SlideShare ist ein Scribd-Unternehmen logo
1 von 17
Downloaden Sie, um offline zu lesen
CALTECH	
  ‘ORCHID’	
  FUNDAMENTAL	
  RESEARCH	
  PROJECT-­	
  CASE	
  STUDY	
  
	
  
EXECUTIVE	
  OVERVIEW	
  
	
  
This	
  is	
  a	
  story	
  of	
  fundamental	
  scientific	
  research	
  being	
  conducted	
  in	
  a	
  multi-­university	
  
collaboration	
  across	
  continents	
  and	
  across	
  various	
  branches	
  of	
  theoretical	
  and	
  experimental	
  
physics.	
  Specifically,	
  one	
  project	
  in	
  the	
  ‘Orchid’	
  program	
  (funded	
  by	
  DARPA)	
  has	
  combined	
  the	
  
specialist	
  expertise	
  of	
  two	
  experimental	
  laboratories,	
  (one	
  at	
  Caltech	
  in	
  the	
  United	
  States	
  and	
  
another	
  at	
  the	
  University	
  of	
  Vienna	
  in	
  Austria),	
  together	
  with	
  a	
  global	
  network	
  of	
  renowned	
  
theoretical	
  physicists.	
  Their	
  shared	
  objective	
  has	
  been	
  to	
  achieve	
  a	
  breakthrough	
  in	
  exploring	
  
frontiers	
  of	
  knowledge	
  about	
  ‘opto-­mechanics’,	
  a	
  young	
  field	
  of	
  science	
  focused	
  on	
  the	
  use	
  of	
  
light	
  to	
  manipulate	
  mechanical	
  devices	
  at	
  nano-­scale.	
  
	
  
Despite	
  this	
  ambition,	
  however,	
  it	
  is	
  known	
  from	
  previous	
  studies	
  that	
  multi-­university	
  
research	
  has	
  a	
  tendency	
  to	
  be	
  “problematic”.	
  Multi-­university	
  projects,	
  by	
  comparison	
  with	
  
multi-­disciplinary	
  projects	
  within	
  single	
  institutions	
  have	
  been	
  shown	
  to	
  have	
  significantly	
  
fewer	
  project	
  outcomes.	
  Within	
  this	
  particular	
  global	
  collaboration,	
  the	
  challenges	
  have	
  been	
  
heightened	
  by	
  the	
  unpredictable	
  nature	
  of	
  fundamental	
  research,	
  as	
  well	
  as	
  by	
  the	
  diversity	
  of	
  
laboratory	
  technology	
  and	
  experimental	
  processes	
  being	
  used	
  by	
  researchers	
  in	
  different	
  
universities.	
  Therefore,	
  it	
  is	
  notable	
  that	
  this	
  4-­year	
  DARPA	
  project	
  has	
  produced	
  some	
  
“milestone”	
  experimental	
  findings	
  documented	
  in	
  internationally	
  recognized	
  publications1.	
  	
  
	
  
Supporting	
  the	
  virtual	
  organization	
  of	
  the	
  research	
  studied	
  in	
  this	
  case,	
  there	
  appear	
  to	
  have	
  
been	
  significant	
  coordination	
  mechanisms.	
  For	
  example,	
  the	
  compelling	
  mission	
  of	
  the	
  project,	
  
the	
  contribution	
  of	
  graduate	
  students	
  from	
  one	
  institution	
  “embedded”	
  for	
  lengthy	
  periods	
  as	
  
researchers	
  in	
  a	
  counterpart	
  institution/laboratory	
  and	
  acting	
  in	
  liaison	
  or	
  “straddler”	
  roles,	
  
timely	
  use	
  of	
  periodic	
  face-­to-­face	
  communication	
  among	
  scientists,	
  and	
  facilitation	
  provided	
  
by	
  the	
  DARPA	
  program	
  manager,	
  all	
  seem	
  to	
  have	
  made	
  a	
  positive	
  difference	
  in	
  the	
  outcomes	
  
of	
  this	
  project.	
  Thus,	
  this	
  experience	
  may	
  offer	
  insights	
  about	
  possible	
  ways	
  to	
  meet	
  the	
  “costs”	
  
of	
  multi-­organizational	
  collaboration,	
  particularly	
  in	
  the	
  field	
  of	
  fundamental	
  research.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Among	
  the	
  publications	
  supported	
  by	
  the	
  Orchid	
  project	
  is:	
  Safavi-­‐Naeini,	
  A.H.	
  et	
  al.,	
  2013,	
  
“Squeezed	
  Light	
  from	
  a	
  Silicon	
  Micromechanical	
  Resonator”,	
  Nature	
  500,	
  pp.	
  185-­‐189.	
  
HISTORY/BACKGROUND-­‐-­‐SITE	
  &	
  PROJECT:	
  
	
  
In	
  June	
  2010,	
  faculty	
  from	
  the	
  Division	
  of	
  Engineering	
  &	
  Applied	
  Science	
  and	
  the	
  Division	
  of	
  
Physics	
  at	
  the	
  California	
  Institute	
  of	
  Technology	
  (Caltech)	
  began	
  a	
  fundamental	
  or	
  pure	
  
research	
  project,	
  a	
  theoretical	
  and	
  experimental	
  program	
  in	
  ‘Optomechanics’	
  (i.e.	
  use	
  of	
  
light	
  to	
  manipulate	
  mechanical	
  devices	
  at	
  nano-­‐scale).	
  	
  From	
  the	
  outset,	
  however,	
  Caltech	
  
scientists	
  conceived	
  of	
  this	
  project	
  as	
  a	
  global	
  collaboration	
  with	
  scientists	
  at	
  other	
  
universities	
  in	
  Austria,	
  Germany,	
  Switzerland,	
  Canada,	
  and	
  the	
  United	
  States.	
  
	
  
‘Optomechanics’	
  is	
  a	
  very	
  young	
  field	
  of	
  science	
  that	
  started	
  only	
  5-­‐10	
  years	
  ago,	
  merging	
  
various	
  branches	
  of	
  physics,	
  namely,	
  optics	
  (the	
  study	
  of	
  the	
  behavior	
  and	
  properties	
  of	
  
light),	
  photonics	
  (the	
  use	
  of	
  light	
  to	
  perform	
  functions	
  like	
  information	
  processing	
  and	
  
telecommunications,	
  traditionally	
  within	
  the	
  domain	
  of	
  electronics),	
  and	
  quantum	
  
mechanics	
  (the	
  study	
  of	
  the	
  interaction	
  of	
  energy	
  and	
  matter	
  at	
  the	
  sub-­‐atomic	
  scale).	
  
Consequently,	
  scientists	
  who	
  work	
  in	
  the	
  field	
  of	
  ‘optomechanics’	
  are	
  all	
  physicists	
  but	
  
come	
  from	
  a	
  diverse	
  background	
  of	
  disciplines.	
  	
  	
  
	
  
The	
  project	
  is	
  named	
  “Optical	
  Radiation	
  Cooling	
  and	
  Heating	
  of	
  Integrated	
  Devices”	
  
(ORCHID).	
  	
  It	
  originated	
  from	
  an	
  applied	
  physics	
  research	
  proposal	
  that	
  was	
  made	
  in	
  2009	
  
to	
  the	
  Microsystems	
  Technology	
  Office	
  of	
  DARPA	
  (Defense	
  Advanced	
  Research	
  Projects	
  
Agency)	
  of	
  the	
  US	
  Department	
  of	
  Defense.	
  	
  The	
  proposal	
  built	
  upon	
  a	
  theoretical	
  
proposition	
  regarding	
  the	
  use	
  of	
  (laser)	
  light	
  to	
  (cool)/reduce	
  mechanical	
  motion	
  at	
  nano-­‐
scale.	
  	
  Subsequently,	
  DARPA	
  incorporated	
  this	
  proposal	
  into	
  an	
  overall	
  program	
  of	
  study.	
  
	
  
The	
  DARPA	
  ‘ORCHID’	
  research	
  program	
  has	
  had	
  two	
  phases.	
  Phase	
  One	
  from	
  June	
  2010	
  to	
  
June	
  2012	
  is	
  fundamental	
  research,	
  (R1	
  on	
  the	
  R&D	
  spectrum,	
  see	
  Fig.	
  1	
  below),	
  exploring	
  
frontiers	
  of	
  knowledge	
  about	
  the	
  physics	
  of	
  optomechanical	
  devices	
  through	
  
demonstration	
  and	
  measurement	
  of	
  various	
  optomechanical	
  effects	
  on	
  specific	
  device	
  
platforms	
  like	
  microscopic	
  crystals.	
  Phase	
  Two,	
  from	
  July	
  2012	
  to	
  June	
  2014	
  called	
  for	
  
applied	
  research,	
  (R2	
  on	
  the	
  R&D	
  spectrum),	
  thereby	
  building	
  a	
  robust	
  “toolbox”	
  of	
  
techniques	
  for	
  a	
  variety	
  of	
  application	
  areas	
  (sensors,	
  oscillators,	
  etc.),	
  leading	
  potentially	
  
to	
  technology	
  applications	
  in	
  cell	
  phones	
  and	
  other	
  telecommunications	
  equipment.	
  
	
  
Within	
  the	
  overall	
  ‘ORCHID’	
  program,	
  in	
  addition	
  to	
  the	
  research	
  team/project	
  led	
  by	
  
Caltech,	
  there	
  are	
  4	
  other	
  projects/teams-­‐-­‐2	
  teams	
  from	
  Yale,	
  1	
  team	
  from	
  UCLA	
  Berkeley,	
  
and	
  1	
  team	
  from	
  Cornell	
  University.	
  	
  Supporting	
  all	
  5	
  teams	
  of	
  ‘Experimentalists’	
  is	
  one	
  
globally	
  dispersed	
  team	
  of	
  ‘Theorists’.	
  	
  The	
  scope	
  of	
  this	
  VOSS	
  study	
  is	
  limited	
  primarily	
  to	
  
the	
  team/project	
  led	
  by	
  Caltech	
  ‘Experimentalists’	
  (with	
  support	
  by	
  the	
  ‘Theory’	
  team),	
  and	
  
is	
  focused	
  primarily	
  on	
  the	
  time	
  period	
  involving	
  the	
  ‘pure’	
  research	
  of	
  Phase	
  One.2	
  
	
  
This	
  virtual	
  organization	
  case	
  study	
  focuses,	
  therefore,	
  on	
  work	
  designated	
  as	
  ‘R1’	
  
(Fundamental	
  Research)	
  on	
  one	
  extreme	
  end	
  of	
  the	
  Research	
  &	
  Development	
  continuum,	
  a	
  
format	
  for	
  R&D	
  based	
  on	
  the	
  classical	
  work	
  of	
  Bell	
  Labs,	
  (Mashey	
  as	
  reported	
  in	
  Revkin,	
  
2008)	
  and	
  illustrated	
  below	
  in	
  Figure	
  1	
  as	
  six	
  stages	
  or	
  types	
  of	
  Research	
  &	
  Development	
  
work.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  See	
  Appendix	
  1:	
  Methodology	
  
Figure 1: A Six-Stage Continuum of the R&D Process3
	
  
	
  
PROJECT	
  STAKEHOLDERS:	
  
	
  
DARPA	
  is	
  the	
  primary	
  funding	
  source	
  (almost	
  $5	
  M)	
  to	
  the	
  Caltech	
  team/project,	
  over	
  a	
  
period	
  of	
  4	
  years.	
  	
  The	
  mandate	
  of	
  DARPA	
  is	
  to	
  support	
  ‘hard	
  research’-­‐-­‐out	
  of	
  the	
  reach	
  of	
  
current	
  technology	
  by	
  a	
  factor	
  of	
  10.	
  (For	
  example,	
  DARPA	
  is	
  the	
  agency	
  that	
  gave	
  birth	
  to	
  
the	
  predecessor	
  of	
  the	
  Internet	
  and	
  GPS	
  technologies.)	
  Therefore,	
  this	
  is	
  an	
  agency	
  very	
  
familiar	
  with	
  the	
  challenges	
  and	
  requirements	
  of	
  sponsorship	
  and	
  management	
  of	
  highly	
  
exploratory	
  research.	
  	
  	
  	
  The	
  DARPA	
  funding	
  is	
  supplemented	
  by	
  grants	
  from	
  the	
  European	
  
Commission,	
  the	
  European	
  Research	
  Council,	
  and	
  the	
  Austrian	
  Science	
  Fund.	
  	
  Nevertheless,	
  
DARPA	
  is	
  the	
  driving	
  force	
  behind	
  this	
  research	
  program,	
  and	
  the	
  DARPA	
  Project	
  Manager	
  
is	
  active	
  in	
  promoting	
  “collaboration”	
  among	
  the	
  scientific	
  groups,	
  in	
  particular	
  between	
  
the	
  experimentalists	
  and	
  the	
  theorists.	
  
	
  
Within	
  the	
  Caltech-­‐led	
  ORCHID	
  project,	
  there	
  are	
  5	
  ‘experimentalist’	
  scientific	
  groups,	
  3	
  
located	
  at	
  Caltech,	
  1	
  in	
  Austria,	
  and	
  1	
  in	
  Switzerland,	
  (see	
  Fig.	
  1).	
  Two	
  of	
  the	
  Caltech	
  groups	
  
are	
  located	
  in	
  the	
  same	
  building	
  that	
  houses	
  the	
  Department	
  of	
  Applied	
  Physics.	
  The	
  third	
  
Caltech	
  group	
  belongs	
  to	
  the	
  Department	
  of	
  Physics	
  in	
  a	
  separate	
  location	
  on	
  this	
  small	
  
university	
  campus.	
  	
  Each	
  group	
  is	
  led	
  by	
  an	
  experimental	
  physicist/professor,	
  with	
  their	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3	
  Bell	
  Labs’	
  R&D	
  Portfolio	
  Management	
  profile,	
  as	
  reported	
  by	
  John	
  Mashey	
  to	
  Andrew	
  Revkin	
  (NY	
  
Times,	
  December	
  12,	
  2008),	
  and	
  adapted	
  by	
  Carolyn	
  Ordowich.	
  
own	
  laboratories	
  staffed	
  by	
  graduate	
  and	
  post-­‐doctoral	
  students.	
  	
  Approximately	
  20	
  
Caltech	
  personnel	
  are	
  involved	
  with	
  the	
  ‘ORCHID’	
  project	
  in	
  some	
  way.	
  	
  	
  
	
  
While	
  the	
  Principal	
  Investigators	
  (PIs)	
  of	
  all	
  3	
  groups	
  and	
  a	
  number	
  of	
  their	
  graduate	
  
students	
  have	
  conducted	
  research	
  and	
  published	
  together	
  quite	
  extensively,	
  for	
  the	
  
‘ORCHID’	
  project	
  the	
  3	
  Caltech	
  laboratories	
  with	
  their	
  groups	
  operate	
  independently.	
  	
  	
  The	
  
Micro	
  &	
  Nano-­‐Photonics	
  Group	
  does,	
  however,	
  fabricate	
  some	
  of	
  the	
  devices	
  used	
  in	
  
experiments	
  conducted	
  by	
  the	
  Quantum	
  Optics	
  Group.	
  Each	
  group	
  is	
  conducting	
  different	
  
experiments	
  on	
  3	
  different	
  types	
  of	
  optomechanical	
  device	
  platforms.	
  	
  
	
  
This	
  VOSS	
  study	
  focuses	
  on	
  the	
  working	
  relationship	
  between	
  the	
  Micro	
  &	
  Nano-­‐Photonics	
  
Group	
  at	
  Caltech	
  and	
  the	
  Quantum	
  Optics	
  &	
  Nanophysics	
  Group	
  in	
  the	
  University	
  of	
  Vienna,	
  
Austria.	
  Among	
  the	
  collaborations	
  the	
  Austrian	
  laboratory	
  and	
  the	
  Photonics	
  Group	
  at	
  
Caltech	
  have	
  established	
  the	
  closest	
  relationship.	
  	
  The	
  Micro	
  &	
  Nano-­‐Photonics	
  Group	
  
fabricates	
  its	
  own	
  devices	
  (optomechanical	
  crystals)	
  and	
  conducts	
  its	
  own	
  experiments.	
  It	
  
is	
  also	
  fabricating	
  devices	
  for	
  use	
  in	
  similar	
  experiments	
  that	
  are	
  run,	
  using	
  different	
  
methods,	
  on	
  significantly	
  different	
  equipment	
  in	
  the	
  Austrian	
  Quantum	
  Optics	
  laboratory.	
  
Thus,	
  there	
  is	
  strong	
  interdependence	
  between	
  the	
  Caltech	
  Photonics	
  Group	
  and	
  the	
  
Austrian	
  Quantum	
  Optics	
  Group.	
  	
  
	
  
The	
  Austrian	
  school	
  is	
  world-­‐famous	
  for	
  their	
  technical	
  infrastructures	
  that	
  can	
  do	
  
experiments	
  at	
  temperatures	
  1000	
  times	
  lower	
  than	
  possible	
  at	
  Caltech.	
  	
  The	
  Caltech	
  lab	
  
has	
  the	
  advantage	
  in	
  the	
  manufacture	
  of	
  quality	
  devices	
  for	
  experimentation,	
  and	
  in	
  this	
  
project,	
  the	
  Austrian	
  lab	
  depends	
  upon	
  the	
  Caltech	
  lab	
  for	
  state-­‐of-­‐the-­‐art	
  patterning	
  of	
  
nano-­‐structure	
  devices.	
  	
  Another	
  Caltech	
  comparative	
  advantage	
  is	
  its	
  expertise	
  in	
  
techniques	
  of	
  “getting	
  light	
  in	
  and	
  out	
  of”	
  these	
  devices	
  using	
  a	
  special	
  fiber	
  that	
  has	
  not	
  
been	
  replicated	
  elsewhere	
  in	
  the	
  world.	
  	
  	
  Until	
  the	
  ORCHID	
  project,	
  however,	
  these	
  2	
  
scientific	
  groups	
  had	
  never	
  collaborated.	
  The	
  idea	
  for	
  collaboration	
  arose	
  in	
  an	
  informal	
  
discussion	
  between	
  the	
  leaders	
  of	
  the	
  two	
  groups	
  at	
  a	
  scientific	
  meeting	
  after	
  the	
  DARPA	
  
proposal	
  was	
  submitted.	
  	
  
	
  
Another	
  aspect	
  of	
  scientific	
  collaboration	
  that	
  is	
  a	
  focus	
  of	
  this	
  study	
  concerns	
  interaction	
  
between	
  the	
  3	
  groups	
  of	
  theoretical	
  physicists	
  and	
  the	
  experimentalists	
  (see	
  Fig.	
  2).	
  The	
  
‘Theory’	
  team	
  was	
  brought	
  together	
  for	
  the	
  ORCHID	
  project	
  at	
  the	
  initiative	
  of	
  the	
  DARPA	
  
Project	
  Manager	
  who	
  polled	
  the	
  experimental	
  scientists	
  for	
  recommendations	
  of	
  specific	
  
theoretical	
  physicists	
  most	
  capable	
  of	
  providing	
  “support	
  for	
  experimentation”	
  and	
  for	
  
advancement	
  of	
  optomechanical	
  theory	
  based	
  on	
  ORCHID	
  experimental	
  findings.	
  	
  
	
  
The	
  3	
  principal	
  investigators	
  on	
  the	
  theory	
  team	
  represented	
  3	
  different	
  schools.	
  	
  The	
  three	
  
worked	
  in	
  Germany,	
  Canada,	
  and	
  the	
  United	
  States.	
  	
  	
  Only	
  two	
  of	
  the	
  theorists	
  have	
  done	
  
substantial	
  prior	
  work	
  together.	
  	
  Also,	
  although	
  the	
  members	
  of	
  this	
  theory	
  team	
  have	
  a	
  
track	
  record	
  of	
  collaboration	
  with	
  optomechanical	
  experimentalists,	
  in	
  this	
  specific	
  case,	
  
only	
  1	
  of	
  the	
  theoretical	
  physicists	
  has	
  worked	
  previously	
  with	
  1	
  of	
  the	
  Caltech	
  professors	
  
on	
  two	
  joint	
  publications.	
  However,	
  2	
  of	
  the	
  theoretical	
  physicists	
  have	
  contributed	
  to	
  a	
  
number	
  of	
  joint	
  publications	
  co-­‐authored	
  with	
  one	
  of	
  the	
  experimental	
  physicists	
  who	
  
leads	
  another	
  ORCHID	
  project	
  team	
  at	
  Yale	
  University.	
  	
  Professional	
  links	
  may	
  contribute	
  to	
  
communications	
  opportunities	
  and	
  past	
  interactions	
  may	
  create	
  assumptions	
  about	
  how	
  
work	
  will	
  progress.	
  	
  
 
Indeed,	
  the	
  theory	
  team	
  proposal	
  submitted	
  to	
  DARPA	
  anticipated	
  that	
  the	
  ORCHID	
  project	
  
would	
  be	
  particularly	
  challenging	
  for	
  them,	
  with	
  respect	
  to	
  scientific	
  management.	
  First,	
  
there	
  was	
  expectation	
  of	
  some	
  “competition”	
  for	
  theory	
  support	
  from	
  among	
  the	
  5	
  
experimentalist	
  project	
  teams,	
  (the	
  Caltech-­‐based	
  team	
  +	
  4	
  other	
  project	
  teams	
  at	
  Yale,	
  
Berkeley,	
  and	
  Cornell).	
  	
  Secondly,	
  the	
  theory	
  team	
  assigned	
  within	
  its	
  own	
  DARPA	
  budget	
  a	
  
substantial	
  provision	
  for	
  travel,	
  as	
  one	
  way	
  to	
  meet	
  the	
  larger	
  challenge	
  of	
  maintaining	
  a	
  	
  
“close	
  connection”	
  with	
  the	
  geographically	
  dispersed	
  research	
  groups.	
  
	
  
	
  
THE	
  CHALLENGES	
  OF	
  ‘VIRTUAL	
  ORGANIZATION’	
  FOR	
  FUNDAMENTAL	
  RESEARCH:	
  
	
  
One	
  of	
  the	
  central	
  collaborative	
  challenges	
  in	
  the	
  virtual	
  setting	
  between	
  the	
  Caltech	
  Nano-­‐
Photonics	
  Group	
  and	
  the	
  Quantum	
  Optics	
  Group	
  at	
  the	
  University	
  of	
  Vienna	
  is	
  related	
  to	
  the	
  
very	
  nature	
  of	
  their	
  work.	
  Pure	
  or	
  fundamental	
  research,	
  (R1	
  on	
  our	
  R&D	
  spectrum—see	
  
Figure	
  1)	
  is	
  inherently	
  unpredictable	
  and	
  fraught	
  with	
  ambiguity.	
  	
  The	
  objective	
  of	
  the	
  
ORCHID	
  project	
  is	
  discovery	
  and	
  knowledge	
  generation,	
  with	
  no	
  certainty	
  of	
  what	
  will	
  be	
  
learned	
  about	
  the	
  capabilities	
  of	
  specific	
  device	
  platforms	
  to	
  actually	
  display	
  heretofore	
  
hypothetical	
  optomechanical	
  effects.	
  Moreover,	
  how	
  to	
  achieve	
  such	
  discovery	
  has	
  never	
  
been	
  entirely	
  clear	
  during	
  the	
  early	
  stages	
  of	
  the	
  ORCHID	
  project,	
  in	
  terms	
  of	
  questions	
  that	
  
have	
  remained	
  about	
  what	
  would	
  be	
  the	
  most	
  productive	
  experiments	
  to	
  run,	
  and	
  how	
  
such	
  experiments	
  should	
  be	
  designed.	
  
	
  
Research	
  has	
  often	
  documented	
  examples	
  of	
  the	
  efficacy	
  of	
  clarity	
  and	
  predictability	
  in	
  
work.	
  	
  Malhotra	
  et	
  al.	
  described	
  “innovation	
  without	
  collocation”	
  in	
  their	
  case	
  study	
  at	
  
Boeing-­‐Rocketdyne	
  where	
  the	
  parameters	
  of	
  the	
  desired	
  outcome	
  were	
  clear,	
  though	
  not	
  
the	
  ‘how’	
  of	
  achieving	
  a	
  breakthrough	
  design	
  concept	
  for	
  liquid-­‐fuelled	
  rocket	
  engine	
  
technology.4	
  	
  Extreme	
  unpredictability	
  is	
  also	
  directly	
  contrary	
  to	
  findings	
  by	
  Olson	
  et	
  al.	
  in	
  
their	
  decade-­‐long	
  study	
  of	
  science	
  collaboratories,	
  where	
  a	
  key	
  factor	
  leading	
  to	
  success	
  
has	
  been	
  work	
  that	
  is	
  “unambiguous.”	
  5	
  Further	
  evidence	
  of	
  the	
  challenge	
  faced	
  by	
  the	
  
ORCHID	
  project	
  team	
  is	
  found	
  in	
  Chudoba	
  et	
  al.’s	
  conclusion	
  that	
  “work	
  predictability”	
  is	
  a	
  
key	
  mitigating	
  factor	
  for	
  success	
  in	
  a	
  virtual	
  organizational	
  setting6.	
  	
  Doing	
  pure	
  research	
  in	
  
a	
  virtual	
  setting	
  then,	
  offers	
  special	
  challenges	
  that	
  are	
  inherent	
  in	
  the	
  work	
  and	
  the	
  mode	
  
of	
  interaction.	
  
	
  
A	
  second	
  criterion	
  Olson	
  et	
  al.	
  identified	
  as	
  a	
  factor	
  leading	
  to	
  success	
  in	
  collaboratories	
  
was	
  an	
  ability	
  to	
  act	
  “somewhat	
  independently	
  from	
  one	
  another”.	
  	
  	
  The	
  Vienna	
  laboratory	
  
is	
  dependent	
  upon	
  Caltech	
  to	
  fabricate	
  unique	
  optomechanical	
  crystal	
  devices	
  for	
  use	
  in	
  
experiments	
  that	
  Caltech	
  is	
  depending	
  upon	
  the	
  Viennese	
  scientists	
  to	
  run	
  on	
  their	
  unique	
  
laser-­‐cooling	
  equipment.	
  This	
  substantial	
  interdependence	
  between	
  the	
  two	
  laboratories	
  
implies	
  a	
  need	
  for	
  continuous	
  and	
  effective	
  interaction,	
  albeit	
  in	
  a	
  virtual	
  mode.	
  	
  	
  
	
  
On	
  top	
  of	
  these	
  challenges	
  in	
  the	
  nature	
  of	
  work	
  within	
  this	
  research	
  project,	
  there	
  are	
  
other	
  “discontinuities”	
  (or	
  factors	
  that	
  could	
  contribute	
  to	
  a	
  decrease	
  in	
  cohesion	
  and	
  a	
  
capability	
  for	
  collaboration).	
  	
  Chudoba	
  et	
  al.	
  have	
  already	
  identified	
  that	
  “greater	
  variety	
  of	
  
work	
  practices	
  negatively	
  impact	
  performance”	
  in	
  virtual	
  settings,	
  and	
  here	
  within	
  the	
  
ORCHID	
  project,	
  the	
  two	
  experimentalist	
  groups,	
  of	
  Quantum	
  Optics	
  and	
  of	
  Nano-­‐Photonics	
  
are	
  based	
  on	
  related	
  but	
  very	
  different	
  disciplines,	
  and	
  use	
  differing	
  language	
  to	
  describe	
  
similar	
  data.	
  Moreover,	
  the	
  theoretical	
  physicists	
  have	
  their	
  own	
  approach	
  to	
  problem-­‐
solving	
  that	
  differs	
  from	
  that	
  of	
  either	
  of	
  the	
  experimentalist	
  schools.	
  
	
  
Compounding	
  the	
  difference	
  in	
  disciplines	
  or	
  professional	
  cultures	
  that	
  exists	
  between	
  the	
  
two	
  laboratories	
  is	
  the	
  difference	
  in	
  the	
  equipment	
  that	
  they	
  use	
  for	
  experimentation.	
  It	
  is	
  
an	
  overall	
  advantage	
  for	
  the	
  ORCHID	
  project	
  that	
  the	
  University	
  of	
  Vienna	
  laboratory	
  has	
  a	
  
technical	
  infrastructure	
  that	
  can	
  do	
  experiments	
  at	
  1000	
  times	
  lower	
  temperatures	
  than	
  is	
  
possible	
  at	
  Caltech.	
  However,	
  the	
  techniques	
  that	
  Caltech	
  has	
  perfected	
  for	
  “getting	
  light	
  in	
  
and	
  out	
  of”	
  its	
  optomechanical	
  devices	
  do	
  not	
  work	
  on	
  the	
  Austrian	
  experimental	
  
infrastructure.	
  Thus, a key challenge in this collaboration is for the scientists to invent a new
technique for using their devices that would be compatible with the Austrian laboratory. Just the
way this disconnect alone was discovered illustrates a need for close interaction. A graduate
student from Vienna was visiting and noticed that there was a mismatch in the way the
equipment was supposed to fit together. This coincidental visit and the discovery it triggered
greatly facilitated the work of the entire process. 	
  
	
  
Finally,	
  all	
  of	
  these	
  scientists	
  have	
  experienced	
  or	
  are	
  familiar	
  with	
  some	
  past	
  failures	
  or	
  
shortcomings	
  in	
  multi-­‐university	
  research7,	
  often	
  due	
  to	
  conflicting	
  priorities	
  among	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4	
  Malhotra	
  et.	
  al.,	
  MIS	
  Quarterly,	
  Jun	
  2001:	
  25,	
  2;	
  pp.	
  229-­‐249.	
  
5	
  Olson	
  &	
  Olson,	
  Human-­Computer	
  Interaction,	
  2000:	
  15,	
  pp.	
  139-­‐178.	
  
6	
  Chudoba	
  et.	
  al.	
  Info	
  Systems	
  Journal,	
  2005:	
  15,	
  pp.	
  279-­‐306.	
  
7	
  Cummings	
  &	
  Kiesler,	
  Research	
  Policy,	
  2007:	
  36,	
  pp.	
  1620-­‐1634.	
  
diverse	
  institutions.	
  With	
  the	
  best	
  of	
  intentions,	
  a	
  conflict	
  in	
  priorities	
  may	
  not	
  be	
  apparent	
  
at	
  the	
  outset	
  of	
  a	
  collaboration,	
  but	
  geographic	
  separation	
  has	
  a	
  way	
  of	
  expanding	
  this	
  type	
  
of	
  inter-­‐organizational	
  “discontinuity”.	
  	
  Specifically,	
  within	
  the	
  ORCHID	
  project,	
  this	
  factor	
  
has	
  potential	
  for	
  impact,	
  insofar	
  as	
  here,	
  exploratory	
  research	
  is	
  being	
  practiced	
  under	
  tight	
  
timelines	
  with	
  6-­‐month	
  review	
  periods	
  (administered	
  by	
  the	
  funding	
  agency,	
  DARPA).	
  	
  
	
  
Given	
  all	
  of	
  this	
  background,	
  the	
  primary	
  challenge	
  has	
  been	
  to	
  learn	
  if	
  and	
  how	
  the	
  
geographically	
  dispersed	
  teams	
  of	
  experimentalist	
  and	
  theoretical	
  physicists	
  might	
  
effectively	
  converge	
  their	
  thinking	
  and	
  diverse	
  perspectives,	
  in	
  order	
  to	
  answer	
  the	
  
fundamental	
  ‘what’	
  and	
  ‘how’	
  questions	
  posed	
  by	
  the	
  ORCHID	
  project	
  within	
  a	
  virtual	
  
collaborative	
  scientific	
  organization.	
  
	
  
	
  
OUR	
  FINDINGS:	
  
	
  
For	
  this	
  case	
  the	
  focus	
  is	
  on	
  3	
  topics;	
  the	
  nature	
  of	
  the	
  collaborative	
  relationships,	
  
identification	
  of	
  key	
  deliberations	
  involved	
  in	
  this	
  research	
  process,	
  and	
  the	
  nature	
  and	
  
media	
  of	
  communication	
  used	
  by	
  participants	
  in	
  these	
  deliberations.	
  	
  Each	
  of	
  these	
  topics	
  
highlights	
  an	
  aspect	
  of	
  the	
  work	
  between	
  ORCHID	
  participant	
  scientists	
  and	
  students	
  as	
  
well	
  as	
  in	
  part	
  the	
  influence	
  of	
  the	
  funding	
  agency	
  in	
  creating	
  a	
  more	
  effective	
  initial	
  
grouping	
  of	
  skills	
  and	
  capabilities.	
  
	
  
Collaboration	
  
The	
  at-­‐distance	
  collaboration	
  between	
  the	
  Caltech-­‐based	
  Micro	
  &	
  Nano-­‐Photonics	
  Group	
  
and	
  the	
  Austrian	
  Optics	
  &	
  Nanophysics	
  Group	
  has	
  proven	
  to	
  be	
  even	
  more	
  challenging	
  than	
  
anticipated.	
  	
  A	
  major	
  element	
  of	
  the	
  challenge	
  came	
  from	
  the	
  need	
  to	
  invent	
  a	
  new	
  
methodology	
  that	
  would	
  enable	
  devices	
  fabricated	
  by	
  Caltech	
  to	
  run	
  on	
  the	
  experimental	
  
equipment	
  in	
  the	
  Austrian	
  laboratory.	
  This	
  co-­‐invention	
  required	
  recognition	
  or	
  
identification	
  of	
  the	
  problem	
  and	
  an	
  extremely	
  detailed	
  mutual	
  understanding	
  of	
  the	
  
technical	
  capabilities	
  and	
  limitations.	
  	
  The	
  actual	
  geographic	
  constraints	
  and	
  virtual	
  
organization	
  added	
  to	
  this	
  very	
  challenging	
  task.	
  	
  
	
  
Tremendous	
  mutual	
  respect	
  between	
  the	
  leaders	
  and	
  staff	
  of	
  the	
  two	
  laboratories	
  and	
  the	
  
shared	
  strong	
  “motivation”	
  to	
  collaborate	
  combined	
  to	
  enhance	
  the	
  chances	
  of	
  project	
  
success.	
  In	
  the	
  opinion	
  of	
  the	
  Austrians,	
  “no	
  group	
  worldwide	
  can	
  make	
  such	
  devices	
  as	
  at	
  
Caltech”,	
  and	
  similarly,	
  the	
  view	
  expressed	
  by	
  members	
  of	
  the	
  Caltech	
  Group	
  is	
  that	
  the	
  
“Vienna	
  school	
  is	
  world	
  famous”	
  for	
  the	
  quality	
  of	
  its	
  experimental	
  scientists	
  and	
  the	
  
capability	
  of	
  their	
  equipment	
  to	
  do	
  experiments	
  at	
  1000	
  times	
  lower	
  temperatures	
  than	
  is	
  
possible	
  at	
  Caltech.	
  	
  The	
  mutual	
  respect	
  between	
  the	
  labs	
  has	
  also	
  led	
  to	
  a	
  relationship	
  that	
  
is	
  “complementary”	
  and	
  “not	
  competitive”.	
  Most	
  importantly,	
  the	
  combination	
  of	
  the	
  two	
  
types	
  of	
  expertise	
  creates	
  a	
  unique	
  opportunity	
  for	
  scientific	
  breakthrough.	
  	
  As	
  one	
  group	
  
leader	
  said,	
  it	
  was	
  “the	
  first	
  time	
  in	
  principle…to	
  enter	
  a	
  regime	
  that	
  we	
  can	
  do	
  [quantum]	
  
experiments	
  with	
  truly	
  microscopic	
  systems”.	
  	
  
	
  
Even	
  during	
  the	
  early	
  intense	
  period	
  of	
  experimentation	
  within	
  this	
  collaboration,	
  it	
  has	
  
already	
  yielded	
  a	
  series	
  of	
  internationally	
  recognized	
  publications	
  and	
  a	
  “milestone”	
  
experiment/demonstration	
  of	
  a	
  capability	
  “to	
  cool	
  a	
  miniature	
  mechanical	
  object	
  to	
  its	
  
lowest	
  possible	
  energy	
  state	
  using	
  laser	
  light”	
  which	
  “paves	
  the	
  way	
  for…quantum	
  
experiments	
  that	
  scientists	
  have	
  long	
  dreamed	
  of	
  conducting”8	
  (See	
  Fig.	
  3).	
  	
  
	
  
Figure	
  3:	
  	
  
Nanoscale	
  Silicon	
  Mechanical	
  Resonator	
  used	
  in	
  breakthrough	
  Caltech	
  Experiment	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8	
  “Caltech	
  Team	
  Uses	
  Laser	
  Light	
  to	
  Cool	
  Object	
  to	
  Quantum	
  Ground	
  State”,	
  Caltech	
  Media	
  
Relations	
  News	
  Release,	
  California	
  Institute	
  of	
  Technology,	
  Pasadena	
  CA,	
  October	
  5,	
  2011.	
  
Credibility	
  and	
  capability	
  have	
  always	
  been	
  important	
  in	
  science	
  but	
  they	
  become	
  more	
  
critical	
  in	
  a	
  virtual	
  working	
  relationship.	
  	
  Competence	
  is,	
  therefore,	
  an	
  equally	
  significant	
  
motivation	
  for	
  collaboration	
  between	
  the	
  theoretical	
  and	
  the	
  experimental	
  physicists	
  
within	
  the	
  ORCHID	
  project.	
  	
  On	
  one	
  hand,	
  theoretical	
  physicists	
  want	
  to	
  have	
  connection	
  
with	
  experimentalists	
  to	
  advance	
  their	
  understanding	
  of	
  what	
  theoretical	
  questions	
  would	
  
be	
  most	
  relevant	
  and	
  even	
  feasible	
  for	
  experimentation.	
  In	
  the	
  words	
  of	
  a	
  group	
  leader	
  and	
  
a	
  colleague	
  in	
  theoretical	
  physics,	
  “you	
  want	
  to	
  be	
  the	
  first	
  to	
  know	
  about	
  really	
  interesting	
  
data…and	
  so,	
  you	
  go	
  for	
  the	
  best	
  experimental	
  groups	
  that	
  there	
  are”,	
  and	
  the	
  Caltech	
  lab	
  is	
  
“really	
  one	
  of	
  the	
  leaders	
  in	
  the	
  field”,	
  having	
  “the	
  most	
  promising”	
  set-­‐ups/devices	
  “in	
  the	
  
world”—“it	
  was	
  extremely	
  natural	
  to	
  start	
  collaborating	
  with	
  Caltech”.	
  	
  Conversely	
  the	
  
Caltech	
  lab	
  and	
  experimental	
  physicists	
  at	
  Yale	
  and	
  other	
  laboratories,	
  at	
  the	
  request	
  of	
  the	
  
DARPA	
  ORCHID	
  Program	
  Director,	
  actually	
  selected	
  this	
  particular	
  set	
  of	
  theoretical	
  
physicists,	
  for	
  their	
  well-­‐established	
  reputation	
  for	
  collaboration	
  and	
  an	
  ability	
  to	
  do	
  the	
  
calculations	
  and	
  modeling	
  necessary	
  for	
  optomechanical	
  experimentation.	
  	
  
	
  
One	
  of	
  the	
  oft-­‐noted	
  features	
  of	
  this	
  collaboration	
  has	
  been	
  the	
  respected	
  and	
  fairly	
  active	
  
facilitation	
  role	
  performed	
  by	
  the	
  ORCHID	
  Program	
  Director	
  from	
  the	
  funding	
  agency,	
  
DARPA,	
  who	
  is	
  seen	
  “to	
  push	
  the	
  collaboration”.	
  For	
  example,	
  the	
  Program	
  Director	
  has	
  
convened	
  periodic	
  teleconferences	
  among	
  the	
  theoretical	
  physicists	
  to	
  promote	
  and	
  review	
  
their	
  collaboration.	
  And,	
  on	
  a	
  semi-­‐annual	
  basis,	
  the	
  Program	
  Director	
  leads	
  a	
  thorough	
  
review	
  of	
  the	
  overall	
  ORCHID	
  program,	
  bringing	
  together	
  members	
  of	
  the	
  theoretical	
  and	
  
experimentalist	
  groups,	
  faculty	
  and	
  graduate	
  students.	
  	
  
	
  
Key	
  Deliberations9	
  
The	
  nature	
  of	
  these	
  scientific	
  collaborations	
  becomes	
  even	
  more	
  evident	
  through	
  
understanding	
  the	
  key	
  deliberations	
  involved	
  in	
  achieving	
  this	
  type	
  of	
  fundamental	
  
research	
  project.	
  	
  For	
  example,	
  a	
  key	
  deliberation	
  topic	
  arising	
  continuously	
  during	
  Phase	
  
One	
  of	
  the	
  ORCHID	
  project	
  is	
  the	
  Selection	
  of	
  what	
  Experiment(s)	
  to	
  run.	
  This	
  deliberation	
  
also	
  illustrates	
  the	
  significance	
  of	
  serendipity	
  that	
  often	
  surfaces	
  in	
  collaborations	
  such	
  as	
  
this	
  one	
  between	
  the	
  perspectives	
  of	
  theoretical	
  and	
  experimental	
  physics.	
  	
  
	
  
In	
  one	
  instance,	
  a	
  graduate	
  student	
  associated	
  with	
  the	
  German	
  theorists	
  took	
  note	
  of	
  
experimental	
  data	
  that	
  his	
  Caltech	
  colleagues	
  had	
  generated	
  quite	
  by	
  chance.	
  	
  They	
  were	
  
inclined	
  to	
  discount	
  the	
  data	
  as	
  an	
  “artifact”.	
  	
  However,	
  to	
  the	
  German	
  student	
  this	
  data	
  was	
  
indicative	
  of	
  an	
  “interesting”	
  optomechanical	
  effect	
  that	
  had	
  been	
  predicted	
  by	
  theoretical	
  
physicists,	
  although	
  the	
  same	
  theory	
  suggested	
  it	
  would	
  be	
  extremely	
  difficult	
  to	
  achieve	
  
such	
  an	
  effect	
  experimentally.	
  	
  Once	
  Caltech	
  physicists	
  were	
  informed	
  and	
  persuaded	
  by	
  
this	
  theoretical	
  understanding,	
  a	
  new	
  experiment	
  was	
  devised,	
  and	
  the	
  predicted	
  effects	
  
were	
  then	
  effectively	
  demonstrated.	
  	
  
	
  
Among	
  the	
  experimentalists,	
  there	
  have	
  already	
  been	
  examples	
  of	
  joint	
  participation	
  in	
  
deliberations	
  involved	
  with	
  the	
  detailed	
  Design	
  of	
  Experiments	
  within	
  ORCHID,	
  both	
  in	
  
terms	
  of	
  procedures	
  and	
  equipment	
  design.	
  The	
  most	
  complex	
  example	
  of	
  a	
  sub-­‐topic	
  in	
  
this	
  type	
  of	
  deliberation	
  involved	
  the	
  challenge	
  of	
  what	
  and	
  how	
  to	
  redesign	
  in	
  order	
  to	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9	
  “Deliberations	
  are	
  patterns	
  of	
  exchange	
  and	
  communication	
  in	
  which	
  people	
  engage…to	
  
reduce	
  the	
  equivocality	
  of	
  a	
  problematic	
  issue”;	
  Pava,	
  Calvin,	
  1983,	
  Managing	
  New	
  Office	
  
Technology,	
  The	
  Free	
  Press,	
  New	
  York,	
  N.Y.,	
  p.58.	
  
achieve	
  a	
  match	
  between	
  the	
  wavelength	
  characteristics	
  of	
  the	
  optomechnical	
  device	
  
fabricated	
  at	
  Caltech,	
  and	
  on	
  the	
  other	
  hand,	
  the	
  wavelength	
  of	
  the	
  light	
  source	
  to	
  be	
  
utilized	
  in	
  experiments	
  to	
  be	
  run	
  in	
  the	
  Austrian	
  laboratory.	
  	
  	
  A	
  related	
  deliberation	
  topic	
  
has	
  been	
  the	
  Design	
  of	
  Measurement—what	
  to	
  measure	
  and	
  how	
  to	
  measure—where	
  once	
  
again,	
  the	
  combination	
  of	
  theoretical	
  and	
  experimental	
  perspectives	
  has	
  been	
  very	
  helpful.	
  
	
  
Within	
  the	
  process	
  of	
  actually	
  implementing	
  a	
  specific	
  experimental	
  design	
  or	
  fabricating	
  a	
  
specific	
  device,	
  there	
  are	
  inevitably	
  multiple	
  problem-­‐solving	
  iterations.	
  In	
  one	
  instance,	
  a	
  
Caltech	
  graduate	
  student	
  spent	
  6	
  months	
  “putting	
  out	
  fires”	
  in	
  trying	
  to	
  develop	
  just	
  one	
  
experiment	
  that	
  had	
  a	
  wide	
  variety	
  of	
  issues	
  ranging	
  from	
  inaccuracies	
  in	
  certain	
  sensing	
  
equipment	
  to	
  inconsistencies	
  in	
  the	
  production	
  of	
  the	
  optomechanical	
  crystal	
  device	
  itself.	
  
During	
  these	
  trouble-­‐shooting	
  deliberations	
  within	
  the	
  experiment	
  conducted	
  at	
  Caltech,	
  
the	
  experience	
  and	
  perspective	
  provided	
  by	
  members	
  of	
  the	
  Austrian	
  laboratory	
  were	
  key.	
  
	
  
Other	
  deliberations	
  for	
  both	
  the	
  theoretical	
  and	
  experimental	
  physicists	
  have	
  involved	
  
more	
  logistical	
  topics,	
  such	
  as	
  the	
  timing	
  and	
  coordination	
  for	
  the	
  transport	
  of	
  
optomechanical	
  devices	
  between	
  Caltech	
  and	
  the	
  Austrian	
  laboratory,	
  the	
  allocation	
  of	
  staff	
  
resources	
  (i.e.	
  specific	
  graduate	
  students	
  or	
  lab	
  technicians)	
  to	
  work	
  on	
  specific	
  theoretical	
  
questions	
  or	
  to	
  develop	
  specific	
  experiments,	
  or	
  even	
  the	
  “partitioning”	
  of	
  research	
  
questions	
  among	
  the	
  theorists	
  for	
  particular	
  study	
  by	
  each	
  of	
  their	
  respective	
  groups.	
  	
  
	
  
In	
  the	
  way	
  that	
  the	
  various	
  physicists	
  have	
  described	
  these	
  deliberations,	
  it	
  is	
  apparent	
  that	
  
a	
  particular	
  deliberation	
  topic	
  could	
  not	
  only	
  re-­‐cycle	
  in	
  a	
  non-­‐linear	
  fashion,	
  (for	
  example,	
  
the	
  ‘choice	
  point’	
  of	
  whether	
  to	
  run	
  a	
  particular	
  experiment),	
  but	
  it	
  might	
  also	
  carry	
  on	
  over	
  
an	
  extended	
  period	
  of	
  time,	
  with	
  substantial	
  lapses	
  or	
  “incubation”	
  time	
  in-­‐between	
  
communications—“it’s	
  a	
  constant	
  re-­‐evaluation;	
  where	
  do	
  you	
  want	
  to	
  put	
  your	
  effort?”	
  	
  	
  
	
  
Communications	
  
The	
  choice	
  and	
  use	
  of	
  communication	
  media	
  are	
  central	
  factors	
  in	
  the	
  functioning	
  of	
  
research	
  networks	
  or	
  virtual	
  organizations	
  because	
  deliberations	
  are	
  patterns	
  of	
  exchange	
  
and	
  communication	
  to	
  resolve	
  issues	
  of	
  equivocality	
  in	
  knowledge	
  work	
  processes.	
  
Nevertheless,	
  to	
  maintain	
  communication	
  between	
  two	
  geographically	
  separated	
  scientific	
  
groups	
  has,	
  in	
  the	
  view	
  of	
  the	
  Orchid	
  project	
  participants,	
  required	
  “enormous	
  effort”.	
  
Furthermore,	
  within	
  the	
  Orchid	
  project	
  experience,	
  there	
  appear	
  to	
  be	
  certain	
  patterns,	
  
whereby	
  different	
  modes	
  of	
  communication	
  seem	
  to	
  have	
  come	
  into	
  play	
  at	
  different	
  stages	
  
of	
  specific	
  deliberations	
  and	
  within	
  the	
  overall	
  research	
  process.	
  	
  
	
  
One	
  pattern	
  that	
  has	
  been	
  common	
  for	
  both	
  the	
  experimental	
  and	
  theoretical	
  physicists	
  is	
  
that	
  “a	
  lot	
  of	
  the	
  collaboration	
  really	
  goes	
  on	
  via	
  email”,	
  exchanging	
  documents	
  or	
  
experimental	
  results	
  without	
  the	
  expectation	
  of	
  instant	
  response.	
  	
  Email	
  as	
  a	
  
communication	
  mode	
  allows	
  contemplation	
  and	
  preparation	
  for	
  what	
  is	
  very	
  often	
  a	
  next	
  
step	
  in	
  the	
  deliberation,	
  namely,	
  one	
  or	
  more	
  synchronous	
  Skype	
  conversations	
  or	
  
teleconferences	
  to	
  discuss	
  and	
  make	
  “sense”	
  of	
  the	
  shared	
  information.	
  Sometimes,	
  a	
  
“screen-­‐sharing”	
  feature	
  has	
  been	
  utilized	
  to	
  supplement	
  this	
  ‘sense-­‐making’.	
  Sometimes,	
  
Google-­‐Plus	
  has	
  also	
  been	
  used,	
  particularly	
  by	
  some	
  of	
  the	
  graduate	
  students,	
  to	
  
supplement	
  email.	
  
	
  
Skype	
  calls	
  have	
  had	
  another	
  use,	
  distinct	
  from	
  email	
  exchanges,	
  for	
  what	
  some	
  ORCHID	
  
participants	
  term	
  “strategic	
  decisions”,	
  for	
  example,	
  weighing	
  options	
  about	
  if	
  and	
  when	
  to	
  
run	
  a	
  certain	
  experiment,	
  or	
  whether	
  or	
  not	
  to	
  allocate	
  additional	
  resources	
  to	
  a	
  specific	
  
aspect	
  of	
  the	
  project.	
  The	
  visual	
  as	
  well	
  as	
  audio	
  capability	
  of	
  Skype	
  calls	
  has	
  also	
  enabled	
  
ORCHID	
  participants	
  to	
  sit	
  in	
  pairs	
  or	
  threesomes	
  around	
  a	
  computer	
  and	
  use	
  Skype	
  (only	
  
very	
  occasionally)	
  as	
  a	
  means	
  to	
  hold	
  a	
  modified	
  form	
  of	
  videoconference,	
  rather	
  than	
  use	
  a	
  
more	
  elaborate,	
  specialized	
  video	
  conferencing	
  technology.	
  	
  
	
  
In	
  fact,	
  most	
  teleconferences	
  seem	
  to	
  have	
  involved	
  pairs	
  or	
  trios	
  of	
  (distributed)	
  ORCHID	
  
participants,	
  rather	
  than	
  the	
  larger	
  group	
  ‘gatherings’	
  for	
  project	
  teleconferences	
  that	
  
might	
  have	
  been	
  contemplated	
  at	
  the	
  outset	
  of	
  the	
  Caltech-­‐based	
  ORCHID	
  project.	
  Virtual	
  
large	
  group	
  ‘gatherings’	
  of	
  diverse	
  faculty	
  and	
  graduate	
  students	
  have	
  proven	
  to	
  be	
  an	
  
overwhelming	
  organizational	
  challenge.	
  One	
  of	
  the	
  principles	
  of	
  virtual	
  communication	
  
that	
  seems	
  to	
  be	
  foremost	
  in	
  the	
  ORCHID	
  project	
  context	
  is	
  that	
  communication	
  technology	
  
and	
  procedures	
  need	
  to	
  be	
  “simple	
  and	
  robust”	
  or	
  they	
  will	
  not	
  get	
  used.	
  	
  
	
  
Some	
  of	
  the	
  ORCHID	
  project	
  members	
  have	
  participated	
  in	
  videoconferences	
  within	
  other	
  
research	
  networks,	
  and	
  there	
  are	
  now	
  plans	
  in	
  the	
  forthcoming	
  year	
  for	
  both	
  the	
  Caltech	
  
lab	
  and	
  the	
  Austrian	
  lab	
  to	
  utilize	
  newly	
  installed	
  videoconference	
  facilities,	
  particularly	
  as	
  
the	
  need	
  will	
  increase	
  for	
  inter-­‐group	
  discussions	
  and	
  interpretation	
  of	
  a	
  growing	
  amount	
  
of	
  data	
  from	
  the	
  intense	
  period	
  of	
  experimentation	
  in	
  the	
  Austrian	
  lab.	
  	
  
	
  
Nevertheless,	
  most	
  of	
  the	
  ORCHID	
  project	
  participants	
  would	
  claim	
  that	
  much	
  of	
  the	
  most	
  
significant	
  progress	
  has	
  been	
  made	
  in	
  the	
  research	
  process	
  when	
  there	
  has	
  been	
  the	
  
opportunity	
  for	
  face-­‐to-­‐face	
  (F2F)	
  communication	
  between	
  members	
  of	
  these	
  
geographically	
  dispersed	
  scientific	
  groups.	
  For	
  example,	
  the	
  ‘idea’	
  for	
  this	
  scientific	
  
collaboration	
  “all	
  started”	
  through	
  a	
  series	
  of	
  F2F	
  meetings	
  at	
  Caltech	
  and	
  conferences	
  
involving	
  faculty	
  and	
  graduate	
  students	
  from	
  the	
  Caltech	
  and	
  Austrian	
  laboratories.	
  And	
  
now,	
  these	
  scientists	
  who	
  are	
  now	
  collaborating	
  within	
  the	
  ORCHID	
  project	
  renew	
  their	
  
F2F	
  contact,	
  at	
  scientific	
  conferences	
  to	
  which	
  they	
  are	
  invited	
  several	
  times	
  a	
  year,	
  as	
  well	
  
as	
  at	
  the	
  semi-­‐annual	
  ORCHID	
  Program	
  review	
  meetings	
  convened	
  by	
  DARPA.	
  
	
  
Similarly,	
  within	
  the	
  early	
  months	
  of	
  the	
  ORCHID	
  project,	
  the	
  ‘theory’	
  team	
  worked	
  entirely	
  
at	
  a	
  distance	
  from	
  the	
  experimentalists,	
  studying	
  research	
  papers	
  and	
  slides	
  presented	
  at	
  
the	
  ORCHID	
  program	
  launch,	
  in	
  order	
  to	
  make	
  sense	
  of	
  “where	
  the	
  experimentalists	
  were	
  
going”,	
  and	
  “what	
  questions	
  would	
  be	
  important	
  to	
  the	
  success	
  of	
  their	
  experiments”.	
  
However,	
  “in	
  terms	
  of	
  real	
  [theoretical]	
  research	
  being	
  conducted…the	
  most	
  impressive	
  
example”	
  occurred	
  when	
  the	
  leader	
  of	
  the	
  German	
  school	
  of	
  Theoretical	
  Physics	
  sent	
  one	
  of	
  
his	
  graduate	
  students	
  to	
  work	
  for	
  5	
  consecutive	
  months	
  in	
  the	
  Micro	
  &	
  Nano-­‐Photonics	
  lab	
  
at	
  Caltech.	
  During	
  this	
  period,	
  the	
  graduate	
  student	
  (linked	
  by	
  frequent	
  Skype	
  and	
  email	
  
communication	
  with	
  his	
  German	
  colleagues)	
  was	
  “able	
  to	
  give	
  real	
  time	
  suggestions	
  to	
  the	
  
experimentalists	
  on	
  what	
  they	
  should	
  be	
  measuring”	
  or	
  quickly	
  to	
  interpret	
  experimental	
  
data	
  that	
  “it	
  would	
  have	
  taken	
  [the	
  experimentalists]	
  a	
  long	
  time	
  to	
  figure	
  out”.	
  
	
  
Another	
  example	
  of	
  this	
  type	
  of	
  “embedded	
  researcher”	
  was	
  the	
  graduate	
  student	
  from	
  the	
  
Austrian	
  laboratory	
  who	
  came,	
  quite	
  by	
  chance,	
  to	
  Caltech	
  for	
  5	
  weeks	
  in	
  September-­‐
October	
  2010,	
  when	
  it	
  so	
  happened	
  the	
  project	
  was	
  experiencing	
  an	
  unfortunate	
  delay	
  in	
  
development	
  of	
  the	
  optomechanical	
  device	
  and	
  experimental	
  design	
  intended	
  for	
  use	
  in	
  the	
  
Austrian	
  laboratory.	
  By	
  all	
  accounts,	
  this	
  graduate	
  student	
  and	
  his	
  colleagues	
  in	
  Austria	
  
could	
  not	
  have	
  been	
  nearly	
  as	
  helpful	
  with	
  expediting	
  this	
  key	
  experimental	
  design,	
  
without	
  his	
  physical	
  presence	
  and	
  F2F	
  communication	
  with	
  the	
  Caltech	
  scientists.	
  In	
  the	
  
words	
  of	
  the	
  Austrian	
  graduate	
  student:	
  “it’s	
  very	
  hard	
  to	
  really	
  get	
  on	
  the	
  same	
  page	
  and	
  
really	
  understand	
  what	
  the	
  other	
  one	
  means	
  if	
  you	
  don’t	
  see…the	
  design,	
  see	
  how	
  the	
  
people	
  work…I	
  wasn’t	
  really	
  aware	
  of	
  how	
  different	
  the	
  experiments	
  were	
  [in	
  Caltech]	
  than	
  
in	
  Vienna.	
  And,	
  we	
  just	
  had	
  to	
  merge	
  those	
  two	
  different	
  approaches	
  together.”	
  	
  
	
  
From	
  late	
  2010	
  to	
  March	
  2011,	
  this	
  graduate	
  student	
  continued	
  his	
  F2F	
  contact	
  with	
  
Caltech,	
  traveling	
  back-­‐and-­‐forth	
  from	
  Austria,	
  transporting	
  various	
  prototypes	
  of	
  the	
  
optomechanical	
  device	
  for	
  test	
  runs	
  in	
  Austria,	
  and	
  since	
  March	
  2011,	
  he	
  has	
  begun	
  a	
  two-­‐
year	
  post-­‐doctoral	
  assignment	
  with	
  the	
  Caltech	
  Nano-­‐Photonics	
  Group.	
  During	
  2011	
  and	
  
2012	
  of	
  Phase	
  Two	
  of	
  the	
  ORCHID	
  project,	
  he	
  joined	
  Caltech	
  graduate	
  students	
  in	
  periodic	
  
visits	
  to	
  the	
  Austrian	
  laboratory	
  where	
  they	
  have	
  taken	
  the	
  refined	
  optomechanical	
  crystal	
  
device	
  and	
  worked	
  with	
  the	
  University	
  of	
  Vienna	
  staff	
  to	
  set-­‐up	
  the	
  actual	
  experimentation,	
  
now	
  successfully	
  underway	
  in	
  Austria	
  “with	
  a	
  full-­‐blown	
  structure	
  fully	
  operational	
  and	
  
completely	
  unique”.	
  Without	
  this	
  F2F	
  contact	
  by	
  this	
  second	
  “embedded	
  researcher”,	
  the	
  
general	
  opinion	
  is	
  that	
  this	
  experimental	
  design	
  “would	
  have	
  been	
  worked	
  out,	
  but	
  it	
  would	
  
just	
  have	
  taken	
  much	
  longer”.	
  	
  
	
  
	
  
ANALYSIS/CONCLUSIONS:	
  
	
  
Researchers	
  know	
  that	
  	
  “technology-­‐mediated	
  interactions…complement	
  face-­‐to-­‐face	
  
interactions”	
  in	
  virtual	
  settings.	
  Dixon	
  and	
  Pantelli	
  (2010)	
  documented	
  this	
  in	
  their	
  study	
  
of	
  a	
  UK	
  government-­‐funded	
  program	
  establishing	
  a	
  ‘virtual	
  centre	
  of	
  excellence’	
  for	
  
technology	
  development10.	
  	
  In	
  the	
  ORCHID	
  project	
  experience	
  much	
  of	
  the	
  face-­‐to-­‐face	
  
interaction	
  actually	
  occurred	
  by	
  happenstance,	
  and	
  for	
  periods	
  of	
  time	
  longer	
  than	
  typical	
  
for	
  graduate	
  student	
  exchanges.	
  	
  These	
  factors	
  raise	
  questions	
  and	
  may	
  also	
  provide	
  
answers	
  about	
  the	
  nature	
  and	
  dynamics	
  of	
  this	
  complementarity	
  of	
  communication	
  media	
  
in	
  virtual	
  settings.	
  	
  More	
  to	
  the	
  point	
  they	
  raise	
  questions	
  and	
  may	
  also	
  provide	
  answers	
  
about	
  how	
  this	
  dynamic	
  works	
  in	
  fundamental	
  research	
  collaborations.	
  The	
  project	
  
participants	
  interviewed	
  generally	
  acknowledge	
  that	
  email,	
  videoconference,	
  or	
  any	
  of	
  the	
  
technology-­‐mediated	
  forms	
  of	
  communication	
  “work	
  best	
  when	
  you	
  already	
  have	
  an	
  idea	
  
of	
  where	
  you	
  want	
  to	
  go”,	
  with	
  a	
  particular	
  work	
  process	
  question	
  or	
  research	
  topic.	
  	
  
	
  
So,	
  determining	
  the	
  direction	
  or	
  strategies	
  of	
  a	
  project	
  may	
  require	
  concentrated	
  F2F	
  
communication.	
  Some	
  of	
  the	
  ORCHID	
  participants	
  commented	
  that	
  this	
  is	
  most	
  apparent	
  
“in	
  the	
  early	
  stages	
  of	
  a	
  project,	
  when	
  things	
  are	
  so	
  confusing…everything	
  is	
  so	
  unclear—
you	
  need	
  a	
  lot	
  of	
  random	
  discussions	
  that	
  may	
  lead	
  to	
  nowhere…we	
  just	
  have	
  to	
  talk	
  again	
  
and	
  again—it	
  seems	
  to	
  depend	
  very	
  much	
  on	
  personal	
  interaction,	
  the	
  chance	
  element.”	
  	
  
	
  
This	
  leads	
  to	
  three	
  inquiries.	
  	
  	
  
• First,	
  to	
  what	
  extent	
  is	
  this	
  initial	
  confusion	
  temporary	
  and	
  is	
  it	
  only	
  initially	
  needed	
  
to	
  develop	
  an	
  understanding	
  of	
  each	
  other	
  and	
  ‘get	
  on	
  the	
  same	
  page’?	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
10	
  Dixon	
  and	
  Pantelli,	
  2010,	
  “From	
  Virtual	
  Teams	
  to	
  Virtuality	
  in	
  Teams”,	
  Human	
  Relations,	
  
63(8),	
  pp.	
  1177-­‐1197)	
  	
  
• Second,	
  how	
  much	
  is	
  this	
  challenge	
  one	
  of	
  “perspective-­‐taking”	
  among	
  participants	
  
from	
  different	
  disciplines	
  and	
  with	
  diverse	
  work	
  practices?11	
  	
  
• And	
  third,	
  in	
  this	
  virtual	
  setting	
  where	
  most	
  of	
  the	
  geographically	
  dispersed	
  
participants	
  had	
  not	
  previously	
  worked	
  together,	
  how	
  much	
  of	
  the	
  challenge	
  of	
  
mutual	
  understanding	
  involves	
  trust	
  and	
  relationship	
  building?	
  
	
  
Taking	
  these	
  questions	
  in	
  reverse	
  order,	
  the	
  answer	
  from	
  Caltech	
  participants	
  and	
  from	
  the	
  
two	
  “embedded”	
  European	
  researchers,	
  is	
  that	
  it	
  has	
  been	
  “very	
  crucial”	
  to	
  work	
  together,	
  
“eat	
  lunch,	
  and	
  have	
  coffee	
  together”,	
  or	
  “to	
  spend	
  time	
  together”,	
  just	
  “to	
  get	
  to	
  know	
  each	
  
other”.	
  	
  	
  These	
  interactions	
  make	
  it	
  easier	
  to	
  “just	
  get	
  on	
  the	
  same	
  page”.	
  	
  Caltech	
  graduate	
  
students	
  and	
  their	
  “embedded	
  researcher”	
  counterparts	
  have	
  developed	
  a	
  “personal”	
  
friendship	
  more	
  than	
  just	
  a	
  “professional”	
  relationship.	
  	
  As	
  a	
  result,	
  they	
  are	
  “more	
  willing	
  
to	
  have	
  discussions	
  [with	
  each	
  other]	
  when	
  [they]	
  don’t	
  have	
  clear,	
  conclusive	
  ideas”,	
  and	
  
are	
  “more	
  willing	
  to	
  share	
  data	
  that	
  [they]	
  don’t	
  understand”—in	
  their	
  words,	
  “we	
  are	
  not	
  
as	
  hesitant	
  with	
  each	
  other”.	
  	
  
	
  
These	
  participants	
  now	
  also	
  speak	
  in	
  a	
  way	
  that	
  suggests	
  they	
  are	
  more	
  tolerant	
  or	
  open	
  to	
  
some	
  national	
  “cultural	
  differences”	
  between	
  the	
  scientific	
  groups.	
  	
  Such	
  differences	
  could	
  
otherwise	
  have	
  been	
  serious	
  “discontinuities”	
  in	
  the	
  collaboration,	
  especially	
  given	
  the	
  
delays	
  that	
  have	
  occurred	
  with	
  various	
  pieces	
  of	
  work	
  in	
  this	
  project,	
  disrupting	
  
coordination	
  between	
  laboratories.	
  	
  One	
  Caltech	
  graduate	
  student	
  gave	
  this	
  example:	
  	
  
“when	
  the	
  German	
  scientists	
  say	
  that	
  they	
  will	
  have	
  a	
  result	
  ready	
  in	
  4	
  months,	
  it	
  is	
  ready	
  
in	
  4	
  months;	
  whereas	
  when	
  Americans	
  say	
  that	
  they	
  will	
  have	
  a	
  result	
  in	
  2	
  months,	
  it	
  often	
  
takes	
  longer—we	
  [North	
  Americans]	
  over-­‐promise,	
  while	
  the	
  Germans	
  are	
  more	
  cautious”.	
  	
  
	
  
Building	
  respect	
  and	
  trust	
  is	
  thus	
  clearly	
  connected	
  to	
  the	
  second	
  challenge	
  of	
  “perspective-­‐
taking”	
  across	
  the	
  disciplines	
  of	
  theoretical	
  and	
  experimental	
  physics,	
  or	
  across	
  the	
  
disciplines	
  of	
  quantum	
  optics	
  and	
  applied	
  physics,	
  and	
  even	
  more	
  particularly,	
  between	
  
scientists	
  from	
  two	
  laboratories	
  with	
  methods	
  and	
  equipment	
  for	
  experimentation	
  that	
  are	
  
“very,	
  very	
  different”.	
  	
  Beyond	
  this	
  interpersonal	
  dimension,	
  though,	
  the	
  process	
  of	
  
integrating	
  multi-­‐disciplinary	
  and	
  multicultural	
  perspectives	
  to	
  solve	
  technical	
  problems	
  
has	
  required	
  that	
  scientists	
  “actually	
  sit	
  together…make	
  drawings	
  on	
  the	
  blackboard	
  and	
  
discuss	
  things…again	
  and	
  again”.	
  	
  
	
  
The	
  nature	
  of	
  these	
  conversations	
  appears	
  to	
  closely	
  resemble	
  the	
  use	
  of	
  “narrative”	
  and	
  
“boundary	
  objects”	
  cited	
  by	
  Boland	
  &	
  Tenkasi,	
  in	
  their	
  modeling	
  of	
  language	
  and	
  cognition	
  
to	
  assist	
  in	
  the	
  design	
  of	
  electronic	
  communication	
  systems	
  for	
  “communities	
  of	
  knowing”	
  
within	
  and	
  across	
  organizational	
  boundaries.12	
  	
  Indeed,	
  some	
  of	
  the	
  ORCHID	
  project	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
11	
  Boland	
  &	
  Tenkasi,	
  1995,	
  “Perspective-­‐making	
  and	
  perspective-­‐taking	
  in	
  communities	
  of	
  
knowing”,	
  Organization	
  Science,	
  6	
  (4),	
  pp.	
  350-­‐372.	
  
	
  
12	
  Bruner	
  (1986)	
  contends	
  that	
  rational	
  analysis	
  of	
  data	
  is	
  supplemented	
  by	
  how	
  we	
  
construct	
  stories	
  or	
  metaphors	
  to	
  make	
  sense	
  of	
  unusual	
  or	
  unexpected	
  events	
  in	
  an	
  
interesting	
  and	
  believable	
  way	
  that	
  fits	
  with	
  our	
  particular	
  cultural	
  field.	
  Similarly,	
  Star	
  
(1989,	
  1993)	
  has	
  observed	
  how	
  a	
  picture,	
  map	
  or	
  diagram	
  can	
  provide	
  a	
  visible	
  
representation	
  of	
  one’s	
  thinking	
  and	
  becomes	
  a	
  “boundary	
  object”	
  that	
  makes	
  one’s	
  
knowledge	
  available	
  for	
  analysis	
  with	
  another	
  individual	
  or	
  scientific	
  community.	
  	
  
participants	
  agree	
  that	
  this	
  kind	
  of	
  interdisciplinary	
  problem-­‐solving	
  discussion	
  is	
  
definitely	
  “possible	
  at	
  a	
  distance,	
  over	
  the	
  internet,	
  on	
  a	
  [video	
  or	
  tele]	
  conference	
  call	
  
where	
  you	
  can	
  just	
  draw	
  things…But	
  it’s	
  not	
  as	
  efficient	
  as	
  if	
  you	
  come	
  for	
  a	
  week	
  or	
  two	
  
and	
  just	
  sit	
  together	
  and	
  just	
  concentrate	
  on	
  one	
  thing.”	
  
	
  
Nevertheless,	
  the	
  two	
  “embedded	
  researchers”	
  have	
  continued	
  to	
  perform	
  within	
  the	
  
ORCHID	
  project	
  a	
  function	
  with	
  respect	
  to	
  colleagues	
  in	
  their	
  ‘home’	
  scientific	
  groups	
  that	
  
is	
  very	
  similar	
  to	
  what	
  Boland	
  &	
  Tenkasi	
  refer	
  to	
  as	
  “semiotic	
  brokers”.13	
  	
  Knowing	
  the	
  
‘language’	
  and	
  the	
  capabilities	
  of	
  the	
  Caltech	
  lab,	
  they	
  have	
  been	
  able	
  to	
  establish	
  a	
  liaison	
  
or	
  “straddler”	
  role14	
  ‘translating’	
  and	
  expediting	
  communication	
  between	
  the	
  Caltech	
  staff,	
  
the	
  theory	
  team,	
  and	
  staff	
  associated	
  with	
  the	
  Austrian	
  experimental	
  lab.	
  
	
  
From	
  the	
  perspective	
  of	
  the	
  European	
  leaders	
  of	
  the	
  ORCHID	
  project,	
  this	
  linking	
  role	
  has	
  
been	
  “absolutely	
  essential”.	
  Without	
  this	
  role,	
  and	
  without	
  it	
  being	
  performed	
  effectively,	
  
graduate	
  students	
  in	
  one	
  or	
  more	
  of	
  the	
  labs	
  would	
  lose	
  interest	
  and	
  engagement	
  with	
  the	
  
project.	
  Critical	
  opportunities	
  to	
  focus	
  the	
  research	
  would	
  be	
  missed	
  or	
  adjustments	
  would	
  
not	
  be	
  made.	
  Unlike	
  a	
  situation	
  where	
  the	
  two	
  lab	
  groups	
  might	
  have	
  been	
  co-­‐located,	
  in	
  
this	
  case	
  of	
  a	
  trans-­‐Atlantic	
  collaboration,	
  regular	
  and	
  spontaneous	
  meetings	
  to	
  critique	
  
progress	
  don’t	
  happen	
  easily,	
  given	
  all	
  of	
  the	
  local	
  distractions	
  and	
  priorities	
  that	
  take	
  over	
  
one’s	
  attention”.	
  
	
  	
  
To	
  the	
  first	
  question	
  about	
  how	
  ‘temporary’	
  the	
  need	
  is	
  for	
  F2F	
  communication	
  in	
  this	
  
work,	
  the	
  perception	
  expressed	
  by	
  many	
  of	
  the	
  ORCHID	
  participants	
  is	
  that	
  there	
  is	
  a	
  
general	
  “threshold”	
  or	
  set	
  of	
  constraints	
  associated	
  with	
  a	
  phone	
  call,	
  videoconference,	
  etc.	
  	
  
Part	
  of	
  this	
  perception,	
  even	
  for	
  many	
  of	
  the	
  younger	
  Millennial	
  generation	
  graduate	
  
students,	
  is	
  that	
  there	
  is	
  “a	
  raft	
  of	
  minor	
  issues”—audio	
  noise,	
  crossing	
  over	
  from	
  one	
  
information	
  source	
  to	
  another,	
  time	
  zone	
  issues—“that	
  all	
  add	
  up	
  to	
  make	
  virtual	
  
communication	
  less	
  appealing,	
  not	
  as	
  easy	
  for	
  most	
  complex	
  problem-­‐solving”.	
  	
  
	
  
More	
  important,	
  though,	
  is	
  that	
  F2F	
  enables	
  “a	
  non-­‐restricted	
  occasion,	
  meaning	
  there	
  is	
  no	
  
phone	
  that	
  when	
  you	
  hang	
  up,	
  the	
  person	
  is	
  gone…[no]	
  1-­‐hour	
  time	
  slot	
  for	
  a	
  phone	
  
call…you	
  just	
  are	
  around…there	
  is	
  the	
  possibility	
  to	
  interact	
  24	
  hours	
  in	
  principle”.	
  Thus,	
  
what	
  is	
  seen	
  to	
  be	
  lacking	
  with	
  electronic	
  communication	
  media	
  is	
  “intensity	
  and	
  
spontaneity”	
  that	
  these	
  scientists	
  contend	
  are	
  vital	
  when	
  “developing	
  new	
  ideas,	
  new	
  
directions—about	
  the	
  experiment,	
  and	
  so	
  on”.	
  
	
  
In	
  science,	
  “there’s	
  this	
  random-­‐chance	
  occurring	
  of	
  ideas…you	
  chat	
  about	
  a	
  lot	
  of	
  different	
  
topics,	
  and	
  then,	
  somehow	
  the	
  germ	
  of	
  a	
  new	
  idea	
  comes	
  up”	
  whereas	
  	
  “teleconferences	
  
don’t	
  happen	
  by	
  chance”.	
  	
  Or,	
  as	
  another	
  Caltech	
  scientist	
  expressed	
  the	
  dilemma,	
  without	
  
opportunities	
  for	
  F2F	
  communication,	
  “Eureka	
  moments	
  won’t	
  happen”.	
  Along	
  with	
  this	
  
spontaneity,	
  there	
  needs	
  also	
  to	
  be	
  the	
  “pressure”	
  or	
  “intensity”	
  of	
  “constant	
  exchange”	
  
because	
  in	
  “generating	
  new	
  ideas,	
  you	
  always	
  have	
  an	
  incubation	
  time”.	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
13	
  Lyotard	
  (1984)	
  refers	
  to	
  the	
  important	
  role	
  of	
  agents	
  that	
  help	
  to	
  translate	
  and	
  integrate	
  
the	
  representation	
  of	
  concepts.	
  	
  
14	
  Heeks	
  et	
  al.,	
  2001,	
  “Synching	
  or	
  Sinking:	
  Global	
  Software	
  Outsourcing	
  Relationships”,	
  IEEE	
  
Software,	
  March/April	
  2001,	
  p.59.	
  
The	
  question	
  remains	
  whether	
  this	
  need	
  for	
  F2F	
  communication	
  to	
  help	
  generate	
  “new	
  
ideas,	
  new	
  directions”	
  exists	
  primarily	
  or	
  solely	
  at	
  the	
  beginning	
  of	
  a	
  fundamental	
  research	
  
project	
  like	
  ORCHID?	
  Perhaps,	
  it	
  is	
  so	
  for	
  projects	
  more	
  on	
  the	
  ‘Development’	
  side	
  of	
  the	
  
R&D	
  spectrum.	
  For	
  fundamental	
  research,	
  however,	
  that	
  has	
  as	
  its	
  core	
  objective	
  to	
  
generate	
  ‘breakthrough’	
  concepts,	
  knowledge,	
  and	
  experimental	
  data,	
  it	
  seems	
  more	
  likely	
  
from	
  the	
  experience	
  of	
  the	
  ORCHID	
  project	
  over	
  its	
  extended	
  period	
  of	
  three	
  years,	
  that	
  
there	
  is	
  a	
  rhythmic	
  cycle	
  moving	
  from	
  one	
  ‘unknown’	
  through	
  to	
  discovery	
  of	
  ‘known’	
  
results	
  that	
  evoke	
  their	
  own	
  new	
  questions	
  and	
  definition	
  of	
  a	
  new	
  ‘unknown’	
  followed	
  by	
  
a	
  further	
  search	
  for	
  ‘findings’.	
  In	
  the	
  words	
  of	
  the	
  European	
  science	
  leader	
  for	
  ORCHID,	
  “in	
  
fundamental	
  research,	
  one	
  never	
  knows	
  in	
  which	
  direction	
  research	
  is	
  taking	
  you—new	
  
opportunities	
  and	
  new	
  challenges	
  are	
  continually	
  opening	
  up”.	
  Indeed,	
  the	
  experience	
  of	
  
the	
  ORCHID	
  project	
  has	
  persuaded	
  this	
  European	
  scientist	
  that	
  timely,	
  periodic	
  F2F	
  
communication	
  is	
  vital	
  in	
  virtual	
  scientific	
  collaborations	
  involving	
  fundamental	
  research.	
  
	
  	
  
F2F	
  communication	
  within	
  the	
  virtual	
  organization	
  of	
  the	
  ORCHID	
  project	
  may	
  have	
  
additional	
  importance.	
  Findings	
  from	
  the	
  study	
  of	
  other	
  virtual	
  teams	
  suggest	
  that	
  they	
  
have	
  a	
  need	
  for	
  “deep	
  temporal	
  rhythms	
  of	
  interaction”,	
  with	
  “face-­‐to-­‐face	
  meetings…as	
  a	
  
heartbeat,	
  rhythmically	
  pumping	
  new	
  life	
  into	
  the	
  team’s	
  processes”.	
  The	
  goal	
  is	
  “to	
  draw	
  
team	
  members	
  together…to	
  connect,	
  couple,	
  and	
  integrate	
  team	
  members	
  so	
  that	
  they	
  
communicate	
  more	
  effectively.”15	
  	
  
	
  
In	
  this	
  ORCHID	
  project,	
  the	
  process	
  of	
  drawing	
  people	
  together	
  began	
  early	
  and	
  continued	
  
into	
  the	
  virtual	
  setting.	
  	
  Early	
  F2F	
  communication	
  was	
  combined	
  with	
  the	
  unique	
  and	
  very	
  
powerful	
  motivation	
  that	
  the	
  dispersed	
  parties	
  seem	
  to	
  have	
  for	
  this	
  collaboration.	
  	
  The	
  
science	
  leaders	
  of	
  the	
  ORCHID	
  project	
  “had	
  talked	
  to	
  each	
  other	
  a	
  lot	
  of	
  times	
  before	
  
starting	
  this	
  program”,	
  and	
  “it	
  helps	
  that	
  a	
  program	
  like	
  ORCHID	
  is	
  very	
  focused	
  on	
  one	
  
topic”	
  of	
  vital	
  interest	
  to	
  all	
  the	
  relevant	
  scientific	
  groups.	
  	
  Indeed,	
  the	
  speculation	
  of	
  at	
  
least	
  one	
  experienced	
  research	
  scientist	
  in	
  the	
  ORCHID	
  project	
  is	
  that	
  success	
  in	
  such	
  
multi-­‐university	
  research	
  “does	
  not	
  depend	
  so	
  much	
  on	
  technical	
  difficulties	
  in	
  
collaboration,	
  but	
  more	
  on	
  motivation”.	
  	
  A	
  strong	
  motivation	
  can	
  combine	
  with	
  the	
  
intensity	
  of	
  relationship	
  building,	
  F2F	
  or	
  virtually,	
  to	
  enhance	
  and	
  support	
  deliberations	
  
across	
  multidisciplinary	
  and	
  geographic	
  boundaries.	
  	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
15	
  Maznevski	
  and	
  Chudoba,	
  2000,	
  Bridging	
  Space	
  Over	
  Time:	
  Global	
  Virtual	
  Team	
  Dynamics	
  
and	
  Effectiveness,	
  Organization	
  Science,	
  11	
  (5),	
  pp.	
  473-­‐492.	
  	
  
	
  
REFERENCES:	
  
	
  
Boland,	
   R.J.,	
   Tenkasi,	
   R.V.,	
   1995,	
   Perspective	
   making	
   and	
   perspective	
   taking	
   in	
   communities	
   of	
  
knowing,	
  Organization	
  Science,	
  6	
  (4),	
  pp.	
  350–372.	
  	
  
	
  
Bruner,	
  J.	
  S.,	
  1986,	
  Actual	
  Minds,	
  Possible	
  Worlds,	
  Cambridge,	
  MA:	
  Harvard	
  University	
  Press.	
  
	
  
Caltech	
  Media	
  Relations,	
  2011,	
  “Caltech	
  Team	
  Uses	
  Laser	
  Light	
  to	
  Cool	
  Object	
  to	
  Quantum	
  Ground	
  
State”,	
  News	
  Release,	
  California	
  Institute	
  of	
  Technology,	
  Pasadena	
  CA,	
  October	
  5,	
  2011.	
  
	
  
Caltech	
  Media	
  Relations,	
  2013,	
  “Caltech	
  Team	
  Produces	
  Squeezed	
  Light	
  Using	
  a	
  Silicon	
  
Micromechanical	
  System”,	
  News	
  Release,	
  Caltech,	
  Pasadena	
  CA,	
  August	
  7,	
  2013.	
  
	
  
Safavi-­‐Naeini,	
  A.H.	
  et	
  al.,	
  2013,	
  “Squeezed	
  Light	
  from	
  a	
  Silicon	
  Micromechanical	
  Resonator”,	
  Nature	
  
500,	
  (August	
  8,	
  2013),	
  pp.	
  185-­‐189.	
  
	
  
Chudoba,	
   K.M.,	
   Wynn,	
   E.,	
   Lu,	
   M.,	
   Watson-­‐Manheim,	
   M.B.,	
   2005,	
   How	
   Virtual	
   are	
   we?	
   Measuring	
  
Virtuality	
  and	
  understanding	
  its	
  Impact	
  in	
  a	
  Global	
  Organization,	
  Information	
  Systems	
  Journal,	
  15,	
  
pp.	
  279-­‐306.	
  
	
  
Cummings,	
   J.	
   N.,	
   Kiesler,	
   S.,	
   2007,	
   Coordination	
   Costs	
   and	
   Project	
   Outcomes	
   in	
   Multi-­‐University	
  
Collaborations,	
  Research	
  Policy,	
  36,	
  pp.	
  1620-­‐1634.	
  
	
  
Dixon,	
  K.R.,	
  Panteli,	
  N.,	
  2010,	
  From	
  Virtual	
  Teams	
  to	
  Virtuality	
  in	
  Teams,	
  Human	
  Relations,	
  63	
  (8),	
  
pp.1177-­‐1197.	
  
	
  
Heeks,	
  R.,	
  Krishna,	
  S.,	
  Nicholson,	
  B.,	
  Sahay,	
  S.,	
  2001,	
  “Synching	
  or	
  Sinking:	
  Global	
  Software	
  
Outsourcing	
  Relationships”,	
  IEEE	
  Software,	
  March/April	
  2001,	
  p.59.	
  
	
  
Lyotard,	
  J.	
  F.,	
  1984,	
  The	
  Postmodern	
  Conditions:	
  A	
  Report	
  on	
  Knowledge,	
  Minneapolis,	
  MN:	
  University	
  
of	
  Minnesota	
  Press.	
  	
  
	
  
Malhotra,	
   A.,	
   Majchrzak,	
   A.,	
   Carman,	
   R.,	
   Lott,	
   V.,	
   2000,	
   Radical	
   Innovation	
   without	
   Collocation:	
   A	
  
Case	
  Study	
  at	
  Boeing-­‐Rocketdyne,	
  MIS	
  Quarterly,	
  25	
  (2),	
  pp.	
  229-­‐249.	
  
	
  
Maznevski,	
  M.L.,	
  Chudoba,	
  K.M.,	
  2000,	
  Bridging	
  Space	
  Over	
  Time:	
  Global	
  Virtual	
  Team	
  Dynamics	
  
and	
  Effectiveness,	
  Organization	
  Science,	
  11	
  (5),	
  pp.	
  473-­‐492.	
  
	
  
Olson,	
  G.M.	
  Olson,	
  J.S.,	
  2000,	
  Distance	
  Matters,	
  Human-­Computer	
  Interaction,	
  15,	
  pp.	
  139-­‐178.	
  
	
  
Pava,	
  Calvin,	
  1983,	
  Managing	
  New	
  Office	
  Technology,	
  The	
  Free	
  Press,	
  New	
  York,	
  N.Y.,	
  p.58.	
  
	
  
Revkin,	
  A.,	
  2008.	
  Dot	
  Earth:	
  ‘R2-­D2’	
  and	
  Other	
  Lessons	
  from	
  Bell	
  Labs,	
  New	
  York	
  Times,	
  December	
  
12,	
  2008.	
  
	
  
Star,	
  S.	
  L.,	
  1989,	
  “The	
  Structure	
  of	
  Ill-­‐Structured	
  Solutions:	
  Boundary	
  Objects	
  and	
  Heterogeneous	
  
Distributed	
  Problem	
  Solving”,	
  in	
  M.	
  Huhns	
  and	
  L.	
  Gasser	
  (Eds.),	
  Readings	
  in	
  Distributed	
  Artificial	
  
Intelligence	
  2,	
  Menlo	
  Park,	
  CA:	
  Morgan	
  Kaufmann.	
  
	
  
Star,	
  S.	
  L.,	
  1993,	
  “Cooperation	
  Without	
  Consensus	
  in	
  Scientific	
  Problem	
  Solving:	
  Dynamics	
  of	
  
Closure	
  in	
  Open	
  Systems”,	
  in	
  S.	
  Easterbrook	
  (Ed.),	
  CSCW:	
  Cooperation	
  or	
  Conflict,	
  London:	
  UK	
  
Springer.	
  
 
	
  
APPENDIX	
  1:	
  METHODOLOGY	
  
	
  
During	
  the	
  late	
  spring	
  of	
  2010,	
  the	
  VOSS	
  research	
  team	
  opened	
  discussions	
  with	
  Caltech’s	
  
Micro	
  &	
  Nano	
  Photonics	
  Research	
  Group	
  in	
  the	
  Applied	
  Physics	
  department.	
  This	
  research	
  
group	
  had	
  previously	
  agreed	
  and	
  formally	
  expressed	
  an	
  interest	
  to	
  participate	
  as	
  a	
  site	
  in	
  
he	
  VOSS	
  project.	
  However,	
  a	
  preliminary	
  ‘scoping’	
  discussion	
  was	
  required	
  to	
  determine	
  
the	
  most	
  appropriate	
  multi-­‐university	
  research	
  activity	
  to	
  focus	
  upon	
  for	
  this	
  VOSS	
  study.	
  	
  
After	
  ‘kick-­‐off’	
  of	
  the	
  ORCHID	
  program	
  at	
  a	
  meeting	
  of	
  the	
  various	
  research	
  teams	
  from	
  
Caltech,	
  Yale,	
  etc.,	
  held	
  in	
  Santa	
  Barbara,	
  CA	
  in	
  June	
  2010,	
  preparations	
  for	
  the	
  eventual	
  
experimentation	
  began	
  slowly	
  both	
  at	
  Caltech	
  and	
  at	
  the	
  University	
  of	
  Vienna	
  Quantum	
  
Optics	
  Group.	
  	
  Preparations	
  were	
  complicated	
  by	
  the	
  need	
  to	
  coordinate	
  the	
  planning	
  of	
  
what	
  research	
  to	
  do	
  and	
  how	
  to	
  do	
  it,	
  between	
  two	
  laboratories	
  that	
  operated	
  with	
  very	
  
different	
  equipment	
  and	
  methodologies.	
  Hence,	
  it	
  was	
  not	
  until	
  the	
  spring	
  of	
  2011	
  that	
  the	
  
ORCHID	
  project	
  Principal	
  Investigator	
  signaled	
  to	
  the	
  VOSS	
  research	
  team	
  that	
  it	
  was	
  
timely	
  to	
  hold	
  the	
  first	
  of	
  a	
  series	
  of	
  (one	
  hour)	
  teleconference	
  interviews	
  to	
  review	
  the	
  
project’s	
  progress.	
  	
  
	
  
In	
  the	
  summer	
  of	
  2011,	
  one	
  member	
  of	
  the	
  VOSS	
  team	
  made	
  a	
  visit	
  to	
  the	
  Caltech	
  
laboratories	
  and	
  conducted	
  face-­‐to-­‐face	
  interviews	
  with	
  the	
  Principal	
  Investigator	
  and	
  with	
  
two	
  of	
  the	
  graduate	
  students	
  involved	
  very	
  substantially	
  with	
  the	
  ORCHID	
  project.	
  Plans	
  
were	
  also	
  made	
  at	
  this	
  time	
  for	
  phone	
  interviews	
  (held	
  in	
  the	
  autumn	
  of	
  2011)	
  with	
  faculty	
  
and	
  graduate	
  students	
  located	
  at	
  the	
  University	
  of	
  Vienna	
  laboratory,	
  and	
  with	
  European	
  
and	
  Canadian	
  members	
  of	
  the	
  ORCHID	
  project	
  team	
  of	
  theoretical	
  physicists.	
  It	
  was	
  
emphasized	
  by	
  the	
  ORCHID	
  project	
  Principal	
  Investigator	
  that	
  PhD	
  students	
  and	
  Post-­‐
Doctoral	
  associates	
  within	
  each	
  of	
  the	
  laboratories	
  in	
  Europe	
  and	
  Caltech	
  were	
  the	
  
individuals	
  most	
  involved	
  in	
  the	
  day-­‐to-­‐day	
  process	
  of	
  this	
  scientific	
  collaboration,	
  and	
  
thus,	
  would	
  be	
  preferred	
  subjects	
  for	
  interviews	
  in	
  this	
  VOSS	
  study.	
  
	
  
Finally,	
  a	
  second	
  round	
  of	
  interviews	
  were	
  conducted	
  with	
  the	
  leaders	
  and	
  selected	
  
members	
  of	
  the	
  ORCHID	
  project	
  during	
  Phase	
  Two,	
  in	
  the	
  autumn	
  of	
  2012.	
  
	
  
Overall,	
  during	
  an	
  elapsed	
  time	
  period	
  of	
  three	
  years,	
  approximately	
  20	
  (60-­‐90	
  minute)	
  
interviews	
  have	
  been	
  conducted	
  in	
  person	
  or	
  by	
  phone,	
  involving	
  two	
  members	
  of	
  the	
  
VOSS	
  research	
  team	
  and	
  one	
  subject/participant	
  of	
  the	
  ORCHID	
  project.	
  	
  Interviews	
  have	
  
sought	
  primarily	
  to	
  identify:	
  	
  
i) perceptions	
  of	
  the	
  nature	
  and	
  challenges	
  of	
  this	
  scientific	
  collaboration	
  from	
  the	
  
perspectives	
  of	
  the	
  various	
  scientific	
  Groups;	
  	
  
ii) key	
  deliberations	
  (“choice	
  points”)	
  in	
  this	
  particular	
  process	
  of	
  fundamental	
  
research;	
  and	
  	
  
iii) the	
  qualitative	
  nature	
  and	
  frequency	
  of	
  use	
  associated	
  with	
  various	
  media	
  of	
  
communication	
  among	
  participants	
  in	
  the	
  ORCHID	
  project.	
  
	
  

Weitere ähnliche Inhalte

Was ist angesagt?

The MGI and AI
The MGI and AIThe MGI and AI
The MGI and AIaimsnist
 
DOE Office of High Energy Physics: Program and Partnerships
DOE Office of High Energy Physics: Program and PartnershipsDOE Office of High Energy Physics: Program and Partnerships
DOE Office of High Energy Physics: Program and PartnershipsAmerican Astronautical Society
 
IT Cluster Skolkovo Presentation at FRUCT.org conference
IT Cluster Skolkovo Presentation at FRUCT.org conferenceIT Cluster Skolkovo Presentation at FRUCT.org conference
IT Cluster Skolkovo Presentation at FRUCT.org conferenceAlbert Yefimov
 

Was ist angesagt? (6)

PLOS Visualization Project
PLOS Visualization ProjectPLOS Visualization Project
PLOS Visualization Project
 
The MGI and AI
The MGI and AIThe MGI and AI
The MGI and AI
 
DPHEP_BLUETWO_001
DPHEP_BLUETWO_001DPHEP_BLUETWO_001
DPHEP_BLUETWO_001
 
DOE Office of High Energy Physics: Program and Partnerships
DOE Office of High Energy Physics: Program and PartnershipsDOE Office of High Energy Physics: Program and Partnerships
DOE Office of High Energy Physics: Program and Partnerships
 
IT Cluster Skolkovo Presentation at FRUCT.org conference
IT Cluster Skolkovo Presentation at FRUCT.org conferenceIT Cluster Skolkovo Presentation at FRUCT.org conference
IT Cluster Skolkovo Presentation at FRUCT.org conference
 
Summary of 3DPAS
Summary of 3DPASSummary of 3DPAS
Summary of 3DPAS
 

Ähnlich wie Case Study: Caltech 'Orchid' Fundamental Research Project

Strong field science core proposal for uph ill site
Strong field science core proposal for uph ill siteStrong field science core proposal for uph ill site
Strong field science core proposal for uph ill siteahsanrabbani
 
EUNAWE Presentation Project Officer
EUNAWE Presentation Project OfficerEUNAWE Presentation Project Officer
EUNAWE Presentation Project Officerunawe
 
"Physics Towards Horizon 2020" - Ana Proykova
"Physics Towards Horizon 2020" - Ana Proykova"Physics Towards Horizon 2020" - Ana Proykova
"Physics Towards Horizon 2020" - Ana ProykovaSEENET-MTP
 
Valuing International Collaboration in Research
Valuing International Collaboration in ResearchValuing International Collaboration in Research
Valuing International Collaboration in ResearchWiley
 
Cluster LAPHIA_Presentation
Cluster LAPHIA_PresentationCluster LAPHIA_Presentation
Cluster LAPHIA_PresentationAnne-Lise Bué
 
e- Research As Intervention (5 April 2010) J Unit
e- Research As Intervention (5 April 2010) J Unite- Research As Intervention (5 April 2010) J Unit
e- Research As Intervention (5 April 2010) J UnitWebometrics Class
 
"What it is? How it works?" - Giorgio Rossi
"What it is? How it works?" - Giorgio Rossi"What it is? How it works?" - Giorgio Rossi
"What it is? How it works?" - Giorgio RossiSEENET-MTP
 
ESCAPE Kick-off meeting - Welcome (Feb 2019)
ESCAPE Kick-off meeting - Welcome (Feb 2019)ESCAPE Kick-off meeting - Welcome (Feb 2019)
ESCAPE Kick-off meeting - Welcome (Feb 2019)ESCAPE EU
 
OSTRICH OER Presentation for UKOLN
OSTRICH OER Presentation for UKOLNOSTRICH OER Presentation for UKOLN
OSTRICH OER Presentation for UKOLNVic Jenkins
 
Bratislava2019 soic
Bratislava2019 soicBratislava2019 soic
Bratislava2019 soicNCPsCaRE
 
European Long-term Ecosystem and Socio Ecological Research Infrastructure (eL...
European Long-term Ecosystem and Socio Ecological Research Infrastructure (eL...European Long-term Ecosystem and Socio Ecological Research Infrastructure (eL...
European Long-term Ecosystem and Socio Ecological Research Infrastructure (eL...Innovate UK
 
Winning Horizon 2020 with Open Science
Winning Horizon 2020 with Open ScienceWinning Horizon 2020 with Open Science
Winning Horizon 2020 with Open ScienceMartin Donnelly
 
Mountain trip workshop_forumcarpaticum_summary
Mountain trip workshop_forumcarpaticum_summaryMountain trip workshop_forumcarpaticum_summary
Mountain trip workshop_forumcarpaticum_summaryLotje
 
Investigating Science for HSC exams 2023
Investigating Science for HSC exams 2023Investigating Science for HSC exams 2023
Investigating Science for HSC exams 2023sumantranasocial
 

Ähnlich wie Case Study: Caltech 'Orchid' Fundamental Research Project (20)

Strong field science core proposal for uph ill site
Strong field science core proposal for uph ill siteStrong field science core proposal for uph ill site
Strong field science core proposal for uph ill site
 
Placement portfolio
Placement portfolioPlacement portfolio
Placement portfolio
 
EUNAWE Presentation Project Officer
EUNAWE Presentation Project OfficerEUNAWE Presentation Project Officer
EUNAWE Presentation Project Officer
 
Niac aiaa
Niac aiaaNiac aiaa
Niac aiaa
 
"Physics Towards Horizon 2020" - Ana Proykova
"Physics Towards Horizon 2020" - Ana Proykova"Physics Towards Horizon 2020" - Ana Proykova
"Physics Towards Horizon 2020" - Ana Proykova
 
Recode iglo
Recode igloRecode iglo
Recode iglo
 
Valuing International Collaboration in Research
Valuing International Collaboration in ResearchValuing International Collaboration in Research
Valuing International Collaboration in Research
 
NewsletterIMS2015_w
NewsletterIMS2015_wNewsletterIMS2015_w
NewsletterIMS2015_w
 
NORSTAR_Project
NORSTAR_ProjectNORSTAR_Project
NORSTAR_Project
 
Cluster LAPHIA_Presentation
Cluster LAPHIA_PresentationCluster LAPHIA_Presentation
Cluster LAPHIA_Presentation
 
Paris april 2013
Paris april 2013Paris april 2013
Paris april 2013
 
e- Research As Intervention (5 April 2010) J Unit
e- Research As Intervention (5 April 2010) J Unite- Research As Intervention (5 April 2010) J Unit
e- Research As Intervention (5 April 2010) J Unit
 
"What it is? How it works?" - Giorgio Rossi
"What it is? How it works?" - Giorgio Rossi"What it is? How it works?" - Giorgio Rossi
"What it is? How it works?" - Giorgio Rossi
 
ESCAPE Kick-off meeting - Welcome (Feb 2019)
ESCAPE Kick-off meeting - Welcome (Feb 2019)ESCAPE Kick-off meeting - Welcome (Feb 2019)
ESCAPE Kick-off meeting - Welcome (Feb 2019)
 
OSTRICH OER Presentation for UKOLN
OSTRICH OER Presentation for UKOLNOSTRICH OER Presentation for UKOLN
OSTRICH OER Presentation for UKOLN
 
Bratislava2019 soic
Bratislava2019 soicBratislava2019 soic
Bratislava2019 soic
 
European Long-term Ecosystem and Socio Ecological Research Infrastructure (eL...
European Long-term Ecosystem and Socio Ecological Research Infrastructure (eL...European Long-term Ecosystem and Socio Ecological Research Infrastructure (eL...
European Long-term Ecosystem and Socio Ecological Research Infrastructure (eL...
 
Winning Horizon 2020 with Open Science
Winning Horizon 2020 with Open ScienceWinning Horizon 2020 with Open Science
Winning Horizon 2020 with Open Science
 
Mountain trip workshop_forumcarpaticum_summary
Mountain trip workshop_forumcarpaticum_summaryMountain trip workshop_forumcarpaticum_summary
Mountain trip workshop_forumcarpaticum_summary
 
Investigating Science for HSC exams 2023
Investigating Science for HSC exams 2023Investigating Science for HSC exams 2023
Investigating Science for HSC exams 2023
 

Mehr von Sociotechnical Roundtable

The Alzheimer's Disease Research Network and the Uniform Data Set
The Alzheimer's Disease Research Network and the Uniform Data SetThe Alzheimer's Disease Research Network and the Uniform Data Set
The Alzheimer's Disease Research Network and the Uniform Data SetSociotechnical Roundtable
 
TED Talk – Van der Meulen – EUWIN - Workplace Innovation: Creating a mass mov...
TED Talk – Van der Meulen – EUWIN - Workplace Innovation: Creating a mass mov...TED Talk – Van der Meulen – EUWIN - Workplace Innovation: Creating a mass mov...
TED Talk – Van der Meulen – EUWIN - Workplace Innovation: Creating a mass mov...Sociotechnical Roundtable
 
TED Talk – Van Hootegem – Evidence-based Consulting and Workplace Measurement
TED Talk – Van Hootegem – Evidence-based Consulting and Workplace MeasurementTED Talk – Van Hootegem – Evidence-based Consulting and Workplace Measurement
TED Talk – Van Hootegem – Evidence-based Consulting and Workplace MeasurementSociotechnical Roundtable
 
TED Talk – Rotomskiene – Role of Stakeholders
TED Talk – Rotomskiene – Role of StakeholdersTED Talk – Rotomskiene – Role of Stakeholders
TED Talk – Rotomskiene – Role of StakeholdersSociotechnical Roundtable
 
TED Talk – Maupin and Mohr – AE Team Book – A World We All Design
TED Talk – Maupin and Mohr – AE Team Book – A World We All DesignTED Talk – Maupin and Mohr – AE Team Book – A World We All Design
TED Talk – Maupin and Mohr – AE Team Book – A World We All DesignSociotechnical Roundtable
 
TED Talk – Govers – IT Impact on Relational Work
TED Talk – Govers – IT Impact on Relational WorkTED Talk – Govers – IT Impact on Relational Work
TED Talk – Govers – IT Impact on Relational WorkSociotechnical Roundtable
 
A Living Lab Approach for Studying Workplace Innovation in Elderly Care - Des...
A Living Lab Approach for Studying Workplace Innovation in Elderly Care - Des...A Living Lab Approach for Studying Workplace Innovation in Elderly Care - Des...
A Living Lab Approach for Studying Workplace Innovation in Elderly Care - Des...Sociotechnical Roundtable
 
An Overview of Relational Coordination - Suchman
An Overview of Relational Coordination - SuchmanAn Overview of Relational Coordination - Suchman
An Overview of Relational Coordination - SuchmanSociotechnical Roundtable
 
Relational Coordination in Healthcare - Suchman
Relational Coordination in Healthcare - SuchmanRelational Coordination in Healthcare - Suchman
Relational Coordination in Healthcare - SuchmanSociotechnical Roundtable
 
Healthy Work in Distributed Organizations - Govers and Zee
Healthy Work in Distributed Organizations - Govers and ZeeHealthy Work in Distributed Organizations - Govers and Zee
Healthy Work in Distributed Organizations - Govers and ZeeSociotechnical Roundtable
 
Healthy and Innovative Organizations - DeGuerre
Healthy and Innovative Organizations - DeGuerreHealthy and Innovative Organizations - DeGuerre
Healthy and Innovative Organizations - DeGuerreSociotechnical Roundtable
 
Four Day Workweek Policy For Improving Employment and Environmental Condition...
Four Day Workweek Policy For Improving Employment and Environmental Condition...Four Day Workweek Policy For Improving Employment and Environmental Condition...
Four Day Workweek Policy For Improving Employment and Environmental Condition...Sociotechnical Roundtable
 
Environmental Innovations and Societal Transitions - Ashford
Environmental Innovations and Societal Transitions - AshfordEnvironmental Innovations and Societal Transitions - Ashford
Environmental Innovations and Societal Transitions - AshfordSociotechnical Roundtable
 
Addressing the Crisis in Employment and Consumer Demand - Ashford
Addressing the Crisis in Employment and Consumer Demand - AshfordAddressing the Crisis in Employment and Consumer Demand - Ashford
Addressing the Crisis in Employment and Consumer Demand - AshfordSociotechnical Roundtable
 
TED Talk – Vermeerbergen – The Sociotechnical Structure as Stimulus for Immig...
TED Talk – Vermeerbergen – The Sociotechnical Structure as Stimulus for Immig...TED Talk – Vermeerbergen – The Sociotechnical Structure as Stimulus for Immig...
TED Talk – Vermeerbergen – The Sociotechnical Structure as Stimulus for Immig...Sociotechnical Roundtable
 
Voss uds-and-alzheimers-disease-research-network
Voss uds-and-alzheimers-disease-research-networkVoss uds-and-alzheimers-disease-research-network
Voss uds-and-alzheimers-disease-research-networkSociotechnical Roundtable
 

Mehr von Sociotechnical Roundtable (20)

The Alzheimer's Disease Research Network and the Uniform Data Set
The Alzheimer's Disease Research Network and the Uniform Data SetThe Alzheimer's Disease Research Network and the Uniform Data Set
The Alzheimer's Disease Research Network and the Uniform Data Set
 
Designing in the "New" Digital Economy
Designing in the "New" Digital EconomyDesigning in the "New" Digital Economy
Designing in the "New" Digital Economy
 
TED Talk – Van der Meulen – EUWIN - Workplace Innovation: Creating a mass mov...
TED Talk – Van der Meulen – EUWIN - Workplace Innovation: Creating a mass mov...TED Talk – Van der Meulen – EUWIN - Workplace Innovation: Creating a mass mov...
TED Talk – Van der Meulen – EUWIN - Workplace Innovation: Creating a mass mov...
 
TED Talk – Van Hootegem – Evidence-based Consulting and Workplace Measurement
TED Talk – Van Hootegem – Evidence-based Consulting and Workplace MeasurementTED Talk – Van Hootegem – Evidence-based Consulting and Workplace Measurement
TED Talk – Van Hootegem – Evidence-based Consulting and Workplace Measurement
 
TED Talk – Rotomskiene – Role of Stakeholders
TED Talk – Rotomskiene – Role of StakeholdersTED Talk – Rotomskiene – Role of Stakeholders
TED Talk – Rotomskiene – Role of Stakeholders
 
TED Talk – Painter – VOSS Team Results
TED Talk – Painter – VOSS Team ResultsTED Talk – Painter – VOSS Team Results
TED Talk – Painter – VOSS Team Results
 
TED Talk – Miller – Sustainable Wealth
TED Talk – Miller – Sustainable WealthTED Talk – Miller – Sustainable Wealth
TED Talk – Miller – Sustainable Wealth
 
TED Talk – Maupin and Mohr – AE Team Book – A World We All Design
TED Talk – Maupin and Mohr – AE Team Book – A World We All DesignTED Talk – Maupin and Mohr – AE Team Book – A World We All Design
TED Talk – Maupin and Mohr – AE Team Book – A World We All Design
 
TED Talk – Govers – IT Impact on Relational Work
TED Talk – Govers – IT Impact on Relational WorkTED Talk – Govers – IT Impact on Relational Work
TED Talk – Govers – IT Impact on Relational Work
 
A Living Lab Approach for Studying Workplace Innovation in Elderly Care - Des...
A Living Lab Approach for Studying Workplace Innovation in Elderly Care - Des...A Living Lab Approach for Studying Workplace Innovation in Elderly Care - Des...
A Living Lab Approach for Studying Workplace Innovation in Elderly Care - Des...
 
TED Talk - "Lean STS" - Christis
TED Talk - "Lean STS" - ChristisTED Talk - "Lean STS" - Christis
TED Talk - "Lean STS" - Christis
 
An Overview of Relational Coordination - Suchman
An Overview of Relational Coordination - SuchmanAn Overview of Relational Coordination - Suchman
An Overview of Relational Coordination - Suchman
 
Relational Coordination in Healthcare - Suchman
Relational Coordination in Healthcare - SuchmanRelational Coordination in Healthcare - Suchman
Relational Coordination in Healthcare - Suchman
 
Healthy Work in Distributed Organizations - Govers and Zee
Healthy Work in Distributed Organizations - Govers and ZeeHealthy Work in Distributed Organizations - Govers and Zee
Healthy Work in Distributed Organizations - Govers and Zee
 
Healthy and Innovative Organizations - DeGuerre
Healthy and Innovative Organizations - DeGuerreHealthy and Innovative Organizations - DeGuerre
Healthy and Innovative Organizations - DeGuerre
 
Four Day Workweek Policy For Improving Employment and Environmental Condition...
Four Day Workweek Policy For Improving Employment and Environmental Condition...Four Day Workweek Policy For Improving Employment and Environmental Condition...
Four Day Workweek Policy For Improving Employment and Environmental Condition...
 
Environmental Innovations and Societal Transitions - Ashford
Environmental Innovations and Societal Transitions - AshfordEnvironmental Innovations and Societal Transitions - Ashford
Environmental Innovations and Societal Transitions - Ashford
 
Addressing the Crisis in Employment and Consumer Demand - Ashford
Addressing the Crisis in Employment and Consumer Demand - AshfordAddressing the Crisis in Employment and Consumer Demand - Ashford
Addressing the Crisis in Employment and Consumer Demand - Ashford
 
TED Talk – Vermeerbergen – The Sociotechnical Structure as Stimulus for Immig...
TED Talk – Vermeerbergen – The Sociotechnical Structure as Stimulus for Immig...TED Talk – Vermeerbergen – The Sociotechnical Structure as Stimulus for Immig...
TED Talk – Vermeerbergen – The Sociotechnical Structure as Stimulus for Immig...
 
Voss uds-and-alzheimers-disease-research-network
Voss uds-and-alzheimers-disease-research-networkVoss uds-and-alzheimers-disease-research-network
Voss uds-and-alzheimers-disease-research-network
 

Kürzlich hochgeladen

International Business Environments and Operations 16th Global Edition test b...
International Business Environments and Operations 16th Global Edition test b...International Business Environments and Operations 16th Global Edition test b...
International Business Environments and Operations 16th Global Edition test b...ssuserf63bd7
 
Organizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessOrganizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessSeta Wicaksana
 
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607dollysharma2066
 
Market Sizes Sample Report - 2024 Edition
Market Sizes Sample Report - 2024 EditionMarket Sizes Sample Report - 2024 Edition
Market Sizes Sample Report - 2024 EditionMintel Group
 
Call Us 📲8800102216📞 Call Girls In DLF City Gurgaon
Call Us 📲8800102216📞 Call Girls In DLF City GurgaonCall Us 📲8800102216📞 Call Girls In DLF City Gurgaon
Call Us 📲8800102216📞 Call Girls In DLF City Gurgaoncallgirls2057
 
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort ServiceCall US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Servicecallgirls2057
 
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptxContemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptxMarkAnthonyAurellano
 
Marketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent ChirchirMarketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent Chirchirictsugar
 
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfIntro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfpollardmorgan
 
Digital Transformation in the PLM domain - distrib.pdf
Digital Transformation in the PLM domain - distrib.pdfDigital Transformation in the PLM domain - distrib.pdf
Digital Transformation in the PLM domain - distrib.pdfJos Voskuil
 
Investment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy CheruiyotInvestment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy Cheruiyotictsugar
 
8447779800, Low rate Call girls in Saket Delhi NCR
8447779800, Low rate Call girls in Saket Delhi NCR8447779800, Low rate Call girls in Saket Delhi NCR
8447779800, Low rate Call girls in Saket Delhi NCRashishs7044
 
Ten Organizational Design Models to align structure and operations to busines...
Ten Organizational Design Models to align structure and operations to busines...Ten Organizational Design Models to align structure and operations to busines...
Ten Organizational Design Models to align structure and operations to busines...Seta Wicaksana
 
Independent Call Girls Andheri Nightlaila 9967584737
Independent Call Girls Andheri Nightlaila 9967584737Independent Call Girls Andheri Nightlaila 9967584737
Independent Call Girls Andheri Nightlaila 9967584737Riya Pathan
 
Buy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy Verified Accounts
 
Kenya Coconut Production Presentation by Dr. Lalith Perera
Kenya Coconut Production Presentation by Dr. Lalith PereraKenya Coconut Production Presentation by Dr. Lalith Perera
Kenya Coconut Production Presentation by Dr. Lalith Pereraictsugar
 
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...lizamodels9
 
2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis Usage2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis UsageNeil Kimberley
 
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu MenzaYouth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menzaictsugar
 

Kürzlich hochgeladen (20)

International Business Environments and Operations 16th Global Edition test b...
International Business Environments and Operations 16th Global Edition test b...International Business Environments and Operations 16th Global Edition test b...
International Business Environments and Operations 16th Global Edition test b...
 
Organizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessOrganizational Structure Running A Successful Business
Organizational Structure Running A Successful Business
 
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
 
Market Sizes Sample Report - 2024 Edition
Market Sizes Sample Report - 2024 EditionMarket Sizes Sample Report - 2024 Edition
Market Sizes Sample Report - 2024 Edition
 
Call Us 📲8800102216📞 Call Girls In DLF City Gurgaon
Call Us 📲8800102216📞 Call Girls In DLF City GurgaonCall Us 📲8800102216📞 Call Girls In DLF City Gurgaon
Call Us 📲8800102216📞 Call Girls In DLF City Gurgaon
 
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort ServiceCall US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
 
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptxContemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
 
Marketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent ChirchirMarketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent Chirchir
 
Japan IT Week 2024 Brochure by 47Billion (English)
Japan IT Week 2024 Brochure by 47Billion (English)Japan IT Week 2024 Brochure by 47Billion (English)
Japan IT Week 2024 Brochure by 47Billion (English)
 
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfIntro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
 
Digital Transformation in the PLM domain - distrib.pdf
Digital Transformation in the PLM domain - distrib.pdfDigital Transformation in the PLM domain - distrib.pdf
Digital Transformation in the PLM domain - distrib.pdf
 
Investment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy CheruiyotInvestment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy Cheruiyot
 
8447779800, Low rate Call girls in Saket Delhi NCR
8447779800, Low rate Call girls in Saket Delhi NCR8447779800, Low rate Call girls in Saket Delhi NCR
8447779800, Low rate Call girls in Saket Delhi NCR
 
Ten Organizational Design Models to align structure and operations to busines...
Ten Organizational Design Models to align structure and operations to busines...Ten Organizational Design Models to align structure and operations to busines...
Ten Organizational Design Models to align structure and operations to busines...
 
Independent Call Girls Andheri Nightlaila 9967584737
Independent Call Girls Andheri Nightlaila 9967584737Independent Call Girls Andheri Nightlaila 9967584737
Independent Call Girls Andheri Nightlaila 9967584737
 
Buy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail Accounts
 
Kenya Coconut Production Presentation by Dr. Lalith Perera
Kenya Coconut Production Presentation by Dr. Lalith PereraKenya Coconut Production Presentation by Dr. Lalith Perera
Kenya Coconut Production Presentation by Dr. Lalith Perera
 
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
 
2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis Usage2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis Usage
 
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu MenzaYouth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
 

Case Study: Caltech 'Orchid' Fundamental Research Project

  • 1. CALTECH  ‘ORCHID’  FUNDAMENTAL  RESEARCH  PROJECT-­  CASE  STUDY     EXECUTIVE  OVERVIEW     This  is  a  story  of  fundamental  scientific  research  being  conducted  in  a  multi-­university   collaboration  across  continents  and  across  various  branches  of  theoretical  and  experimental   physics.  Specifically,  one  project  in  the  ‘Orchid’  program  (funded  by  DARPA)  has  combined  the   specialist  expertise  of  two  experimental  laboratories,  (one  at  Caltech  in  the  United  States  and   another  at  the  University  of  Vienna  in  Austria),  together  with  a  global  network  of  renowned   theoretical  physicists.  Their  shared  objective  has  been  to  achieve  a  breakthrough  in  exploring   frontiers  of  knowledge  about  ‘opto-­mechanics’,  a  young  field  of  science  focused  on  the  use  of   light  to  manipulate  mechanical  devices  at  nano-­scale.     Despite  this  ambition,  however,  it  is  known  from  previous  studies  that  multi-­university   research  has  a  tendency  to  be  “problematic”.  Multi-­university  projects,  by  comparison  with   multi-­disciplinary  projects  within  single  institutions  have  been  shown  to  have  significantly   fewer  project  outcomes.  Within  this  particular  global  collaboration,  the  challenges  have  been   heightened  by  the  unpredictable  nature  of  fundamental  research,  as  well  as  by  the  diversity  of   laboratory  technology  and  experimental  processes  being  used  by  researchers  in  different   universities.  Therefore,  it  is  notable  that  this  4-­year  DARPA  project  has  produced  some   “milestone”  experimental  findings  documented  in  internationally  recognized  publications1.       Supporting  the  virtual  organization  of  the  research  studied  in  this  case,  there  appear  to  have   been  significant  coordination  mechanisms.  For  example,  the  compelling  mission  of  the  project,   the  contribution  of  graduate  students  from  one  institution  “embedded”  for  lengthy  periods  as   researchers  in  a  counterpart  institution/laboratory  and  acting  in  liaison  or  “straddler”  roles,   timely  use  of  periodic  face-­to-­face  communication  among  scientists,  and  facilitation  provided   by  the  DARPA  program  manager,  all  seem  to  have  made  a  positive  difference  in  the  outcomes   of  this  project.  Thus,  this  experience  may  offer  insights  about  possible  ways  to  meet  the  “costs”   of  multi-­organizational  collaboration,  particularly  in  the  field  of  fundamental  research.                                                                                                                   1  Among  the  publications  supported  by  the  Orchid  project  is:  Safavi-­‐Naeini,  A.H.  et  al.,  2013,   “Squeezed  Light  from  a  Silicon  Micromechanical  Resonator”,  Nature  500,  pp.  185-­‐189.  
  • 2. HISTORY/BACKGROUND-­‐-­‐SITE  &  PROJECT:     In  June  2010,  faculty  from  the  Division  of  Engineering  &  Applied  Science  and  the  Division  of   Physics  at  the  California  Institute  of  Technology  (Caltech)  began  a  fundamental  or  pure   research  project,  a  theoretical  and  experimental  program  in  ‘Optomechanics’  (i.e.  use  of   light  to  manipulate  mechanical  devices  at  nano-­‐scale).    From  the  outset,  however,  Caltech   scientists  conceived  of  this  project  as  a  global  collaboration  with  scientists  at  other   universities  in  Austria,  Germany,  Switzerland,  Canada,  and  the  United  States.     ‘Optomechanics’  is  a  very  young  field  of  science  that  started  only  5-­‐10  years  ago,  merging   various  branches  of  physics,  namely,  optics  (the  study  of  the  behavior  and  properties  of   light),  photonics  (the  use  of  light  to  perform  functions  like  information  processing  and   telecommunications,  traditionally  within  the  domain  of  electronics),  and  quantum   mechanics  (the  study  of  the  interaction  of  energy  and  matter  at  the  sub-­‐atomic  scale).   Consequently,  scientists  who  work  in  the  field  of  ‘optomechanics’  are  all  physicists  but   come  from  a  diverse  background  of  disciplines.         The  project  is  named  “Optical  Radiation  Cooling  and  Heating  of  Integrated  Devices”   (ORCHID).    It  originated  from  an  applied  physics  research  proposal  that  was  made  in  2009   to  the  Microsystems  Technology  Office  of  DARPA  (Defense  Advanced  Research  Projects   Agency)  of  the  US  Department  of  Defense.    The  proposal  built  upon  a  theoretical   proposition  regarding  the  use  of  (laser)  light  to  (cool)/reduce  mechanical  motion  at  nano-­‐ scale.    Subsequently,  DARPA  incorporated  this  proposal  into  an  overall  program  of  study.     The  DARPA  ‘ORCHID’  research  program  has  had  two  phases.  Phase  One  from  June  2010  to   June  2012  is  fundamental  research,  (R1  on  the  R&D  spectrum,  see  Fig.  1  below),  exploring   frontiers  of  knowledge  about  the  physics  of  optomechanical  devices  through   demonstration  and  measurement  of  various  optomechanical  effects  on  specific  device   platforms  like  microscopic  crystals.  Phase  Two,  from  July  2012  to  June  2014  called  for   applied  research,  (R2  on  the  R&D  spectrum),  thereby  building  a  robust  “toolbox”  of   techniques  for  a  variety  of  application  areas  (sensors,  oscillators,  etc.),  leading  potentially   to  technology  applications  in  cell  phones  and  other  telecommunications  equipment.     Within  the  overall  ‘ORCHID’  program,  in  addition  to  the  research  team/project  led  by   Caltech,  there  are  4  other  projects/teams-­‐-­‐2  teams  from  Yale,  1  team  from  UCLA  Berkeley,   and  1  team  from  Cornell  University.    Supporting  all  5  teams  of  ‘Experimentalists’  is  one   globally  dispersed  team  of  ‘Theorists’.    The  scope  of  this  VOSS  study  is  limited  primarily  to   the  team/project  led  by  Caltech  ‘Experimentalists’  (with  support  by  the  ‘Theory’  team),  and   is  focused  primarily  on  the  time  period  involving  the  ‘pure’  research  of  Phase  One.2     This  virtual  organization  case  study  focuses,  therefore,  on  work  designated  as  ‘R1’   (Fundamental  Research)  on  one  extreme  end  of  the  Research  &  Development  continuum,  a   format  for  R&D  based  on  the  classical  work  of  Bell  Labs,  (Mashey  as  reported  in  Revkin,   2008)  and  illustrated  below  in  Figure  1  as  six  stages  or  types  of  Research  &  Development   work.                                                                                                                   2  See  Appendix  1:  Methodology  
  • 3. Figure 1: A Six-Stage Continuum of the R&D Process3     PROJECT  STAKEHOLDERS:     DARPA  is  the  primary  funding  source  (almost  $5  M)  to  the  Caltech  team/project,  over  a   period  of  4  years.    The  mandate  of  DARPA  is  to  support  ‘hard  research’-­‐-­‐out  of  the  reach  of   current  technology  by  a  factor  of  10.  (For  example,  DARPA  is  the  agency  that  gave  birth  to   the  predecessor  of  the  Internet  and  GPS  technologies.)  Therefore,  this  is  an  agency  very   familiar  with  the  challenges  and  requirements  of  sponsorship  and  management  of  highly   exploratory  research.        The  DARPA  funding  is  supplemented  by  grants  from  the  European   Commission,  the  European  Research  Council,  and  the  Austrian  Science  Fund.    Nevertheless,   DARPA  is  the  driving  force  behind  this  research  program,  and  the  DARPA  Project  Manager   is  active  in  promoting  “collaboration”  among  the  scientific  groups,  in  particular  between   the  experimentalists  and  the  theorists.     Within  the  Caltech-­‐led  ORCHID  project,  there  are  5  ‘experimentalist’  scientific  groups,  3   located  at  Caltech,  1  in  Austria,  and  1  in  Switzerland,  (see  Fig.  1).  Two  of  the  Caltech  groups   are  located  in  the  same  building  that  houses  the  Department  of  Applied  Physics.  The  third   Caltech  group  belongs  to  the  Department  of  Physics  in  a  separate  location  on  this  small   university  campus.    Each  group  is  led  by  an  experimental  physicist/professor,  with  their                                                                                                                   3  Bell  Labs’  R&D  Portfolio  Management  profile,  as  reported  by  John  Mashey  to  Andrew  Revkin  (NY   Times,  December  12,  2008),  and  adapted  by  Carolyn  Ordowich.  
  • 4. own  laboratories  staffed  by  graduate  and  post-­‐doctoral  students.    Approximately  20   Caltech  personnel  are  involved  with  the  ‘ORCHID’  project  in  some  way.         While  the  Principal  Investigators  (PIs)  of  all  3  groups  and  a  number  of  their  graduate   students  have  conducted  research  and  published  together  quite  extensively,  for  the   ‘ORCHID’  project  the  3  Caltech  laboratories  with  their  groups  operate  independently.      The   Micro  &  Nano-­‐Photonics  Group  does,  however,  fabricate  some  of  the  devices  used  in   experiments  conducted  by  the  Quantum  Optics  Group.  Each  group  is  conducting  different   experiments  on  3  different  types  of  optomechanical  device  platforms.       This  VOSS  study  focuses  on  the  working  relationship  between  the  Micro  &  Nano-­‐Photonics   Group  at  Caltech  and  the  Quantum  Optics  &  Nanophysics  Group  in  the  University  of  Vienna,   Austria.  Among  the  collaborations  the  Austrian  laboratory  and  the  Photonics  Group  at   Caltech  have  established  the  closest  relationship.    The  Micro  &  Nano-­‐Photonics  Group   fabricates  its  own  devices  (optomechanical  crystals)  and  conducts  its  own  experiments.  It   is  also  fabricating  devices  for  use  in  similar  experiments  that  are  run,  using  different   methods,  on  significantly  different  equipment  in  the  Austrian  Quantum  Optics  laboratory.   Thus,  there  is  strong  interdependence  between  the  Caltech  Photonics  Group  and  the   Austrian  Quantum  Optics  Group.       The  Austrian  school  is  world-­‐famous  for  their  technical  infrastructures  that  can  do   experiments  at  temperatures  1000  times  lower  than  possible  at  Caltech.    The  Caltech  lab   has  the  advantage  in  the  manufacture  of  quality  devices  for  experimentation,  and  in  this   project,  the  Austrian  lab  depends  upon  the  Caltech  lab  for  state-­‐of-­‐the-­‐art  patterning  of   nano-­‐structure  devices.    Another  Caltech  comparative  advantage  is  its  expertise  in   techniques  of  “getting  light  in  and  out  of”  these  devices  using  a  special  fiber  that  has  not   been  replicated  elsewhere  in  the  world.      Until  the  ORCHID  project,  however,  these  2   scientific  groups  had  never  collaborated.  The  idea  for  collaboration  arose  in  an  informal   discussion  between  the  leaders  of  the  two  groups  at  a  scientific  meeting  after  the  DARPA   proposal  was  submitted.       Another  aspect  of  scientific  collaboration  that  is  a  focus  of  this  study  concerns  interaction   between  the  3  groups  of  theoretical  physicists  and  the  experimentalists  (see  Fig.  2).  The   ‘Theory’  team  was  brought  together  for  the  ORCHID  project  at  the  initiative  of  the  DARPA   Project  Manager  who  polled  the  experimental  scientists  for  recommendations  of  specific   theoretical  physicists  most  capable  of  providing  “support  for  experimentation”  and  for   advancement  of  optomechanical  theory  based  on  ORCHID  experimental  findings.       The  3  principal  investigators  on  the  theory  team  represented  3  different  schools.    The  three   worked  in  Germany,  Canada,  and  the  United  States.      Only  two  of  the  theorists  have  done   substantial  prior  work  together.    Also,  although  the  members  of  this  theory  team  have  a   track  record  of  collaboration  with  optomechanical  experimentalists,  in  this  specific  case,   only  1  of  the  theoretical  physicists  has  worked  previously  with  1  of  the  Caltech  professors   on  two  joint  publications.  However,  2  of  the  theoretical  physicists  have  contributed  to  a   number  of  joint  publications  co-­‐authored  with  one  of  the  experimental  physicists  who   leads  another  ORCHID  project  team  at  Yale  University.    Professional  links  may  contribute  to   communications  opportunities  and  past  interactions  may  create  assumptions  about  how   work  will  progress.    
  • 5.   Indeed,  the  theory  team  proposal  submitted  to  DARPA  anticipated  that  the  ORCHID  project   would  be  particularly  challenging  for  them,  with  respect  to  scientific  management.  First,   there  was  expectation  of  some  “competition”  for  theory  support  from  among  the  5   experimentalist  project  teams,  (the  Caltech-­‐based  team  +  4  other  project  teams  at  Yale,   Berkeley,  and  Cornell).    Secondly,  the  theory  team  assigned  within  its  own  DARPA  budget  a   substantial  provision  for  travel,  as  one  way  to  meet  the  larger  challenge  of  maintaining  a     “close  connection”  with  the  geographically  dispersed  research  groups.       THE  CHALLENGES  OF  ‘VIRTUAL  ORGANIZATION’  FOR  FUNDAMENTAL  RESEARCH:     One  of  the  central  collaborative  challenges  in  the  virtual  setting  between  the  Caltech  Nano-­‐ Photonics  Group  and  the  Quantum  Optics  Group  at  the  University  of  Vienna  is  related  to  the   very  nature  of  their  work.  Pure  or  fundamental  research,  (R1  on  our  R&D  spectrum—see   Figure  1)  is  inherently  unpredictable  and  fraught  with  ambiguity.    The  objective  of  the   ORCHID  project  is  discovery  and  knowledge  generation,  with  no  certainty  of  what  will  be   learned  about  the  capabilities  of  specific  device  platforms  to  actually  display  heretofore   hypothetical  optomechanical  effects.  Moreover,  how  to  achieve  such  discovery  has  never   been  entirely  clear  during  the  early  stages  of  the  ORCHID  project,  in  terms  of  questions  that   have  remained  about  what  would  be  the  most  productive  experiments  to  run,  and  how   such  experiments  should  be  designed.    
  • 6. Research  has  often  documented  examples  of  the  efficacy  of  clarity  and  predictability  in   work.    Malhotra  et  al.  described  “innovation  without  collocation”  in  their  case  study  at   Boeing-­‐Rocketdyne  where  the  parameters  of  the  desired  outcome  were  clear,  though  not   the  ‘how’  of  achieving  a  breakthrough  design  concept  for  liquid-­‐fuelled  rocket  engine   technology.4    Extreme  unpredictability  is  also  directly  contrary  to  findings  by  Olson  et  al.  in   their  decade-­‐long  study  of  science  collaboratories,  where  a  key  factor  leading  to  success   has  been  work  that  is  “unambiguous.”  5  Further  evidence  of  the  challenge  faced  by  the   ORCHID  project  team  is  found  in  Chudoba  et  al.’s  conclusion  that  “work  predictability”  is  a   key  mitigating  factor  for  success  in  a  virtual  organizational  setting6.    Doing  pure  research  in   a  virtual  setting  then,  offers  special  challenges  that  are  inherent  in  the  work  and  the  mode   of  interaction.     A  second  criterion  Olson  et  al.  identified  as  a  factor  leading  to  success  in  collaboratories   was  an  ability  to  act  “somewhat  independently  from  one  another”.      The  Vienna  laboratory   is  dependent  upon  Caltech  to  fabricate  unique  optomechanical  crystal  devices  for  use  in   experiments  that  Caltech  is  depending  upon  the  Viennese  scientists  to  run  on  their  unique   laser-­‐cooling  equipment.  This  substantial  interdependence  between  the  two  laboratories   implies  a  need  for  continuous  and  effective  interaction,  albeit  in  a  virtual  mode.         On  top  of  these  challenges  in  the  nature  of  work  within  this  research  project,  there  are   other  “discontinuities”  (or  factors  that  could  contribute  to  a  decrease  in  cohesion  and  a   capability  for  collaboration).    Chudoba  et  al.  have  already  identified  that  “greater  variety  of   work  practices  negatively  impact  performance”  in  virtual  settings,  and  here  within  the   ORCHID  project,  the  two  experimentalist  groups,  of  Quantum  Optics  and  of  Nano-­‐Photonics   are  based  on  related  but  very  different  disciplines,  and  use  differing  language  to  describe   similar  data.  Moreover,  the  theoretical  physicists  have  their  own  approach  to  problem-­‐ solving  that  differs  from  that  of  either  of  the  experimentalist  schools.     Compounding  the  difference  in  disciplines  or  professional  cultures  that  exists  between  the   two  laboratories  is  the  difference  in  the  equipment  that  they  use  for  experimentation.  It  is   an  overall  advantage  for  the  ORCHID  project  that  the  University  of  Vienna  laboratory  has  a   technical  infrastructure  that  can  do  experiments  at  1000  times  lower  temperatures  than  is   possible  at  Caltech.  However,  the  techniques  that  Caltech  has  perfected  for  “getting  light  in   and  out  of”  its  optomechanical  devices  do  not  work  on  the  Austrian  experimental   infrastructure.  Thus, a key challenge in this collaboration is for the scientists to invent a new technique for using their devices that would be compatible with the Austrian laboratory. Just the way this disconnect alone was discovered illustrates a need for close interaction. A graduate student from Vienna was visiting and noticed that there was a mismatch in the way the equipment was supposed to fit together. This coincidental visit and the discovery it triggered greatly facilitated the work of the entire process.     Finally,  all  of  these  scientists  have  experienced  or  are  familiar  with  some  past  failures  or   shortcomings  in  multi-­‐university  research7,  often  due  to  conflicting  priorities  among                                                                                                                   4  Malhotra  et.  al.,  MIS  Quarterly,  Jun  2001:  25,  2;  pp.  229-­‐249.   5  Olson  &  Olson,  Human-­Computer  Interaction,  2000:  15,  pp.  139-­‐178.   6  Chudoba  et.  al.  Info  Systems  Journal,  2005:  15,  pp.  279-­‐306.   7  Cummings  &  Kiesler,  Research  Policy,  2007:  36,  pp.  1620-­‐1634.  
  • 7. diverse  institutions.  With  the  best  of  intentions,  a  conflict  in  priorities  may  not  be  apparent   at  the  outset  of  a  collaboration,  but  geographic  separation  has  a  way  of  expanding  this  type   of  inter-­‐organizational  “discontinuity”.    Specifically,  within  the  ORCHID  project,  this  factor   has  potential  for  impact,  insofar  as  here,  exploratory  research  is  being  practiced  under  tight   timelines  with  6-­‐month  review  periods  (administered  by  the  funding  agency,  DARPA).       Given  all  of  this  background,  the  primary  challenge  has  been  to  learn  if  and  how  the   geographically  dispersed  teams  of  experimentalist  and  theoretical  physicists  might   effectively  converge  their  thinking  and  diverse  perspectives,  in  order  to  answer  the   fundamental  ‘what’  and  ‘how’  questions  posed  by  the  ORCHID  project  within  a  virtual   collaborative  scientific  organization.       OUR  FINDINGS:     For  this  case  the  focus  is  on  3  topics;  the  nature  of  the  collaborative  relationships,   identification  of  key  deliberations  involved  in  this  research  process,  and  the  nature  and   media  of  communication  used  by  participants  in  these  deliberations.    Each  of  these  topics   highlights  an  aspect  of  the  work  between  ORCHID  participant  scientists  and  students  as   well  as  in  part  the  influence  of  the  funding  agency  in  creating  a  more  effective  initial   grouping  of  skills  and  capabilities.     Collaboration   The  at-­‐distance  collaboration  between  the  Caltech-­‐based  Micro  &  Nano-­‐Photonics  Group   and  the  Austrian  Optics  &  Nanophysics  Group  has  proven  to  be  even  more  challenging  than   anticipated.    A  major  element  of  the  challenge  came  from  the  need  to  invent  a  new   methodology  that  would  enable  devices  fabricated  by  Caltech  to  run  on  the  experimental   equipment  in  the  Austrian  laboratory.  This  co-­‐invention  required  recognition  or   identification  of  the  problem  and  an  extremely  detailed  mutual  understanding  of  the   technical  capabilities  and  limitations.    The  actual  geographic  constraints  and  virtual   organization  added  to  this  very  challenging  task.       Tremendous  mutual  respect  between  the  leaders  and  staff  of  the  two  laboratories  and  the   shared  strong  “motivation”  to  collaborate  combined  to  enhance  the  chances  of  project   success.  In  the  opinion  of  the  Austrians,  “no  group  worldwide  can  make  such  devices  as  at   Caltech”,  and  similarly,  the  view  expressed  by  members  of  the  Caltech  Group  is  that  the   “Vienna  school  is  world  famous”  for  the  quality  of  its  experimental  scientists  and  the   capability  of  their  equipment  to  do  experiments  at  1000  times  lower  temperatures  than  is   possible  at  Caltech.    The  mutual  respect  between  the  labs  has  also  led  to  a  relationship  that   is  “complementary”  and  “not  competitive”.  Most  importantly,  the  combination  of  the  two   types  of  expertise  creates  a  unique  opportunity  for  scientific  breakthrough.    As  one  group   leader  said,  it  was  “the  first  time  in  principle…to  enter  a  regime  that  we  can  do  [quantum]   experiments  with  truly  microscopic  systems”.       Even  during  the  early  intense  period  of  experimentation  within  this  collaboration,  it  has   already  yielded  a  series  of  internationally  recognized  publications  and  a  “milestone”   experiment/demonstration  of  a  capability  “to  cool  a  miniature  mechanical  object  to  its  
  • 8. lowest  possible  energy  state  using  laser  light”  which  “paves  the  way  for…quantum   experiments  that  scientists  have  long  dreamed  of  conducting”8  (See  Fig.  3).       Figure  3:     Nanoscale  Silicon  Mechanical  Resonator  used  in  breakthrough  Caltech  Experiment                                                                                                                       8  “Caltech  Team  Uses  Laser  Light  to  Cool  Object  to  Quantum  Ground  State”,  Caltech  Media   Relations  News  Release,  California  Institute  of  Technology,  Pasadena  CA,  October  5,  2011.  
  • 9. Credibility  and  capability  have  always  been  important  in  science  but  they  become  more   critical  in  a  virtual  working  relationship.    Competence  is,  therefore,  an  equally  significant   motivation  for  collaboration  between  the  theoretical  and  the  experimental  physicists   within  the  ORCHID  project.    On  one  hand,  theoretical  physicists  want  to  have  connection   with  experimentalists  to  advance  their  understanding  of  what  theoretical  questions  would   be  most  relevant  and  even  feasible  for  experimentation.  In  the  words  of  a  group  leader  and   a  colleague  in  theoretical  physics,  “you  want  to  be  the  first  to  know  about  really  interesting   data…and  so,  you  go  for  the  best  experimental  groups  that  there  are”,  and  the  Caltech  lab  is   “really  one  of  the  leaders  in  the  field”,  having  “the  most  promising”  set-­‐ups/devices  “in  the   world”—“it  was  extremely  natural  to  start  collaborating  with  Caltech”.    Conversely  the   Caltech  lab  and  experimental  physicists  at  Yale  and  other  laboratories,  at  the  request  of  the   DARPA  ORCHID  Program  Director,  actually  selected  this  particular  set  of  theoretical   physicists,  for  their  well-­‐established  reputation  for  collaboration  and  an  ability  to  do  the   calculations  and  modeling  necessary  for  optomechanical  experimentation.       One  of  the  oft-­‐noted  features  of  this  collaboration  has  been  the  respected  and  fairly  active   facilitation  role  performed  by  the  ORCHID  Program  Director  from  the  funding  agency,   DARPA,  who  is  seen  “to  push  the  collaboration”.  For  example,  the  Program  Director  has   convened  periodic  teleconferences  among  the  theoretical  physicists  to  promote  and  review   their  collaboration.  And,  on  a  semi-­‐annual  basis,  the  Program  Director  leads  a  thorough   review  of  the  overall  ORCHID  program,  bringing  together  members  of  the  theoretical  and   experimentalist  groups,  faculty  and  graduate  students.       Key  Deliberations9   The  nature  of  these  scientific  collaborations  becomes  even  more  evident  through   understanding  the  key  deliberations  involved  in  achieving  this  type  of  fundamental   research  project.    For  example,  a  key  deliberation  topic  arising  continuously  during  Phase   One  of  the  ORCHID  project  is  the  Selection  of  what  Experiment(s)  to  run.  This  deliberation   also  illustrates  the  significance  of  serendipity  that  often  surfaces  in  collaborations  such  as   this  one  between  the  perspectives  of  theoretical  and  experimental  physics.       In  one  instance,  a  graduate  student  associated  with  the  German  theorists  took  note  of   experimental  data  that  his  Caltech  colleagues  had  generated  quite  by  chance.    They  were   inclined  to  discount  the  data  as  an  “artifact”.    However,  to  the  German  student  this  data  was   indicative  of  an  “interesting”  optomechanical  effect  that  had  been  predicted  by  theoretical   physicists,  although  the  same  theory  suggested  it  would  be  extremely  difficult  to  achieve   such  an  effect  experimentally.    Once  Caltech  physicists  were  informed  and  persuaded  by   this  theoretical  understanding,  a  new  experiment  was  devised,  and  the  predicted  effects   were  then  effectively  demonstrated.       Among  the  experimentalists,  there  have  already  been  examples  of  joint  participation  in   deliberations  involved  with  the  detailed  Design  of  Experiments  within  ORCHID,  both  in   terms  of  procedures  and  equipment  design.  The  most  complex  example  of  a  sub-­‐topic  in   this  type  of  deliberation  involved  the  challenge  of  what  and  how  to  redesign  in  order  to                                                                                                                   9  “Deliberations  are  patterns  of  exchange  and  communication  in  which  people  engage…to   reduce  the  equivocality  of  a  problematic  issue”;  Pava,  Calvin,  1983,  Managing  New  Office   Technology,  The  Free  Press,  New  York,  N.Y.,  p.58.  
  • 10. achieve  a  match  between  the  wavelength  characteristics  of  the  optomechnical  device   fabricated  at  Caltech,  and  on  the  other  hand,  the  wavelength  of  the  light  source  to  be   utilized  in  experiments  to  be  run  in  the  Austrian  laboratory.      A  related  deliberation  topic   has  been  the  Design  of  Measurement—what  to  measure  and  how  to  measure—where  once   again,  the  combination  of  theoretical  and  experimental  perspectives  has  been  very  helpful.     Within  the  process  of  actually  implementing  a  specific  experimental  design  or  fabricating  a   specific  device,  there  are  inevitably  multiple  problem-­‐solving  iterations.  In  one  instance,  a   Caltech  graduate  student  spent  6  months  “putting  out  fires”  in  trying  to  develop  just  one   experiment  that  had  a  wide  variety  of  issues  ranging  from  inaccuracies  in  certain  sensing   equipment  to  inconsistencies  in  the  production  of  the  optomechanical  crystal  device  itself.   During  these  trouble-­‐shooting  deliberations  within  the  experiment  conducted  at  Caltech,   the  experience  and  perspective  provided  by  members  of  the  Austrian  laboratory  were  key.     Other  deliberations  for  both  the  theoretical  and  experimental  physicists  have  involved   more  logistical  topics,  such  as  the  timing  and  coordination  for  the  transport  of   optomechanical  devices  between  Caltech  and  the  Austrian  laboratory,  the  allocation  of  staff   resources  (i.e.  specific  graduate  students  or  lab  technicians)  to  work  on  specific  theoretical   questions  or  to  develop  specific  experiments,  or  even  the  “partitioning”  of  research   questions  among  the  theorists  for  particular  study  by  each  of  their  respective  groups.       In  the  way  that  the  various  physicists  have  described  these  deliberations,  it  is  apparent  that   a  particular  deliberation  topic  could  not  only  re-­‐cycle  in  a  non-­‐linear  fashion,  (for  example,   the  ‘choice  point’  of  whether  to  run  a  particular  experiment),  but  it  might  also  carry  on  over   an  extended  period  of  time,  with  substantial  lapses  or  “incubation”  time  in-­‐between   communications—“it’s  a  constant  re-­‐evaluation;  where  do  you  want  to  put  your  effort?”         Communications   The  choice  and  use  of  communication  media  are  central  factors  in  the  functioning  of   research  networks  or  virtual  organizations  because  deliberations  are  patterns  of  exchange   and  communication  to  resolve  issues  of  equivocality  in  knowledge  work  processes.   Nevertheless,  to  maintain  communication  between  two  geographically  separated  scientific   groups  has,  in  the  view  of  the  Orchid  project  participants,  required  “enormous  effort”.   Furthermore,  within  the  Orchid  project  experience,  there  appear  to  be  certain  patterns,   whereby  different  modes  of  communication  seem  to  have  come  into  play  at  different  stages   of  specific  deliberations  and  within  the  overall  research  process.       One  pattern  that  has  been  common  for  both  the  experimental  and  theoretical  physicists  is   that  “a  lot  of  the  collaboration  really  goes  on  via  email”,  exchanging  documents  or   experimental  results  without  the  expectation  of  instant  response.    Email  as  a   communication  mode  allows  contemplation  and  preparation  for  what  is  very  often  a  next   step  in  the  deliberation,  namely,  one  or  more  synchronous  Skype  conversations  or   teleconferences  to  discuss  and  make  “sense”  of  the  shared  information.  Sometimes,  a   “screen-­‐sharing”  feature  has  been  utilized  to  supplement  this  ‘sense-­‐making’.  Sometimes,   Google-­‐Plus  has  also  been  used,  particularly  by  some  of  the  graduate  students,  to   supplement  email.    
  • 11. Skype  calls  have  had  another  use,  distinct  from  email  exchanges,  for  what  some  ORCHID   participants  term  “strategic  decisions”,  for  example,  weighing  options  about  if  and  when  to   run  a  certain  experiment,  or  whether  or  not  to  allocate  additional  resources  to  a  specific   aspect  of  the  project.  The  visual  as  well  as  audio  capability  of  Skype  calls  has  also  enabled   ORCHID  participants  to  sit  in  pairs  or  threesomes  around  a  computer  and  use  Skype  (only   very  occasionally)  as  a  means  to  hold  a  modified  form  of  videoconference,  rather  than  use  a   more  elaborate,  specialized  video  conferencing  technology.       In  fact,  most  teleconferences  seem  to  have  involved  pairs  or  trios  of  (distributed)  ORCHID   participants,  rather  than  the  larger  group  ‘gatherings’  for  project  teleconferences  that   might  have  been  contemplated  at  the  outset  of  the  Caltech-­‐based  ORCHID  project.  Virtual   large  group  ‘gatherings’  of  diverse  faculty  and  graduate  students  have  proven  to  be  an   overwhelming  organizational  challenge.  One  of  the  principles  of  virtual  communication   that  seems  to  be  foremost  in  the  ORCHID  project  context  is  that  communication  technology   and  procedures  need  to  be  “simple  and  robust”  or  they  will  not  get  used.       Some  of  the  ORCHID  project  members  have  participated  in  videoconferences  within  other   research  networks,  and  there  are  now  plans  in  the  forthcoming  year  for  both  the  Caltech   lab  and  the  Austrian  lab  to  utilize  newly  installed  videoconference  facilities,  particularly  as   the  need  will  increase  for  inter-­‐group  discussions  and  interpretation  of  a  growing  amount   of  data  from  the  intense  period  of  experimentation  in  the  Austrian  lab.       Nevertheless,  most  of  the  ORCHID  project  participants  would  claim  that  much  of  the  most   significant  progress  has  been  made  in  the  research  process  when  there  has  been  the   opportunity  for  face-­‐to-­‐face  (F2F)  communication  between  members  of  these   geographically  dispersed  scientific  groups.  For  example,  the  ‘idea’  for  this  scientific   collaboration  “all  started”  through  a  series  of  F2F  meetings  at  Caltech  and  conferences   involving  faculty  and  graduate  students  from  the  Caltech  and  Austrian  laboratories.  And   now,  these  scientists  who  are  now  collaborating  within  the  ORCHID  project  renew  their   F2F  contact,  at  scientific  conferences  to  which  they  are  invited  several  times  a  year,  as  well   as  at  the  semi-­‐annual  ORCHID  Program  review  meetings  convened  by  DARPA.     Similarly,  within  the  early  months  of  the  ORCHID  project,  the  ‘theory’  team  worked  entirely   at  a  distance  from  the  experimentalists,  studying  research  papers  and  slides  presented  at   the  ORCHID  program  launch,  in  order  to  make  sense  of  “where  the  experimentalists  were   going”,  and  “what  questions  would  be  important  to  the  success  of  their  experiments”.   However,  “in  terms  of  real  [theoretical]  research  being  conducted…the  most  impressive   example”  occurred  when  the  leader  of  the  German  school  of  Theoretical  Physics  sent  one  of   his  graduate  students  to  work  for  5  consecutive  months  in  the  Micro  &  Nano-­‐Photonics  lab   at  Caltech.  During  this  period,  the  graduate  student  (linked  by  frequent  Skype  and  email   communication  with  his  German  colleagues)  was  “able  to  give  real  time  suggestions  to  the   experimentalists  on  what  they  should  be  measuring”  or  quickly  to  interpret  experimental   data  that  “it  would  have  taken  [the  experimentalists]  a  long  time  to  figure  out”.     Another  example  of  this  type  of  “embedded  researcher”  was  the  graduate  student  from  the   Austrian  laboratory  who  came,  quite  by  chance,  to  Caltech  for  5  weeks  in  September-­‐ October  2010,  when  it  so  happened  the  project  was  experiencing  an  unfortunate  delay  in   development  of  the  optomechanical  device  and  experimental  design  intended  for  use  in  the  
  • 12. Austrian  laboratory.  By  all  accounts,  this  graduate  student  and  his  colleagues  in  Austria   could  not  have  been  nearly  as  helpful  with  expediting  this  key  experimental  design,   without  his  physical  presence  and  F2F  communication  with  the  Caltech  scientists.  In  the   words  of  the  Austrian  graduate  student:  “it’s  very  hard  to  really  get  on  the  same  page  and   really  understand  what  the  other  one  means  if  you  don’t  see…the  design,  see  how  the   people  work…I  wasn’t  really  aware  of  how  different  the  experiments  were  [in  Caltech]  than   in  Vienna.  And,  we  just  had  to  merge  those  two  different  approaches  together.”       From  late  2010  to  March  2011,  this  graduate  student  continued  his  F2F  contact  with   Caltech,  traveling  back-­‐and-­‐forth  from  Austria,  transporting  various  prototypes  of  the   optomechanical  device  for  test  runs  in  Austria,  and  since  March  2011,  he  has  begun  a  two-­‐ year  post-­‐doctoral  assignment  with  the  Caltech  Nano-­‐Photonics  Group.  During  2011  and   2012  of  Phase  Two  of  the  ORCHID  project,  he  joined  Caltech  graduate  students  in  periodic   visits  to  the  Austrian  laboratory  where  they  have  taken  the  refined  optomechanical  crystal   device  and  worked  with  the  University  of  Vienna  staff  to  set-­‐up  the  actual  experimentation,   now  successfully  underway  in  Austria  “with  a  full-­‐blown  structure  fully  operational  and   completely  unique”.  Without  this  F2F  contact  by  this  second  “embedded  researcher”,  the   general  opinion  is  that  this  experimental  design  “would  have  been  worked  out,  but  it  would   just  have  taken  much  longer”.         ANALYSIS/CONCLUSIONS:     Researchers  know  that    “technology-­‐mediated  interactions…complement  face-­‐to-­‐face   interactions”  in  virtual  settings.  Dixon  and  Pantelli  (2010)  documented  this  in  their  study   of  a  UK  government-­‐funded  program  establishing  a  ‘virtual  centre  of  excellence’  for   technology  development10.    In  the  ORCHID  project  experience  much  of  the  face-­‐to-­‐face   interaction  actually  occurred  by  happenstance,  and  for  periods  of  time  longer  than  typical   for  graduate  student  exchanges.    These  factors  raise  questions  and  may  also  provide   answers  about  the  nature  and  dynamics  of  this  complementarity  of  communication  media   in  virtual  settings.    More  to  the  point  they  raise  questions  and  may  also  provide  answers   about  how  this  dynamic  works  in  fundamental  research  collaborations.  The  project   participants  interviewed  generally  acknowledge  that  email,  videoconference,  or  any  of  the   technology-­‐mediated  forms  of  communication  “work  best  when  you  already  have  an  idea   of  where  you  want  to  go”,  with  a  particular  work  process  question  or  research  topic.       So,  determining  the  direction  or  strategies  of  a  project  may  require  concentrated  F2F   communication.  Some  of  the  ORCHID  participants  commented  that  this  is  most  apparent   “in  the  early  stages  of  a  project,  when  things  are  so  confusing…everything  is  so  unclear— you  need  a  lot  of  random  discussions  that  may  lead  to  nowhere…we  just  have  to  talk  again   and  again—it  seems  to  depend  very  much  on  personal  interaction,  the  chance  element.”       This  leads  to  three  inquiries.       • First,  to  what  extent  is  this  initial  confusion  temporary  and  is  it  only  initially  needed   to  develop  an  understanding  of  each  other  and  ‘get  on  the  same  page’?                                                                                                                   10  Dixon  and  Pantelli,  2010,  “From  Virtual  Teams  to  Virtuality  in  Teams”,  Human  Relations,   63(8),  pp.  1177-­‐1197)    
  • 13. • Second,  how  much  is  this  challenge  one  of  “perspective-­‐taking”  among  participants   from  different  disciplines  and  with  diverse  work  practices?11     • And  third,  in  this  virtual  setting  where  most  of  the  geographically  dispersed   participants  had  not  previously  worked  together,  how  much  of  the  challenge  of   mutual  understanding  involves  trust  and  relationship  building?     Taking  these  questions  in  reverse  order,  the  answer  from  Caltech  participants  and  from  the   two  “embedded”  European  researchers,  is  that  it  has  been  “very  crucial”  to  work  together,   “eat  lunch,  and  have  coffee  together”,  or  “to  spend  time  together”,  just  “to  get  to  know  each   other”.      These  interactions  make  it  easier  to  “just  get  on  the  same  page”.    Caltech  graduate   students  and  their  “embedded  researcher”  counterparts  have  developed  a  “personal”   friendship  more  than  just  a  “professional”  relationship.    As  a  result,  they  are  “more  willing   to  have  discussions  [with  each  other]  when  [they]  don’t  have  clear,  conclusive  ideas”,  and   are  “more  willing  to  share  data  that  [they]  don’t  understand”—in  their  words,  “we  are  not   as  hesitant  with  each  other”.       These  participants  now  also  speak  in  a  way  that  suggests  they  are  more  tolerant  or  open  to   some  national  “cultural  differences”  between  the  scientific  groups.    Such  differences  could   otherwise  have  been  serious  “discontinuities”  in  the  collaboration,  especially  given  the   delays  that  have  occurred  with  various  pieces  of  work  in  this  project,  disrupting   coordination  between  laboratories.    One  Caltech  graduate  student  gave  this  example:     “when  the  German  scientists  say  that  they  will  have  a  result  ready  in  4  months,  it  is  ready   in  4  months;  whereas  when  Americans  say  that  they  will  have  a  result  in  2  months,  it  often   takes  longer—we  [North  Americans]  over-­‐promise,  while  the  Germans  are  more  cautious”.       Building  respect  and  trust  is  thus  clearly  connected  to  the  second  challenge  of  “perspective-­‐ taking”  across  the  disciplines  of  theoretical  and  experimental  physics,  or  across  the   disciplines  of  quantum  optics  and  applied  physics,  and  even  more  particularly,  between   scientists  from  two  laboratories  with  methods  and  equipment  for  experimentation  that  are   “very,  very  different”.    Beyond  this  interpersonal  dimension,  though,  the  process  of   integrating  multi-­‐disciplinary  and  multicultural  perspectives  to  solve  technical  problems   has  required  that  scientists  “actually  sit  together…make  drawings  on  the  blackboard  and   discuss  things…again  and  again”.       The  nature  of  these  conversations  appears  to  closely  resemble  the  use  of  “narrative”  and   “boundary  objects”  cited  by  Boland  &  Tenkasi,  in  their  modeling  of  language  and  cognition   to  assist  in  the  design  of  electronic  communication  systems  for  “communities  of  knowing”   within  and  across  organizational  boundaries.12    Indeed,  some  of  the  ORCHID  project                                                                                                                   11  Boland  &  Tenkasi,  1995,  “Perspective-­‐making  and  perspective-­‐taking  in  communities  of   knowing”,  Organization  Science,  6  (4),  pp.  350-­‐372.     12  Bruner  (1986)  contends  that  rational  analysis  of  data  is  supplemented  by  how  we   construct  stories  or  metaphors  to  make  sense  of  unusual  or  unexpected  events  in  an   interesting  and  believable  way  that  fits  with  our  particular  cultural  field.  Similarly,  Star   (1989,  1993)  has  observed  how  a  picture,  map  or  diagram  can  provide  a  visible   representation  of  one’s  thinking  and  becomes  a  “boundary  object”  that  makes  one’s   knowledge  available  for  analysis  with  another  individual  or  scientific  community.    
  • 14. participants  agree  that  this  kind  of  interdisciplinary  problem-­‐solving  discussion  is   definitely  “possible  at  a  distance,  over  the  internet,  on  a  [video  or  tele]  conference  call   where  you  can  just  draw  things…But  it’s  not  as  efficient  as  if  you  come  for  a  week  or  two   and  just  sit  together  and  just  concentrate  on  one  thing.”     Nevertheless,  the  two  “embedded  researchers”  have  continued  to  perform  within  the   ORCHID  project  a  function  with  respect  to  colleagues  in  their  ‘home’  scientific  groups  that   is  very  similar  to  what  Boland  &  Tenkasi  refer  to  as  “semiotic  brokers”.13    Knowing  the   ‘language’  and  the  capabilities  of  the  Caltech  lab,  they  have  been  able  to  establish  a  liaison   or  “straddler”  role14  ‘translating’  and  expediting  communication  between  the  Caltech  staff,   the  theory  team,  and  staff  associated  with  the  Austrian  experimental  lab.     From  the  perspective  of  the  European  leaders  of  the  ORCHID  project,  this  linking  role  has   been  “absolutely  essential”.  Without  this  role,  and  without  it  being  performed  effectively,   graduate  students  in  one  or  more  of  the  labs  would  lose  interest  and  engagement  with  the   project.  Critical  opportunities  to  focus  the  research  would  be  missed  or  adjustments  would   not  be  made.  Unlike  a  situation  where  the  two  lab  groups  might  have  been  co-­‐located,  in   this  case  of  a  trans-­‐Atlantic  collaboration,  regular  and  spontaneous  meetings  to  critique   progress  don’t  happen  easily,  given  all  of  the  local  distractions  and  priorities  that  take  over   one’s  attention”.       To  the  first  question  about  how  ‘temporary’  the  need  is  for  F2F  communication  in  this   work,  the  perception  expressed  by  many  of  the  ORCHID  participants  is  that  there  is  a   general  “threshold”  or  set  of  constraints  associated  with  a  phone  call,  videoconference,  etc.     Part  of  this  perception,  even  for  many  of  the  younger  Millennial  generation  graduate   students,  is  that  there  is  “a  raft  of  minor  issues”—audio  noise,  crossing  over  from  one   information  source  to  another,  time  zone  issues—“that  all  add  up  to  make  virtual   communication  less  appealing,  not  as  easy  for  most  complex  problem-­‐solving”.       More  important,  though,  is  that  F2F  enables  “a  non-­‐restricted  occasion,  meaning  there  is  no   phone  that  when  you  hang  up,  the  person  is  gone…[no]  1-­‐hour  time  slot  for  a  phone   call…you  just  are  around…there  is  the  possibility  to  interact  24  hours  in  principle”.  Thus,   what  is  seen  to  be  lacking  with  electronic  communication  media  is  “intensity  and   spontaneity”  that  these  scientists  contend  are  vital  when  “developing  new  ideas,  new   directions—about  the  experiment,  and  so  on”.     In  science,  “there’s  this  random-­‐chance  occurring  of  ideas…you  chat  about  a  lot  of  different   topics,  and  then,  somehow  the  germ  of  a  new  idea  comes  up”  whereas    “teleconferences   don’t  happen  by  chance”.    Or,  as  another  Caltech  scientist  expressed  the  dilemma,  without   opportunities  for  F2F  communication,  “Eureka  moments  won’t  happen”.  Along  with  this   spontaneity,  there  needs  also  to  be  the  “pressure”  or  “intensity”  of  “constant  exchange”   because  in  “generating  new  ideas,  you  always  have  an  incubation  time”.                                                                                                                     13  Lyotard  (1984)  refers  to  the  important  role  of  agents  that  help  to  translate  and  integrate   the  representation  of  concepts.     14  Heeks  et  al.,  2001,  “Synching  or  Sinking:  Global  Software  Outsourcing  Relationships”,  IEEE   Software,  March/April  2001,  p.59.  
  • 15. The  question  remains  whether  this  need  for  F2F  communication  to  help  generate  “new   ideas,  new  directions”  exists  primarily  or  solely  at  the  beginning  of  a  fundamental  research   project  like  ORCHID?  Perhaps,  it  is  so  for  projects  more  on  the  ‘Development’  side  of  the   R&D  spectrum.  For  fundamental  research,  however,  that  has  as  its  core  objective  to   generate  ‘breakthrough’  concepts,  knowledge,  and  experimental  data,  it  seems  more  likely   from  the  experience  of  the  ORCHID  project  over  its  extended  period  of  three  years,  that   there  is  a  rhythmic  cycle  moving  from  one  ‘unknown’  through  to  discovery  of  ‘known’   results  that  evoke  their  own  new  questions  and  definition  of  a  new  ‘unknown’  followed  by   a  further  search  for  ‘findings’.  In  the  words  of  the  European  science  leader  for  ORCHID,  “in   fundamental  research,  one  never  knows  in  which  direction  research  is  taking  you—new   opportunities  and  new  challenges  are  continually  opening  up”.  Indeed,  the  experience  of   the  ORCHID  project  has  persuaded  this  European  scientist  that  timely,  periodic  F2F   communication  is  vital  in  virtual  scientific  collaborations  involving  fundamental  research.       F2F  communication  within  the  virtual  organization  of  the  ORCHID  project  may  have   additional  importance.  Findings  from  the  study  of  other  virtual  teams  suggest  that  they   have  a  need  for  “deep  temporal  rhythms  of  interaction”,  with  “face-­‐to-­‐face  meetings…as  a   heartbeat,  rhythmically  pumping  new  life  into  the  team’s  processes”.  The  goal  is  “to  draw   team  members  together…to  connect,  couple,  and  integrate  team  members  so  that  they   communicate  more  effectively.”15       In  this  ORCHID  project,  the  process  of  drawing  people  together  began  early  and  continued   into  the  virtual  setting.    Early  F2F  communication  was  combined  with  the  unique  and  very   powerful  motivation  that  the  dispersed  parties  seem  to  have  for  this  collaboration.    The   science  leaders  of  the  ORCHID  project  “had  talked  to  each  other  a  lot  of  times  before   starting  this  program”,  and  “it  helps  that  a  program  like  ORCHID  is  very  focused  on  one   topic”  of  vital  interest  to  all  the  relevant  scientific  groups.    Indeed,  the  speculation  of  at   least  one  experienced  research  scientist  in  the  ORCHID  project  is  that  success  in  such   multi-­‐university  research  “does  not  depend  so  much  on  technical  difficulties  in   collaboration,  but  more  on  motivation”.    A  strong  motivation  can  combine  with  the   intensity  of  relationship  building,  F2F  or  virtually,  to  enhance  and  support  deliberations   across  multidisciplinary  and  geographic  boundaries.                                                                                                                       15  Maznevski  and  Chudoba,  2000,  Bridging  Space  Over  Time:  Global  Virtual  Team  Dynamics   and  Effectiveness,  Organization  Science,  11  (5),  pp.  473-­‐492.      
  • 16. REFERENCES:     Boland,   R.J.,   Tenkasi,   R.V.,   1995,   Perspective   making   and   perspective   taking   in   communities   of   knowing,  Organization  Science,  6  (4),  pp.  350–372.       Bruner,  J.  S.,  1986,  Actual  Minds,  Possible  Worlds,  Cambridge,  MA:  Harvard  University  Press.     Caltech  Media  Relations,  2011,  “Caltech  Team  Uses  Laser  Light  to  Cool  Object  to  Quantum  Ground   State”,  News  Release,  California  Institute  of  Technology,  Pasadena  CA,  October  5,  2011.     Caltech  Media  Relations,  2013,  “Caltech  Team  Produces  Squeezed  Light  Using  a  Silicon   Micromechanical  System”,  News  Release,  Caltech,  Pasadena  CA,  August  7,  2013.     Safavi-­‐Naeini,  A.H.  et  al.,  2013,  “Squeezed  Light  from  a  Silicon  Micromechanical  Resonator”,  Nature   500,  (August  8,  2013),  pp.  185-­‐189.     Chudoba,   K.M.,   Wynn,   E.,   Lu,   M.,   Watson-­‐Manheim,   M.B.,   2005,   How   Virtual   are   we?   Measuring   Virtuality  and  understanding  its  Impact  in  a  Global  Organization,  Information  Systems  Journal,  15,   pp.  279-­‐306.     Cummings,   J.   N.,   Kiesler,   S.,   2007,   Coordination   Costs   and   Project   Outcomes   in   Multi-­‐University   Collaborations,  Research  Policy,  36,  pp.  1620-­‐1634.     Dixon,  K.R.,  Panteli,  N.,  2010,  From  Virtual  Teams  to  Virtuality  in  Teams,  Human  Relations,  63  (8),   pp.1177-­‐1197.     Heeks,  R.,  Krishna,  S.,  Nicholson,  B.,  Sahay,  S.,  2001,  “Synching  or  Sinking:  Global  Software   Outsourcing  Relationships”,  IEEE  Software,  March/April  2001,  p.59.     Lyotard,  J.  F.,  1984,  The  Postmodern  Conditions:  A  Report  on  Knowledge,  Minneapolis,  MN:  University   of  Minnesota  Press.       Malhotra,   A.,   Majchrzak,   A.,   Carman,   R.,   Lott,   V.,   2000,   Radical   Innovation   without   Collocation:   A   Case  Study  at  Boeing-­‐Rocketdyne,  MIS  Quarterly,  25  (2),  pp.  229-­‐249.     Maznevski,  M.L.,  Chudoba,  K.M.,  2000,  Bridging  Space  Over  Time:  Global  Virtual  Team  Dynamics   and  Effectiveness,  Organization  Science,  11  (5),  pp.  473-­‐492.     Olson,  G.M.  Olson,  J.S.,  2000,  Distance  Matters,  Human-­Computer  Interaction,  15,  pp.  139-­‐178.     Pava,  Calvin,  1983,  Managing  New  Office  Technology,  The  Free  Press,  New  York,  N.Y.,  p.58.     Revkin,  A.,  2008.  Dot  Earth:  ‘R2-­D2’  and  Other  Lessons  from  Bell  Labs,  New  York  Times,  December   12,  2008.     Star,  S.  L.,  1989,  “The  Structure  of  Ill-­‐Structured  Solutions:  Boundary  Objects  and  Heterogeneous   Distributed  Problem  Solving”,  in  M.  Huhns  and  L.  Gasser  (Eds.),  Readings  in  Distributed  Artificial   Intelligence  2,  Menlo  Park,  CA:  Morgan  Kaufmann.     Star,  S.  L.,  1993,  “Cooperation  Without  Consensus  in  Scientific  Problem  Solving:  Dynamics  of   Closure  in  Open  Systems”,  in  S.  Easterbrook  (Ed.),  CSCW:  Cooperation  or  Conflict,  London:  UK   Springer.  
  • 17.     APPENDIX  1:  METHODOLOGY     During  the  late  spring  of  2010,  the  VOSS  research  team  opened  discussions  with  Caltech’s   Micro  &  Nano  Photonics  Research  Group  in  the  Applied  Physics  department.  This  research   group  had  previously  agreed  and  formally  expressed  an  interest  to  participate  as  a  site  in   he  VOSS  project.  However,  a  preliminary  ‘scoping’  discussion  was  required  to  determine   the  most  appropriate  multi-­‐university  research  activity  to  focus  upon  for  this  VOSS  study.     After  ‘kick-­‐off’  of  the  ORCHID  program  at  a  meeting  of  the  various  research  teams  from   Caltech,  Yale,  etc.,  held  in  Santa  Barbara,  CA  in  June  2010,  preparations  for  the  eventual   experimentation  began  slowly  both  at  Caltech  and  at  the  University  of  Vienna  Quantum   Optics  Group.    Preparations  were  complicated  by  the  need  to  coordinate  the  planning  of   what  research  to  do  and  how  to  do  it,  between  two  laboratories  that  operated  with  very   different  equipment  and  methodologies.  Hence,  it  was  not  until  the  spring  of  2011  that  the   ORCHID  project  Principal  Investigator  signaled  to  the  VOSS  research  team  that  it  was   timely  to  hold  the  first  of  a  series  of  (one  hour)  teleconference  interviews  to  review  the   project’s  progress.       In  the  summer  of  2011,  one  member  of  the  VOSS  team  made  a  visit  to  the  Caltech   laboratories  and  conducted  face-­‐to-­‐face  interviews  with  the  Principal  Investigator  and  with   two  of  the  graduate  students  involved  very  substantially  with  the  ORCHID  project.  Plans   were  also  made  at  this  time  for  phone  interviews  (held  in  the  autumn  of  2011)  with  faculty   and  graduate  students  located  at  the  University  of  Vienna  laboratory,  and  with  European   and  Canadian  members  of  the  ORCHID  project  team  of  theoretical  physicists.  It  was   emphasized  by  the  ORCHID  project  Principal  Investigator  that  PhD  students  and  Post-­‐ Doctoral  associates  within  each  of  the  laboratories  in  Europe  and  Caltech  were  the   individuals  most  involved  in  the  day-­‐to-­‐day  process  of  this  scientific  collaboration,  and   thus,  would  be  preferred  subjects  for  interviews  in  this  VOSS  study.     Finally,  a  second  round  of  interviews  were  conducted  with  the  leaders  and  selected   members  of  the  ORCHID  project  during  Phase  Two,  in  the  autumn  of  2012.     Overall,  during  an  elapsed  time  period  of  three  years,  approximately  20  (60-­‐90  minute)   interviews  have  been  conducted  in  person  or  by  phone,  involving  two  members  of  the   VOSS  research  team  and  one  subject/participant  of  the  ORCHID  project.    Interviews  have   sought  primarily  to  identify:     i) perceptions  of  the  nature  and  challenges  of  this  scientific  collaboration  from  the   perspectives  of  the  various  scientific  Groups;     ii) key  deliberations  (“choice  points”)  in  this  particular  process  of  fundamental   research;  and     iii) the  qualitative  nature  and  frequency  of  use  associated  with  various  media  of   communication  among  participants  in  the  ORCHID  project.