SlideShare ist ein Scribd-Unternehmen logo
1 von 107
by
Nittaya Noinan
Kanchanapisekwittayalai Phetchabun School
Proposition or Statement
Statement is sentence that is either
true or false only .
Example
The following sentences are statement.
1. Cheangmai is not in the south of Thailand. (True)
2. 9 3 (True)
3. 17 + 8 25 (False)
4. is Rational Numbers (False)
5. Empty Set is subset of all of set (True)
Example
The following sentences are not statement.
1. Is it rained ?
2. Don’t move your body.
3. Help me !
4. Please open the door.
5. Waw ! So beautiful.
6. Get out !
7. I wish to travel so much.
Connectives
1. And
2. Or
3. If…that… or Implies
4. If and only if or equivalent to
5. Negation or Xor
Connectives
1. And the symbol is “ ”
F
F
F
T
P Q
FF
TF
FT
TT
QP
Connectives
1. And symbol is “ ”
Example
1) is irrational number and is odd number
solve
Give p is “ is irrational number” has truth –value is true
q is “ is odd number” has truth –value is true
Then we can write be symbol is p q
Thus this statement has truth – value is true
Answer True
Connectives
1. And symbol is “ ”
Example
2) 0 is integer number and 2.4 is even number
solve
Give p is “ 0 is integer number” has truth –value is true
q is “ 2.4 is even number” has truth –value is false
Then we can write be symbol is p q
Thus this statement has truth – value is false
Answer False
Connectives
2. Or the symbol is “ ”
F
T
T
T
P Q
FF
TF
FT
TT
QP
Connectives
2. Or symbol is “ ”
Example
1) 2 is even number or 23 is odd number
solve
Give p is “ 2 is even number” has truth –value is true
q is “ 23 is odd number” has truth –value is false
Then we can write be symbol is p q
Thus this statement has truth – value is true
Answer True
Connectives
2. Or symbol is “ ”
Example
2) is rational number or is interger number
solve
Give p is “ is rational number” has truth –value is false
q is “ is integer number” has truth –value is false
Then we can write be symbol is p q
Thus this statement has truth – value is false
Answer False
Connectives
3. If…then… the symbol is “ ”
T
T
F
T
P Q
FF
TF
FT
TT
QP
Connectives
3. If …then… symbol is “ ”
Example
1) If 2 + 3 = 3 + 2 then 6(2 + 3) = 6(3 + 2)
solve
Give p is “2 + 3 = 3 + 2 ” has truth –value is true
q is “6(2 + 3) = 6(3 + 2)” has truth –value is true
Then we can write be symbol is p q
Thus this statement has truth – value is true
Answer True
Connectives
3. If …then… symbol is “ ”
Example
2) If 5 is odd number then 54 is even number
solve
Give p is “ 5 is odd number” has truth –value is true
q is “ 54 is even number” has truth –value is false
Then we can write be symbol is p q
Thus this statement has truth – value is false
Answer False
Connectives
4. If and only if the symbol is “ ”
T
F
F
T
P Q
FF
TF
FT
TT
QP
Connectives
4. If and only if symbol is “ ”
Example
1) 7 is divided by 2 if and only if 7 is even number
solve
Give p is “ 7 is divided by 2 ” has truth –value is false
q is “7 is even number” has truth –value is false
Then we can write be symbol is p q
Thus this statement has truth – value is true
Answer True
Connectives
4. If and only if symbol is “ ”
Example
2) 2 < 3 if and only if
solve
Give p is “ 2 < 3 ” has truth –value is true
q is “ ” has truth –value is false
Then we can write be symbol is p q
Thus this statement has truth – value is false
Answer False
Connectives
5. Negation the symbol is “ ”
TF
FT
PP
Connectives
5. Negation symbol is “ ”
Example
1) 2 + 3 = 5
solve
Give p is “ 2 + 3 = 5 ” has truth –value is true
Negation of this statement is “2 + 3 ≠ 5”
has truth –value is false
Then we can write be symbol is p
Thus Negation of this statement has truth – value is false
Answer False
Connectives
5. Negation symbol is “ ”
Example
2) Spider is not insect
solve
Give p is “Spider is not insect” has truth –value is false
Negation of this statement is “Spider is insect”
has truth –value is true
Then we can write be symbol is p
Thus Negation of this statement has truth – value is true
Answer True
Truth – value of Statement
Example Find the Truth – value of the fallowing statements
1) Cheangmai and Thonburi used to capital of Thailand
Solve
Give p is Cheangmai used to capital of Thailand
Give q is Thonburi used to capital of Thailand
Then we can write be symbol is p q
Since p has the truth – value is false
q has the truth – value is true
Thus this statement has truth – value is false
Answer False
Truth – value of Statement
Example
2) Give a , b and c be statements have truth – value is true ,
true and false following order Find the Truth – value of the
fallowing statements ( a b ) c
Solve
a b has the truth – value is true and c is false
Thus ( a b ) c has truth – value is true
Answer True
Truth – value of Statement
Example
3) Find the Truth – value of the fallowing statements ( a b )
When a , b be statements all have truth – value is true
Solve
( a b )
T T
F
F
T
Answer True
Truth – value of Statement
Example
4) Give p , q , r and s be statements have truth – value is true
, false , false and true following order Find the Truth – value
of the fallowing statements [( p q ) r] (p s)
Solve
[( p q ) r] (p s)
T F F T T
F T T
T
T
Answer True
Order to find the Truth – value of Statement
1. Braces
2.
3. “ ” or “ ”
4.
5.
Truth Table
You can see p , q and r be atomic statement from
the statement that has connective such as p , p q
, p q , (p q) r , (p q) ect.
When you don’t give the truth – value p , q and r be
variable instead of statement. And we call p , p q
, p q , (p q) r , (p q) are statement pattern.
Since p , q and r be variable instead of statement then
the truth – value of statement pattern have to give the
atomic statement all cases.
Truth Table
* If there is one statement (p) then the cases of the
truth – value be 2 cases
* If there is two statements (p,q) then the cases of the
truth – value be 4 cases
* If there is three statements (p, q ,r) then the cases of the
truth – value be 8 cases
* If there is four statements (p,q,r,s) then the cases of the
truth – value be 16 cases
Thus if there is n statements then the cases of the
truth – value be 2n cases
Truth Table
Example.
1) Give p and q be statements . Make the truth table of
(p q) ( p q)
Solve
p q P q p q p q (p q) ( p q)
T T T F F F F
T F F F T F T
F T T T F F F
F F T T T T T
Truth Table
Example.
2) Give p and q be statements . Make the truth table of
[(p q) (p q)]
Solve
p q P q q p q (p q) (p q)] [(p q) (p q)]
T T T F T T F
T F F T T T F
F T F F F T F
F F T T T T F
Truth Table
Example.
3) Give p , q and r be statements . Make the truth table of
(p q) ( r q)
Solve
p q r p q r r q (p q) ( r q)
T T T T F T T
T T F T T T T
T F T F F F T
T F F F T T T
F T T T F T T
F T F T T T T
F F T T F F F
F F F T T T T
Truth Table
Example.
4) Give p ,q and r be statements . Make the truth table of
p ( q) and (p q)
Solve
p q q p ( q) (p q) (p q)
T T F F T F
T F T T F T
F T F F T F
F F T F T F
The following the truth table you can observe p ( q) and (p q)
is the same case by case
Equivalent pattern
Observe the following examples.
1) Give p and q be statements . Make the truth table of
p q and q p
Solve
p q p q (p q) q p
T T F F T T
T F F T F F
F T T F T T
F F T T T T
The following the truth table you can observe p q and q p
is the same case by case .Then we can say p q equivalent q p
Thus we can write be symbol is p q q p
Equivalent pattern
Observe the following examples.
2) Give p and q be statements . Make the truth table of
(p q) and p q
Solve
p q p q p q (p q) P q
T T F F T F F
T F F T T F F
F T T F T F F
F F T T F T T
The following the truth table you can observe (p q) and p q
is the same case by case .Then we can say (p q) equivalent p q
Thus we can write be symbol is (p q) p q
Equivalent pattern
Observe the following examples.
3) Give p and q be statements . Make the truth table of
p q and p q
Solve
p q p p q P q
T T F F T
T F F F F
F T T T T
F F T F T
The following the truth table you can observe p q and p q
is not the same case by case .
Then we can say p q is not equivalent p q
Equivalent pattern
Observe the following examples.
4) Give p and q be statements . Consider (p q) (q p)
equivalent p q
Solve
p q p q q p (p q) (q p) P q
T T T T T T
T F F T F F
F T T F F F
F F T T T T
The following the truth table you can observe (p q) (q p) and p q
is the same case by case .Then we can say (p q) (q p) equivalent p q
Thus we can write be symbol is (p q) (q p) p q
Equivalent pattern
Observe the following examples.
5) Consider the two contents that be equivalent or not.
“if 82 is even number then 8 is even number”
“ if 8 is not even numbr then 82 is not even number”
Solve
Give p be 82 is even number
q be 8 is even number
Then p q instead of “if 82 is even number then 8 is even number”
q p instead of “ if 8 is not even numbr then 82 is not even number”
Thus from the example 1) we got p q equivalent q p
Answer The two contents that be equivalent
Equivalent pattern
Symbol of equivalent pattern is “ ”
The following two statements are equivalent.
1) ( p) p
2) p q q p
3) p q q p
4) p q q p
5) p (q r) (p q) r
6) p (q r) (p q) r
7) p (q r) (p q) (p r)
8) p (q r) (p q) (p r)
9) (p q) p q
10) (p q) p q
Equivalent pattern
Symbol of equivalent pattern is “ ”
The following two statements are equivalent.
11) (p q) p q
12) p q p q
13) p q q p
14) p q p q
15) p q (p q) (q p)
16) p p p
17) p p p
18) (p q) r (p r) (q r)
19) (p q) r (p r) (q r)
20) p (q r) (p q) (p r)
21) p (q r) (p q) (p r)
Equivalent pattern
Symbol of equivalent pattern is “ ”
The following two statements are equivalent.
22) p T p
T q q
23) p F p
F q q
24) T q q
p F p
25) T q q
p T p
F q q
p F p
Tautology
Definiton.
The truth – value of statement pattern is true all cases
is called Tautology.
Tautology
Example.
1) Consider the truth – value of statement pattern
[(p q) p] q
p q p q (p q) p [(p q) p] q
T T T T T
T F F F T
F T T F T
F F T F T
You can observe [(p q) p] q has the truth – value is
true all cases. Then we can say [(p q) p] q is Tautology.
Tautology
Example.
2) Consider the truth – value of statement pattern
(p q) ( q p) be Tautology or not.
p q p q p q q p (p q) ( q p)
T T F F T T T
T F F T F F T
F T T F T T T
F F T T T T T
You can observe (p q) ( q p) has the truth – value is
true all cases. Then we can say (p q) ( q p) is Tautology.
Tautology
Example.
3) Consider the truth – value of statement pattern
[(p q) p] q be Tautology or not.
p q p q p q (p q) p [(p q) p] q
T T F F T F T
T F F T F T T
F T T F T T F
F F T T T T T
You can observe [(p q) p] q has the truth – value is true
not all cases. Then we can say (p q) ( q p) is not
Tautology.
Tautology
By the ways we can check which the statement pattern
is tautology when the statement pattern has connective is
“if… then…” by method assume contradiction.
That mean assume the statement pattern be false. It has
the truth – value is false only one case. ( T F F )
If it is contradition from the assume before. Then the
statement pattern be Tautology.
Tautology
Example.
1) Give p and q be statements . Consider the statement
pattern [(p q) p] q is Tautology or not.
Solve.
assume that [(p q) p] q is false.
[(p q) p] q
F
T F
T T T
T T
Now you can observe we assume [(p q) p] q is false and
then it is not contradiction .
Thus the truth – value of p is T and the truth – value of q is T
make the truth – value [(p q) p] q is false .
Answer [(p q) p] q is not Tautology.
Tautology
Example.
2) Give p and q be statements . Consider the statement pattern
(p q) (q p) is Tautology or not.
Solve.
assume that (p q) (q p) is false.
(p q) (q p)
F
T F
T T F F
Now you can observe we assume (p q) (q p) is false and
then it is contradiction .
Thus the truth – value of (p q) (q p) can’t be false .
Answer (p q) (q p) is Tautology.
Contradiction
Tautology
Example.
1) Give p and q be statements . Consider the statement
pattern ( q p) (q p) is Tautology or not.
Solve.
assume that ( q p) (q p) is false.
( q p) (q p)
F
T F
F T T F
T T
Now you can observe we assume ( q p) (q p) is false and
then it is not contradiction .
Thus the truth – value of p is T and the truth – value of q is T
make the truth – value ( q p) (q p) is false .
Answer ( q p) (q p) is not Tautology.
Tautology
Example.
4) Give p ,q and r be statements . Consider the statement
pattern [(p q) (q r)] (p r) is Tautology or not.
Solve.
assume that [(p q) (q r)] (p r) is false.
[(p q) (q r)] (p r)
F
T F
T T T F
T T T T
Now you can observe we assume [(p q) (q r)] (p r)
is false and then it is contradiction .
Thus the truth – value of [(p q) (q r)] (p r) can’t be
false .
Answer [(p q) (q r)] (p r) is Tautology.
Contradiction
Argument
Argument that there are statements be causes
(P1, P2, P3,…,Pn) and can be conclusion (C) .
Thus argument has 2 parts such that causes and
coclusion.
We can do argument by use Connective “ ” between
statement that are causes. And use connective “ ”
between causes and conclusion.
(P1 P2 P3 … Pn) C
There are 2 types of argument that are valid and
invalid.
Argument
(P1 P2 P3 … Pn) C
There are 2 types of argument that are valid and
invalid.
* (P1 P2 P3 … Pn) C be tautology that mean
this argument is valid
* (P1 P2 P3 … Pn) C be not tautology that mean
this argument is invalid
Argument
Example.
1) Give p and q be statement. Consider the following
argument is valid or invalid.
cause 1. p q
2. p
conclusion q
Solve.
[(p q) p ] q
F
T F
T T
T T
Since [(p q) p ] q is Tautology Thus this argument is valid
Contradiction
Argument
Example.
2) Give p , q and r be statement. Consider the following
argument is valid or invalid.
cause 1. p q
2. q r
3. r
conclusion p
Solve.
[(p q) ( q r ) r ] p
F
T T F
T T T T
T T F F F
T
Since [(p q) p ] q is not Tautology Thus this argument is invalid
Argument
Example.
3) Consider the following argument is valid or invalid.
cause 1. If it rained then the roof is wet
2. the roof is not wet
conclusion it is not rained
Solve.
Give p be it rained
q be the roof is wet
Then write the symbol.
cause 1. p q
2. q
conclusion p
Thus we can write [(p q) q ] p
Argument
[(p q) q ] p
F
T F
T T T
T T F
Since [(p q) p ] q is Tautology
Thus this argument is valid
Contradiction
Argument
Example.
4) Consider the following argument is valid or invalid.
cause 1. If Dang get bonus then Dang deposit to the bank
2. if Dang deposit to the bank then Dang doesn’t have debt
conclusion If Dang doesn’t get bonus then Dang doesn’t have debt
Solve.
Give p be Dang get bonus
q be Dang deposit to the bank
r be Dang doesn’t have debt
Then write the symbol.
cause 1. p q
2. q r
conclusion p r
Thus we can write [(p q) (q r )] ( p r)
Argument
[(p q) (q r )] ( p r)
F
T F
T T T F
F F F F F
Since [(p q) p ] q is not Tautology
Thus this argument is invalid
Open sentence
Open sentence is sentence that
there is variable when you instead
variable by the member in the universe
then you get statement.
Example
The following sentences are Open sentence.
1. She is student in Kanchanapisekwittayalai school.
2. x 3
3. x2 - 2x + 8 = (x – 4)(x + 2)
4. x.x = x + x
5. x { 1, 2, 3 }
6. If x be natural number then is not real number.
Example
The following sentences are not Open sentence.
1. Is she your sister?
2. Don’t move your body.
3. X2 + 1
4. 2 { 1, 2, 3 }
5. 2x – 1
Quantifier
There are 2 Quantifier in Mathematics.
Such that
1. “For all” the symbol is “ ”
2. “For some” the symbol is “ ”
Quantifier
Symbol that we have to know.
1) x be For all of x
2) x be For some of x
3) U be Universe
4) R be Set of real number
5) Q be Set of rational number
6) I or Z be Set of integer number
7) N be Set of natural number
Quantifier
Example. Write the sentence be symbol.
1) For all of x that x + x = 2x
Answer. x[x + x = 2x] ,U = R
2) there are x that x + 0 = 2x
Answer. x[x + 0 = 2x] ,U = R
3) For all of x if x is integer number then x is real number
Answer. x[x I x R] ,U = R or you can say
all interger number be real number.
Quantifier
Example. Write the sentence be symbol.
4) For all real number be integer number.
Answer. x[x I ] ,U = R
5) For some integer number square equal 1
Answer. x[x I x2 = 1] ,U = R
if the problem doesn’t refer to universe we
should to understand that mean U = R
Quantifier
Example. Write the symbol besentence.
1) x [x I x < 5] ,U = R
Answer. There are x is integer number and less than 5
2) x[x I x < 5]
Answer. For all of x if x is integer number then less than 5
3) y x [x2 + y2 = 8]
Answer. For all of y and there are x that x2 + y2 = 8
Quantifier
Example. Write the symbol besentence.
4) y x [x2 + y2 = 8]
Answer. For some of y and all of x that x2 + y2 = 8
5) x y[x + y R]
Answer. For all of x and y that sum of x + y be real
number
The truth – value of Quantifier sentence.
Consider the truth – value of Quantifier sentence
that there 3 parts .
1. Quantifier
2. Open sentence
3. Universe
The symbol of the truth – value of Quantifier sentence
by instead Open sentence that has x be variable be P(x)
Thus the truth – value of Quantifier sentence can write be
symbol such that
1. x[P(x)] when universe is U
2. x[P(x)] when universe is U
The truth – value of Quantifier sentence.
Definition.
x[P(x)] has the truth – value is true iff when
instead all of x in universe to P(x) then all of
cases be true.
x[P(x)] has the truth – value is false
iff when instead some of x in universe
to P(x) then there are some of cases
be false.
The truth – value of Quantifier sentence.
Definition.
x[P(x)] has the truth – value is true iff when
instead some of x in universe to P(x) then
the cases be true.
x[P(x)] has the truth – value is false iff
when instead all of x in universe to P(x)
then there are all of cases be false.
The truth – value of Quantifier sentence.
Example. Find the truth – value of Quantifier sentences.
1) x[x < 5] , U = {0, 1, 2, 3 }
solve. Give P(x) = x < 5
P(0) = 0< 5 (True)
P(1) = 1< 5 (True)
P(2) = 2< 5 (True)
P(3) = 3< 5 (True)
P(4) = 4< 5 (True)
Then instead all of x in U to P(x) is true all cases.
Thus x[x < 5] , U = {0, 1, 2, 3 } has truth – value is True.
The truth – value of Quantifier sentence.
Example. Find the truth – value of Quantifier
sentences.
2) x[x < 5] , U = I
solve. Give P(x) = x < 5
then P(8) = 8 < 5 (False)
Then instead some of x in U to P(x) is false
some case.
Thus x[x < 5] , U = I has truth – value is False.
The truth – value of Quantifier sentence.
Example. Find the truth – value of Quantifier
sentences.
3) x[x < 5] , U = I
solve. Give P(x) = x < 5
then P(6) = 6 < 5 (True)
Then instead some of x in U to P(x) is true
some case.
Thus x[x < 5] , U = I has truth – value is True.
The truth – value of Quantifier sentence.
Example. Find the truth – value of Quantifier sentences.
4) x[x < 5] , U = { 6, 7, 8 }
solve. Give P(x) = x < 5
P(6) = 0< 5 (False)
P(7) = 1< 5 (False)
P(8) = 2< 5 (False)
Then instead all of x in U to P(x) is false all cases.
Thus x[x < 5] , U = { 6, 7, 8 } has truth – value is False.
The truth – value of Quantifier sentence.
Example. Find the truth – value of Quantifier sentences.
5) x[(x < 0) (x2 > 0)] , U = {-1, 0, 1 }
solve. Give P(x) = (x < 0) (x2 > 0)
P(-1) = -1 < 0 (-1)2 > 0 (True)
P(0) = 0 < 0 (-1)2 > 0 (True)
P(1) = 1 < 0 (-1)2 > 0 (True)
Then instead all of x in U to P(x) is true all cases.
Thus x[(x < 0) (x2 > 0)] , U = {-1, 0, 1 }
has truth – value is True.
The truth – value of Quantifier sentence.
Example. Find the truth – value of Quantifier sentences.
6) x[(x < 0) x(x2 > 0)] , U = {-1, 0, 1 }
solve. Give P(x) = (x < 0)
P(1) = 1 < 0 (False)
Thus x[(x < 0) , U = {-1, 0, 1 } is False
Give P(x) = (x2 > 0)
P(0) = 02 > 0 (False)
Thus x[(x2 > 0)], U = {-1, 0, 1 } is False
Hence x[(x < 0) x(x2 > 0)] be F F that is True.
The truth – value of Quantifier sentence.
Example. Find the truth – value of Quantifier sentences.
7) x[(x < 0) (x - 1 = 0)] , U = {-1, 0, 1 }
solve. Give P(x) = (x < 0) (x - 1 = 0)
P(-1) = (-1 < 0) (-1 - 1 = 0) (False)
P(0) = (0 < 0) (0 - 1 = 0) (False)
P(1) = (1 < 0) (1 - 1 = 0) (False)
Then instead all of x in U to P(x) is false all cases.
Thus x[(x < 0) (x - 1 = 0)] , U = {-1, 0, 1 }
has truth – value is False.
The truth – value of Quantifier sentence.
Example. Find the truth – value of Quantifier sentences.
8) x[(x < 0) x (x - 1 = 0)] , U = {-1, 0, 1 }
solve. Give P(x) = (x < 0)
P(-1) = -1 < 0 (True)
Thus x [(x < 0) , U = {-1, 0, 1 } is True
Give P(x) = (x – 1 = 0)
P(1) = (1 – 1 = 0) (True)
Thus x[(x – 1 = 0)], U = {-1, 0, 1 } is True.
Hence x[(x < 0) x (x - 1 = 0)] be T T that is True.
Equivalent and Negation of
Quantifier sentence.
Let p and q be statement
P(x) and Q(x) be Open sentence
x[P(x)] , x[P(x)] , x[Q(x)] and x[Q(x)]
be Quantifier sentence.
Then equivalent is the same together.
Equivalent and Negation of
Quantifier sentence.
Example.
statement Open sentence
p q q p P(x) Q(x) Q(x) P(x)
p q q p P(x) Q(x) Q(x) P(x)
(p q) p q (P(x) Q(x)) P(x) Q(x)
(p q) p q (P(x) Q(x)) P(x) Q(x)
Equivalent of Quantifier sentence.
Example.
1. x[P(x) Q(x)] x[ P(x) Q(x)]
2. x[P(x) Q(x)] x[ Q(x) P(x)]
3. x[ P(x) Q(x)] x[P(x) Q(x)]
4. x[ (P(x) Q(x))] x[ P(x) Q(x)]
Negation of Quantifier sentence.
x[P(x)] x[ P(x)]
x [P(x)] x[ P(x)]
Example. Find the Negation of quantifier sentence.
1. x[x + 3 > 5]
Answer x[ x + 3 5]
Negation of Quantifier sentence.
Example. Find the Negation of quantifier sentence.
2. x[x - 0 = 4]
Answer x[ x – 0 ≠ 4]
3. x[x > 0] x[x2 < 0]
Solve. [ x[x > 0] x[x2 < 0]]
x[x > 0] x[x2 < 0]
x[x 0] x[x2 0]
Answer x[x 0] x[x2 0]
Negation of Quantifier sentence.
Example. Find the Negation of quantifier sentence.
4. x[x ≠ 0] x[x ≠ 0]
Solve. [ x[x ≠ 0] x[x ≠ 0]]
x[x ≠ 0] x[x ≠ 0]
x[x ≠ 0] x[x = 0]
Answer x[x ≠ 0] x[x = 0]
Negation of Quantifier sentence.
Example. Find the Negation of quantifier sentence.
5. x[P(x) Q(x)]
Solve. [ x[P(x) Q(x)]]
x[ [P(x) Q(x)]]
x[P(x) Q(x)
Answer x[P(x) Q(x)
Negation of Quantifier sentence.
Example. Find the Negation of quantifier sentence.
6. There are real number x be rational
number but not be integer number.
Solve. Give P(x) be x is rational number
Q(x) be x is integer number
then x[P(x) Q(x)]
thus x[P(x) Q(x)]
x[ [P(x) Q(x)]]
x[ [P(x) Q(x)]]
Answer For all real number x is not necessary be
rational number all or have to be integer number.
The truth – value of two Quantifier sentences.
We can write the truth – value of two quantifier sentences
to be 8 patterns such that
x y[P(x,y)] x y[Px,y)] x y[P(x,y)] x y[P(x,y)]
y x[P(x,y)] y x[Px,y)] y x[P(x,y)] y x[P(x,y)]
The truth – value of two Quantifier sentences.
Definition.
x y[P(x,y)] has the truth – value is true iff instead
x and y with a and b all in universe
then P(a,b) is true all.
x y[P(x,y)] has the truth – value is false iff instead
x and y with a and b some in universe
then P(a,b) is false.
x y[P(x,y)] or y x [P(x,y)]
Example.
1) Give U = { -1 , 0 , 1 } Find the truth – value following
Problems.
1.1 x y[xy < 2]
Solve.
Give P(x,y) be xy < 2
Then we get P(-1,-1) be (-1)(-1) < 2 (True)
P(-1,0) be (-1)(0) < 2 (True)
P(-1,1) be (-1)(1) < 2 (True)
P(0,-1) be (0)(-1) < 2 (True)
P(0,0) be (0)(0) < 2 (True)
P(0,1) be (0)(1) < 2 (True)
P(1,-1) be (1)(-1) < 2 (True)
P(1,0) be (1)(0) < 2 (True)
P(1,1) be (1)(1) < 2 (True)
Thus x y[xy < 2] is true.
x y[P(x,y)] or y x [P(x,y)]
Example.
1) Give U = { -1 , 0 , 1 } Find the truth – value following
Problems.
1.2 x y[x + y < 2]
Solve.
Give P(x,y) be x + y < 2
Then you can see P(1, 1) be 1 + 1 < 2 (False)
Thus x y[xy < 2] is false.
x y[P(x,y)] or y x [P(x,y)]
Example.
2) Find the truth – value of the following sentence.
“For all real number x and y that x + y = y + x”
Solve.
We can write to be symbol that is x y[x + y = y + x]
We can use the lesson before about property of real number
that is commutative addition of real number then x + y = y + x
always.
Hence x y[x + y = y + x] is true
The truth – value of two Quantifier sentences.
Definition.
x y[Px,y)] has the truth – value is true iff instead
x and y with a and b some in universe
then P(a,b) is true.
x y[Px,y)] has the truth – value is false iff instead
x and y with a and b all in universe
then P(a,b) is false all.
x y[Px,y)] or y x[Px,y)]
Example.
1) Give U = { -1 , 0 , 1 } Find the truth – value following
Problems.
1.1 x y[2x + y = 2]
Solve.
Give P(x,y) be 2x + y = 2
Then we get P(1,0) be 2(1)+0 = 2 (True)
Thus x y[Px,y)] is true.
x y[Px,y)] or y x[Px,y)]
Example.
1) Give U = { -1 , 0 , 1 } Find the truth – value following
Problems.
1.2 x y[x + y > 2]
Solve.
Give P(x,y) be x + y > 2
Then we get P(-1,-1) be (-1) + (-1) > 2 (False)
P(-1,0) be (-1) + (0) > 2 (False)
P(-1,1) be (-1) + (1) > 2 (False)
P(0,-1) be (0) + (-1) > 2 (False)
P(0,0) be (0) + (0) > 2 (False)
P(0,1) be (0) + (1) > 2 (False)
P(1,-1) be (1) + (-1) > 2 (False)
P(1,0) be (1) + (0) > 2 (False)
P(1,1) be (1) + (1) > 2 (False)
Thus x y[x + y > 2] is False.
The truth – value of two Quantifier sentences.
Definition.
x y[P(x,y)] has the truth – value is true iff instead
x with all in universe then y[P(x,y)] is true.
x y[P(x,y)] has the truth – value is false iff instead
x with a some in universe then y[P(x,y)]
is false.
x y[P(x,y)] or y x[P(x,y)]
Example.
1) Give U = { -1 , 0 , 1 } Find the truth – value following
Problems.
1.1 x y[x + y = 0]
Solve.
Give P(x,y) be x + y = 0
Then we instead x = -1 we can see y[x + y = 0] that is y = 1
Hence -1 + 1 = 0 .Thus is true.
Then we instead x = 0 we can see y[x + y = 0] that is y = 0
Hence 0 + 0 = 0 .Thus is true.
Then we instead x = 1 we can see y[x + y = 0] that is y = -1
Hence 1 + (-1) = 0 .Thus is true.
Thus x y[x + y = 0] is true.
x y[P(x,y)] or y x[P(x,y)]
Example.
1) Give U = { -1 , 0 , 1 } Find the truth – value following
Problems.
1.2 x y[x < y]
Solve.
Give P(x,y) be x < y
Then we instead x = 1 we can see y[ 1 < y]
Then give y = -1 .Thus 1 < -1 is false
y = 0 . Thus 1 < 0 is false
y = 1 . Thus 1 < 1 is false
Thus x y[x < y] is false.
x y[P(x,y)] or y x[P(x,y)]
Example.
2) Give U is set of real number .Find the truth – value
following Problems.
2.1 x y[x + y = 1]
Solve.
Give P(x,y) be x + y = 1
Then we instead x = a for a be all real number.
Then we get y[x + y = 1] .
Thus we can find y = a – 1 all in real number.
That a + (a – 1) = 0
Thus x y[x + y = 1] is true.
x y[P(x,y)] or y x[P(x,y)]
Example.
2) Give U is set of real number .Find the truth – value
following Problems.
2.2 x y[x = y2]
Solve.
Give P(x,y) be x = y2
Then we instead x = -1 thus we get y[ -1 = y2]
Hence we can’t find y2 = -1 all in real number.
Thus x y[x = y2] is false.
The truth – value of two Quantifier sentences.
Definition.
x y[P(x,y)] has the truth – value is true iff instead
x with a some in universe then y[P(x,y)]
is true.
x y[P(x,y)] has the truth – value is false iff instead
x with a all in universe then y[P(x,y)]
is false.
x y[P(x,y)] or y x[P(x,y)]
Example.
1) Give U = { -1 , 0 , 1 } Find the truth – value following
Problems.
1.1 x y [x y]
Solve.
Give P(x,y) be x y
Then we instead x = -1 we can see y[ -1 y]
Hence y = -1 we get -1 -1 (True)
y = 0 we get -1 0 (True)
y = 1 we get -1 1 (True)
Thus x y [x y] is true.
x y[P(x,y)] or y x[P(x,y)]
Example.
1) Give U = { -1 , 0 , 1 } Find the truth – value following
Problems.
1.2 x y [x + y = 0]
Solve.
Give P(x,y) be x + y = 0
Then we instead x = -1 we can see y[ -1 + y = 0] is false.
Then we instead x = 0 we can see y[ 0 + y = 0] is false.
Then we instead x = 1 we can see y[ 1 + y = 0] is false.
Thus x y [x + y = 0] is false
x y[P(x,y)] or y x[P(x,y)]
Example.
2) Give U is set of real number. Find the truth – value
following Problems.
2.1 x y [x + y = y]
Solve.
Give P(x,y) be x + y = y
Then we instead x = 0 we can see y[ 0 + y = y]
Hence y = b that is all real number is true.
Thus x y [x + y = y] is true.
x y[P(x,y)] or y x[P(x,y)]
Example.
2) Give U is set of real number. Find the truth – value
following Problems.
2.2 x y [x y]
Solve.
Give P(x,y) be x y
Then we instead x = a when a is real number.
we can see y [a y] is false because y can be a + 1.
Thus x y [x y] is false.
Repeat Lesson.
Example.
1) Give U is set of natural number. Find the truth – value
following Problems.
1.1 x y [y = x + 1]
Solve.
Give P(x,y) be y = x + 1
Then we instead x = a when a is natural number.
we can see y[y = a + 1] is true because y can be a + 1.
Thus x y [y = x + 1] is true.
Repeat Lesson.
Example.
1) Give U is set of natural number. Find the truth – value
following Problems.
1.2 y x [y = x + 1]
Solve.
Give P(x,y) be y = x + 1
Then we instead y = 1.
we can’t see x [ 1 = x + 1] because the natural number
is least be 1
Thus y x [y = x + 1] is false.
Repeat Lesson.
Example.
2) Give U is set of real number. Find the truth – value
following Problems.
2.1 x y [x + y = 0]
Solve.
Give P(x,y) be x + y = 0
Then we instead x = a when a is real number.
we can see y[ a + y = 0] is true because y can be –a .
Thus x y [x + y = 0] is true.
Repeat Lesson.
Example.
2) Give U is set of real number. Find the truth – value
following Problems.
2.2 y x [x + y = 0]
Solve.
Give P(x,y) be x + y = 0
Then we instead y = b when a is real number.
we can see x [x + b = 0] is false because x = -b only
not can be another.
Thus y x [x + y = 0] is false.
The logic

Weitere ähnliche Inhalte

Was ist angesagt?

2.3.1 properties of functions
2.3.1 properties of functions2.3.1 properties of functions
2.3.1 properties of functions
Northside ISD
 
Logic Statements:Conditional statements
Logic Statements:Conditional statementsLogic Statements:Conditional statements
Logic Statements:Conditional statements
Mariele Brutas
 
logic and set theory
logic and set theorylogic and set theory
logic and set theory
Nathan Trillo
 
Rational functions
Rational functionsRational functions
Rational functions
zozima
 

Was ist angesagt? (20)

Logical connectives
Logical connectivesLogical connectives
Logical connectives
 
Propositional logic
Propositional logicPropositional logic
Propositional logic
 
Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكرو
Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكروDiscrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكرو
Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكرو
 
Truth table
Truth tableTruth table
Truth table
 
Mathematical Logic Part 2
Mathematical Logic Part 2Mathematical Logic Part 2
Mathematical Logic Part 2
 
Composition and inverse of functions
Composition  and inverse of functionsComposition  and inverse of functions
Composition and inverse of functions
 
1. Logic.pptx
1. Logic.pptx1. Logic.pptx
1. Logic.pptx
 
Truth table
Truth tableTruth table
Truth table
 
Loob and Kapwa: Filipino Philosophy
Loob and Kapwa: Filipino PhilosophyLoob and Kapwa: Filipino Philosophy
Loob and Kapwa: Filipino Philosophy
 
Unit 1 rules of inference
Unit 1  rules of inferenceUnit 1  rules of inference
Unit 1 rules of inference
 
2.3.1 properties of functions
2.3.1 properties of functions2.3.1 properties of functions
2.3.1 properties of functions
 
Mathematical Logic
Mathematical LogicMathematical Logic
Mathematical Logic
 
Maths P.P.T. Connectives
Maths P.P.T. ConnectivesMaths P.P.T. Connectives
Maths P.P.T. Connectives
 
Relations and functions
Relations and functions Relations and functions
Relations and functions
 
Logic Statements:Conditional statements
Logic Statements:Conditional statementsLogic Statements:Conditional statements
Logic Statements:Conditional statements
 
logic and set theory
logic and set theorylogic and set theory
logic and set theory
 
Logic - Logical Propositions
Logic - Logical Propositions Logic - Logical Propositions
Logic - Logical Propositions
 
permutation & combination
permutation & combinationpermutation & combination
permutation & combination
 
Rational functions
Rational functionsRational functions
Rational functions
 
Continuity of a Function
Continuity of a Function Continuity of a Function
Continuity of a Function
 

Andere mochten auch

Want to know about java
Want to know about javaWant to know about java
Want to know about java
adityamadgula
 
Discrete Structures lecture 2
 Discrete Structures lecture 2 Discrete Structures lecture 2
Discrete Structures lecture 2
Ali Usman
 
Chapter 1 Logic of Compound Statements
Chapter 1 Logic of Compound StatementsChapter 1 Logic of Compound Statements
Chapter 1 Logic of Compound Statements
guestd166eb5
 
Introduction to parliamentary debate
Introduction to parliamentary debateIntroduction to parliamentary debate
Introduction to parliamentary debate
Abhinandan Ray
 

Andere mochten auch (13)

Propositions - Discrete Structures
Propositions - Discrete Structures Propositions - Discrete Structures
Propositions - Discrete Structures
 
Logic (slides)
Logic (slides)Logic (slides)
Logic (slides)
 
Propositional logic
Propositional logicPropositional logic
Propositional logic
 
Discrete mathematics
Discrete mathematicsDiscrete mathematics
Discrete mathematics
 
Want to know about java
Want to know about javaWant to know about java
Want to know about java
 
Lec 02 logical eq (Discrete Mathematics)
Lec 02   logical eq (Discrete Mathematics)Lec 02   logical eq (Discrete Mathematics)
Lec 02 logical eq (Discrete Mathematics)
 
Discrete Mathematics - Propositional Logic
Discrete Mathematics - Propositional LogicDiscrete Mathematics - Propositional Logic
Discrete Mathematics - Propositional Logic
 
Discrete Structures lecture 2
 Discrete Structures lecture 2 Discrete Structures lecture 2
Discrete Structures lecture 2
 
Propositional logic
Propositional logicPropositional logic
Propositional logic
 
Chapter 1 Logic of Compound Statements
Chapter 1 Logic of Compound StatementsChapter 1 Logic of Compound Statements
Chapter 1 Logic of Compound Statements
 
MDD and the Tautology Problem: Discussion Notes.
MDD and the Tautology Problem: Discussion Notes.MDD and the Tautology Problem: Discussion Notes.
MDD and the Tautology Problem: Discussion Notes.
 
Introduction to parliamentary debate
Introduction to parliamentary debateIntroduction to parliamentary debate
Introduction to parliamentary debate
 
Truth tables complete and p1 of short method
Truth tables complete and p1 of short methodTruth tables complete and p1 of short method
Truth tables complete and p1 of short method
 

Ähnlich wie The logic

Mathematical foundations of computer science
Mathematical foundations of computer scienceMathematical foundations of computer science
Mathematical foundations of computer science
BindhuBhargaviTalasi
 
logicproof-141212042039-conversion-gate01.pdf
logicproof-141212042039-conversion-gate01.pdflogicproof-141212042039-conversion-gate01.pdf
logicproof-141212042039-conversion-gate01.pdf
PradeeshSAI
 

Ähnlich wie The logic (20)

L4-IntroducClick to edit Master title styletion to logic.pptx
L4-IntroducClick to edit Master title styletion to logic.pptxL4-IntroducClick to edit Master title styletion to logic.pptx
L4-IntroducClick to edit Master title styletion to logic.pptx
 
CS202Ch1.ppt
CS202Ch1.pptCS202Ch1.ppt
CS202Ch1.ppt
 
Bab 1 proposisi
Bab 1 proposisiBab 1 proposisi
Bab 1 proposisi
 
Logic&proof
Logic&proofLogic&proof
Logic&proof
 
Drinkfromme.pptx
Drinkfromme.pptxDrinkfromme.pptx
Drinkfromme.pptx
 
Konjungsi materi kelompok dua
Konjungsi  materi kelompok duaKonjungsi  materi kelompok dua
Konjungsi materi kelompok dua
 
Mathematical foundations of computer science
Mathematical foundations of computer scienceMathematical foundations of computer science
Mathematical foundations of computer science
 
Logic worksheet
Logic worksheetLogic worksheet
Logic worksheet
 
Chapter 01 - p1.pdf
Chapter 01 - p1.pdfChapter 01 - p1.pdf
Chapter 01 - p1.pdf
 
MFCS PPT.pdf
MFCS PPT.pdfMFCS PPT.pdf
MFCS PPT.pdf
 
logicproof-141212042039-conversion-gate01.pdf
logicproof-141212042039-conversion-gate01.pdflogicproof-141212042039-conversion-gate01.pdf
logicproof-141212042039-conversion-gate01.pdf
 
LOGIC
LOGICLOGIC
LOGIC
 
Chapter1p1
Chapter1p1Chapter1p1
Chapter1p1
 
Arguments and methods of proof
Arguments and methods of proofArguments and methods of proof
Arguments and methods of proof
 
Nature of Logic.pptx
Nature of Logic.pptxNature of Logic.pptx
Nature of Logic.pptx
 
Per3 logika&amp;pembuktian
Per3 logika&amp;pembuktianPer3 logika&amp;pembuktian
Per3 logika&amp;pembuktian
 
Logic and proof
Logic and proofLogic and proof
Logic and proof
 
Artificial intelligent Lec 5-logic
Artificial intelligent Lec 5-logicArtificial intelligent Lec 5-logic
Artificial intelligent Lec 5-logic
 
Logic
LogicLogic
Logic
 
Chapter1p1.pdf
Chapter1p1.pdfChapter1p1.pdf
Chapter1p1.pdf
 

Mehr von Nittaya Noinan

นำเสนอจำนวนจริงเพิ่มเติม
นำเสนอจำนวนจริงเพิ่มเติมนำเสนอจำนวนจริงเพิ่มเติม
นำเสนอจำนวนจริงเพิ่มเติม
Nittaya Noinan
 
แบบฝึกหัดเมทริกซ์
แบบฝึกหัดเมทริกซ์แบบฝึกหัดเมทริกซ์
แบบฝึกหัดเมทริกซ์
Nittaya Noinan
 
โครงงานคณิตศาสตร์3
โครงงานคณิตศาสตร์3โครงงานคณิตศาสตร์3
โครงงานคณิตศาสตร์3
Nittaya Noinan
 
แบบฝึกหัดจำนวนจริงเพิ่มเติม
แบบฝึกหัดจำนวนจริงเพิ่มเติมแบบฝึกหัดจำนวนจริงเพิ่มเติม
แบบฝึกหัดจำนวนจริงเพิ่มเติม
Nittaya Noinan
 
แบบฝึกหัดจำนวนจริงเพิ่มเติม
แบบฝึกหัดจำนวนจริงเพิ่มเติมแบบฝึกหัดจำนวนจริงเพิ่มเติม
แบบฝึกหัดจำนวนจริงเพิ่มเติม
Nittaya Noinan
 
นำเสนอจำนวนจริงเพิ่มเติม
นำเสนอจำนวนจริงเพิ่มเติมนำเสนอจำนวนจริงเพิ่มเติม
นำเสนอจำนวนจริงเพิ่มเติม
Nittaya Noinan
 
แบบฝึกหัดเรขาคณิตวิเคราะห์
แบบฝึกหัดเรขาคณิตวิเคราะห์แบบฝึกหัดเรขาคณิตวิเคราะห์
แบบฝึกหัดเรขาคณิตวิเคราะห์
Nittaya Noinan
 
แบบฝึกทักษะตรรกศาสตร์
แบบฝึกทักษะตรรกศาสตร์แบบฝึกทักษะตรรกศาสตร์
แบบฝึกทักษะตรรกศาสตร์
Nittaya Noinan
 
แบบฝึกทักษะตรรกศาสตร์
แบบฝึกทักษะตรรกศาสตร์แบบฝึกทักษะตรรกศาสตร์
แบบฝึกทักษะตรรกศาสตร์
Nittaya Noinan
 
แบบฝึกหัดทฤษฏีจำนวนเบื้องต้น
แบบฝึกหัดทฤษฏีจำนวนเบื้องต้นแบบฝึกหัดทฤษฏีจำนวนเบื้องต้น
แบบฝึกหัดทฤษฏีจำนวนเบื้องต้น
Nittaya Noinan
 
แบบฝึกทักษะฟังก์ชัน(เพิ่มเติม)ตัวจริง
แบบฝึกทักษะฟังก์ชัน(เพิ่มเติม)ตัวจริงแบบฝึกทักษะฟังก์ชัน(เพิ่มเติม)ตัวจริง
แบบฝึกทักษะฟังก์ชัน(เพิ่มเติม)ตัวจริง
Nittaya Noinan
 
แบบฝึกทักษะฟังก์ชันตัวจริง
แบบฝึกทักษะฟังก์ชันตัวจริงแบบฝึกทักษะฟังก์ชันตัวจริง
แบบฝึกทักษะฟังก์ชันตัวจริง
Nittaya Noinan
 
แบบฝึกหัดจำนวนจริงเพิ่มเติม
แบบฝึกหัดจำนวนจริงเพิ่มเติมแบบฝึกหัดจำนวนจริงเพิ่มเติม
แบบฝึกหัดจำนวนจริงเพิ่มเติม
Nittaya Noinan
 
แบบฝึกทักษะตรีโกณมิติตัวจริง
แบบฝึกทักษะตรีโกณมิติตัวจริงแบบฝึกทักษะตรีโกณมิติตัวจริง
แบบฝึกทักษะตรีโกณมิติตัวจริง
Nittaya Noinan
 
แบบฝึกหัดจำนวนจริงพื้นฐาน
แบบฝึกหัดจำนวนจริงพื้นฐานแบบฝึกหัดจำนวนจริงพื้นฐาน
แบบฝึกหัดจำนวนจริงพื้นฐาน
Nittaya Noinan
 
แบบฝึกทักษะการให้เหตุผล
แบบฝึกทักษะการให้เหตุผลแบบฝึกทักษะการให้เหตุผล
แบบฝึกทักษะการให้เหตุผล
Nittaya Noinan
 
งานนำเสนอMatrixของจริง
งานนำเสนอMatrixของจริงงานนำเสนอMatrixของจริง
งานนำเสนอMatrixของจริง
Nittaya Noinan
 
นำเสนอตรีโกณมิติจริง
นำเสนอตรีโกณมิติจริงนำเสนอตรีโกณมิติจริง
นำเสนอตรีโกณมิติจริง
Nittaya Noinan
 

Mehr von Nittaya Noinan (20)

ตัวจริง
ตัวจริงตัวจริง
ตัวจริง
 
นำเสนอจำนวนจริงเพิ่มเติม
นำเสนอจำนวนจริงเพิ่มเติมนำเสนอจำนวนจริงเพิ่มเติม
นำเสนอจำนวนจริงเพิ่มเติม
 
แบบฝึกหัดเมทริกซ์
แบบฝึกหัดเมทริกซ์แบบฝึกหัดเมทริกซ์
แบบฝึกหัดเมทริกซ์
 
โครงงานคณิตศาสตร์3
โครงงานคณิตศาสตร์3โครงงานคณิตศาสตร์3
โครงงานคณิตศาสตร์3
 
แบบฝึกหัดจำนวนจริงเพิ่มเติม
แบบฝึกหัดจำนวนจริงเพิ่มเติมแบบฝึกหัดจำนวนจริงเพิ่มเติม
แบบฝึกหัดจำนวนจริงเพิ่มเติม
 
แบบฝึกหัดจำนวนจริงเพิ่มเติม
แบบฝึกหัดจำนวนจริงเพิ่มเติมแบบฝึกหัดจำนวนจริงเพิ่มเติม
แบบฝึกหัดจำนวนจริงเพิ่มเติม
 
นำเสนอจำนวนจริงเพิ่มเติม
นำเสนอจำนวนจริงเพิ่มเติมนำเสนอจำนวนจริงเพิ่มเติม
นำเสนอจำนวนจริงเพิ่มเติม
 
แบบฝึกหัดเรขาคณิตวิเคราะห์
แบบฝึกหัดเรขาคณิตวิเคราะห์แบบฝึกหัดเรขาคณิตวิเคราะห์
แบบฝึกหัดเรขาคณิตวิเคราะห์
 
แบบฝึกทักษะตรรกศาสตร์
แบบฝึกทักษะตรรกศาสตร์แบบฝึกทักษะตรรกศาสตร์
แบบฝึกทักษะตรรกศาสตร์
 
แบบฝึกทักษะตรรกศาสตร์
แบบฝึกทักษะตรรกศาสตร์แบบฝึกทักษะตรรกศาสตร์
แบบฝึกทักษะตรรกศาสตร์
 
แบบฝึกหัดทฤษฏีจำนวนเบื้องต้น
แบบฝึกหัดทฤษฏีจำนวนเบื้องต้นแบบฝึกหัดทฤษฏีจำนวนเบื้องต้น
แบบฝึกหัดทฤษฏีจำนวนเบื้องต้น
 
แบบฝึกทักษะฟังก์ชัน(เพิ่มเติม)ตัวจริง
แบบฝึกทักษะฟังก์ชัน(เพิ่มเติม)ตัวจริงแบบฝึกทักษะฟังก์ชัน(เพิ่มเติม)ตัวจริง
แบบฝึกทักษะฟังก์ชัน(เพิ่มเติม)ตัวจริง
 
แบบฝึกทักษะฟังก์ชันตัวจริง
แบบฝึกทักษะฟังก์ชันตัวจริงแบบฝึกทักษะฟังก์ชันตัวจริง
แบบฝึกทักษะฟังก์ชันตัวจริง
 
แบบฝึกหัดจำนวนจริงเพิ่มเติม
แบบฝึกหัดจำนวนจริงเพิ่มเติมแบบฝึกหัดจำนวนจริงเพิ่มเติม
แบบฝึกหัดจำนวนจริงเพิ่มเติม
 
แบบฝึกทักษะตรีโกณมิติตัวจริง
แบบฝึกทักษะตรีโกณมิติตัวจริงแบบฝึกทักษะตรีโกณมิติตัวจริง
แบบฝึกทักษะตรีโกณมิติตัวจริง
 
แบบฝึกหัดจำนวนจริงพื้นฐาน
แบบฝึกหัดจำนวนจริงพื้นฐานแบบฝึกหัดจำนวนจริงพื้นฐาน
แบบฝึกหัดจำนวนจริงพื้นฐาน
 
แบบฝึกทักษะการให้เหตุผล
แบบฝึกทักษะการให้เหตุผลแบบฝึกทักษะการให้เหตุผล
แบบฝึกทักษะการให้เหตุผล
 
เซต
เซตเซต
เซต
 
งานนำเสนอMatrixของจริง
งานนำเสนอMatrixของจริงงานนำเสนอMatrixของจริง
งานนำเสนอMatrixของจริง
 
นำเสนอตรีโกณมิติจริง
นำเสนอตรีโกณมิติจริงนำเสนอตรีโกณมิติจริง
นำเสนอตรีโกณมิติจริง
 

The logic

  • 2. Proposition or Statement Statement is sentence that is either true or false only .
  • 3. Example The following sentences are statement. 1. Cheangmai is not in the south of Thailand. (True) 2. 9 3 (True) 3. 17 + 8 25 (False) 4. is Rational Numbers (False) 5. Empty Set is subset of all of set (True)
  • 4. Example The following sentences are not statement. 1. Is it rained ? 2. Don’t move your body. 3. Help me ! 4. Please open the door. 5. Waw ! So beautiful. 6. Get out ! 7. I wish to travel so much.
  • 5. Connectives 1. And 2. Or 3. If…that… or Implies 4. If and only if or equivalent to 5. Negation or Xor
  • 6. Connectives 1. And the symbol is “ ” F F F T P Q FF TF FT TT QP
  • 7. Connectives 1. And symbol is “ ” Example 1) is irrational number and is odd number solve Give p is “ is irrational number” has truth –value is true q is “ is odd number” has truth –value is true Then we can write be symbol is p q Thus this statement has truth – value is true Answer True
  • 8. Connectives 1. And symbol is “ ” Example 2) 0 is integer number and 2.4 is even number solve Give p is “ 0 is integer number” has truth –value is true q is “ 2.4 is even number” has truth –value is false Then we can write be symbol is p q Thus this statement has truth – value is false Answer False
  • 9. Connectives 2. Or the symbol is “ ” F T T T P Q FF TF FT TT QP
  • 10. Connectives 2. Or symbol is “ ” Example 1) 2 is even number or 23 is odd number solve Give p is “ 2 is even number” has truth –value is true q is “ 23 is odd number” has truth –value is false Then we can write be symbol is p q Thus this statement has truth – value is true Answer True
  • 11. Connectives 2. Or symbol is “ ” Example 2) is rational number or is interger number solve Give p is “ is rational number” has truth –value is false q is “ is integer number” has truth –value is false Then we can write be symbol is p q Thus this statement has truth – value is false Answer False
  • 12. Connectives 3. If…then… the symbol is “ ” T T F T P Q FF TF FT TT QP
  • 13. Connectives 3. If …then… symbol is “ ” Example 1) If 2 + 3 = 3 + 2 then 6(2 + 3) = 6(3 + 2) solve Give p is “2 + 3 = 3 + 2 ” has truth –value is true q is “6(2 + 3) = 6(3 + 2)” has truth –value is true Then we can write be symbol is p q Thus this statement has truth – value is true Answer True
  • 14. Connectives 3. If …then… symbol is “ ” Example 2) If 5 is odd number then 54 is even number solve Give p is “ 5 is odd number” has truth –value is true q is “ 54 is even number” has truth –value is false Then we can write be symbol is p q Thus this statement has truth – value is false Answer False
  • 15. Connectives 4. If and only if the symbol is “ ” T F F T P Q FF TF FT TT QP
  • 16. Connectives 4. If and only if symbol is “ ” Example 1) 7 is divided by 2 if and only if 7 is even number solve Give p is “ 7 is divided by 2 ” has truth –value is false q is “7 is even number” has truth –value is false Then we can write be symbol is p q Thus this statement has truth – value is true Answer True
  • 17. Connectives 4. If and only if symbol is “ ” Example 2) 2 < 3 if and only if solve Give p is “ 2 < 3 ” has truth –value is true q is “ ” has truth –value is false Then we can write be symbol is p q Thus this statement has truth – value is false Answer False
  • 18. Connectives 5. Negation the symbol is “ ” TF FT PP
  • 19. Connectives 5. Negation symbol is “ ” Example 1) 2 + 3 = 5 solve Give p is “ 2 + 3 = 5 ” has truth –value is true Negation of this statement is “2 + 3 ≠ 5” has truth –value is false Then we can write be symbol is p Thus Negation of this statement has truth – value is false Answer False
  • 20. Connectives 5. Negation symbol is “ ” Example 2) Spider is not insect solve Give p is “Spider is not insect” has truth –value is false Negation of this statement is “Spider is insect” has truth –value is true Then we can write be symbol is p Thus Negation of this statement has truth – value is true Answer True
  • 21. Truth – value of Statement Example Find the Truth – value of the fallowing statements 1) Cheangmai and Thonburi used to capital of Thailand Solve Give p is Cheangmai used to capital of Thailand Give q is Thonburi used to capital of Thailand Then we can write be symbol is p q Since p has the truth – value is false q has the truth – value is true Thus this statement has truth – value is false Answer False
  • 22. Truth – value of Statement Example 2) Give a , b and c be statements have truth – value is true , true and false following order Find the Truth – value of the fallowing statements ( a b ) c Solve a b has the truth – value is true and c is false Thus ( a b ) c has truth – value is true Answer True
  • 23. Truth – value of Statement Example 3) Find the Truth – value of the fallowing statements ( a b ) When a , b be statements all have truth – value is true Solve ( a b ) T T F F T Answer True
  • 24. Truth – value of Statement Example 4) Give p , q , r and s be statements have truth – value is true , false , false and true following order Find the Truth – value of the fallowing statements [( p q ) r] (p s) Solve [( p q ) r] (p s) T F F T T F T T T T Answer True
  • 25. Order to find the Truth – value of Statement 1. Braces 2. 3. “ ” or “ ” 4. 5.
  • 26. Truth Table You can see p , q and r be atomic statement from the statement that has connective such as p , p q , p q , (p q) r , (p q) ect. When you don’t give the truth – value p , q and r be variable instead of statement. And we call p , p q , p q , (p q) r , (p q) are statement pattern. Since p , q and r be variable instead of statement then the truth – value of statement pattern have to give the atomic statement all cases.
  • 27. Truth Table * If there is one statement (p) then the cases of the truth – value be 2 cases * If there is two statements (p,q) then the cases of the truth – value be 4 cases * If there is three statements (p, q ,r) then the cases of the truth – value be 8 cases * If there is four statements (p,q,r,s) then the cases of the truth – value be 16 cases Thus if there is n statements then the cases of the truth – value be 2n cases
  • 28. Truth Table Example. 1) Give p and q be statements . Make the truth table of (p q) ( p q) Solve p q P q p q p q (p q) ( p q) T T T F F F F T F F F T F T F T T T F F F F F T T T T T
  • 29. Truth Table Example. 2) Give p and q be statements . Make the truth table of [(p q) (p q)] Solve p q P q q p q (p q) (p q)] [(p q) (p q)] T T T F T T F T F F T T T F F T F F F T F F F T T T T F
  • 30. Truth Table Example. 3) Give p , q and r be statements . Make the truth table of (p q) ( r q) Solve p q r p q r r q (p q) ( r q) T T T T F T T T T F T T T T T F T F F F T T F F F T T T F T T T F T T F T F T T T T F F T T F F F F F F T T T T
  • 31. Truth Table Example. 4) Give p ,q and r be statements . Make the truth table of p ( q) and (p q) Solve p q q p ( q) (p q) (p q) T T F F T F T F T T F T F T F F T F F F T F T F The following the truth table you can observe p ( q) and (p q) is the same case by case
  • 32. Equivalent pattern Observe the following examples. 1) Give p and q be statements . Make the truth table of p q and q p Solve p q p q (p q) q p T T F F T T T F F T F F F T T F T T F F T T T T The following the truth table you can observe p q and q p is the same case by case .Then we can say p q equivalent q p Thus we can write be symbol is p q q p
  • 33. Equivalent pattern Observe the following examples. 2) Give p and q be statements . Make the truth table of (p q) and p q Solve p q p q p q (p q) P q T T F F T F F T F F T T F F F T T F T F F F F T T F T T The following the truth table you can observe (p q) and p q is the same case by case .Then we can say (p q) equivalent p q Thus we can write be symbol is (p q) p q
  • 34. Equivalent pattern Observe the following examples. 3) Give p and q be statements . Make the truth table of p q and p q Solve p q p p q P q T T F F T T F F F F F T T T T F F T F T The following the truth table you can observe p q and p q is not the same case by case . Then we can say p q is not equivalent p q
  • 35. Equivalent pattern Observe the following examples. 4) Give p and q be statements . Consider (p q) (q p) equivalent p q Solve p q p q q p (p q) (q p) P q T T T T T T T F F T F F F T T F F F F F T T T T The following the truth table you can observe (p q) (q p) and p q is the same case by case .Then we can say (p q) (q p) equivalent p q Thus we can write be symbol is (p q) (q p) p q
  • 36. Equivalent pattern Observe the following examples. 5) Consider the two contents that be equivalent or not. “if 82 is even number then 8 is even number” “ if 8 is not even numbr then 82 is not even number” Solve Give p be 82 is even number q be 8 is even number Then p q instead of “if 82 is even number then 8 is even number” q p instead of “ if 8 is not even numbr then 82 is not even number” Thus from the example 1) we got p q equivalent q p Answer The two contents that be equivalent
  • 37. Equivalent pattern Symbol of equivalent pattern is “ ” The following two statements are equivalent. 1) ( p) p 2) p q q p 3) p q q p 4) p q q p 5) p (q r) (p q) r 6) p (q r) (p q) r 7) p (q r) (p q) (p r) 8) p (q r) (p q) (p r) 9) (p q) p q 10) (p q) p q
  • 38. Equivalent pattern Symbol of equivalent pattern is “ ” The following two statements are equivalent. 11) (p q) p q 12) p q p q 13) p q q p 14) p q p q 15) p q (p q) (q p) 16) p p p 17) p p p 18) (p q) r (p r) (q r) 19) (p q) r (p r) (q r) 20) p (q r) (p q) (p r) 21) p (q r) (p q) (p r)
  • 39. Equivalent pattern Symbol of equivalent pattern is “ ” The following two statements are equivalent. 22) p T p T q q 23) p F p F q q 24) T q q p F p 25) T q q p T p F q q p F p
  • 40. Tautology Definiton. The truth – value of statement pattern is true all cases is called Tautology.
  • 41. Tautology Example. 1) Consider the truth – value of statement pattern [(p q) p] q p q p q (p q) p [(p q) p] q T T T T T T F F F T F T T F T F F T F T You can observe [(p q) p] q has the truth – value is true all cases. Then we can say [(p q) p] q is Tautology.
  • 42. Tautology Example. 2) Consider the truth – value of statement pattern (p q) ( q p) be Tautology or not. p q p q p q q p (p q) ( q p) T T F F T T T T F F T F F T F T T F T T T F F T T T T T You can observe (p q) ( q p) has the truth – value is true all cases. Then we can say (p q) ( q p) is Tautology.
  • 43. Tautology Example. 3) Consider the truth – value of statement pattern [(p q) p] q be Tautology or not. p q p q p q (p q) p [(p q) p] q T T F F T F T T F F T F T T F T T F T T F F F T T T T T You can observe [(p q) p] q has the truth – value is true not all cases. Then we can say (p q) ( q p) is not Tautology.
  • 44. Tautology By the ways we can check which the statement pattern is tautology when the statement pattern has connective is “if… then…” by method assume contradiction. That mean assume the statement pattern be false. It has the truth – value is false only one case. ( T F F ) If it is contradition from the assume before. Then the statement pattern be Tautology.
  • 45. Tautology Example. 1) Give p and q be statements . Consider the statement pattern [(p q) p] q is Tautology or not. Solve. assume that [(p q) p] q is false. [(p q) p] q F T F T T T T T Now you can observe we assume [(p q) p] q is false and then it is not contradiction . Thus the truth – value of p is T and the truth – value of q is T make the truth – value [(p q) p] q is false . Answer [(p q) p] q is not Tautology.
  • 46. Tautology Example. 2) Give p and q be statements . Consider the statement pattern (p q) (q p) is Tautology or not. Solve. assume that (p q) (q p) is false. (p q) (q p) F T F T T F F Now you can observe we assume (p q) (q p) is false and then it is contradiction . Thus the truth – value of (p q) (q p) can’t be false . Answer (p q) (q p) is Tautology. Contradiction
  • 47. Tautology Example. 1) Give p and q be statements . Consider the statement pattern ( q p) (q p) is Tautology or not. Solve. assume that ( q p) (q p) is false. ( q p) (q p) F T F F T T F T T Now you can observe we assume ( q p) (q p) is false and then it is not contradiction . Thus the truth – value of p is T and the truth – value of q is T make the truth – value ( q p) (q p) is false . Answer ( q p) (q p) is not Tautology.
  • 48. Tautology Example. 4) Give p ,q and r be statements . Consider the statement pattern [(p q) (q r)] (p r) is Tautology or not. Solve. assume that [(p q) (q r)] (p r) is false. [(p q) (q r)] (p r) F T F T T T F T T T T Now you can observe we assume [(p q) (q r)] (p r) is false and then it is contradiction . Thus the truth – value of [(p q) (q r)] (p r) can’t be false . Answer [(p q) (q r)] (p r) is Tautology. Contradiction
  • 49. Argument Argument that there are statements be causes (P1, P2, P3,…,Pn) and can be conclusion (C) . Thus argument has 2 parts such that causes and coclusion. We can do argument by use Connective “ ” between statement that are causes. And use connective “ ” between causes and conclusion. (P1 P2 P3 … Pn) C There are 2 types of argument that are valid and invalid.
  • 50. Argument (P1 P2 P3 … Pn) C There are 2 types of argument that are valid and invalid. * (P1 P2 P3 … Pn) C be tautology that mean this argument is valid * (P1 P2 P3 … Pn) C be not tautology that mean this argument is invalid
  • 51. Argument Example. 1) Give p and q be statement. Consider the following argument is valid or invalid. cause 1. p q 2. p conclusion q Solve. [(p q) p ] q F T F T T T T Since [(p q) p ] q is Tautology Thus this argument is valid Contradiction
  • 52. Argument Example. 2) Give p , q and r be statement. Consider the following argument is valid or invalid. cause 1. p q 2. q r 3. r conclusion p Solve. [(p q) ( q r ) r ] p F T T F T T T T T T F F F T Since [(p q) p ] q is not Tautology Thus this argument is invalid
  • 53. Argument Example. 3) Consider the following argument is valid or invalid. cause 1. If it rained then the roof is wet 2. the roof is not wet conclusion it is not rained Solve. Give p be it rained q be the roof is wet Then write the symbol. cause 1. p q 2. q conclusion p Thus we can write [(p q) q ] p
  • 54. Argument [(p q) q ] p F T F T T T T T F Since [(p q) p ] q is Tautology Thus this argument is valid Contradiction
  • 55. Argument Example. 4) Consider the following argument is valid or invalid. cause 1. If Dang get bonus then Dang deposit to the bank 2. if Dang deposit to the bank then Dang doesn’t have debt conclusion If Dang doesn’t get bonus then Dang doesn’t have debt Solve. Give p be Dang get bonus q be Dang deposit to the bank r be Dang doesn’t have debt Then write the symbol. cause 1. p q 2. q r conclusion p r Thus we can write [(p q) (q r )] ( p r)
  • 56. Argument [(p q) (q r )] ( p r) F T F T T T F F F F F F Since [(p q) p ] q is not Tautology Thus this argument is invalid
  • 57. Open sentence Open sentence is sentence that there is variable when you instead variable by the member in the universe then you get statement.
  • 58. Example The following sentences are Open sentence. 1. She is student in Kanchanapisekwittayalai school. 2. x 3 3. x2 - 2x + 8 = (x – 4)(x + 2) 4. x.x = x + x 5. x { 1, 2, 3 } 6. If x be natural number then is not real number.
  • 59. Example The following sentences are not Open sentence. 1. Is she your sister? 2. Don’t move your body. 3. X2 + 1 4. 2 { 1, 2, 3 } 5. 2x – 1
  • 60. Quantifier There are 2 Quantifier in Mathematics. Such that 1. “For all” the symbol is “ ” 2. “For some” the symbol is “ ”
  • 61. Quantifier Symbol that we have to know. 1) x be For all of x 2) x be For some of x 3) U be Universe 4) R be Set of real number 5) Q be Set of rational number 6) I or Z be Set of integer number 7) N be Set of natural number
  • 62. Quantifier Example. Write the sentence be symbol. 1) For all of x that x + x = 2x Answer. x[x + x = 2x] ,U = R 2) there are x that x + 0 = 2x Answer. x[x + 0 = 2x] ,U = R 3) For all of x if x is integer number then x is real number Answer. x[x I x R] ,U = R or you can say all interger number be real number.
  • 63. Quantifier Example. Write the sentence be symbol. 4) For all real number be integer number. Answer. x[x I ] ,U = R 5) For some integer number square equal 1 Answer. x[x I x2 = 1] ,U = R if the problem doesn’t refer to universe we should to understand that mean U = R
  • 64. Quantifier Example. Write the symbol besentence. 1) x [x I x < 5] ,U = R Answer. There are x is integer number and less than 5 2) x[x I x < 5] Answer. For all of x if x is integer number then less than 5 3) y x [x2 + y2 = 8] Answer. For all of y and there are x that x2 + y2 = 8
  • 65. Quantifier Example. Write the symbol besentence. 4) y x [x2 + y2 = 8] Answer. For some of y and all of x that x2 + y2 = 8 5) x y[x + y R] Answer. For all of x and y that sum of x + y be real number
  • 66. The truth – value of Quantifier sentence. Consider the truth – value of Quantifier sentence that there 3 parts . 1. Quantifier 2. Open sentence 3. Universe The symbol of the truth – value of Quantifier sentence by instead Open sentence that has x be variable be P(x) Thus the truth – value of Quantifier sentence can write be symbol such that 1. x[P(x)] when universe is U 2. x[P(x)] when universe is U
  • 67. The truth – value of Quantifier sentence. Definition. x[P(x)] has the truth – value is true iff when instead all of x in universe to P(x) then all of cases be true. x[P(x)] has the truth – value is false iff when instead some of x in universe to P(x) then there are some of cases be false.
  • 68. The truth – value of Quantifier sentence. Definition. x[P(x)] has the truth – value is true iff when instead some of x in universe to P(x) then the cases be true. x[P(x)] has the truth – value is false iff when instead all of x in universe to P(x) then there are all of cases be false.
  • 69. The truth – value of Quantifier sentence. Example. Find the truth – value of Quantifier sentences. 1) x[x < 5] , U = {0, 1, 2, 3 } solve. Give P(x) = x < 5 P(0) = 0< 5 (True) P(1) = 1< 5 (True) P(2) = 2< 5 (True) P(3) = 3< 5 (True) P(4) = 4< 5 (True) Then instead all of x in U to P(x) is true all cases. Thus x[x < 5] , U = {0, 1, 2, 3 } has truth – value is True.
  • 70. The truth – value of Quantifier sentence. Example. Find the truth – value of Quantifier sentences. 2) x[x < 5] , U = I solve. Give P(x) = x < 5 then P(8) = 8 < 5 (False) Then instead some of x in U to P(x) is false some case. Thus x[x < 5] , U = I has truth – value is False.
  • 71. The truth – value of Quantifier sentence. Example. Find the truth – value of Quantifier sentences. 3) x[x < 5] , U = I solve. Give P(x) = x < 5 then P(6) = 6 < 5 (True) Then instead some of x in U to P(x) is true some case. Thus x[x < 5] , U = I has truth – value is True.
  • 72. The truth – value of Quantifier sentence. Example. Find the truth – value of Quantifier sentences. 4) x[x < 5] , U = { 6, 7, 8 } solve. Give P(x) = x < 5 P(6) = 0< 5 (False) P(7) = 1< 5 (False) P(8) = 2< 5 (False) Then instead all of x in U to P(x) is false all cases. Thus x[x < 5] , U = { 6, 7, 8 } has truth – value is False.
  • 73. The truth – value of Quantifier sentence. Example. Find the truth – value of Quantifier sentences. 5) x[(x < 0) (x2 > 0)] , U = {-1, 0, 1 } solve. Give P(x) = (x < 0) (x2 > 0) P(-1) = -1 < 0 (-1)2 > 0 (True) P(0) = 0 < 0 (-1)2 > 0 (True) P(1) = 1 < 0 (-1)2 > 0 (True) Then instead all of x in U to P(x) is true all cases. Thus x[(x < 0) (x2 > 0)] , U = {-1, 0, 1 } has truth – value is True.
  • 74. The truth – value of Quantifier sentence. Example. Find the truth – value of Quantifier sentences. 6) x[(x < 0) x(x2 > 0)] , U = {-1, 0, 1 } solve. Give P(x) = (x < 0) P(1) = 1 < 0 (False) Thus x[(x < 0) , U = {-1, 0, 1 } is False Give P(x) = (x2 > 0) P(0) = 02 > 0 (False) Thus x[(x2 > 0)], U = {-1, 0, 1 } is False Hence x[(x < 0) x(x2 > 0)] be F F that is True.
  • 75. The truth – value of Quantifier sentence. Example. Find the truth – value of Quantifier sentences. 7) x[(x < 0) (x - 1 = 0)] , U = {-1, 0, 1 } solve. Give P(x) = (x < 0) (x - 1 = 0) P(-1) = (-1 < 0) (-1 - 1 = 0) (False) P(0) = (0 < 0) (0 - 1 = 0) (False) P(1) = (1 < 0) (1 - 1 = 0) (False) Then instead all of x in U to P(x) is false all cases. Thus x[(x < 0) (x - 1 = 0)] , U = {-1, 0, 1 } has truth – value is False.
  • 76. The truth – value of Quantifier sentence. Example. Find the truth – value of Quantifier sentences. 8) x[(x < 0) x (x - 1 = 0)] , U = {-1, 0, 1 } solve. Give P(x) = (x < 0) P(-1) = -1 < 0 (True) Thus x [(x < 0) , U = {-1, 0, 1 } is True Give P(x) = (x – 1 = 0) P(1) = (1 – 1 = 0) (True) Thus x[(x – 1 = 0)], U = {-1, 0, 1 } is True. Hence x[(x < 0) x (x - 1 = 0)] be T T that is True.
  • 77. Equivalent and Negation of Quantifier sentence. Let p and q be statement P(x) and Q(x) be Open sentence x[P(x)] , x[P(x)] , x[Q(x)] and x[Q(x)] be Quantifier sentence. Then equivalent is the same together.
  • 78. Equivalent and Negation of Quantifier sentence. Example. statement Open sentence p q q p P(x) Q(x) Q(x) P(x) p q q p P(x) Q(x) Q(x) P(x) (p q) p q (P(x) Q(x)) P(x) Q(x) (p q) p q (P(x) Q(x)) P(x) Q(x)
  • 79. Equivalent of Quantifier sentence. Example. 1. x[P(x) Q(x)] x[ P(x) Q(x)] 2. x[P(x) Q(x)] x[ Q(x) P(x)] 3. x[ P(x) Q(x)] x[P(x) Q(x)] 4. x[ (P(x) Q(x))] x[ P(x) Q(x)]
  • 80. Negation of Quantifier sentence. x[P(x)] x[ P(x)] x [P(x)] x[ P(x)] Example. Find the Negation of quantifier sentence. 1. x[x + 3 > 5] Answer x[ x + 3 5]
  • 81. Negation of Quantifier sentence. Example. Find the Negation of quantifier sentence. 2. x[x - 0 = 4] Answer x[ x – 0 ≠ 4] 3. x[x > 0] x[x2 < 0] Solve. [ x[x > 0] x[x2 < 0]] x[x > 0] x[x2 < 0] x[x 0] x[x2 0] Answer x[x 0] x[x2 0]
  • 82. Negation of Quantifier sentence. Example. Find the Negation of quantifier sentence. 4. x[x ≠ 0] x[x ≠ 0] Solve. [ x[x ≠ 0] x[x ≠ 0]] x[x ≠ 0] x[x ≠ 0] x[x ≠ 0] x[x = 0] Answer x[x ≠ 0] x[x = 0]
  • 83. Negation of Quantifier sentence. Example. Find the Negation of quantifier sentence. 5. x[P(x) Q(x)] Solve. [ x[P(x) Q(x)]] x[ [P(x) Q(x)]] x[P(x) Q(x) Answer x[P(x) Q(x)
  • 84. Negation of Quantifier sentence. Example. Find the Negation of quantifier sentence. 6. There are real number x be rational number but not be integer number. Solve. Give P(x) be x is rational number Q(x) be x is integer number then x[P(x) Q(x)] thus x[P(x) Q(x)] x[ [P(x) Q(x)]] x[ [P(x) Q(x)]] Answer For all real number x is not necessary be rational number all or have to be integer number.
  • 85. The truth – value of two Quantifier sentences. We can write the truth – value of two quantifier sentences to be 8 patterns such that x y[P(x,y)] x y[Px,y)] x y[P(x,y)] x y[P(x,y)] y x[P(x,y)] y x[Px,y)] y x[P(x,y)] y x[P(x,y)]
  • 86. The truth – value of two Quantifier sentences. Definition. x y[P(x,y)] has the truth – value is true iff instead x and y with a and b all in universe then P(a,b) is true all. x y[P(x,y)] has the truth – value is false iff instead x and y with a and b some in universe then P(a,b) is false.
  • 87. x y[P(x,y)] or y x [P(x,y)] Example. 1) Give U = { -1 , 0 , 1 } Find the truth – value following Problems. 1.1 x y[xy < 2] Solve. Give P(x,y) be xy < 2 Then we get P(-1,-1) be (-1)(-1) < 2 (True) P(-1,0) be (-1)(0) < 2 (True) P(-1,1) be (-1)(1) < 2 (True) P(0,-1) be (0)(-1) < 2 (True) P(0,0) be (0)(0) < 2 (True) P(0,1) be (0)(1) < 2 (True) P(1,-1) be (1)(-1) < 2 (True) P(1,0) be (1)(0) < 2 (True) P(1,1) be (1)(1) < 2 (True) Thus x y[xy < 2] is true.
  • 88. x y[P(x,y)] or y x [P(x,y)] Example. 1) Give U = { -1 , 0 , 1 } Find the truth – value following Problems. 1.2 x y[x + y < 2] Solve. Give P(x,y) be x + y < 2 Then you can see P(1, 1) be 1 + 1 < 2 (False) Thus x y[xy < 2] is false.
  • 89. x y[P(x,y)] or y x [P(x,y)] Example. 2) Find the truth – value of the following sentence. “For all real number x and y that x + y = y + x” Solve. We can write to be symbol that is x y[x + y = y + x] We can use the lesson before about property of real number that is commutative addition of real number then x + y = y + x always. Hence x y[x + y = y + x] is true
  • 90. The truth – value of two Quantifier sentences. Definition. x y[Px,y)] has the truth – value is true iff instead x and y with a and b some in universe then P(a,b) is true. x y[Px,y)] has the truth – value is false iff instead x and y with a and b all in universe then P(a,b) is false all.
  • 91. x y[Px,y)] or y x[Px,y)] Example. 1) Give U = { -1 , 0 , 1 } Find the truth – value following Problems. 1.1 x y[2x + y = 2] Solve. Give P(x,y) be 2x + y = 2 Then we get P(1,0) be 2(1)+0 = 2 (True) Thus x y[Px,y)] is true.
  • 92. x y[Px,y)] or y x[Px,y)] Example. 1) Give U = { -1 , 0 , 1 } Find the truth – value following Problems. 1.2 x y[x + y > 2] Solve. Give P(x,y) be x + y > 2 Then we get P(-1,-1) be (-1) + (-1) > 2 (False) P(-1,0) be (-1) + (0) > 2 (False) P(-1,1) be (-1) + (1) > 2 (False) P(0,-1) be (0) + (-1) > 2 (False) P(0,0) be (0) + (0) > 2 (False) P(0,1) be (0) + (1) > 2 (False) P(1,-1) be (1) + (-1) > 2 (False) P(1,0) be (1) + (0) > 2 (False) P(1,1) be (1) + (1) > 2 (False) Thus x y[x + y > 2] is False.
  • 93. The truth – value of two Quantifier sentences. Definition. x y[P(x,y)] has the truth – value is true iff instead x with all in universe then y[P(x,y)] is true. x y[P(x,y)] has the truth – value is false iff instead x with a some in universe then y[P(x,y)] is false.
  • 94. x y[P(x,y)] or y x[P(x,y)] Example. 1) Give U = { -1 , 0 , 1 } Find the truth – value following Problems. 1.1 x y[x + y = 0] Solve. Give P(x,y) be x + y = 0 Then we instead x = -1 we can see y[x + y = 0] that is y = 1 Hence -1 + 1 = 0 .Thus is true. Then we instead x = 0 we can see y[x + y = 0] that is y = 0 Hence 0 + 0 = 0 .Thus is true. Then we instead x = 1 we can see y[x + y = 0] that is y = -1 Hence 1 + (-1) = 0 .Thus is true. Thus x y[x + y = 0] is true.
  • 95. x y[P(x,y)] or y x[P(x,y)] Example. 1) Give U = { -1 , 0 , 1 } Find the truth – value following Problems. 1.2 x y[x < y] Solve. Give P(x,y) be x < y Then we instead x = 1 we can see y[ 1 < y] Then give y = -1 .Thus 1 < -1 is false y = 0 . Thus 1 < 0 is false y = 1 . Thus 1 < 1 is false Thus x y[x < y] is false.
  • 96. x y[P(x,y)] or y x[P(x,y)] Example. 2) Give U is set of real number .Find the truth – value following Problems. 2.1 x y[x + y = 1] Solve. Give P(x,y) be x + y = 1 Then we instead x = a for a be all real number. Then we get y[x + y = 1] . Thus we can find y = a – 1 all in real number. That a + (a – 1) = 0 Thus x y[x + y = 1] is true.
  • 97. x y[P(x,y)] or y x[P(x,y)] Example. 2) Give U is set of real number .Find the truth – value following Problems. 2.2 x y[x = y2] Solve. Give P(x,y) be x = y2 Then we instead x = -1 thus we get y[ -1 = y2] Hence we can’t find y2 = -1 all in real number. Thus x y[x = y2] is false.
  • 98. The truth – value of two Quantifier sentences. Definition. x y[P(x,y)] has the truth – value is true iff instead x with a some in universe then y[P(x,y)] is true. x y[P(x,y)] has the truth – value is false iff instead x with a all in universe then y[P(x,y)] is false.
  • 99. x y[P(x,y)] or y x[P(x,y)] Example. 1) Give U = { -1 , 0 , 1 } Find the truth – value following Problems. 1.1 x y [x y] Solve. Give P(x,y) be x y Then we instead x = -1 we can see y[ -1 y] Hence y = -1 we get -1 -1 (True) y = 0 we get -1 0 (True) y = 1 we get -1 1 (True) Thus x y [x y] is true.
  • 100. x y[P(x,y)] or y x[P(x,y)] Example. 1) Give U = { -1 , 0 , 1 } Find the truth – value following Problems. 1.2 x y [x + y = 0] Solve. Give P(x,y) be x + y = 0 Then we instead x = -1 we can see y[ -1 + y = 0] is false. Then we instead x = 0 we can see y[ 0 + y = 0] is false. Then we instead x = 1 we can see y[ 1 + y = 0] is false. Thus x y [x + y = 0] is false
  • 101. x y[P(x,y)] or y x[P(x,y)] Example. 2) Give U is set of real number. Find the truth – value following Problems. 2.1 x y [x + y = y] Solve. Give P(x,y) be x + y = y Then we instead x = 0 we can see y[ 0 + y = y] Hence y = b that is all real number is true. Thus x y [x + y = y] is true.
  • 102. x y[P(x,y)] or y x[P(x,y)] Example. 2) Give U is set of real number. Find the truth – value following Problems. 2.2 x y [x y] Solve. Give P(x,y) be x y Then we instead x = a when a is real number. we can see y [a y] is false because y can be a + 1. Thus x y [x y] is false.
  • 103. Repeat Lesson. Example. 1) Give U is set of natural number. Find the truth – value following Problems. 1.1 x y [y = x + 1] Solve. Give P(x,y) be y = x + 1 Then we instead x = a when a is natural number. we can see y[y = a + 1] is true because y can be a + 1. Thus x y [y = x + 1] is true.
  • 104. Repeat Lesson. Example. 1) Give U is set of natural number. Find the truth – value following Problems. 1.2 y x [y = x + 1] Solve. Give P(x,y) be y = x + 1 Then we instead y = 1. we can’t see x [ 1 = x + 1] because the natural number is least be 1 Thus y x [y = x + 1] is false.
  • 105. Repeat Lesson. Example. 2) Give U is set of real number. Find the truth – value following Problems. 2.1 x y [x + y = 0] Solve. Give P(x,y) be x + y = 0 Then we instead x = a when a is real number. we can see y[ a + y = 0] is true because y can be –a . Thus x y [x + y = 0] is true.
  • 106. Repeat Lesson. Example. 2) Give U is set of real number. Find the truth – value following Problems. 2.2 y x [x + y = 0] Solve. Give P(x,y) be x + y = 0 Then we instead y = b when a is real number. we can see x [x + b = 0] is false because x = -b only not can be another. Thus y x [x + y = 0] is false.