo and N. Breton, Singularity-free Bianchi spaces with nonlinear
    electrodynamics, Class. Quant. Grav. 22 (2005) 4783;
    V.V. Dyadichev, D.V. Galt’tsov, A.G. Zorin and M.Yu. Zotov, NonAbelian Born-Infeld
    cosmology, Phys. Rev. D 65 (2002) 084007;
    D.V. Vollick, Anisotropic Born-Infeld cosmologies, Gen. Rel. Grav. 35 (2003) 1511;
    L. Hollenstein and F.S.N. Lobo, Exact solutions of f(R) gravity coupled to nonlinear
    electrodynamics, Phys. Rev. D 78 (2008) 124007 [arXiv:0807.2325] [SPIRES];
    H.J.M. Cuesta, J.M. Salim and M. Novello, Cosmological redshift and nonlinear
    electrodynamics propagation of photons from distant sources, arXiv:0710.5188 [SPIRES];
    K. Bamba and S. Nojiri, Cosmology in non-minimal Yang-Mills/Maxwell theory,




                                                                                                     JCAP03(2011)033
    arXiv:0811.0150 [SPIRES];
    K. Bamba and S.D. Odintsov, Inflation and late-time cosmic acceleration in non-minimal
    Maxwell-F (R) gravity and the generation of large-scale magnetic fields, JCAP 04 (2008) 024
    [arXiv:0801.0954] [SPIRES].
 [4] E. Ayon-Beato and A. Garcia, Regular black hole in general relativity coupled to nonlinear
     electrodynamics, Phys. Rev. Lett. 80 (1998) 5056 [gr-qc/9911046] [SPIRES];
     E. Ayon-Beato and A. Garcia, New regular black hole solution from nonlinear electrodynamics,
     Phys. Lett. B 464 (1999) 25 [hep-th/9911174] [SPIRES];
     E. Ayon-Beato and A. Garcia, Nonsingular charged black hole solution for nonlinear source,
     Gen. Rel. Grav. 31 (1999) 629 [gr-qc/9911084] [SPIRES];
     N. Breton, Stability of nonlinear magnetic black holes, Phys. Rev. D 72 (2005) 044015
     [hep-th/0502217] [SPIRES];
     K.A. Bronnikov, Regular magnetic black holes and monopoles from nonlinear electrodynamics,
     Phys. Rev. D 63 (2001) 044005 [gr-qc/0006014] [SPIRES];
     A. Burinskii and S.R. Hildebrandt, New type of regular black holes and particlelike solutions
     from NED, Phys. Rev. D 65 (2002) 104017 [hep-th/0202066] [SPIRES];
     M. Cataldo and A. Garcia, Regular (2+1)-dimensional black holes within non-linear
     electrodynamics, Phys. Rev. D 61 (2000) 084003 [hep-th/0004177] [SPIRES].
 [5] A.V.B. Arellano and F.S.N. Lobo, Evolving wormhole geometries within nonlinear
     electrodynamics, Class. Quant. Grav. 23 (2006) 5811 [gr-qc/0608003] [SPIRES];
     A.V.B. Arellano and F.S.N. Lobo, Non-existence of static, spherically symmetric and
     stationary, axisymmetric traversable wormholes coupled to nonlinear electrodynamics,
     Class. Quant. Grav. 23 (2006) 7229 [gr-qc/0604095] [SPIRES];
     K.A. Bronnikov and S.V. Grinyok, Electrically charged and neutral wormhole instability in
     scalar-tensor gravity, Grav. Cosmol. 11 (2006) 75;
     F. Baldovin, M. Novello, S.E. Perez Bergliaffa and J.M. Salim, A nongravitational wormhole,
     Class. Quant. Grav. 17 (2000) 3265 [gr-qc/0003075] [SPIRES].
 [6] M. Li, J.-Q. Xia, H. Li and X. Zhang, Cosmological CPT violation, baryo/leptogenesis and
     CMB polarization, Phys. Lett. B 651 (2007) 357 [hep-ph/0611192] [SPIRES].
 [7] M. Li and X. Zhang, Cosmological CPT violating effect on CMB polarization,
     Phys. Rev. D 78 (2008) 103516 [arXiv:0810.0403] [SPIRES].
 [8] H.J. Mosquera Cuesta and G. Lambiase, Primordial magnetic fields and gravitational
     baryogenesis in nonlinear electrodynamics, Phys. Rev. D 80 (2009) 023013 [arXiv:0907.3678]
     [SPIRES].
 [9] K.E. Kunze, Primordial magnetic fields and nonlinear electrodynamics,
     Phys. Rev. D 77 (2008) 023530 [arXiv:0710.2435] [SPIRES].
[10] J.D. Barrow, R. Maartens and C.G. Tsagas, Cosmology with inhomogeneous magnetic fields,
     Phys. Rept. 449 (2007) 131 [astro-ph/0611537] [SPIRES].




                                             – 14 –
[11] L. Campanelli, P. Cea, G.L. Fogli and L. Tedesco, Inflation-Produced Magnetic Fields in
     Nonlinear Electrodynamics, Phys. Rev. D 77 (2008) 043001 [arXiv:0710.2993] [SPIRES];
     L. Campanelli, P. Cea, G.L. Fogli and L. Tedesco, Inflation-Produced Magnetic Fields in Rn
     F 2 and IF 2 models, Phys. Rev. D 77 (2008) 123002 [arXiv:0802.2630] [SPIRES].
[12] A.K. Harding, M.G. Baring and P.L. Gonthier, Photon-splitting Cascades in Gamma-Ray
     Pulsars and the Spectrum of PSR 1509-58, Astrophys. J. 476 (1997) 246;
     M.G. Baring and A.K. Harding, Radio Quiet Pulsars with Ultra-Strong Magnetic Fields,
     Astrophys. J. Lett. 507 (1998) L55;
     M.G. Baring, Magnetic photon splitting: The S-matrix formulation in the Landau
     representation, Phys. Rev. D 62 (2000) 016003 [hep-th/0003186] [SPIRES];
     A.K. Harding and D. Lai, Physics of Strongly Magnetized Neutron Stars, Rep. Prog. Phys. 69




                                                                                                     JCAP03(2011)033
     (2006) 2631;
     H.J. Mosquera Cuesta and J.M. Salim, Nonlinear electrodynamics and the gravitational redshift
     of pulsars, Mon. Not. Roy. Astron. Soc. 354 (2004) L55 [astro-ph/0403045] [SPIRES];
     H.J. Mosquera Cuesta and J.M. Salim, Nonlinear electrodynamics and the surface redshift of
     pulsars, Astrophys. J. 608 (2004) 925 [astro-ph/0307513] [SPIRES];
     H. J. Mosquera Cuesta, J. A. de Freitas Pacheco and J. M. Salim, Einstein’s gravitational
     lensing and nonlinear electrodynamics, Int. J. Math. Phys. A 21 (2006) 43;
     J-P. Mbelek, H. J. Mosquera Cuesta, M. Novello and J. M. Salim, Nonlinear electrodynamics
     and the Pioneer 10/11 spacecraft anomaly, Eur. Phys. Lett. 77 (2007) 19001.
[13] J.-Q. Xia, H. Li and X. Zhang, Probing CPT Violation with CMB Polarization Measurements,
     Phys. Lett. B 687 (2010) 129 [arXiv:0908.1876] [SPIRES];
     B. Feng, M. Li, J.-Q. Xia, X. Chen and X. Zhang, Searching for CPT violation with WMAP
     and BOOMERANG, Phys. Rev. Lett. 96 (2006) 221302 [astro-ph/0601095] [SPIRES].
[14] G. Gubitosi, L. Pagano, G. Amelino-Camelia, A. Melchiorri and A. Cooray, A Constraint on
     Planck-scale Modifications to Electrodynamics with CMB polarization data,
     JCAP 08 (2009) 021 [arXiv:0904.3201] [SPIRES];
     M. Das, S. Mohanty and A.R. Prasanna, Constraints on background torsion from birefringence
     of CMB polarization, arXiv:0908.0629 [SPIRES];
     P. Cabella, P. Natoli and J. Silk, Constraints on CPT violation from Wilkinson Microwave
     Anisotropy Probe and three years polarization data: A wavelet analysis, Phys. Rev. D 76
     (2007) 123014;
     F.R. Urban and A.R. Zhitnitsky, The P-Parity odd Universe, Dark Energy and QCD,
     arXiv:1011.2425;
     G.-C. Liu, S. Lee and K.-W. Ng, Effect on Cosmic Microwave Background Polarization of
     Coupling of Quintessence to Pseudoscalar Formed from the Electromagnetism Field and Its
     Dual, Phys. Rev. Lett. 97 (2006) 161303;
     Y.-Z. Chu, D.M.Jacobs, Y. Ng and D. Starkman, It is hard to learn how gravity and
     electromagnetism couple, Phys. Rev. D 82 (2010) 064022;
     S. di Serego Alighieri, Cosmological birefringence: An Astrophysical Test of Fundamental
     Physics, arXiv:1011.4865.
[15] R. Sung and P. Coles, Temperature and Polarization Patterns in Anisotropic Cosmologies,
     arXiv:1004.0957 [SPIRES].
[16] H. Pagels and E. Tomboulis, Vacuum of the Quantum Yang-Mills Theory and Magnetostatics,
     Nucl. Phys. B 143 (1978) 485 [SPIRES];
     H. Arodz, M. Slusarczyk and A. Wereszcynski, Electrostatics of Pagels-Tomboulis effective
     model, Acta. Polon. B 32 (2001) 2155;
     M. Slusarczyk and A. Wereszcynski, On (2+1)-dimensional topologically massive nonlinear
     electrodynamics, Acta. Polon. B 34 (2003) 2623.
[17] J.P. Mbelek and H.J. Mosquera Cuesta, Nonlinear electrodynamics and the gravitational
     redshift of pulsars, Mon. Not. Roy. Astron. Soc. 389 (2008) 199.




                                             – 15 –
[18] C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, Freeman Press, San Francisco
     (1973).

[19] A.H. Taub, Empty space-times admitting a three parameter group of motions, Annals Math. 53
     (1951) 472 [SPIRES].

[20] L. Campanelli, P. Cea and L. Tedesco, Cosmic Microwave Background Quadrupole and
     Ellipsoidal Universe, Phys. Rev. D 76 (2007) 063007 [arXiv:0706.3802] [SPIRES];
     L. Campanelli, P. Cea and L. Tedesco, Ellipsoidal Universe Can Solve The CMB Quadrupole
     Problem, Phys. Rev. Lett. 97 (2006) 131302 [astro-ph/0606266] [SPIRES].

[21] E.N. Parker, Cosmological Magnetic Fields, Oxford University Press, Oxford England (1979);
     Ya. B. Zeldovich, A.A. Ruzmaikin and D.D. Sokoloff, Magnetic Fields in Astrophysics, Gordon




                                                                                                      JCAP03(2011)033
     & Breach, NY (1980).

[22] M. Giovannini, The magnetized universe, Int. J. Mod. Phys. D 13 (2004) 391
     [astro-ph/0312614] [SPIRES];
     L.M. Widrow, Origin of Galactic and Extragalactic Magnetic Fields,
     Rev. Mod. Phys. 74 (2002) 775 [astro-ph/0207240] [SPIRES];
     D. Grasso and H.R. Rubinstein, Magnetic fields in the early universe,
     Phys. Rept. 348 (2001) 163 [astro-ph/0009061] [SPIRES];
     P.P. Kronberg, Extragalactic magnetic fields, Rep. Prog. Phys. 57 (1994) 325;
     A.D. Dolgov, Generation of magnetic fields in cosmology, hep-ph/0110293 [SPIRES];
     J.-P. Valle´, Cosmic magnetic fields - as observed in the Universe, in galactic dynamos, and in
                e
     the Milk Way, New Astron. Rev. 48 (2004) 763.

[23] M.S. Turner and L.M. Widrow, Inflation Produced, Large Scale Magnetic Fields,
     Phys. Rev. D 37 (1988) 2743 [SPIRES];
     L. Campanelli, P. Cea, G.L. Fogli and L. Tedesco, Inflation-Produced Magnetic Fields in
     Nonlinear Electrodynamics, Phys. Rev. D 77 (2008) 043001 [arXiv:0710.2993] [SPIRES];
     L. Campanelli, P. Cea, G.L. Fogli and L. Tedesco, Inflation-Produced Magnetic Fields in Rn F 2
     and IF 2 models, Phys. Rev. D 77 (2008) 123002 [arXiv:0802.2630] [SPIRES];
     T. Vachaspati, Magnetic fields from cosmological phase transitions,
     Phys. Lett. B 265 (1991) 258 [SPIRES];
     B.-l. Cheng and A.V. Olinto, Primordial magnetic fields generated in the quark-hadron
     transition, Phys. Rev. D 50 (1994) 2421 [SPIRES];
     A.P. Martin and A.-C. Davis, The Stability of primordial magnetic fields produced by phase
     transitions, Phys. Lett. B 360 (1995) 71 [astro-ph/9507057] [SPIRES];
     T.W.B. Kibble and A. Vilenkin, Phase equilibration in bubble collisions,
     Phys. Rev. D 52 (1995) 679 [hep-ph/9501266] [SPIRES];
     M. Gasperini, M. Giovannini and G. Veneziano, Primordial magnetic fields from string
     cosmology, Phys. Rev. Lett. 75 (1995) 3796 [hep-th/9504083] [SPIRES];
     M. Gasperini, A new mechanism for the generation of primordial seeds for the cosmic magnetic
     fields, Phys. Rev. D 63 (2001) 047301 [astro-ph/0009476] [SPIRES];
     M. Giovannini and M.E. Shaposhnikov, Primordial magnetic fields from inflation?,
     Phys. Rev. D 62 (2000) 103512 [hep-ph/0004269] [SPIRES];
     G.B. Field and S.M. Carroll, Cosmological magnetic fields from primordial helicity,
     Phys. Rev. D 62 (2000) 103008 [astro-ph/9811206] [SPIRES];
     B. Ratra, Cosmological ’seed’ magnetic field from inflation, Astrophys. J. Lett. 391 (1992) L1;
     E.A. Calzetta, A. Kandus and F.D. Mazzitelli, Primordial magnetic fields induced by
     cosmological particle creation, Phys. Rev. D 57 (1998) 7139 [astro-ph/9707220] [SPIRES];
     G. Lambiase and A.R. Prasanna, Gauge invariant wave equations in curved space-times and
     primordial magnetic fields, Phys. Rev. D 70 (2004) 063502 [gr-qc/0407071] [SPIRES];
     G. Lambiase, S. Mohanty and G. Scarpetta, Magnetic field amplification in f(R) theories of
     gravity, JCAP 07 (2008) 019 [SPIRES];




                                              – 16 –
R. Opher and U.F. Wichoski, Origin of Magnetic Fields in the Universe Due to Nonminimal
Gravitational-Electromagnetic Coupling, Phys. Rev. Lett. 78 (1997) 787 [astro-ph/9701220]
[SPIRES];
K. Bamba, Property of the spectrum of large-scale magnetic fields from inflation,
Phys. Rev. D 75 (2007) 083516 [astro-ph/0703647] [SPIRES];
K. Bamba, C.Q. Geng and S.H. Ho, Large-scale magnetic fields from inflation due to
Chern-Simons-like effective interaction, JCAP 11 (2008) 013 [arXiv:0806.1856] [SPIRES];
F.D. Mazzitelli and F.M. Spedalieri, Scalar electrodynamics and primordial magnetic fields,
Phys. Rev. D 52 (1995) 6694 [astro-ph/9505140] [SPIRES];
W.D. Garretson, G.B. Field and S.M. Carroll, Primordial magnetic fields from
pseudoGoldstone bosons, Phys. Rev. D 46 (1992) 5346 [hep-ph/9209238] [SPIRES];
S.M. Carroll, G.B. Field and R. Jackiw, Limits on a Lorentz and Parity Violating Modification




                                                                                                 JCAP03(2011)033
of Electrodynamics, Phys. Rev. D 41 (1990) 1231 [SPIRES];
D. Harari and P. Sikivie, Effects of a Nambu-Goldstone boson on the polarization of radio
galaxies and the cosmic microwave background, Phys. Lett. B 289 (1992) 67 [SPIRES];
S. Matarrese, S. Mollerach, A. Notari and A. Riotto, Large-scale magnetic fields from density
perturbations, Phys. Rev. D 71 (2005) 043502 [astro-ph/0410687] [SPIRES];
A.L. Maroto, Primordial magnetic fields from metric perturbations,
Phys. Rev. D 64 (2001) 083006 [hep-ph/0008288] [SPIRES];
E. Fenu and R. Durrer, Interactions of cosmological gravitational waves and magnetic fields,
Phys. Rev. D 79 (2009) 024021 [arXiv:0809.1383] [SPIRES];
C.G. Tsagas, P.K.S. Dunsby and M. Marklund, Gravitational wave amplification of seed
magnetic fields, Phys. Lett. B 561 (2003) 17 [astro-ph/0112560] [SPIRES];
C.G. Tsagas, Resonant amplification of magnetic seed fields by gravitational waves in the early
universe, Phys. Rev. D 72 (2005) 123509 [astro-ph/0508556] [SPIRES];
A.D. Dolgov and D. Grasso, Generation of cosmic magnetic fields and gravitational waves at
neutrino decoupling, Phys. Rev. Lett. 88 (2002) 011301 [astro-ph/0106154] [SPIRES];
J.D. Barrow and C.G. Tsagas, Slow decay of magnetic fields in open Friedmann universes,
Phys. Rev. D 77 (2008) 107302 [arXiv:0803.0660] [SPIRES];
O. Bertolami and D.F. Mota, Primordial magnetic fields via spontaneous breaking of Lorentz
invariance, Phys. Lett. B 455 (1999) 96 [gr-qc/9811087] [SPIRES];
T. Vachaspati and A. Vilenkin, Large scale structure from wiggly cosmic strings,
Phys. Rev. Lett. 67 (1991) 1057 [SPIRES];
M. Joyce and M.E. Shaposhnikov, Primordial magnetic fields, right electrons and the Abelian
anomaly, Phys. Rev. Lett. 79 (1997) 1193 [astro-ph/9703005] [SPIRES];
A. Dolgov and J. Silk, Electric charge asymmetry of the universe and magnetic field generation,
Phys. Rev. D 47 (1993) 3144 [SPIRES];
A. Dolgov, Breaking Of Conformal Invariance And Electromagnetic Field Generation In The
Universe, Phys. Rev. D 48 (1993) 2499 [hep-ph/9301280] [SPIRES];
V.B. Semikoz and D.D. Sokoloff, Large-scale magnetic field generation by alpha-effect driven by
collective neutrino-plasma interaction, Phys. Rev. Lett. 92 (2004) 131301 [astro-ph/0312567]
[SPIRES];
J.H. Piddington, Pulsar and Magnetic Amplification, Aust. J. Phys. 23 (1970) 731;
L.M. Widrow, Origin of Galactic and Extragalactic Magnetic Fields,
Rev. Mod. Phys. 74 (2002) 775 [astro-ph/0207240] [SPIRES];
D. Grasso and H.R. Rubinstein, Magnetic fields in the early universe,
Phys. Rept. 348 (2001) 163 [astro-ph/0009061] [SPIRES];
K. Enqvist, Primordial magnetic fields, Int. J. Mod. Phys. D 7 (1998) 331
[astro-ph/9803196] [SPIRES];
S. Koh and C.H. Lee, CMBR anisotropy with primordial magnetic fields,
Phys. Rev. D 62 (2000) 083509 [astro-ph/0006357] [SPIRES];
J.D. Barrow, P.G. Ferreira and J. Silk, Constraints on a Primordial Magnetic Field,
Phys. Rev. Lett. 78 (1997) 3610 [astro-ph/9701063] [SPIRES];




                                         – 17 –
J.D. Barrow, Cosmological limits on slightly skew stresses, Phys. Rev. D 55 (1997) 7451
    [gr-qc/9701038] [SPIRES];
    M. Giovannini, Cosmic microwave background polarization, Faraday rotation and stochastic
    gravity-waves backgrounds, Phys. Rev. D 56 (1997) 3198 [hep-th/9706201] [SPIRES];
    T. Kolatt, Determination of the Primordial Magnetic Field Power Spectrum by Faraday
    Rotation Correlations, Astrophys. J. 495 (1998) 564 [astro-ph/9704243] [SPIRES];
    D. Grasso and H.R. Rubinstein, Revisiting Nucleosynthesis Constraints on Primordial
    Magnetic Fields, Phys. Lett. B 379 (1996) 73 [astro-ph/9602055] [SPIRES];
    P.J. Kernan, G.D. Starkman and T. Vachaspati, Big Bang Nucleosynthesis Constraints on
    Primordial Magnetic Fields, Phys. Rev. D 54 (1996) 7207 [astro-ph/9509126] [SPIRES];
    B.-l. Cheng, A.V. Olinto, D.N. Schramm and J.W. Truran, Constraints on the strength of
    primordial magnetic fields from big bang nucleosynthesis revisited,




                                                                                                   JCAP03(2011)033
    Phys. Rev. D 54 (1996) 4714 [astro-ph/9606163] [SPIRES];
    B.-l. Cheng, D.N. Schramm and J.W. Truran, Constraints on the strength of a primordial
    magnetic field from big bang nucleosynthesis, Phys. Rev. D 49 (1994) 5006
    [astro-ph/9308041] [SPIRES];
    G. Greenstein, Primordial Helium Production in “Magnetic” Cosmologies, Nature 223 (1969)
    938.
[24] H.R. Rubinstein, Magnetic fields in the early universe, Int. J. Theor. Phys. 38 (1999) 1315.
[25] J.-Q. Xia, H. Li, G.-B. Zhao and X. Zhang, Testing CPT Symmetry with CMB Measurements:
     Update after WMAP5, Astrophys. J. 679 (2008) L61 [arXiv:0803.2350] [SPIRES].
[26] E.W. Kolb, M.S. Turner, The Early Universe, addison-Wesley, Reading, MA (1990).
[27] D. Grasso and H.R. Rubinstein, Revisiting Nucleosynthesis Constraints on Primordial
     Magnetic Fields, Phys. Lett. B 379 (1996) 73 [astro-ph/9602055] [SPIRES].
[28] W. Hu, U. Seljak, M.J. White and M. Zaldarriaga, A Complete Treatment of CMB
     Anisotropies in a FRW Universe, Phys. Rev. D 57 (1998) 3290 [astro-ph/9709066] [SPIRES].
[29] A. Lue, L.-M. Wang and M. Kamionkowski, Cosmological signature of new parity-violating
     interactions, Phys. Rev. Lett. 83 (1999) 1506 [astro-ph/9812088] [SPIRES].
[30] M. Kamionkowski, A. Kosowsky and A. Stebbins, Statistics of Cosmic Microwave Background
     Polarization, Phys. Rev. D 55 (1997) 7368 [astro-ph/9611125] [SPIRES].
[31] B. Feng, H. Li, M.-z. Li and X.-m. Zhang, Gravitational leptogenesis and its signatures in
     CMB, Phys. Lett. B 620 (2005) 27 [hep-ph/0406269] [SPIRES].
[32] Y.N. Obukhov and G.F. Rubilar, Fresnel analysis of the wave propagation in nonlinear
     electrodynamics, Phys. Rev. D 66 (2002) 024042 [gr-qc/0204028] [SPIRES].
[33] M. Novello, V.A. De Lorenci, J.M. Salim and R. Klippert, Geometrical aspects of light
     propagation in nonlinear electrodynamics, Phys. Rev. D 61 (2000) 045001 [gr-qc/9911085]
     [SPIRES];
     V.A. De Lorenci, R. Klippert, M. Novello and J.M. Salim, Light propagation in non-linear
     electrodynamics, Phys. Lett. B 482 (2000) 134 [gr-qc/0005049] [SPIRES];
     V.A. De Lorenci and M.A. Souza, Electromagnetic wave propagation inside a material medium:
     An Effective geometry interpretation, Phys. Lett. B 512 (2001) 417 [gr-qc/0102022]
     [SPIRES];
     V.A. De Lorenci and R. Klippert, Analog gravity from electrodynamics in non-linear media,
     Phys. Rev. D 65 (2002) 064027 [gr-qc/0107008] [SPIRES];
     A. Corichi et al., Quantum collapse of a small dust shell, Phys. Rev. D 65 (2002) 064006
     [gr-qc/0109057] [SPIRES];
     J.P.S. Lemos and R. Kerner, The Born-Infeld electromagnetism in Kaluza-Klein theory, Grav.
     Cosmol. 6 (2000) 49;




                                              – 18 –
I.T. Drummond and S.J. Hathrell, QED Vacuum Polarization in a Background Gravitational
    Field and Its Effect on the Velocity of Photons, Phys. Rev. D 22 (1980) 343 [SPIRES];
    J.I. Latorre, P. Pascual and R. Tarrach, Speed of light in nontrivial vacua,
    Nucl. Phys. B 437 (1995) 60 [hep-th/9408016] [SPIRES];
    G.M. Shore, ’Faster than light’ photons in gravitational fields: Causality, anomalies and
    horizons, Nucl. Phys. B 460 (1996) 379 [gr-qc/9504041] [SPIRES];
    W. Dittrich and H. Gies, Light propagation in non-trivial QED vacua,
    Phys. Rev. D 58 (1998) 025004 [hep-ph/9804375] [SPIRES];
    H. Gies, Light cone condition for a thermalized QED vacuum, Phys. Rev. D 60 (1999) 105033
    [hep-ph/9906303] [SPIRES];
    D.I. Blokhintsev and V.V. Orlov, ??, Zh. Eksp. Fiz. 25 (1953) 513;
    M. Lutzky and J.S. Toll, Formation of Discontinuities in Classical Nonlinear Electrodynamics,




                                                                                                    JCAP03(2011)033
    Phys. Rev. 113 (1959) 1649 [SPIRES];
    H.S. Ibarguen, A. Garcia and J. Plebanski, Signals in nonlinear electrodynamics invariant
    under duality rotations, J. Math. Phys. 30 (1989) 2689 [SPIRES];
    S.L. Adler, Photon splitting and photon dispersion in a strong magnetic field,
    Annals Phys. 67 (1971) 599 [SPIRES];
    Z. Bialynicka-Birula and I. Bialynicki-Birula, Nonlinear effects in Quantum Electrodynamics.
    Photon propagation and photon splitting in an external field, Phys. Rev. D 2 (1970) 2341
    [SPIRES];
    W.-y. Tsai and T. Erber, The Propagation of Photons in Homogeneous Magnetic Fields: Index
    of Refraction, Phys. Rev. D 12 (1975) 1132 [SPIRES];
    M. Novello, S.E. Perez Bergliaffa and J. Salim, Nonlinear electrodynamics and the acceleration
    of the Universe, Phys. Rev. D 69 (2004) 127301 [astro-ph/0312093] [SPIRES].
[34] D. Hutsemekers, Evidence for very large-scale coherent orientations of quasar polarization
     vectors, Astron. Astrophys 332 (1998) 410.
[35] D. Hutsemekers and H. Lamy, The optical polarization of radio-loud and radio-intermediate
     broad absorption line quasi-stellar objects, Astron. Astrophys. 358 (2000) 835.
[36] D. Hutsemekers, R. Cabanac, H. Lamy and D. Sluse, Mapping extreme-scale alignments of
     quasar polarization vectors, Astron. Astrophys. 441 (2005) 915 [astro-ph/0507274] [SPIRES].
[37] D. Hutsemekers et al., Large-Scale Alignments of Quasar Polarization Vectors: Evidence at
     Cosmological Scales for Very Light Pseudoscalar Particles Mixing with Photons?,
     arXiv:0809.3088 [SPIRES].
[38] H. J. Mosquera Cuesta and G. Lambiase, Effects of NLED on CMB physics, in preparation
     (2011).




                                              – 19 –

Weitere ähnliche Inhalte

Was ist angesagt?

Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?ABDERRAHMANE REGGAD
 
Strongly Interacting Atoms in Optical Lattices
Strongly Interacting Atoms in Optical LatticesStrongly Interacting Atoms in Optical Lattices
Strongly Interacting Atoms in Optical LatticesABDERRAHMANE REGGAD
 
Nuclear Basics Summer 2010
Nuclear Basics Summer 2010Nuclear Basics Summer 2010
Nuclear Basics Summer 2010Roppon Picha
 
Theoretical picture: magnetic impurities, Zener model, mean-field theory
Theoretical picture: magnetic impurities, Zener model, mean-field theoryTheoretical picture: magnetic impurities, Zener model, mean-field theory
Theoretical picture: magnetic impurities, Zener model, mean-field theoryABDERRAHMANE REGGAD
 
Quick and Dirty Introduction to Mott Insulators
Quick and Dirty Introduction to Mott InsulatorsQuick and Dirty Introduction to Mott Insulators
Quick and Dirty Introduction to Mott InsulatorsABDERRAHMANE REGGAD
 
Introduction to Electron Correlation
Introduction to Electron CorrelationIntroduction to Electron Correlation
Introduction to Electron CorrelationAlbert DeFusco
 
Hidden Symmetries and Their Consequences in the Hubbard Model of t2g Electrons
Hidden Symmetries and Their Consequences in the Hubbard Model of t2g ElectronsHidden Symmetries and Their Consequences in the Hubbard Model of t2g Electrons
Hidden Symmetries and Their Consequences in the Hubbard Model of t2g ElectronsABDERRAHMANE REGGAD
 
NUCLEAR MODELS
NUCLEAR MODELSNUCLEAR MODELS
NUCLEAR MODELSKC College
 
Fermi surface and de haas van alphen effect ppt
Fermi surface and de haas van alphen effect pptFermi surface and de haas van alphen effect ppt
Fermi surface and de haas van alphen effect ppttedoado
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
To the Issue of Reconciling Quantum Mechanics and General Relativity
To the Issue of Reconciling Quantum Mechanics and General RelativityTo the Issue of Reconciling Quantum Mechanics and General Relativity
To the Issue of Reconciling Quantum Mechanics and General RelativityIOSRJAP
 
Density functional theory
Density functional theoryDensity functional theory
Density functional theorysandhya singh
 
Fisika Modern 08 schrodinger eqinhydrogenatom
Fisika Modern 08 schrodinger eqinhydrogenatomFisika Modern 08 schrodinger eqinhydrogenatom
Fisika Modern 08 schrodinger eqinhydrogenatomjayamartha
 
Basis of Biophysics1
Basis of Biophysics1Basis of Biophysics1
Basis of Biophysics1FLI
 

Was ist angesagt? (20)

Diluted Magnetic Semiconductors
Diluted Magnetic SemiconductorsDiluted Magnetic Semiconductors
Diluted Magnetic Semiconductors
 
Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?
 
Strongly Interacting Atoms in Optical Lattices
Strongly Interacting Atoms in Optical LatticesStrongly Interacting Atoms in Optical Lattices
Strongly Interacting Atoms in Optical Lattices
 
Nuclear Basics Summer 2010
Nuclear Basics Summer 2010Nuclear Basics Summer 2010
Nuclear Basics Summer 2010
 
black magic
black magicblack magic
black magic
 
Theoretical picture: magnetic impurities, Zener model, mean-field theory
Theoretical picture: magnetic impurities, Zener model, mean-field theoryTheoretical picture: magnetic impurities, Zener model, mean-field theory
Theoretical picture: magnetic impurities, Zener model, mean-field theory
 
Quick and Dirty Introduction to Mott Insulators
Quick and Dirty Introduction to Mott InsulatorsQuick and Dirty Introduction to Mott Insulators
Quick and Dirty Introduction to Mott Insulators
 
Introduction to Electron Correlation
Introduction to Electron CorrelationIntroduction to Electron Correlation
Introduction to Electron Correlation
 
Hidden Symmetries and Their Consequences in the Hubbard Model of t2g Electrons
Hidden Symmetries and Their Consequences in the Hubbard Model of t2g ElectronsHidden Symmetries and Their Consequences in the Hubbard Model of t2g Electrons
Hidden Symmetries and Their Consequences in the Hubbard Model of t2g Electrons
 
Lect. 16 applications of rotational spectroscopy problems
Lect. 16 applications of rotational spectroscopy problemsLect. 16 applications of rotational spectroscopy problems
Lect. 16 applications of rotational spectroscopy problems
 
NANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFTNANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFT
 
NUCLEAR MODELS
NUCLEAR MODELSNUCLEAR MODELS
NUCLEAR MODELS
 
Fermi surface and de haas van alphen effect ppt
Fermi surface and de haas van alphen effect pptFermi surface and de haas van alphen effect ppt
Fermi surface and de haas van alphen effect ppt
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
Atom hidrogen
Atom hidrogenAtom hidrogen
Atom hidrogen
 
To the Issue of Reconciling Quantum Mechanics and General Relativity
To the Issue of Reconciling Quantum Mechanics and General RelativityTo the Issue of Reconciling Quantum Mechanics and General Relativity
To the Issue of Reconciling Quantum Mechanics and General Relativity
 
Hartree fock theory
Hartree fock theoryHartree fock theory
Hartree fock theory
 
Density functional theory
Density functional theoryDensity functional theory
Density functional theory
 
Fisika Modern 08 schrodinger eqinhydrogenatom
Fisika Modern 08 schrodinger eqinhydrogenatomFisika Modern 08 schrodinger eqinhydrogenatom
Fisika Modern 08 schrodinger eqinhydrogenatom
 
Basis of Biophysics1
Basis of Biophysics1Basis of Biophysics1
Basis of Biophysics1
 

Andere mochten auch

Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Astro parti...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Astro parti...Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Astro parti...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Astro parti...SOCIEDAD JULIO GARAVITO
 
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Hubble diag...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Hubble diag...Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Hubble diag...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Hubble diag...SOCIEDAD JULIO GARAVITO
 
Apartes de la conferencia de la SJG del 14 y 21 de Enero de 2012: Gravitation...
Apartes de la conferencia de la SJG del 14 y 21 de Enero de 2012: Gravitation...Apartes de la conferencia de la SJG del 14 y 21 de Enero de 2012: Gravitation...
Apartes de la conferencia de la SJG del 14 y 21 de Enero de 2012: Gravitation...SOCIEDAD JULIO GARAVITO
 
On the black hole mass decomposition in nonlinear electrodynamics
On the black hole mass decomposition in nonlinear electrodynamicsOn the black hole mass decomposition in nonlinear electrodynamics
On the black hole mass decomposition in nonlinear electrodynamicsSOCIEDAD JULIO GARAVITO
 

Andere mochten auch (6)

Cometa garrardd agosto 2011
Cometa garrardd   agosto 2011Cometa garrardd   agosto 2011
Cometa garrardd agosto 2011
 
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Astro parti...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Astro parti...Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Astro parti...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Astro parti...
 
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Hubble diag...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Hubble diag...Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Hubble diag...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Hubble diag...
 
Apartes de la conferencia de la SJG del 14 y 21 de Enero de 2012: Gravitation...
Apartes de la conferencia de la SJG del 14 y 21 de Enero de 2012: Gravitation...Apartes de la conferencia de la SJG del 14 y 21 de Enero de 2012: Gravitation...
Apartes de la conferencia de la SJG del 14 y 21 de Enero de 2012: Gravitation...
 
On the black hole mass decomposition in nonlinear electrodynamics
On the black hole mass decomposition in nonlinear electrodynamicsOn the black hole mass decomposition in nonlinear electrodynamics
On the black hole mass decomposition in nonlinear electrodynamics
 
Manual de Urbanidad de Carreño
Manual de Urbanidad de CarreñoManual de Urbanidad de Carreño
Manual de Urbanidad de Carreño
 

Ähnlich wie Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear electrodynamics and cmb polarization

Advchemchapt7 101015115641-phpapp02
Advchemchapt7 101015115641-phpapp02Advchemchapt7 101015115641-phpapp02
Advchemchapt7 101015115641-phpapp02Cleophas Rwemera
 
electron spin resonance
electron spin resonanceelectron spin resonance
electron spin resonanceshyam_mdc
 
Chapter 7 notes
Chapter 7 notes Chapter 7 notes
Chapter 7 notes Wong Hsiung
 
Magnetic Materials Assignment Help
Magnetic Materials Assignment HelpMagnetic Materials Assignment Help
Magnetic Materials Assignment HelpEdu Assignment Help
 
FERROMAGNETIC-FERROELECTRIC COMPOSITE 1D NANOSTRUCTURE IN THE PURSUIT OF MAGN...
FERROMAGNETIC-FERROELECTRIC COMPOSITE 1D NANOSTRUCTURE IN THE PURSUIT OF MAGN...FERROMAGNETIC-FERROELECTRIC COMPOSITE 1D NANOSTRUCTURE IN THE PURSUIT OF MAGN...
FERROMAGNETIC-FERROELECTRIC COMPOSITE 1D NANOSTRUCTURE IN THE PURSUIT OF MAGN...ijrap
 
Ferromagnetic-Ferroelectric Composite 1D Nanostructure in the Pursuit of Magn...
Ferromagnetic-Ferroelectric Composite 1D Nanostructure in the Pursuit of Magn...Ferromagnetic-Ferroelectric Composite 1D Nanostructure in the Pursuit of Magn...
Ferromagnetic-Ferroelectric Composite 1D Nanostructure in the Pursuit of Magn...ijrap
 
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Alexander Decker
 
Apchemunit7 111006100549-phpapp02
Apchemunit7 111006100549-phpapp02Apchemunit7 111006100549-phpapp02
Apchemunit7 111006100549-phpapp02Cleophas Rwemera
 
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...Lewis Larsen
 
хагас дамжуулагчийн физик
хагас дамжуулагчийн физикхагас дамжуулагчийн физик
хагас дамжуулагчийн физикJkl L
 
BoltzTrap webinar116_David_J_Singh.pdf
BoltzTrap webinar116_David_J_Singh.pdfBoltzTrap webinar116_David_J_Singh.pdf
BoltzTrap webinar116_David_J_Singh.pdfDrSanjaySingh13
 
2018 ELECTRON DIFFRACTION AND APPLICATIONS
2018 ELECTRON DIFFRACTION AND APPLICATIONS2018 ELECTRON DIFFRACTION AND APPLICATIONS
2018 ELECTRON DIFFRACTION AND APPLICATIONSHarsh Mohan
 
Principles and applications of esr spectroscopy
Principles and applications of esr spectroscopyPrinciples and applications of esr spectroscopy
Principles and applications of esr spectroscopySpringer
 

Ähnlich wie Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear electrodynamics and cmb polarization (20)

Unit 4
Unit 4Unit 4
Unit 4
 
Advchemchapt7 101015115641-phpapp02
Advchemchapt7 101015115641-phpapp02Advchemchapt7 101015115641-phpapp02
Advchemchapt7 101015115641-phpapp02
 
electron spin resonance
electron spin resonanceelectron spin resonance
electron spin resonance
 
Adv chem chapt 7
Adv chem chapt 7Adv chem chapt 7
Adv chem chapt 7
 
Spr in a thin metal film
Spr in a thin metal filmSpr in a thin metal film
Spr in a thin metal film
 
Chapter 7 notes
Chapter 7 notes Chapter 7 notes
Chapter 7 notes
 
Magnetic Materials Assignment Help
Magnetic Materials Assignment HelpMagnetic Materials Assignment Help
Magnetic Materials Assignment Help
 
Part VIII - The Standard Model
Part VIII - The Standard ModelPart VIII - The Standard Model
Part VIII - The Standard Model
 
FERROMAGNETIC-FERROELECTRIC COMPOSITE 1D NANOSTRUCTURE IN THE PURSUIT OF MAGN...
FERROMAGNETIC-FERROELECTRIC COMPOSITE 1D NANOSTRUCTURE IN THE PURSUIT OF MAGN...FERROMAGNETIC-FERROELECTRIC COMPOSITE 1D NANOSTRUCTURE IN THE PURSUIT OF MAGN...
FERROMAGNETIC-FERROELECTRIC COMPOSITE 1D NANOSTRUCTURE IN THE PURSUIT OF MAGN...
 
Ferromagnetic-Ferroelectric Composite 1D Nanostructure in the Pursuit of Magn...
Ferromagnetic-Ferroelectric Composite 1D Nanostructure in the Pursuit of Magn...Ferromagnetic-Ferroelectric Composite 1D Nanostructure in the Pursuit of Magn...
Ferromagnetic-Ferroelectric Composite 1D Nanostructure in the Pursuit of Magn...
 
E27
E27E27
E27
 
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
 
Apchemunit7 111006100549-phpapp02
Apchemunit7 111006100549-phpapp02Apchemunit7 111006100549-phpapp02
Apchemunit7 111006100549-phpapp02
 
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
 
хагас дамжуулагчийн физик
хагас дамжуулагчийн физикхагас дамжуулагчийн физик
хагас дамжуулагчийн физик
 
Hartree fock theory
Hartree fock theoryHartree fock theory
Hartree fock theory
 
BoltzTrap webinar116_David_J_Singh.pdf
BoltzTrap webinar116_David_J_Singh.pdfBoltzTrap webinar116_David_J_Singh.pdf
BoltzTrap webinar116_David_J_Singh.pdf
 
Ap chem unit 7
Ap chem unit 7Ap chem unit 7
Ap chem unit 7
 
2018 ELECTRON DIFFRACTION AND APPLICATIONS
2018 ELECTRON DIFFRACTION AND APPLICATIONS2018 ELECTRON DIFFRACTION AND APPLICATIONS
2018 ELECTRON DIFFRACTION AND APPLICATIONS
 
Principles and applications of esr spectroscopy
Principles and applications of esr spectroscopyPrinciples and applications of esr spectroscopy
Principles and applications of esr spectroscopy
 

Mehr von SOCIEDAD JULIO GARAVITO

STUDY OF THE COMET 12P/PONS-BROOKS.A. Q. Vodniza1, 1Director of University of...
STUDY OF THE COMET 12P/PONS-BROOKS.A. Q. Vodniza1, 1Director of University of...STUDY OF THE COMET 12P/PONS-BROOKS.A. Q. Vodniza1, 1Director of University of...
STUDY OF THE COMET 12P/PONS-BROOKS.A. Q. Vodniza1, 1Director of University of...SOCIEDAD JULIO GARAVITO
 
V Encuentro Internacional de Astronomía - Modelos de Galaxias
V Encuentro Internacional de Astronomía - Modelos de GalaxiasV Encuentro Internacional de Astronomía - Modelos de Galaxias
V Encuentro Internacional de Astronomía - Modelos de GalaxiasSOCIEDAD JULIO GARAVITO
 
CAPITULO4_EL_PRINCIPITO:De esta manera supe una segunda cosa muy importante: ...
CAPITULO4_EL_PRINCIPITO:De esta manera supe una segunda cosa muy importante: ...CAPITULO4_EL_PRINCIPITO:De esta manera supe una segunda cosa muy importante: ...
CAPITULO4_EL_PRINCIPITO:De esta manera supe una segunda cosa muy importante: ...SOCIEDAD JULIO GARAVITO
 
Interface QFT_A-P_P and GW Astronomy_HJMC_March_2024.pdf
Interface QFT_A-P_P and GW Astronomy_HJMC_March_2024.pdfInterface QFT_A-P_P and GW Astronomy_HJMC_March_2024.pdf
Interface QFT_A-P_P and GW Astronomy_HJMC_March_2024.pdfSOCIEDAD JULIO GARAVITO
 
The deconstructed Standard Model equation _ - symmetry magazine.pdf
The deconstructed Standard Model equation _ - symmetry magazine.pdfThe deconstructed Standard Model equation _ - symmetry magazine.pdf
The deconstructed Standard Model equation _ - symmetry magazine.pdfSOCIEDAD JULIO GARAVITO
 
Cómo usan el baño los astronautas en el espacio? - Abril 4, 2024 - space.com
Cómo usan el baño los astronautas en el espacio? - Abril 4, 2024 - space.comCómo usan el baño los astronautas en el espacio? - Abril 4, 2024 - space.com
Cómo usan el baño los astronautas en el espacio? - Abril 4, 2024 - space.comSOCIEDAD JULIO GARAVITO
 
Sor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el Convento
Sor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el ConventoSor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el Convento
Sor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el ConventoSOCIEDAD JULIO GARAVITO
 
American Eclipse A Nation’s Epic Race to Catch the_240225_095603
American Eclipse A Nation’s Epic Race to Catch the_240225_095603American Eclipse A Nation’s Epic Race to Catch the_240225_095603
American Eclipse A Nation’s Epic Race to Catch the_240225_095603SOCIEDAD JULIO GARAVITO
 
Citación Asamblea Estatutaria - Invita Junta Directiva de SJG 2024
Citación Asamblea Estatutaria - Invita Junta Directiva de SJG 2024Citación Asamblea Estatutaria - Invita Junta Directiva de SJG 2024
Citación Asamblea Estatutaria - Invita Junta Directiva de SJG 2024SOCIEDAD JULIO GARAVITO
 
Mujeres en astronomía_Luz Angela Cubides_17 de Febrero_ 2024
Mujeres en astronomía_Luz Angela Cubides_17 de Febrero_ 2024Mujeres en astronomía_Luz Angela Cubides_17 de Febrero_ 2024
Mujeres en astronomía_Luz Angela Cubides_17 de Febrero_ 2024SOCIEDAD JULIO GARAVITO
 
Anuario del Real Observatorio Astronómico de Madrid 2024
Anuario del Real Observatorio Astronómico de Madrid 2024Anuario del Real Observatorio Astronómico de Madrid 2024
Anuario del Real Observatorio Astronómico de Madrid 2024SOCIEDAD JULIO GARAVITO
 
Una guía de los mejores eventos astronómicos de 2024: cuándo, dónde y cómo fo...
Una guía de los mejores eventos astronómicos de 2024: cuándo, dónde y cómo fo...Una guía de los mejores eventos astronómicos de 2024: cuándo, dónde y cómo fo...
Una guía de los mejores eventos astronómicos de 2024: cuándo, dónde y cómo fo...SOCIEDAD JULIO GARAVITO
 
¡No te pierdas el eclipse de sol en Texas.pdf
¡No te pierdas el eclipse de sol en Texas.pdf¡No te pierdas el eclipse de sol en Texas.pdf
¡No te pierdas el eclipse de sol en Texas.pdfSOCIEDAD JULIO GARAVITO
 
Estimating_Flight_Characteristics_of_Anomalous_Uni.pdf
Estimating_Flight_Characteristics_of_Anomalous_Uni.pdfEstimating_Flight_Characteristics_of_Anomalous_Uni.pdf
Estimating_Flight_Characteristics_of_Anomalous_Uni.pdfSOCIEDAD JULIO GARAVITO
 
Conjunción Luna-Las Pléyades Noviembre 26, 2023.pdf
Conjunción Luna-Las Pléyades Noviembre 26, 2023.pdfConjunción Luna-Las Pléyades Noviembre 26, 2023.pdf
Conjunción Luna-Las Pléyades Noviembre 26, 2023.pdfSOCIEDAD JULIO GARAVITO
 
EL ASTEROIDE APOPHIS_Alberto Quijano Vodniza.pdf
EL ASTEROIDE APOPHIS_Alberto Quijano Vodniza.pdfEL ASTEROIDE APOPHIS_Alberto Quijano Vodniza.pdf
EL ASTEROIDE APOPHIS_Alberto Quijano Vodniza.pdfSOCIEDAD JULIO GARAVITO
 
Es este el cometa más extraño que hay - Cometa 12P Pons-Brooks - Nov 20, 2023...
Es este el cometa más extraño que hay - Cometa 12P Pons-Brooks - Nov 20, 2023...Es este el cometa más extraño que hay - Cometa 12P Pons-Brooks - Nov 20, 2023...
Es este el cometa más extraño que hay - Cometa 12P Pons-Brooks - Nov 20, 2023...SOCIEDAD JULIO GARAVITO
 

Mehr von SOCIEDAD JULIO GARAVITO (20)

STUDY OF THE COMET 12P/PONS-BROOKS.A. Q. Vodniza1, 1Director of University of...
STUDY OF THE COMET 12P/PONS-BROOKS.A. Q. Vodniza1, 1Director of University of...STUDY OF THE COMET 12P/PONS-BROOKS.A. Q. Vodniza1, 1Director of University of...
STUDY OF THE COMET 12P/PONS-BROOKS.A. Q. Vodniza1, 1Director of University of...
 
V Encuentro Internacional de Astronomía - Modelos de Galaxias
V Encuentro Internacional de Astronomía - Modelos de GalaxiasV Encuentro Internacional de Astronomía - Modelos de Galaxias
V Encuentro Internacional de Astronomía - Modelos de Galaxias
 
CAPITULO4_EL_PRINCIPITO:De esta manera supe una segunda cosa muy importante: ...
CAPITULO4_EL_PRINCIPITO:De esta manera supe una segunda cosa muy importante: ...CAPITULO4_EL_PRINCIPITO:De esta manera supe una segunda cosa muy importante: ...
CAPITULO4_EL_PRINCIPITO:De esta manera supe una segunda cosa muy importante: ...
 
Interface QFT_A-P_P and GW Astronomy_HJMC_March_2024.pdf
Interface QFT_A-P_P and GW Astronomy_HJMC_March_2024.pdfInterface QFT_A-P_P and GW Astronomy_HJMC_March_2024.pdf
Interface QFT_A-P_P and GW Astronomy_HJMC_March_2024.pdf
 
The deconstructed Standard Model equation _ - symmetry magazine.pdf
The deconstructed Standard Model equation _ - symmetry magazine.pdfThe deconstructed Standard Model equation _ - symmetry magazine.pdf
The deconstructed Standard Model equation _ - symmetry magazine.pdf
 
Cómo usan el baño los astronautas en el espacio? - Abril 4, 2024 - space.com
Cómo usan el baño los astronautas en el espacio? - Abril 4, 2024 - space.comCómo usan el baño los astronautas en el espacio? - Abril 4, 2024 - space.com
Cómo usan el baño los astronautas en el espacio? - Abril 4, 2024 - space.com
 
Sor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el Convento
Sor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el ConventoSor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el Convento
Sor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el Convento
 
American Eclipse A Nation’s Epic Race to Catch the_240225_095603
American Eclipse A Nation’s Epic Race to Catch the_240225_095603American Eclipse A Nation’s Epic Race to Catch the_240225_095603
American Eclipse A Nation’s Epic Race to Catch the_240225_095603
 
Citación Asamblea Estatutaria - Invita Junta Directiva de SJG 2024
Citación Asamblea Estatutaria - Invita Junta Directiva de SJG 2024Citación Asamblea Estatutaria - Invita Junta Directiva de SJG 2024
Citación Asamblea Estatutaria - Invita Junta Directiva de SJG 2024
 
Mujeres en astronomía_Luz Angela Cubides_17 de Febrero_ 2024
Mujeres en astronomía_Luz Angela Cubides_17 de Febrero_ 2024Mujeres en astronomía_Luz Angela Cubides_17 de Febrero_ 2024
Mujeres en astronomía_Luz Angela Cubides_17 de Febrero_ 2024
 
Anuario del Real Observatorio Astronómico de Madrid 2024
Anuario del Real Observatorio Astronómico de Madrid 2024Anuario del Real Observatorio Astronómico de Madrid 2024
Anuario del Real Observatorio Astronómico de Madrid 2024
 
Una guía de los mejores eventos astronómicos de 2024: cuándo, dónde y cómo fo...
Una guía de los mejores eventos astronómicos de 2024: cuándo, dónde y cómo fo...Una guía de los mejores eventos astronómicos de 2024: cuándo, dónde y cómo fo...
Una guía de los mejores eventos astronómicos de 2024: cuándo, dónde y cómo fo...
 
¡No te pierdas el eclipse de sol en Texas.pdf
¡No te pierdas el eclipse de sol en Texas.pdf¡No te pierdas el eclipse de sol en Texas.pdf
¡No te pierdas el eclipse de sol en Texas.pdf
 
Estimating_Flight_Characteristics_of_Anomalous_Uni.pdf
Estimating_Flight_Characteristics_of_Anomalous_Uni.pdfEstimating_Flight_Characteristics_of_Anomalous_Uni.pdf
Estimating_Flight_Characteristics_of_Anomalous_Uni.pdf
 
WWF- GuiaAnimalesOrigami.pdf
WWF- GuiaAnimalesOrigami.pdfWWF- GuiaAnimalesOrigami.pdf
WWF- GuiaAnimalesOrigami.pdf
 
ARTICULO GEMINIDAS 2023.
ARTICULO GEMINIDAS 2023.ARTICULO GEMINIDAS 2023.
ARTICULO GEMINIDAS 2023.
 
POSTER IV LAWCN_ROVER_IUE.pdf
POSTER IV LAWCN_ROVER_IUE.pdfPOSTER IV LAWCN_ROVER_IUE.pdf
POSTER IV LAWCN_ROVER_IUE.pdf
 
Conjunción Luna-Las Pléyades Noviembre 26, 2023.pdf
Conjunción Luna-Las Pléyades Noviembre 26, 2023.pdfConjunción Luna-Las Pléyades Noviembre 26, 2023.pdf
Conjunción Luna-Las Pléyades Noviembre 26, 2023.pdf
 
EL ASTEROIDE APOPHIS_Alberto Quijano Vodniza.pdf
EL ASTEROIDE APOPHIS_Alberto Quijano Vodniza.pdfEL ASTEROIDE APOPHIS_Alberto Quijano Vodniza.pdf
EL ASTEROIDE APOPHIS_Alberto Quijano Vodniza.pdf
 
Es este el cometa más extraño que hay - Cometa 12P Pons-Brooks - Nov 20, 2023...
Es este el cometa más extraño que hay - Cometa 12P Pons-Brooks - Nov 20, 2023...Es este el cometa más extraño que hay - Cometa 12P Pons-Brooks - Nov 20, 2023...
Es este el cometa más extraño que hay - Cometa 12P Pons-Brooks - Nov 20, 2023...
 

Kürzlich hochgeladen

SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxhariprasad279825
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DayH2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DaySri Ambati
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 

Kürzlich hochgeladen (20)

SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptx
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DayH2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 

Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear electrodynamics and cmb polarization

  • 1. Home Search Collections Journals About Contact us My IOPscience Nonlinear electrodynamics and CMB polarization This article has been downloaded from IOPscience. Please scroll down to see the full text article. JCAP03(2011)033 (http://iopscience.iop.org/1475-7516/2011/03/033) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 201.39.176.35 The article was downloaded on 22/03/2011 at 21:17 Please note that terms and conditions apply.
  • 2. J ournal of Cosmology and Astroparticle Physics An IOP and SISSA journal Nonlinear electrodynamics and CMB polarization Herman J. Mosquera Cuestaa,b,c,d and G. Lambiasee,f JCAP03(2011)033 a Departmento de F´ısica Universidade Estadual Vale do Acara´, u Avenida da Universidade 850, Campus da Betˆnia, CEP 62.040-370, Sobral, Cear´, Brazil a a b Instituto de Cosmologia, Relatividade e Astrof´ ısica (ICRA-BR), Centro Brasileiro de Pesquisas F´ ısicas, Rua Dr. Xavier Sigaud 150, CEP 22290-180, Urca Rio de Janeiro, RJ, Brazil c International Center for Relativistic Astrophysics Network (ICRANet), International Coordinating Center, Piazzalle della Repubblica 10, 065112, Pescara, Italy d International Institute for Theoretical Physics and Mathematics Einstein-Galilei, via Bruno Buozzi 47, 59100 Prato, Italy e Dipartimento di Fisica “E.R. Caianiello”, Universit` di Salerno, a 84081 Baronissi (SA), Italy f INFN, Sezione di Napoli, Napoli, Italy E-mail: herman@icra.it, lambiase@sa.infn.it Received July 1, 2010 Revised January 23, 2011 Accepted February 8, 2011 Published March 22, 2011 Abstract. Recently WMAP and BOOMERanG experiments have set stringent constraints on the polarization angle of photons propagating in an expanding universe: ∆α = (−2.4 ± 1.9)◦ . The polarization of the Cosmic Microwave Background radiation (CMB) is reviewed in the context of nonlinear electrodynamics (NLED). We compute the polarization angle of photons propagating in a cosmological background with planar symmetry. For this purpose, we use the Pagels-Tomboulis (PT) Lagrangian density describing NLED, which has the form 1 L ∼ (X/Λ4 )δ−1 X, where X = 4 Fαβ F αβ , and δ the parameter featuring the non-Maxwellian character of the PT nonlinear description of the electromagnetic interaction. After looking at the polarization components in the plane orthogonal to the (x)-direction of propagation of the CMB photons, the polarization angle is defined in terms of the eccentricity of the universe, a geometrical property whose evolution on cosmic time (from the last scattering surface to the present) is constrained by the strength of magnetic fields over extragalactic distances. Keywords: CMBR polarisation, CMBR theory, extragalactic magnetic fields, cosmic mag- netic fields theory c 2011 IOP Publishing Ltd and SISSA doi:10.1088/1475-7516/2011/03/033
  • 3. Contents 1 Introduction 1 2 Minimally coupling gravity to nonlinear electrodynamics 2 3 Cosmological setting: Space-time with planar symmetry −→ universe ec- centricity −→ polarization angle 4 JCAP03(2011)033 3.1 Space-time anisotropy and magnetic energy density evolution 4 3.2 Space-time eccentricity and polarization angle 5 3.3 Eccentricity evolution on cosmic time 6 3.4 Constraints on parameter Λ from extragalactic B strengths in an ellipsoidal Universe 7 4 Light propagation in NLED and birefringence 8 5 Stokes parameters, rotated CMB spectra and constraints on parameter Λ 9 5.1 Estimative of Λ 10 6 Discussion and closing remarks 11 1 Introduction Modifications to the standard (Maxwell) electrodynamics were proposed in the literature in order to avoid infinite physical quantities from theoretical descriptions of electromagnetic interactions. Born and Infeld [1], for instance, proposed a model in which the infinite self energy of point particles (typical of Maxwell’s electrodynamics) are removed by introducing an upper limit on the electric field strength, and by considering the electron as an electric particle with finite radius. Along this line, other models of nonlinear electrodynamics (NLED) Lagrangians were proposed by Plebanski, who also showed that Born-Infeld model satisfies physically acceptable requirements [2]. Consequences of nonlinear electrodynamics have been studied in many contexts, such a, for example, cosmological models [3], black holes and wormhole physics [4, 5], primordial magnetic fields in the Universe [8, 9, 11], gravitational baryogenesis [8], and astrophysics [12, 17]. In this paper we investigate the CMB polarization of photons described by nonlinear electrodynamics. We compute the polarization angle of photons propagating in an expand- ing Universe, by considering in particular cosmological models with planar symmetry. The polarization angle does depend on the parameter characterizing the nonlinearity of electro- dynamics, which will be constrained by making use of the recent data from WMAP and BOOMERANG. This kind of investigations has received a lot of interest because they rep- resent a probe of models beyond the standard model, which may violate the fundamental symmetries such as CPT and Lorentz invariance [13, 14]. In what follows we will follow the main lines of the paper on “Cosmological CPT violation, baryo/leptogenesis and CMB polarization” by Li-Xia-Li-Zhang [6]. –1–
  • 4. 2 Minimally coupling gravity to nonlinear electrodynamics The action of (nonlinear) electrodynamics coupled minimally to gravity is 1 √ 1 √ S= d4 x −gR + d4 x −gL(X, Y ) , (2.1) 2κ 4π where κ = 8πG, L is the Lagrangian of nonlinear electrodynamics depending on the invariant X = 1 Fµν F µν = −2(E2 − B2 ) and Y = 4 Fµν ∗ F µν , where F µν ≡ µ Aν − ν Aµ , and 4 1 ∗ F µν = µνρσ F αβγδ = √ 1 ρσ is the dual bivector, and 2 −g εαβγδ , with εαβγδ the Levi-Civita tensor (ε0123 = +1). JCAP03(2011)033 The equations of motion are [9] µν µ (−LX F − LY ∗ F µν ) = 0 , (2.2) where LX = ∂L/∂X and LY = ∂L/∂Y , µ Fνλ + ν Fλµ + λ Fµν = 0. (2.3) After a swift grasp on this set of equations one realizes that is difficult to find solutions in closed form of these equations. Therefore to study the effects of nonlinear electrodynamics, we confine ourselves to consider the abelian Pagels-Tomboulis theory [16], proposed as an effective model of low energy QCD. The Lagrangian density of this theory involves only the invariant X in the form δ−1 X2 2 L(X) = − X = −γX δ , (2.4) Λ8 where γ (or Λ) and δ are free parameters that, with appropriate choice, reproduce the well known Lagrangian already studied in the literature. γ has dimensions [energy]4(1−δ) . Following Kunze [9], the energy momentum tensor corresponding to the Lagrangian density L(X) is given by 1 Tµν = LX gαβ Fµα Fβν + gµν L (2.5) 4π and the decomposition of the electromagnetic tensor with respect to a fundamental observer with 4-velocity uµ (uµ uµ = −1) ˆ ˆ Fµν = 2E[µ uν] − ηµνςτ uς B τ . (2.6) ˆ ˆ The electric and magnetic fields are therefore given by Eµ = Fµν uν and Bµ = 1 ν F κλ (η √ 2 ηµνκλ u αβγδ = −g εαβγδ ). The energy density turns out to be 1 L ˆ ˆ ˆ ˆ ρ = Tµν uµ uν = − (2δ − 1)Eα E α + Bα B α . (2.7) 8π X The positivity of ρ (weak energy condition) imposes, in general, the constraint on δ. For the Lagrangian (2.4) one gets δ ≥ 1 . However, this condition can be relaxed because we 2 shall consider cosmological scenarios in which the electric field is zero, and only the magnetic fields survive (this is justified by the fact that during the radiation dominated era the plasma effects induce a rapid decay of the electric field, whereas magnetic field remains (see the paper by Turner and Widrow in [23])). –2–
  • 5. The equation of motion for the Pagels-Tomboulis theory follows from eq. (2.2) with Y =0 µν µX µF = −(δ − 1) F µν . (2.8) X In terms of the potential vector Aµ , and imposing the Lorentz gauge µ Aµ = 0, eq. (2.8) becomes µ ν µX µ A + Rνµ Aµ = −(δ − 1) ( µ Aν − ν Aµ ) , (2.9) X where the Ricci tensor Rνµ appears because the relation [ µ , ν ]Aν = −Rµ Aµ . µ To proceed onward, we apply the geometrical optics approximation. This means that the scales of variation of the electromagnetic fields are smaller than the cosmological scales JCAP03(2011)033 we consider next. In this approximation, the 4-vector Aµ (x) can be written as [18] Aµ (x) = Re (aµ (x) + bµ (x) + . . .)eiS(x)/ (2.10) with 1 so that the phase S/ varies faster than the amplitude. By defining the wave vector kµ = µ S, which defines the direction of the photon propagation, one finds that the gauge condition implies kµ aµ = 0 and kµ bµ = 0. It turns out to be convenient to introduce the normalized polarization vector εµ so that the vector aµ can be written as aµ (x) = A(x)εµ , εµ εµ = 1 . (2.11) As a consequence of (2.11), one also finds kµ εµ = 0, i.e. the wave vector is orthogonal to the polarization vector. By making use of eq. (2.10), one obtains µX 2ikµ = [1 + Ω( )] , (2.12) X where ik[α aβ] [α aβ] + O( 2 ) µk Ω≡ . −(k[α aβ] )2 + i 2k[α aβ] ( [α aβ] + ik[α aβ] ) + O( 2 ) To leading order in , the term depending on the Ricci tensors can be neglected in (2.9). Inserting (2.10) into (2.9) and collecting all terms proportional to −2 and −1 , one obtains 1 2 : kµ kµ aσ = 2(δ − 1)kµ k[µ aσ] , (2.13) 1 µ σ : 2kµ a + aσ µk µ = −2(δ − 1)kµ [µ σ] a . (2.14) Taking into account the gauge condition kµ aµ = 0, the first equation implies 1 (2δ − 1)k2 = 0 → kµ kµ = 0 , ,provided δ = (2.15) 2 hence photons propagate along null geodesics. Multiplying eq. (2.14) by aσ , and using (2.11) one obtains 1 µ µ σ µ µ k = −δk µ ln A + (δ − 1)kµ ε σε , 2 so that eq. (2.14) can be recast in the form δ−1 σ kµ µε σ = Υ (2.16) δ where Υσ ≡ kµ [ σ µ ε − (ερ µ σ ρ ε )ε ] . (2.17) –3–
  • 6. 3 Cosmological setting: Space-time with planar symmetry −→ universe eccentricity −→ polarization angle 3.1 Space-time anisotropy and magnetic energy density evolution Let us consider cosmological models with planar symmetry, i.e., having a similar scale factor on the first two spatial coordinates. The most general line-element of a geometry with plane- symmetry is [19] ds2 = dt2 − b2 (dx2 + dy 2 ) − c2 dz 2 , (3.1) where b(t) and c(t) are the scale factors, which are normalized in order that b(t0 ) = 1 = c(t0 ) JCAP03(2011)033 at the present time t0 . As eq. (3.1) shows, the symmetry is on the (xy)-plane. The coherent temperature and polarization patterns produced in homogeneous but anisotropic cosmological models (Bianchi type with a Friedman-Robertson-Walker limit has been studied in [15]). The Christoffel symbols corresponding to the metric (3.1) are ˙ Γ0 = Γ0 = bb , Γ0 = cc , ˙ (3.2) 11 22 33 ˙ b c ˙ Γ1 = Γ2 = , Γ3 = . 01 02 03 b c The dot stands for derivative with respect to the cosmic time t. To make an estimate on the parameter δ, we have to investigate in more detail the geometry with planar symmetry. As pointed out by Campanelli-Cea-Tedesco (CCT) in [20], the most general tensor consistent with the geometry (3.1) is µ µ T µ = diag(ρ, −p , −p , −p⊥ ) = T(I)ν + T(A)ν , ν µ in which T(I)ν = diag(ρ, −p, −p, −p) is the standard isotropic energy-momentum tensor de- µ scribing matter, radiation, or cosmological constant, and T(A)ν = diag(ρA , −pA , −pA . − pA ) represents the anisotropic contribution which induces the planar symmetry, and can be given by a uniform magnetic field, a cosmic string, a domain wall.1 In what follows, we shall con- sider a Universe matter dominated (p = 0) with planar symmetry generated by a uniform magnetic field B(t). Magnetic fields have been observed in galaxies, galaxy clusters, and extragalactic struc- tures [22], and it is assumed that they may have a primordial origin [9, 23]. Due to the high conductivity of the primordial plasma, the magnetic field evolves as B(t) ∼ b−2 be- ing frozen into the plasma [21, 22] (see below). Denoting with ρB the magnetic field density, the energy-momentum tensor for a uniform magnetic field can be written as µ T(B) ν = ρB diag(1, −1, −1, −1). According to (2.7), we find that the energy density of the magnetic field is given by δ−1 B2 B2 ρB = . (3.3) 8π 2Λ4 1 Notice that the cases discussed in [20], i.e. the magnetic fields or the topological defects as responsible of the planar symmetry of the Universe, allow to explain the anomaly concerning the low quadruple amplitude probed by WMAP. The interesting analysis performed by CCT leads to the conclusion that an eccentricity at the decoupling of the order of e ∼ 10−2 is indeed able to explain the drastic reduction in the quadruple anisotropy without affecting higher multiples of the angular power spectrum of the temperature anisotropies. –4–
  • 7. The evolution law of the energy density ρB is given by [10] 4 ρB + ΘρB + 16πσab Πab = 0 , ˙ (3.4) 3 where Θ is the volume expansion (contraction) scalar, σab is the shear, and Πab the anisotropic pressure of the fluid. In a highly conducting medium we still have with good approximation B ∼ b−2 provided that anisotropies can be neglected (this means that we neglect radiative effect of the primordial fluid). 3.2 Space-time eccentricity and polarization angle JCAP03(2011)033 We shall assume that photons propagate along the (positive) x-direction, so that kµ = (k0 , k1 , 0, 0) [7]. Gauge invariance assures that the polarization vector of photons has only two independent components, which are orthogonal to the direction of the photons motion. ˆ Therefore, we are only interested in how the components of the polarization vector (Iµ 2 and ˆ Iµ3) change. It then follows that Υ σ defined in (2.17) assumes the form ˙ b c ˙ ˙ Υσ = −k0 δσ2 ε2 + δσ3 ε3 + bb(ε2 )2 + cc(εc )2 εσ ˙ (3.5) b c The components of Υσ given by (3.5) vanish in the case of a Friedman-Robertson-Walker geometry. By defining the affine parameter λ which measures the distance along the line-element, kµ ≡ dxµ /dλ, one obtains that ε2 and ε3 satisfy the following geodesic equation (from eq. (2.16)) dε2 ˙ b ˙ δ−1 0 b + k0 ε2 = − k ˙ + bb(ε2 )2 + cc(ε3 )2 ε2 ˙ dλ b δ b dε3 c˙ δ−1 0 c ˙ ˙ + k0 ε3 = − k + bb(ε2 )2 + cc(ε3 )2 ε3 ˙ dλ c δ c These equations can be further simplified if one observes that k0 = dt/dλ 1 d ln(bε2 ) δ−1 ˙ b c˙ 0 D ln(bε2 ) = =− − + (cε3 )2 , (3.6) k dt δ b c 1 d ln(cε3 ) δ−1 c b ˙ ˙ 0 D ln(cε3 ) = =− − + (bε2 )2 . (3.7) k dt δ c b where D ≡ kµ µ. (3.8) ˙ Moreover, the difference of the Hubble expansion rate b/b and c/c can be written as ˙ ˙ b c˙ 1 de2 − = 2 ) dt (3.9) b c 2(1 − e where we have introduced the eccentricity c 2 e(t) = 1− . (3.10) b –5–
  • 8. The polarization angle α is defined as α = arctan[(cε3 )/(bε2 )]. Its time evolution is governed by equation δ−1 0 ˙ b c ˙ Dα − k − [(bε2 )3 + (cε3 )3 ] = 0 . (3.11) 2δ b c However, eqs. (3.6) and (3.7) implies that both bε2 and cε3 evolves as Ai + (δ − 1)fi (t), i = 2, 3 , where fi (t) is a function of time and Ai are constant of integration. Therefore, to leading order (δ − 1) eq. (3.11) reads ˙ JCAP03(2011)033 δ−1 K 0 b c ˙ Dα − k − + O((δ − 1)2 ) = 0 . (3.12) δ 2 b c where K = A2 + A3 . To compute the rotation of the polarization angle, one needs to evaluate α at two distinct instants. In the cosmological context that we are considering is assumed that the reference time t corresponds to the moment in which photons are emitted from the last scattering surface, and the instant t0 corresponds to the present time. One, therefore, gets2 δ−1 ∆α = α(t) − α(t0 ) = Ke2 (z) , (3.13) 4δ where we have used e(t0 ) = 0 because of the normalization condition b(t0 ) = c(t0 ) = 1 and log(1 − e2 ) ∼ −e2 . Notice that for δ = 1 or e2 = 0 there is no rotation of the polarization angle, as expected. Moreover, in the case in which photons propagate along the direction z-direction, so that ¯ ka = (ω0 , 0, 0, k), we find that the NLED have no effects as concerns to the rotation of the polarization angle. As arises from (3.13), ∆α vanishes in the limit δ = 1, so that no rotation of the polarization angle occurs in the standard electrodynamics, even if the background is described by a geometry with planar symmetry. Moreover, even if δ = 1, ∆α still vanishes for an isotropic and homogeneous cosmology described by the Friedman-Robertson-Walker element line (b = c) ds2 = dt2 − b2 (dx2 + dy 2 + dz 2 ), because in such a case the eccentricity vanishes (this agrees with the fact that for this background the components of Υσ , eq. (3.5), are zero). 3.3 Eccentricity evolution on cosmic time The time evolution of the eccentricity is determined from the Einstein field equations 1 d(ee) ˙ (ee)2 ˙ 2 dt + 3Hb (ee) + ˙ = 2κρB , (3.14) 1−e (1 − e2 )2 ˙ where Hb = b/b. 2 Preliminary calculations [38] performed in terms of the electromagnetic field Fµν and of time evolution of the Stokes parameters I, Q, U, V (this approach is alternative to one presented in the section II of the paper where the analysis is performed in terms of the 4-potential Aµ ) yield again the result (3.13). Calculations show that the total flux I is not the same along the three spatial directions, as expected owing to the different expansion of the Universe along the x, y and z directions. Moreover the time evolution of the Stokes parameters turns out to be a mixture of each others, which reduce to standard results as δ = 1. The polarization angle is defined as 2α = arctan(U/Q). –6–
  • 9. It is extremely difficult to exactly solve this equation. We shall therefore assume that the e2 -terms can be neglected. Since b(t) ∼ t2/3 during the matter-dominated era, eq. (3.14) implies (0) e2 (z) = 18Fδ (z)ΩB , (3.15) where we used 1 + z = b(t0 )/b(t), e(t0 ) = 0, and 3 3(1 + z)4δ−3 3 Fδ ≡ −2− + 2(1 + z) 2 . (3.16) (9 − 8δ)(4δ − 3) (9 − 8δ)(4δ − 3) (0) ΩB is the present energy density ratio JCAP03(2011)033 δ−1 2 δ−1 (0) ρB B 2 (t0 ) B 2 (t0 ) −11 B(t0 ) B 2 (t0 ) ΩB = = 10 , (3.17) ρcr 8πρcr 2Λ4 10−9 G 2Λ4 with ρcr = 3Hb (t0 )/κ = 8.1h2 10−47 GeV4 (h = 0.72 is the little-h constant), and B(t0 ) is the 2 present magnetic field amplitude. From eq. (3.13) then follows δ−1 ∆α = K e2 (zdec ) . (3.18) 4δ where e(zdec )2 the eccentricity (3.15) evaluated at the decoupling z = 1100. 3.4 Constraints on parameter Λ from extragalactic B strengths in an ellipsoidal Universe To make an estimate on the parameter δ, we need the order of amplitude of the present magnetic field strength B(t0 ). In this respect, observations indicate that there exist, in cluster of galaxies, magnetic fields with field strength (10−7 − 10−6 ) G on 10 kpc - 1 Mpc scales, whereas in galaxies of all types and at cosmological distances, the order of magnitude of the magnetic field strength is ∼ 10−6 G on (1-10) kpc scales. The present accepted estimations is [22]3 B(t0 ) 10−9 G . (3.20) Moreover, for an ellipsoidal Universe the eccentricity satisfies the relation 0 ≤ e2 < 1. The condition e2 > 0 means Fδ > 0, with Fδ defined in (3.16). The function Fδ given by eq. (3.16) is represented in figure 1. Clearly the allowed region where Fδ is positive does depend on the redshift z. On the other hand, the condition e2 < 1 poses constraints on the magnetic field strength. By requiring e2 < 10−1 (in order that our approximation to neglect e2 -terms in (3.14) holds), from eqs. (3.15)–(3.17) it follows B(t0 ) 9 × 10−8 G . (3.21) 3 The bound (3.19) is consistent with the estimation on the present value of the magnetic field strength obtained from Big Bang Nucleosynthesis (BBN). As before pointed out, the magnetic fields scales as B ∼ b−2 where the scale factor does depend on the temperature T and on the total number of effectively massless −1/3 degree of freedom g∗S as b ∝ g∗S T −1 [26]. The upper bound on the magnetic field at the epoch of the BBN is given by [27] B(TBBN ) 1011 G, where according to the standard cosmology TBBN = 109 K 0.1MeV. Referred to the present value of the magnetic field, the bound on B(TBBN ) becomes [20, 24] „ «2/3 „ «2 g∗S (T0 ) T0 B(t0 ) = B(TBBN ) 6 × 10−7 G , (3.19) g∗S (TBBN ) TBBN where T0 = T (t0 ) 2.35 × 10−4 eV and g∗S (TBBN ) g∗S (T0 ) 3.91 [26]. –7–
  • 10. F∆ 73 000 72 800 z 1100 72 600 72 400 ∆ 0.85 0.90 0.95 1.00 JCAP03(2011)033 F∆ 1. 106 800 000 600 000 z 1100 400 000 200 000 ∆ 1.05 1.10 1.15 1.20 200 000 400 000 Figure 1. In this plot is represented Fδ vs δ for δ ≤ 1 (upper plot) and δ ≥ 1 (lower plot). The condition that the eccentricity is positive follows for Fδ > 0. It must also be noted that such magnetic fields does not affect the expansion rate of the universe and the CMB fluctuations because the corresponding energy density is negligible with respect to the energy density of CMB. 4 Light propagation in NLED and birefringence In this section we discuss the modification of the light velocity (birefringence effect) for the model of nonlinear electrodynamics L(X, Y ). We shall follow the paper [32] (see also [2, 33]), in which is studied the propagation of wave in local nonlinear electrodynamics by making use of the Fresnel equation for the wave covectors kµ . The latter are related to phase velocity k0 ˆ ˆ v of the wave propagation by the relation ki = ki , where ki are the components of the v unit 3-covector. Thus, in what follows we confine ourselves to the phase velocity. It is straightforward to show that for the models under consideration (2.4) the group velocity is always greater or equal to the phase velocity [32]. The main result in ref. [32] corresponds to the optic metric tensors µν √ g1 = X gµν + (Y + Y − X Z)tµν , (4.1) µν µν √ µν g2 = X g + (Y − Y − X Z)t , (4.2) which describe the effect of birefringent light propagation in a generic model for nonlinear electrodynamics. The quantities X , Y, and Z are related to the derivatives of the Lagrangian L(X, Y ) with respect to the invariant X and Y , and tµν = F µα F ν . α –8–
  • 11. For our model, expressed by eq. (2.4), the quantities X , Y, and Z are given by 2 γ 2 δ2 2(δ−1) γ 2 δ2 X ≡ K1 = X , Y ≡ K1 K2 = (δ − 1)X 2(δ−1)−1 , Z = 0, 4 4 ∂L ∂2L where K1 = 4 and K2 = 8 , while the metrics (4.1) and (4.2) are ∂X ∂X 2 µν µν g1 = K1 (K1 gµν + 2K2 tµν ) , g2 = K1 gµν . 2 As a consequence, birefringence is present in our model. This means that some photons prop- JCAP03(2011)033 agate along the standard null rays of spacetime metric gµν , whereas other photons propagate along rays null with respect to the optical metric K1 gµν + 2K2 tµν . The velocities of the light wave can be derived by using the light cone equations (effective metric) µν µν g1 kµ kν = 0 and g2 kµ kν = 0 . It is worthwhile to report the general expression for the average value of the velocity scalar [32] 4 T 00 (Y + Zt00 ) 2 2Y 2 − X Z + Z(t00 )2 + 2YZt00 v2 = 1 + + S2 3 X + 2Yt00 + Z(t00 )2 3 [X + 2Yt00 + Z(t00 )2 ]2 where T 00 = −t00 + X = (E2 + B2 )/2 (t00 = −E2 ), and S2 = δµν t0µ t0ν , where S = E × B γ γ γ is the energy flux density. The subscript γ is introduced for distinguishing the photon field from the magnetic background. The value of the mean velocity has been derived averaging over the directions of propagation and polarization. For our model, we get v2 1 + (δ − 1)R + (δ − 1)2 S , (4.3) 4 T 00 4 S2 R≡ , S= 3 4X + 2(δ − 1)t00 3 [4X + 2(δ − 1)t00 ]2 The high accuracy of optical experiments in laboratories requires tiny deviations from standard electrodynamics. This condition is satisfied provided |δ − 1| 1. Moreover, there are two aspects related to (4.3): • The average velocity does depend on (only) the parameter δ, so that γ or Λ in our model can be fixed independently. This task is addressed in the next section. • Because R is positive, one has to demand that δ − 1 < 0 in order that v 2 < 1. The above considerations hold for flat spacetime, and can be straightforwardly generalized to the case of curved space time [32]. 5 Stokes parameters, rotated CMB spectra and constraints on parameter Λ The propagation of photons can be described in terms of the Stokes parameters I, Q, U , and V . The parameters Q and V can be decomposed in gradient-like (G) and a curl-like (C) components [30] (G and C are also indicated in literature as E and B), and characterize the orthogonal modes of the linear polarization (they depend on the axes where the linear –9–
  • 12. polarization are defined, contrarily to the physical observable I and V which are independent on the choice of coordinate system). The polarization G and C and the temperature (T ) are crucial because they allow to completely characterize the CMB on the sky. If the Universe is isotropic and homogeneous and the electrodynamics is the standard one, then the T C and GC cross-correlations power spectrum vanish owing to the absence of the cosmological birefringence. In presence of the latter, on the contrary, the polarization vector of each photons turns out to be rotated by the angle ∆α, giving rise to T C and GC correlations. Using the expression for the power spectra ClXY ∼ dk[k2 ∆X (t0 )∆Y (t0 )], where X, Y = T, G, C and ∆X are the polarization perturbations whose time evolution is controlled by the Boltzman equation, one can derive the correlation for T , G and C in terms of ∆α [14]4 JCAP03(2011)033 Cl T C = ClT C sin 2∆α , Cl T G = ClT G cos 2∆α , (5.1) 1 Cl GC = C GG − ClCC sin 4∆α , (5.2) 2 l Cl GG = ClGG cos2 2∆α + ClCC sin2 2∆α , (5.3) CC Cl = ClCC 2 cos 2∆α + ClGG sin2 2∆α . (5.4) The prime indicates the rotated quantities. Notice that the CMB temperature power spectrum remains unchanged under the rotation. Experimental constraints on ∆α have been put from the observation of CMB polariza- tion by WMAP and BOOMERanG [14, 25]. ∆α = (−2.4 ± 1.9)◦ = [−0.0027π, −0.0238π] . (5.5) The combination of eqs. (5.5) and (3.18), and the laboratory constraints |δ − 1| 1 allow to estimate Λ. 5.1 Estimative of Λ To estimate Λ we shall write B = 10−9+b G b 2, (5.6) 3/2 Fδ = 2z z = 1100 1. (5.7) The bound (5.5) can be therefore rewritten in the form 10−3 10−2 |δ − 1| , (5.8) A A where 4 δ−1 9K (0) −6+2b −56+2b GeV A≡ Fδ ΩB K 10 0.24 × 10 . (5.9) 14 Λ The condition |δ − 1| 1 requires A 1. It turns out convenient to set A = 10a , a > O(1) . (5.10) 4 Notice that in ref. [29] the analysis did not include the rotation of the CMB spectra, and in ref. [30] the analysis focused on only the TC and TG modes. Other approximated approaches to discuss the rotation angle can be found in refs. [28, 31]. – 10 –
  • 13. Log GeV Log GeV ∆ 1 10 7 35 7 ∆ 1 10 25 b 0 30 b 1 a 4 25 a 4 20 x 19 20 x 19 15 15 10 10 5 K K 22 026.2 22 026.2 22 026.3 22 026.3 2980.91 2980.92 2980.93 2980.94 Log GeV Log GeV 1000 ∆ 1 10 10 ∆ 1 10 10 JCAP03(2011)033 b 0 3000 b 1 500 a 7 a 7 2000 x 19 K 442 413 442 413 442 414 442 414 1000 x 19 500 K 59 874.1 59 874.1 59 874.1 59 874.1 59 874.2 59 874.2 1000 1000 Figure 2. Λ vs K for different values of the parameter δ − 1, a and b. The parameter a is related to the range in which δ − 1 varies, i.e. −10−3−a δ − 1 −10−2−a , while b parameterizes the magnetic field strength B = 10−9+b G. The red-shift is z = 1100. Plot refers to Planck scale Λ = 10Λx GeV, with Λx=P l = 19. Similar plots can be also obtained for GUT (ΛGUT = 16) and EW (ΛEW = 3) scales. From eqs. (5.9) and (5.10) it then follows 1 − 4(δ−1) −14+b/2 1 a−2b+6 Λ = 10 10 GeV , (5.11) K or equivalently Λ b (−1) Log = −14 + + [a − 2b + 6 − LogK] . (5.12) GeV 2 4(δ − 1) The constant K can now be determined to fix the characteristic scale Λ. Writing Λ = 10Λx GeV, where Λx=P l = 19, ΛGUT = 16 and ΛEW = 3 for the Planck, GUT and electroweak (EW) scales, respectively, eq. (5.12) yields 4(δ − 1)Λx K = 10a−2b+6− , ≡ 1. (5.13) 14 − b/2 In figure 2 is plotted Log(Λ/GeV) vs K for fixed values of the parameters a, b and δ − 1. Similar plots can be derived for GUT and EW scales 6 Discussion and closing remarks In conclusion, in this paper we have calculated, in the framework of the nonlinear electro- dynamics, the rotation of the polarization angle of photons propagating in a Universe with planar symmetry. We have found that the rotation of the polarization angle does depend on – 11 –
  • 14. the parameter δ, which characterizes the degree of nonlinearity of the electrodynamics. This parameter can be constrained by making use of recent data from WMAP and BOOMERang. Results show that the CMB polarization signature, if detected by future CMB observations, would be an important test in favor of models going beyond the standard model, including the nonlinear electrodynamics. Some comments are in order. In our investigation we have assumed that the planar- symmetry is induced by a magnetic field. This is not the unique case. In fact, a planar geometry can also be induced by topological defects, such as cosmic string (cs) or domain wall (dw) [20]. In such a case, one has [20] 2 (0) 3 JCAP03(2011)033 e2 = Ωdw + 4(1 + z)3/2 − 7 , (6.1) 7 (1 + z)2 dw and 4 3 e2 = Ω(0) cs + 2(1 + z)3/2 − 5 , (6.2) 5 (1 + z) cs (0) where are the present energy densities, in units of critical density, of the domain wall Ω(dw,cs) and cosmic string. At the decoupling, one obtains (0) Ωdw e2 (zdec ) 10−4 , (6.3) 5 × 10−7 dw and (0) Ωcs e2 (zdec ) 10−4 . (6.4) 4 × 10−7 cs The analysis leading to determine the bounds on δ from CMB polarization goes along the line above traced. Moreover, a complete analysis of the planar-geometry is required to fix the parameter δ. From a side, in our calculations in fact we have assumed that the Universe is matter dominated. A more precise calculation should require to use (to solve (3.14)) the relation z 1 1+z t= dz , (6.5) H0 0 Ωm (1 + z)3 + ΩΛ where Ωm = 0.3, ΩΛ = 0.7 and H0 = 72 km sec−1 Mpc−1 (z = 1100). From the other side, a complete study of the eq. (3.14) is necessary in order to put stringent constraints on the parameter δ. As closing remark, we would like to point out that the approach to analyze the CMB polarization in the context of NLED that we have presented above can also be applied to discuss the extreme-scale alignments of quasar polarization vectors [36], a cosmic phenomenon that was discovered by Hutsemekers [34] in the late 1990’s, who presented paramount evidence for very large-scale coherent orientations of quasar polarization vectors (see also Hutsemekers and Lamy [35]).5 As far as the authors of the present paper are awared of, the issue has 5 Hutsemekers and Lamy, and collaborators, have presented, in a long series of papers (not all cited here) published over the period 1998 to 2008, a tantamount evidence that the alignment of quasar polarization vectors is a factual cosmological enigma deserving to be properly addressed in the framework of the standard model of cosmology. The papers quoted here are intended to call to the attention of attentive readers the paramount evidence presenting this cosmic phenomenon. – 12 –
  • 15. remained as an open cosmological connundrum, with a few workers in the field having focused their attention on to those intriguing observations. Nonetheless, we quote “en passant” that in a recent paper [37] Hutsemekers et al. discussed the possibility of such phenomenon to be understood by invoking very light pseudoscalar particles mixing with photons. They claimed that the observations of a sample of 355 quasars with significant optical polarization present strong evidence that quasar polarization vectors are not randomly oriented over the sky, as naturally expected. Those authors suggest that the phenomenon can be understood in terms of a cosmological-size effect, where the dichroism and birefringence predicted by a mixing between photons and very light pseudoscalar particles within a background magnetic field can qualitatively reproduce the observations. They also point out at a finding indicating that JCAP03(2011)033 circular polarization measurements could help constrain their mechanism. Since cosmic magnetic fields have a typical strength of ∼ 10−7 − 10−8 G, on average, for a characteristic distance scale of 10-30 Mpc, it is our view that such phenomenology can be understood in the framework of a nonlinear description of photon propagation (NLED) over cosmic background magnetic fields and the use of a planar symmetry for the space-time. Specifically, phenomena involving light propagation as dichroism and birefringence can be inscribed on to the framework of Heisenberg-Euler NLED, which predicts the occurrence of birefringence on cosmological distance scales. We plan to present such analysis in a forth- coming communication [38]. Acknowledgments The authors express their gratitude to the referee for relevant comments. The authors also thank Prof. Xin-min Zhang, and Dr. Mingzhe Li for reading the manuscript and their suggestions. H.J.M.C. thanks ICRANet International Coordinating Center, Pescara, Italy for hospitality during the early stages of this work. G.L. acknowledges the financial support of MIUR through PRIN 2006 Prot. 1006023491− 003, and of research funds provided by the University of Salerno. H.J.M.C. is fellow of the Ceara State Foundation for the Development of Science and Technology (FUNCAP), Fortaleza, Ceara, Brazil. References [1] M. Born, Modified Field Equations with a Finite Radius of the Electron, Nature 132 (1933) 282; On the Quantum Theory of the Electromagnetic Field, Proc. Roy. Soc. A 143 (1934) 410; M. Born and L. Infeld, Electromagnetic Mass, Nature 132 (1933) 970; M. Born and L. Infeld, Foundations of the New Field Theory, Proc. Roy. Soc. A 144 (1934) 425; W. Heisenberg and H. Euler, Consequences of Dirac’s theory of positrons, Z. Phys. 98 (1936) 714 [physics/0605038]. J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [SPIRES]. [2] S.A. Gutierrez, A.L. Dudley and J.F. Plebanski, Signals and discontinuities in general relativistic nonlinear electrodynamics, J. Math. Phys. 22 (1981) 2835 [SPIRES]; J.F. Plebanski, Lectures on nonlinear electrodynamics, monograph of the Niels Bohr Institute, Nordita, Copenhagen (1968). [3] P.V. Moniz, Quintessence and Born-Infeld cosmology, Phys. Rev. D 66 (2002) 103501 [SPIRES]; R. Garcia-Salcedo and N. Breton, Born-Infeld cosmologies, Int. J. Mod. Phys. A 15 (2000) 4341 [gr-qc/0004017] [SPIRES]; – 13 –
  • 16. R. Garcia-Salcedo and N. Breton, Born-Infeld inflates Bianchi cosmologies, Class. Quant. Grav. 20 (2003) 5425 [hep-th/0212130] [SPIRES]; R. Garcia-Salcedo and N. Breton, Singularity-free Bianchi spaces with nonlinear electrodynamics, Class. Quant. Grav. 22 (2005) 4783; V.V. Dyadichev, D.V. Galt’tsov, A.G. Zorin and M.Yu. Zotov, NonAbelian Born-Infeld cosmology, Phys. Rev. D 65 (2002) 084007; D.V. Vollick, Anisotropic Born-Infeld cosmologies, Gen. Rel. Grav. 35 (2003) 1511; L. Hollenstein and F.S.N. Lobo, Exact solutions of f(R) gravity coupled to nonlinear electrodynamics, Phys. Rev. D 78 (2008) 124007 [arXiv:0807.2325] [SPIRES]; H.J.M. Cuesta, J.M. Salim and M. Novello, Cosmological redshift and nonlinear electrodynamics propagation of photons from distant sources, arXiv:0710.5188 [SPIRES]; K. Bamba and S. Nojiri, Cosmology in non-minimal Yang-Mills/Maxwell theory, JCAP03(2011)033 arXiv:0811.0150 [SPIRES]; K. Bamba and S.D. Odintsov, Inflation and late-time cosmic acceleration in non-minimal Maxwell-F (R) gravity and the generation of large-scale magnetic fields, JCAP 04 (2008) 024 [arXiv:0801.0954] [SPIRES]. [4] E. Ayon-Beato and A. Garcia, Regular black hole in general relativity coupled to nonlinear electrodynamics, Phys. Rev. Lett. 80 (1998) 5056 [gr-qc/9911046] [SPIRES]; E. Ayon-Beato and A. Garcia, New regular black hole solution from nonlinear electrodynamics, Phys. Lett. B 464 (1999) 25 [hep-th/9911174] [SPIRES]; E. Ayon-Beato and A. Garcia, Nonsingular charged black hole solution for nonlinear source, Gen. Rel. Grav. 31 (1999) 629 [gr-qc/9911084] [SPIRES]; N. Breton, Stability of nonlinear magnetic black holes, Phys. Rev. D 72 (2005) 044015 [hep-th/0502217] [SPIRES]; K.A. Bronnikov, Regular magnetic black holes and monopoles from nonlinear electrodynamics, Phys. Rev. D 63 (2001) 044005 [gr-qc/0006014] [SPIRES]; A. Burinskii and S.R. Hildebrandt, New type of regular black holes and particlelike solutions from NED, Phys. Rev. D 65 (2002) 104017 [hep-th/0202066] [SPIRES]; M. Cataldo and A. Garcia, Regular (2+1)-dimensional black holes within non-linear electrodynamics, Phys. Rev. D 61 (2000) 084003 [hep-th/0004177] [SPIRES]. [5] A.V.B. Arellano and F.S.N. Lobo, Evolving wormhole geometries within nonlinear electrodynamics, Class. Quant. Grav. 23 (2006) 5811 [gr-qc/0608003] [SPIRES]; A.V.B. Arellano and F.S.N. Lobo, Non-existence of static, spherically symmetric and stationary, axisymmetric traversable wormholes coupled to nonlinear electrodynamics, Class. Quant. Grav. 23 (2006) 7229 [gr-qc/0604095] [SPIRES]; K.A. Bronnikov and S.V. Grinyok, Electrically charged and neutral wormhole instability in scalar-tensor gravity, Grav. Cosmol. 11 (2006) 75; F. Baldovin, M. Novello, S.E. Perez Bergliaffa and J.M. Salim, A nongravitational wormhole, Class. Quant. Grav. 17 (2000) 3265 [gr-qc/0003075] [SPIRES]. [6] M. Li, J.-Q. Xia, H. Li and X. Zhang, Cosmological CPT violation, baryo/leptogenesis and CMB polarization, Phys. Lett. B 651 (2007) 357 [hep-ph/0611192] [SPIRES]. [7] M. Li and X. Zhang, Cosmological CPT violating effect on CMB polarization, Phys. Rev. D 78 (2008) 103516 [arXiv:0810.0403] [SPIRES]. [8] H.J. Mosquera Cuesta and G. Lambiase, Primordial magnetic fields and gravitational baryogenesis in nonlinear electrodynamics, Phys. Rev. D 80 (2009) 023013 [arXiv:0907.3678] [SPIRES]. [9] K.E. Kunze, Primordial magnetic fields and nonlinear electrodynamics, Phys. Rev. D 77 (2008) 023530 [arXiv:0710.2435] [SPIRES]. [10] J.D. Barrow, R. Maartens and C.G. Tsagas, Cosmology with inhomogeneous magnetic fields, Phys. Rept. 449 (2007) 131 [astro-ph/0611537] [SPIRES]. – 14 –
  • 17. [11] L. Campanelli, P. Cea, G.L. Fogli and L. Tedesco, Inflation-Produced Magnetic Fields in Nonlinear Electrodynamics, Phys. Rev. D 77 (2008) 043001 [arXiv:0710.2993] [SPIRES]; L. Campanelli, P. Cea, G.L. Fogli and L. Tedesco, Inflation-Produced Magnetic Fields in Rn F 2 and IF 2 models, Phys. Rev. D 77 (2008) 123002 [arXiv:0802.2630] [SPIRES]. [12] A.K. Harding, M.G. Baring and P.L. Gonthier, Photon-splitting Cascades in Gamma-Ray Pulsars and the Spectrum of PSR 1509-58, Astrophys. J. 476 (1997) 246; M.G. Baring and A.K. Harding, Radio Quiet Pulsars with Ultra-Strong Magnetic Fields, Astrophys. J. Lett. 507 (1998) L55; M.G. Baring, Magnetic photon splitting: The S-matrix formulation in the Landau representation, Phys. Rev. D 62 (2000) 016003 [hep-th/0003186] [SPIRES]; A.K. Harding and D. Lai, Physics of Strongly Magnetized Neutron Stars, Rep. Prog. Phys. 69 JCAP03(2011)033 (2006) 2631; H.J. Mosquera Cuesta and J.M. Salim, Nonlinear electrodynamics and the gravitational redshift of pulsars, Mon. Not. Roy. Astron. Soc. 354 (2004) L55 [astro-ph/0403045] [SPIRES]; H.J. Mosquera Cuesta and J.M. Salim, Nonlinear electrodynamics and the surface redshift of pulsars, Astrophys. J. 608 (2004) 925 [astro-ph/0307513] [SPIRES]; H. J. Mosquera Cuesta, J. A. de Freitas Pacheco and J. M. Salim, Einstein’s gravitational lensing and nonlinear electrodynamics, Int. J. Math. Phys. A 21 (2006) 43; J-P. Mbelek, H. J. Mosquera Cuesta, M. Novello and J. M. Salim, Nonlinear electrodynamics and the Pioneer 10/11 spacecraft anomaly, Eur. Phys. Lett. 77 (2007) 19001. [13] J.-Q. Xia, H. Li and X. Zhang, Probing CPT Violation with CMB Polarization Measurements, Phys. Lett. B 687 (2010) 129 [arXiv:0908.1876] [SPIRES]; B. Feng, M. Li, J.-Q. Xia, X. Chen and X. Zhang, Searching for CPT violation with WMAP and BOOMERANG, Phys. Rev. Lett. 96 (2006) 221302 [astro-ph/0601095] [SPIRES]. [14] G. Gubitosi, L. Pagano, G. Amelino-Camelia, A. Melchiorri and A. Cooray, A Constraint on Planck-scale Modifications to Electrodynamics with CMB polarization data, JCAP 08 (2009) 021 [arXiv:0904.3201] [SPIRES]; M. Das, S. Mohanty and A.R. Prasanna, Constraints on background torsion from birefringence of CMB polarization, arXiv:0908.0629 [SPIRES]; P. Cabella, P. Natoli and J. Silk, Constraints on CPT violation from Wilkinson Microwave Anisotropy Probe and three years polarization data: A wavelet analysis, Phys. Rev. D 76 (2007) 123014; F.R. Urban and A.R. Zhitnitsky, The P-Parity odd Universe, Dark Energy and QCD, arXiv:1011.2425; G.-C. Liu, S. Lee and K.-W. Ng, Effect on Cosmic Microwave Background Polarization of Coupling of Quintessence to Pseudoscalar Formed from the Electromagnetism Field and Its Dual, Phys. Rev. Lett. 97 (2006) 161303; Y.-Z. Chu, D.M.Jacobs, Y. Ng and D. Starkman, It is hard to learn how gravity and electromagnetism couple, Phys. Rev. D 82 (2010) 064022; S. di Serego Alighieri, Cosmological birefringence: An Astrophysical Test of Fundamental Physics, arXiv:1011.4865. [15] R. Sung and P. Coles, Temperature and Polarization Patterns in Anisotropic Cosmologies, arXiv:1004.0957 [SPIRES]. [16] H. Pagels and E. Tomboulis, Vacuum of the Quantum Yang-Mills Theory and Magnetostatics, Nucl. Phys. B 143 (1978) 485 [SPIRES]; H. Arodz, M. Slusarczyk and A. Wereszcynski, Electrostatics of Pagels-Tomboulis effective model, Acta. Polon. B 32 (2001) 2155; M. Slusarczyk and A. Wereszcynski, On (2+1)-dimensional topologically massive nonlinear electrodynamics, Acta. Polon. B 34 (2003) 2623. [17] J.P. Mbelek and H.J. Mosquera Cuesta, Nonlinear electrodynamics and the gravitational redshift of pulsars, Mon. Not. Roy. Astron. Soc. 389 (2008) 199. – 15 –
  • 18. [18] C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, Freeman Press, San Francisco (1973). [19] A.H. Taub, Empty space-times admitting a three parameter group of motions, Annals Math. 53 (1951) 472 [SPIRES]. [20] L. Campanelli, P. Cea and L. Tedesco, Cosmic Microwave Background Quadrupole and Ellipsoidal Universe, Phys. Rev. D 76 (2007) 063007 [arXiv:0706.3802] [SPIRES]; L. Campanelli, P. Cea and L. Tedesco, Ellipsoidal Universe Can Solve The CMB Quadrupole Problem, Phys. Rev. Lett. 97 (2006) 131302 [astro-ph/0606266] [SPIRES]. [21] E.N. Parker, Cosmological Magnetic Fields, Oxford University Press, Oxford England (1979); Ya. B. Zeldovich, A.A. Ruzmaikin and D.D. Sokoloff, Magnetic Fields in Astrophysics, Gordon JCAP03(2011)033 & Breach, NY (1980). [22] M. Giovannini, The magnetized universe, Int. J. Mod. Phys. D 13 (2004) 391 [astro-ph/0312614] [SPIRES]; L.M. Widrow, Origin of Galactic and Extragalactic Magnetic Fields, Rev. Mod. Phys. 74 (2002) 775 [astro-ph/0207240] [SPIRES]; D. Grasso and H.R. Rubinstein, Magnetic fields in the early universe, Phys. Rept. 348 (2001) 163 [astro-ph/0009061] [SPIRES]; P.P. Kronberg, Extragalactic magnetic fields, Rep. Prog. Phys. 57 (1994) 325; A.D. Dolgov, Generation of magnetic fields in cosmology, hep-ph/0110293 [SPIRES]; J.-P. Valle´, Cosmic magnetic fields - as observed in the Universe, in galactic dynamos, and in e the Milk Way, New Astron. Rev. 48 (2004) 763. [23] M.S. Turner and L.M. Widrow, Inflation Produced, Large Scale Magnetic Fields, Phys. Rev. D 37 (1988) 2743 [SPIRES]; L. Campanelli, P. Cea, G.L. Fogli and L. Tedesco, Inflation-Produced Magnetic Fields in Nonlinear Electrodynamics, Phys. Rev. D 77 (2008) 043001 [arXiv:0710.2993] [SPIRES]; L. Campanelli, P. Cea, G.L. Fogli and L. Tedesco, Inflation-Produced Magnetic Fields in Rn F 2 and IF 2 models, Phys. Rev. D 77 (2008) 123002 [arXiv:0802.2630] [SPIRES]; T. Vachaspati, Magnetic fields from cosmological phase transitions, Phys. Lett. B 265 (1991) 258 [SPIRES]; B.-l. Cheng and A.V. Olinto, Primordial magnetic fields generated in the quark-hadron transition, Phys. Rev. D 50 (1994) 2421 [SPIRES]; A.P. Martin and A.-C. Davis, The Stability of primordial magnetic fields produced by phase transitions, Phys. Lett. B 360 (1995) 71 [astro-ph/9507057] [SPIRES]; T.W.B. Kibble and A. Vilenkin, Phase equilibration in bubble collisions, Phys. Rev. D 52 (1995) 679 [hep-ph/9501266] [SPIRES]; M. Gasperini, M. Giovannini and G. Veneziano, Primordial magnetic fields from string cosmology, Phys. Rev. Lett. 75 (1995) 3796 [hep-th/9504083] [SPIRES]; M. Gasperini, A new mechanism for the generation of primordial seeds for the cosmic magnetic fields, Phys. Rev. D 63 (2001) 047301 [astro-ph/0009476] [SPIRES]; M. Giovannini and M.E. Shaposhnikov, Primordial magnetic fields from inflation?, Phys. Rev. D 62 (2000) 103512 [hep-ph/0004269] [SPIRES]; G.B. Field and S.M. Carroll, Cosmological magnetic fields from primordial helicity, Phys. Rev. D 62 (2000) 103008 [astro-ph/9811206] [SPIRES]; B. Ratra, Cosmological ’seed’ magnetic field from inflation, Astrophys. J. Lett. 391 (1992) L1; E.A. Calzetta, A. Kandus and F.D. Mazzitelli, Primordial magnetic fields induced by cosmological particle creation, Phys. Rev. D 57 (1998) 7139 [astro-ph/9707220] [SPIRES]; G. Lambiase and A.R. Prasanna, Gauge invariant wave equations in curved space-times and primordial magnetic fields, Phys. Rev. D 70 (2004) 063502 [gr-qc/0407071] [SPIRES]; G. Lambiase, S. Mohanty and G. Scarpetta, Magnetic field amplification in f(R) theories of gravity, JCAP 07 (2008) 019 [SPIRES]; – 16 –
  • 19. R. Opher and U.F. Wichoski, Origin of Magnetic Fields in the Universe Due to Nonminimal Gravitational-Electromagnetic Coupling, Phys. Rev. Lett. 78 (1997) 787 [astro-ph/9701220] [SPIRES]; K. Bamba, Property of the spectrum of large-scale magnetic fields from inflation, Phys. Rev. D 75 (2007) 083516 [astro-ph/0703647] [SPIRES]; K. Bamba, C.Q. Geng and S.H. Ho, Large-scale magnetic fields from inflation due to Chern-Simons-like effective interaction, JCAP 11 (2008) 013 [arXiv:0806.1856] [SPIRES]; F.D. Mazzitelli and F.M. Spedalieri, Scalar electrodynamics and primordial magnetic fields, Phys. Rev. D 52 (1995) 6694 [astro-ph/9505140] [SPIRES]; W.D. Garretson, G.B. Field and S.M. Carroll, Primordial magnetic fields from pseudoGoldstone bosons, Phys. Rev. D 46 (1992) 5346 [hep-ph/9209238] [SPIRES]; S.M. Carroll, G.B. Field and R. Jackiw, Limits on a Lorentz and Parity Violating Modification JCAP03(2011)033 of Electrodynamics, Phys. Rev. D 41 (1990) 1231 [SPIRES]; D. Harari and P. Sikivie, Effects of a Nambu-Goldstone boson on the polarization of radio galaxies and the cosmic microwave background, Phys. Lett. B 289 (1992) 67 [SPIRES]; S. Matarrese, S. Mollerach, A. Notari and A. Riotto, Large-scale magnetic fields from density perturbations, Phys. Rev. D 71 (2005) 043502 [astro-ph/0410687] [SPIRES]; A.L. Maroto, Primordial magnetic fields from metric perturbations, Phys. Rev. D 64 (2001) 083006 [hep-ph/0008288] [SPIRES]; E. Fenu and R. Durrer, Interactions of cosmological gravitational waves and magnetic fields, Phys. Rev. D 79 (2009) 024021 [arXiv:0809.1383] [SPIRES]; C.G. Tsagas, P.K.S. Dunsby and M. Marklund, Gravitational wave amplification of seed magnetic fields, Phys. Lett. B 561 (2003) 17 [astro-ph/0112560] [SPIRES]; C.G. Tsagas, Resonant amplification of magnetic seed fields by gravitational waves in the early universe, Phys. Rev. D 72 (2005) 123509 [astro-ph/0508556] [SPIRES]; A.D. Dolgov and D. Grasso, Generation of cosmic magnetic fields and gravitational waves at neutrino decoupling, Phys. Rev. Lett. 88 (2002) 011301 [astro-ph/0106154] [SPIRES]; J.D. Barrow and C.G. Tsagas, Slow decay of magnetic fields in open Friedmann universes, Phys. Rev. D 77 (2008) 107302 [arXiv:0803.0660] [SPIRES]; O. Bertolami and D.F. Mota, Primordial magnetic fields via spontaneous breaking of Lorentz invariance, Phys. Lett. B 455 (1999) 96 [gr-qc/9811087] [SPIRES]; T. Vachaspati and A. Vilenkin, Large scale structure from wiggly cosmic strings, Phys. Rev. Lett. 67 (1991) 1057 [SPIRES]; M. Joyce and M.E. Shaposhnikov, Primordial magnetic fields, right electrons and the Abelian anomaly, Phys. Rev. Lett. 79 (1997) 1193 [astro-ph/9703005] [SPIRES]; A. Dolgov and J. Silk, Electric charge asymmetry of the universe and magnetic field generation, Phys. Rev. D 47 (1993) 3144 [SPIRES]; A. Dolgov, Breaking Of Conformal Invariance And Electromagnetic Field Generation In The Universe, Phys. Rev. D 48 (1993) 2499 [hep-ph/9301280] [SPIRES]; V.B. Semikoz and D.D. Sokoloff, Large-scale magnetic field generation by alpha-effect driven by collective neutrino-plasma interaction, Phys. Rev. Lett. 92 (2004) 131301 [astro-ph/0312567] [SPIRES]; J.H. Piddington, Pulsar and Magnetic Amplification, Aust. J. Phys. 23 (1970) 731; L.M. Widrow, Origin of Galactic and Extragalactic Magnetic Fields, Rev. Mod. Phys. 74 (2002) 775 [astro-ph/0207240] [SPIRES]; D. Grasso and H.R. Rubinstein, Magnetic fields in the early universe, Phys. Rept. 348 (2001) 163 [astro-ph/0009061] [SPIRES]; K. Enqvist, Primordial magnetic fields, Int. J. Mod. Phys. D 7 (1998) 331 [astro-ph/9803196] [SPIRES]; S. Koh and C.H. Lee, CMBR anisotropy with primordial magnetic fields, Phys. Rev. D 62 (2000) 083509 [astro-ph/0006357] [SPIRES]; J.D. Barrow, P.G. Ferreira and J. Silk, Constraints on a Primordial Magnetic Field, Phys. Rev. Lett. 78 (1997) 3610 [astro-ph/9701063] [SPIRES]; – 17 –
  • 20. J.D. Barrow, Cosmological limits on slightly skew stresses, Phys. Rev. D 55 (1997) 7451 [gr-qc/9701038] [SPIRES]; M. Giovannini, Cosmic microwave background polarization, Faraday rotation and stochastic gravity-waves backgrounds, Phys. Rev. D 56 (1997) 3198 [hep-th/9706201] [SPIRES]; T. Kolatt, Determination of the Primordial Magnetic Field Power Spectrum by Faraday Rotation Correlations, Astrophys. J. 495 (1998) 564 [astro-ph/9704243] [SPIRES]; D. Grasso and H.R. Rubinstein, Revisiting Nucleosynthesis Constraints on Primordial Magnetic Fields, Phys. Lett. B 379 (1996) 73 [astro-ph/9602055] [SPIRES]; P.J. Kernan, G.D. Starkman and T. Vachaspati, Big Bang Nucleosynthesis Constraints on Primordial Magnetic Fields, Phys. Rev. D 54 (1996) 7207 [astro-ph/9509126] [SPIRES]; B.-l. Cheng, A.V. Olinto, D.N. Schramm and J.W. Truran, Constraints on the strength of primordial magnetic fields from big bang nucleosynthesis revisited, JCAP03(2011)033 Phys. Rev. D 54 (1996) 4714 [astro-ph/9606163] [SPIRES]; B.-l. Cheng, D.N. Schramm and J.W. Truran, Constraints on the strength of a primordial magnetic field from big bang nucleosynthesis, Phys. Rev. D 49 (1994) 5006 [astro-ph/9308041] [SPIRES]; G. Greenstein, Primordial Helium Production in “Magnetic” Cosmologies, Nature 223 (1969) 938. [24] H.R. Rubinstein, Magnetic fields in the early universe, Int. J. Theor. Phys. 38 (1999) 1315. [25] J.-Q. Xia, H. Li, G.-B. Zhao and X. Zhang, Testing CPT Symmetry with CMB Measurements: Update after WMAP5, Astrophys. J. 679 (2008) L61 [arXiv:0803.2350] [SPIRES]. [26] E.W. Kolb, M.S. Turner, The Early Universe, addison-Wesley, Reading, MA (1990). [27] D. Grasso and H.R. Rubinstein, Revisiting Nucleosynthesis Constraints on Primordial Magnetic Fields, Phys. Lett. B 379 (1996) 73 [astro-ph/9602055] [SPIRES]. [28] W. Hu, U. Seljak, M.J. White and M. Zaldarriaga, A Complete Treatment of CMB Anisotropies in a FRW Universe, Phys. Rev. D 57 (1998) 3290 [astro-ph/9709066] [SPIRES]. [29] A. Lue, L.-M. Wang and M. Kamionkowski, Cosmological signature of new parity-violating interactions, Phys. Rev. Lett. 83 (1999) 1506 [astro-ph/9812088] [SPIRES]. [30] M. Kamionkowski, A. Kosowsky and A. Stebbins, Statistics of Cosmic Microwave Background Polarization, Phys. Rev. D 55 (1997) 7368 [astro-ph/9611125] [SPIRES]. [31] B. Feng, H. Li, M.-z. Li and X.-m. Zhang, Gravitational leptogenesis and its signatures in CMB, Phys. Lett. B 620 (2005) 27 [hep-ph/0406269] [SPIRES]. [32] Y.N. Obukhov and G.F. Rubilar, Fresnel analysis of the wave propagation in nonlinear electrodynamics, Phys. Rev. D 66 (2002) 024042 [gr-qc/0204028] [SPIRES]. [33] M. Novello, V.A. De Lorenci, J.M. Salim and R. Klippert, Geometrical aspects of light propagation in nonlinear electrodynamics, Phys. Rev. D 61 (2000) 045001 [gr-qc/9911085] [SPIRES]; V.A. De Lorenci, R. Klippert, M. Novello and J.M. Salim, Light propagation in non-linear electrodynamics, Phys. Lett. B 482 (2000) 134 [gr-qc/0005049] [SPIRES]; V.A. De Lorenci and M.A. Souza, Electromagnetic wave propagation inside a material medium: An Effective geometry interpretation, Phys. Lett. B 512 (2001) 417 [gr-qc/0102022] [SPIRES]; V.A. De Lorenci and R. Klippert, Analog gravity from electrodynamics in non-linear media, Phys. Rev. D 65 (2002) 064027 [gr-qc/0107008] [SPIRES]; A. Corichi et al., Quantum collapse of a small dust shell, Phys. Rev. D 65 (2002) 064006 [gr-qc/0109057] [SPIRES]; J.P.S. Lemos and R. Kerner, The Born-Infeld electromagnetism in Kaluza-Klein theory, Grav. Cosmol. 6 (2000) 49; – 18 –
  • 21. I.T. Drummond and S.J. Hathrell, QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons, Phys. Rev. D 22 (1980) 343 [SPIRES]; J.I. Latorre, P. Pascual and R. Tarrach, Speed of light in nontrivial vacua, Nucl. Phys. B 437 (1995) 60 [hep-th/9408016] [SPIRES]; G.M. Shore, ’Faster than light’ photons in gravitational fields: Causality, anomalies and horizons, Nucl. Phys. B 460 (1996) 379 [gr-qc/9504041] [SPIRES]; W. Dittrich and H. Gies, Light propagation in non-trivial QED vacua, Phys. Rev. D 58 (1998) 025004 [hep-ph/9804375] [SPIRES]; H. Gies, Light cone condition for a thermalized QED vacuum, Phys. Rev. D 60 (1999) 105033 [hep-ph/9906303] [SPIRES]; D.I. Blokhintsev and V.V. Orlov, ??, Zh. Eksp. Fiz. 25 (1953) 513; M. Lutzky and J.S. Toll, Formation of Discontinuities in Classical Nonlinear Electrodynamics, JCAP03(2011)033 Phys. Rev. 113 (1959) 1649 [SPIRES]; H.S. Ibarguen, A. Garcia and J. Plebanski, Signals in nonlinear electrodynamics invariant under duality rotations, J. Math. Phys. 30 (1989) 2689 [SPIRES]; S.L. Adler, Photon splitting and photon dispersion in a strong magnetic field, Annals Phys. 67 (1971) 599 [SPIRES]; Z. Bialynicka-Birula and I. Bialynicki-Birula, Nonlinear effects in Quantum Electrodynamics. Photon propagation and photon splitting in an external field, Phys. Rev. D 2 (1970) 2341 [SPIRES]; W.-y. Tsai and T. Erber, The Propagation of Photons in Homogeneous Magnetic Fields: Index of Refraction, Phys. Rev. D 12 (1975) 1132 [SPIRES]; M. Novello, S.E. Perez Bergliaffa and J. Salim, Nonlinear electrodynamics and the acceleration of the Universe, Phys. Rev. D 69 (2004) 127301 [astro-ph/0312093] [SPIRES]. [34] D. Hutsemekers, Evidence for very large-scale coherent orientations of quasar polarization vectors, Astron. Astrophys 332 (1998) 410. [35] D. Hutsemekers and H. Lamy, The optical polarization of radio-loud and radio-intermediate broad absorption line quasi-stellar objects, Astron. Astrophys. 358 (2000) 835. [36] D. Hutsemekers, R. Cabanac, H. Lamy and D. Sluse, Mapping extreme-scale alignments of quasar polarization vectors, Astron. Astrophys. 441 (2005) 915 [astro-ph/0507274] [SPIRES]. [37] D. Hutsemekers et al., Large-Scale Alignments of Quasar Polarization Vectors: Evidence at Cosmological Scales for Very Light Pseudoscalar Particles Mixing with Photons?, arXiv:0809.3088 [SPIRES]. [38] H. J. Mosquera Cuesta and G. Lambiase, Effects of NLED on CMB physics, in preparation (2011). – 19 –