SlideShare ist ein Scribd-Unternehmen logo
1 von 13
Downloaden Sie, um offline zu lesen
International
OPEN ACCESS Journal
Of Modern Engineering Research (IJMER)
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 3 | Mar. 2014 | 1 |
A Note on a Three Variables Analogue of Bessel Polynomials
Bhagwat Swaroop Sharma
I. Introduction
In 1949 Krall and Frink [12] initiated a study of simple Bessel polynomial





2
x
;n;1,nF(x)Y o2n (1.1)
and generalized Bessel polynomial
  




b
x
;n;1a,nFxb,a,Y o2n (1.2)
These polynomials were introduced by them in connection with the solution of the wave equation in
spherical coordinates. They are the polynomial solutions of the differential equation.
x2
y (x) + (ax + b) y (x) = n (n + a – 1) y (x) (1.3)
where n is a positive integer and a and b are arbitrary parameters. These polynomials are orthogonal on the unit
circle with respect to the weight function
n
0n x
2
)1n(
)(
i2
1
),x( 









 


. (1.4)
Several authors including Agarwal [1], Al-Salam [2], Brafman [3], Burchnall [4], Carlitz [5],
Chatterjea [6], Dickinson [7], Eweida [9], Grosswald [10], Rainville [15] and Toscano [19] have contributed to
the study of the Bessel polynomials.
Recently in the year 2000, Khan and Ahmad [11] studied two variables analogue y)(x,Y ),(
n

of the
Bessel polynomials (x)Y )(
n

defined by





2
x
;1;n,nF(x)Y o2
)(
n (1.5)
The aim of the present paper is to introduce a three variables analogue c)b,a,z;y,(x,Y ),,(
n

of (1.2) and to
obtain certain results involving the three variables Bessel polynomial c)b,a,z;y,(x,Y ),,(
n

.
II. The Polynomials
c)b,a,z;y,(x,Y ),,(
n

: The Bessel polynomial of three variables c)b,a,z;y,(x,Y ),,(
n

is defined as
follows:
c)b,a,z;y,(x,Y ),,(
n

        rsj
rsjjsr
srn
0j
rn
0s
n
0r c
z
b
y
a
x
!j!s!r
1n1n1nn


























 (2.1)
For z = 0, a = b = 2, (2.1) reduces to the two variables analogue y)(x,Y ),(
n

of Bessel polynomials (1.5) as
given below :
y)(x,Yc)2,2,y,0;(x,Y ),(
n
),,(
n

 (2.2)
Similarly
z)(x,Yb,2)2,z;0,(x,Y ),(
n
),,(
n

 (2.3)
Abstract: The present paper deals with a study of a three variables analogue of Bessel polynomials.
Certain representations, a Schlafli’s contour integral, a fractional integral, Laplace transformations, some
generating functions and double and triple generating functions have been obtained.
A Note on a Three Variables Analogue of Bessel Polynomials
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 3 | Mar. 2014 | 2 |
z)(y,Y2)2,a,z;y,(0,Y ),(
n
),,(
n

 (2.4)
Also for  = – n – 1, and b = c = 2
z)(y,Y2)2,a,z;y,(x,Y ),(
n
),,1n(
n

 (2.5)
Similarly,
z)(x,Y2)b,2,z;y,(x,Y ),(
n
),1n,(
n

 (2.6)
y)(x,Yc)2,2,z;y,(x,Y ),(
n
)1n,,(
n

 (2.7)
where
y)(x,Y ),(
n

     
2
y
2
x
!s!r
1n1nn
rs
rssr
rn
0s
n
0r














 


 (2.8)
Also, for y = z = 0, a = 2, (2.1) reduces to the Bessel polynomials (x)Y )(
n

as given below:
(x)Yc)b,2,0,0;(x,Y )(
n
),,(
n

 (2.9)
where (x)Y )(
n

is defined by (1.5).
Similarly
(y)Yc)2,a,0;y,(0,Y )(
n
),,(
n

 (2.10)
(z)Yc)2,2,z;0,(0,Y )(
n
),,(
n

 (2.11)
Also, for  =  = – n – 1, a = 2, we have
(x)Yc)b,2,z;y,(x,Y )(
n
)1n1,n,(
n

 (2.12)
Similarly
(y)Yc)2,a,z;y,(x,Y )(
n
)1n,1,n(
n

 (2.13)
(z)Y2)b,a,z;y,(x,Y )(
n
)1,n1,n(
n

 (2.14)
III. Integral Representations
It is easy to show that the polynomial c)b,a,z;y,(x,Y ),,(
n

has the following integral representations:
     
dwdvdue
c
zw
b
yv
a
xu
1wvu
1n1n1n
1 wvu
n
nnn
000









 
= c)b,a,z;y,(x,Y ),,(
n

(3.1)
For z = 0, a = b = 2, (3.1) reduces to
   
dvdue
2
yv
2
xu
1vu
1n1n
1 vu
n
nn
00









 
= y)(x,Y ),(
n

(3.2)
a result due to Khan and Ahmad [11].
For y = z = 0,  replaced by a – 2 and a replaced by b, (3.1) becomes
 
 
dte
b
xt
1t
n1a
1
xb,a,Y t
n
n2a
0
n










  (3.3)
a result due to Agarwal [1].
          dzdydxc,b,a;z,y,xYztzysyxrx ,,
n
1n1n1nr
0
s
0
t
0


  
     
 
 cb,a,t;s,r,Y
111
ntsr nn,n,
n
nnn
3nnn




 (3.4)
       
  dwdvduc,b,a;zwyvu,xYw1wv1vu1u ,,
n
111111
1
0
1
0
1
0


A Note on a Three Variables Analogue of Bessel Polynomials
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 3 | Mar. 2014 | 3 |
           
      











c
z
,
b
y
,
a
x
;;;:;;::
;1,n;1,n;1,n:;;::n
F(3)
(3.5)
where F(3)
[ ] is in the form of a general triple hypergeometric series F(3)
[x, y, z]
(cf. Srivastava [18], p. 428).
       
  dwdvduc,b,a;zwyvu),1(xYw1wv1vu1u ,,
n
111111
1
0
1
0
1
0
 

           
      











c
z
,
b
y
,
a
x
;;;:;;::
;1,n;1,n;1,n:;;::n
F(3)
(3.6)
       
  dwdvduc,b,a;zw),v1(yu,xYw1wv1vu1u ,,
n
111111
1
0
1
0
1
0
 

           
      











c
z
,
b
y
,
a
x
;;;:;;::
;1,n;1,n;1,n:;;::n
F(3)
(3.7)
       
  dwdvduc,b,a);w1(z,yvu,xYw1wv1vu1u ,,
n
111111
1
0
1
0
1
0
 

           
      











c
z
,
b
y
,
a
x
;;;:;;::
;1,n;1,n;1,n:;;::n
F(3)
(3.8)
       
  dwdvduc,b,a;zw),v1(y,)u1(xYw1wv1vu1u ,,
n
111111
1
0
1
0
1
0
 

           
      











c
z
,
b
y
,
a
x
;;;:;;::
;1,n;1,n;1,n:;;::n
F(3)
(3.9)
       
  dwdvduc,b,a);w1(z,yv,)u1(xYw1wv1vu1u ,,
n
111111
1
0
1
0
1
0
 

           
      











c
z
,
b
y
,
a
x
;;;:;;::
;1,n;1,n;1,n:;;::n
F(3)
(3.10)
       
  dwdvduc,b,a);w1(z),v1(y,xuYw1wv1vu1u ,,
n
111111
1
0
1
0
1
0
 

           
      











c
z
,
b
y
,
a
x
;;;:;;::
;1,n;1,n;1,n:;;::n
F(3)
(3.11)
       
  dwdvduc,b,a);w1(z),v1(y,)u1(xYw1wv1vu1u ,,
n
111111
1
0
1
0
1
0
 

           
      











c
z
,
b
y
,
a
x
;;;:;;::
;1,n;1,n;1,n:;;::n
F(3)
(3.12)
          dwdvduc,b,a;zuv,yuw,xvwYw1wv1vu1u ,,
n
1111111
0
1
0
1
0


           
      











c
z
,
b
y
,
a
x
;;;:;;::
;1n1;n1;n:;;::n
F(3)
(3.13)
A Note on a Three Variables Analogue of Bessel Polynomials
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 3 | Mar. 2014 | 4 |
       
 dudvdwc,b,a);v1(zu),u1(yw,)w1(xvYw1wv1vu1u ,,
n
111111
1
0
1
0
1
0
 

           
      











c
z
,
b
y
,
a
x
;;;:;;::
;,1,n;,1,n;,1,n:;;::n
F(3)
(3.14)
Particular Cases:
Some interesting particular cases of the above results are as follows :
(i) Taking  =  + 1,  =  + 1,  =  + 1,  =  =  = n in (3.5), we obtain
          dwdvduc,b,a;zwyvu,xYw1wv1vu1u ,,
n
1n1n1n1
0
1
0
1
0


  
     
 
 cb,a,z;y,x,Y
111
n nn,n,
n
nnn
3



 (3.15)
which is equivalent to (3.4)
(ii) Taking  =  =  = n + 1,  = ,  = ,  =  in (3.5), we get
       
  dwdvduzwyvu,xYw1wv1vu1u ,,
n
1n1n1n
1
0
1
0
1
0


 
     
 
 zy,x,Y
!n 0,0,0
n
1n1n1n
3
 
 (3.16)
(iii) Replacing  by  + n + 1 – ,  by  + n + 1 – ,  by  + n + 1 – , and putting  = ,  =  and  =  in
(3.5), we get
          dwdvduc,b,a;zwyvu,xYw1wv1vu1u ,,
n
1n1n1n1
0
1
0
1
0


           
     
 
 cb,a,z;y,x,Y
1n1n1n
1n1n1n ,,
n




(3.17)
Similar particular cases hold for (3.6), (3.7), (3.8), (3.9), (3.10), (3.11) and (3.12).
(iv) For z = 0, a = b = 2, results (3.4), (3.5), (3.6), (3.7) and (3.9) become
        dydxy,xYysyxrx ,
n
1n1nr
0
s
0


  
   
 
 sr,Y
11
ntsr nn,
n
nn
2nnn




 (3.18)
     
  dvduyvu,xYv1vu1u ,
n
1111
1
0
1
0


       
    










 
2
y
,
2
x
;;:
;1,n;1,n:n
F 2;2:1
1;1: (3.19)
     
  dvduyvu),1(xYv1vu1u ,
n
1111
1
0
1
0
 

       
    










 
2
y
,
2
x
;;:
;1,n;1,n:n
F 2;2:1
1;1: (3.20)
     
  dvdu)v1(yu),1(xYv1vu1u ,
n
1111
1
0
1
0
 

       
    










 
2
y
,
2
x
;;:
;1,n;1,n:n
F 2;2:1
1;1: (3.21)
A Note on a Three Variables Analogue of Bessel Polynomials
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 3 | Mar. 2014 | 5 |
Results (3.18), (3.19), (3.20) and (3.21) are due to Khan and Ahmad [11].
Also, using the integral (see Erdelyi et al. [8], vol. I, p. 14),
    dtetzzsini2 t1z)(0


  (3.22)
and the fact that
 
 
!j!s!r
zyxn
zyx1
rsj
jsr
srn
0j
rn
0s
n
0r
n 





  (3.23)
we can easily derive the following integral representations for
 
 cb,a,;zy,x,Y ,,
n

:
      dwdvdu
c
zw
b
yv
a
xu
1ewvu
n
wvunnn)0()0()0(






 




 
         
 cb,a,;zy,x,Y1n1n1nsinsinsin1i8 ,,
n
n 

(3.24)
       
3
1n
n1n1n1sinsinsin1

 
  dwdvducb,a,;
w
cz
,
v
by
,
u
ax
Yewvu ,,
n
wvu1n1n1n
000







 n
zyx1  (3.25)
IV. Schlafli’s Contour Integral
It is easy to show that
dwdvdu
c
zw
b
yv
a
xu
1ewvu
n
wvunnn
)0()0()0(












 
         
 cb,a,;zy,x,Yn1n1n1sinsinsin1i8 ,,
n
n 

(4.1)
Proof of (4.1) : We have
 
dwdvdu
c
zw
b
yv
a
xu
1ewvu
i2
1
n
wvunnn
)0()0()0(
3 













 
 
 
dwdvduewvu
i2
1
c
z
b
y
a
x
!j!s!r
n wvurnsnjn
)0()0()0(
3
rsj
jsr
srn
0j
rn
0s
n
0r












 



















 
     rnsnjn!j!s!r
c
z
b
y
a
x
n
rsj
jsrsrn
0j
rn
0s
n
0r 

























using Hankel’s formula (see A. Eerdelyi et al. [8], 1.6 (2)).
 
dtte
i2
1
z
1 zt
)(0





(4.2)
Finally (4.1) follows from (2.1) after using the result
    zcosecz1z  (4.3)
for z = 0, a = b = 2, (4.1) reduces to
dvdu
b
yv
a
xu
1evu
n
wvunn)0()0(









 
       yx,Yn1n1sinsin4 ,
n

 (4.4)
which is due to Khan and Ahmad [11].
A Note on a Three Variables Analogue of Bessel Polynomials
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 3 | Mar. 2014 | 6 |
V. Fractional Integrals
Let L denote the linear space of (equivalent classes of) complex – valued functions f(x) which are Lebesgue –
integrable on [0, ],  < . For f(x) L and complex number  with Rl  > 0, the Riemann – Liouville
fractional integral of order  is defined as (see Prabhakar [13], p. 72)
 
  dt(t)ftx
1
f(x)I
1x
0



  for almost all x  [0, ] (5.1)
Using the operator I
, Prabhakar [14] obtained the following result for Rl  > 0 and Rl  > –1.
    
 
 kx;Zx
1kn
1kn
kx;ZxI nn



 (5.2)
where  kx;Zn

is Konhauser’s biorthozonal polynomial.
Khan and Ahmad [11] defined a two variable analogue of (5.1) by means of the following relation :
  
   
      dvduvu,fvyux
1
yx,fI 11y
0
x
0
, 


  (5.3)
and obtained the following result :
 
  yx,YyxI ,
n
nn,     
   
 
 yx,Y
1n1n
1n1nyx ,
n
nn





(5.4)
In an attempt to obtained a result analogous to (5.4) for the polynomial
 
 cb,a,;zy,x,Y ,,
n

we
first seek a three variable analogue of (5.1).
A three variable analogue of I
may be defined as
  
     
        dwdvduwv,u,fwzvyux
1
zy,x,fI 111z
0
y
0
x
0
,, 


 
(5.5)
Putting    
 cb,a,z;y,x,Yzyxzy,,xf ,,
n
nnn 
 in (5.5), we obtain
 
  cb,a,z;y,x,YzyxI ,,
n
nnn,, 

     
     
 
 cb,a,z;y,x,Y
1n1n1n
1n1n1nzyx ,,
n
nnn





(5.6)
VI. Laplace Transform
In the usual notation the Laplace transform is given by
       0asRldt,tfes:tfL st
0
 

 (6.1)
where f  L (0, R) for every R > 0 and f(t) = 0(eat
), t  .
Khan and Ahmad [11] introduced a two variable analogue of (6.1) by means of the relation:
     dvduvu,fes,s:vu,fL vsus
00
21
21 

 (6.2)
and established the following results :
 












21
21
,
n
1n1n
s,s:
vs
2y
,
us
2x
YvuL
   
 n
n
2
n
1
2
yx1
1n1nsinsin
ss





(6.3)
and















21
n
21nn
s,s:
2
yvs
2
xus
1vuL
A Note on a Three Variables Analogue of Bessel Polynomials
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 3 | Mar. 2014 | 7 |
       yx,Y
ss
1n1n ,
n1n
2
1n
1



 (6.4)
In an attempt to obtain results analogous to (6.3) and (6.4) for
 
 cb,a,z;y,x,Y ,,
n

we define a
three variable analogue of (6.1) as follows
     dwdvduwv,u,fes,s,s:wv,u,fL wsvsus
000
321
321 
 (6.5)
Now, we have
 












321
321
,,
n
1n1n1n
s,s,s:cb,a,;
ws
cz
,
vs
by
,
us
ax
YwvuL
 
     
n
n
3
n
2
n
1
31n
y)x(1
1n1n1nsinsinsin
sss1





(6.6)
Similarly, we obtain















321
n
321nnn
s,s,s:
c
zws
b
yvs
a
xus
1wvuL
       
 cb,a,z;y,x,Y
sss
1n1n1n ,,
n1n
3
1n
2
1n
1



 (6.7)
VII. Generating Functions
It is easy to derive the following generating functions for
 
 cb,a,z;y,x,Y ,,
n

:
 
 
111
tn,n,n
n
n
0n c
zt
1
b
yt
1
a
xt
1ecb,a,z;y,x,Y
!n
t






















 (7.1)
 
 cb,a,z;y,x,Y
!n
t n,n,
n
n
0n




a
xt4
11
t2
e
a
xt4
11
c
zt2
1
a
xt4
11
b
yt2
1
a
xt4
11
2
a
xt4
1
11
2
1


















































(7.2)
 
 cb,a,z;y,x,Y
!n
t n,,n
n
n
0n




b
yt4
11
t2
e
b
yt4
11
c
zt2
1
b
yt4
11
a
xt2
1
b
yt4
11
2
b
yt4
1
11
2
1


















































(7.3)
 
 cb,a,z;y,x,Y
!n
t ,n,n
n
n
0n




A Note on a Three Variables Analogue of Bessel Polynomials
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 3 | Mar. 2014 | 8 |
c
zt4
11
t2
11
2
1
e
c
zt4
11
b
yt2
1
c
zt4
11
a
xt2
1
c
zt4
11
2
c
zt4
1


















































 (7.4)
 
 cb,a,z;y,x,Y
!n
t n,n,n2
n
n
0n




   
11
xta
at
xtac
azt
1
xtab
ayt
1
a
xt
1e























 (7.5)
 
 cb,a,z;y,x,Y
!n
t n,n2,n
n
n
0n




   
11
ytb
bt
ytbc
bzt
1
ytba
bxt
1
b
yt
1e























 (7.6)
 
 cb,a,z;y,x,Y
!n
t n2,n,n
n
n
0n




   
11
ztc
ct
ztcb
cyt
1
ztca
cxt
1
c
zt
1e























 (7.7)
   
   
  1cb,a,z;y,x,Y
1
1
cb,a,z;y,x,Y n,,
n
nk,,
n
k
0k


 


 (7.8)
          c,1ba,z;y,x,Y
1
1
cb,a,z;y,x,Y ,n,
n
,nk,
n
k
0k


 


 (7.9)
          c,b,1az;y,x,Y
1
1
cb,a,z;y,x,Y ,,n
n
,,nk
n
k
0k


 


 (7.10)
Using (3.1), we can also derive the following results :
   
 cb,a,z;y,x,Y
!k
nk,,
n
k
0k





   
  dwdvduw2Je
c
zw
b
yv
a
xu
1vu
1n1n
1
0
wvu
n
nn
000








 


(7.11)
   
 cb,a,z;y,x,Y
!k
,nk,
n
k
0k





   
  dwdvduv2Je
c
zw
b
yv
a
xu
1wu
1n1n
1
0
wvu
n
nn
000








 


(7.12)
   
 cb,a,z;y,x,Y
!k
,,nk
n
k
0k





   
  dwdvduu2Je
c
zw
b
yv
a
xu
1wu
1n1n
1
0
wvu
n
nn
000








 


(7.13)
A Note on a Three Variables Analogue of Bessel Polynomials
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 3 | Mar. 2014 | 9 |
   
 cb,a,z;y,x,Y1 n2k,,
n
2kk
0k




   
dwdvduwosce
c
zw
b
yv
a
xu
1vu
1n1n
1 wvu
n
nn
000








 


(7.14)
   
 cb,a,z;y,x,Y1 ,n2k,
n
k2k
0k




   
dwdvduvosce
c
zw
b
yv
a
xu
1wu
1n1n
1 wvu
n
nn
000








 


(7.15)
   
 cb,a,z;y,x,Y1 ,,n2k
n
2kk
0k




   
dwdvduuosce
c
zw
b
yv
a
xu
1wu
1n1n
1 wvu
n
nn
000








 


(7.16)
   
 cb,a,z;y,x,Y1 n12k,,
n
12kk
0k




   
dwdvduwsine
c
zw
b
yv
a
xu
1vu
1n1n
1 wvu
n
nn
000








 


(7.17)
   
 cb,a,z;y,x,Y1 ,n12k,
n
1k2k
0k




   
dwdvduvsine
c
zw
b
yv
a
xu
1wu
1n1n
1 wvu
n
nn
000








 


(7.18)
   
 cb,a,z;y,x,Y1 ,,n12k
n
12kk
0k




   
dwdvduusine
c
zw
b
yv
a
xu
1wu
1n1n
1 wvu
n
nn
000








 


(7.19)
VIII. Double Generating Functions
The following double generating functions for
 
 cb,a,z;y,x,Y ,,
n

can easily be derived by using (3.1)
     
 cb,a,z;y,x,Y ,nk,nm
n
km
0k0m






  
 
    c,1b,1a;zy,,xY
11
1 n,n,
n 

 
(8.1)
     
 cb,a,z;y,x,Y nk,,nm
n
km
0k0m






  
 
    

 
1cb,,1a;zy,,xY
11
1 n,n,
n (8.2)
A Note on a Three Variables Analogue of Bessel Polynomials
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 3 | Mar. 2014 | 10 |
     
 cb,a,z;y,x,Y nk,nm,
n
km
0k0m






  
 
    

 
1c,1ba,;zy,,xY
11
1 nn,,
n
(8.3)
     
 cb,a,z;y,x,Y
!k!m
,nk,nm
n
km
0k0m







 
    dwdvduv2Ju2Je
c
zw
b
yv
a
xu
1w
1n
1
00
wvu
n
n
000








 


(8.4)
     
 cb,a,z;y,x,Y
!k!m
nk,,nm
n
km
0k0m







 
    dwdvduw2Ju2Je
c
zw
b
yv
a
xu
1v
1n
1
00
wvu
n
n
000








 


(8.5)
     
 cb,a,z;y,x,Y
!k!m
nk,nm,
n
km
0k0m







 
    dwdvduw2Jv2Je
c
zw
b
yv
a
xu
1u
1n
1
00
wvu
n
n
000








 

(8.6)
   
 cb,a,z;y,x,Y1 ,n2k,nm2
n
2k2mkm
0k0m






 
dwdvduvcosuosce
c
zw
b
yv
a
xu
1w
1n
1 wvu
n
n
000








 

(8.7)
   
 cb,a,z;y,x,Y1 n2k,,nm2
n
2k2mkm
0k0m






 
dwdvduwcosuosce
c
zw
b
yv
a
xu
1v
1n
1 wvu
n
n
000








 


(8.8)
   
 cb,a,z;y,x,Y1 n2k,nm2,
n
2k2mkm
0k0m






 
dwdvduwcosvosce
c
zw
b
yv
a
xu
1u
1n
1 wvu
n
n
000








 


(8.9)
   
 cb,a,z;y,x,Y1 ,n2k,n1m2
n
2k12mkm
0k0m






 
dwdvduvcosuinse
c
zw
b
yv
a
xu
1w
1n
1 wvu
n
n
000








 


(8.10)
   
 cb,a,z;y,x,Y1 n2k,,n1m2
n
2k12mkm
0k0m






A Note on a Three Variables Analogue of Bessel Polynomials
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 3 | Mar. 2014 | 11 |
 
dwdvduwcosuinse
c
zw
b
yv
a
xu
1v
1n
1 wvu
n
n
000








 

(8.11)
   
 cb,a,z;y,x,Y1 n2k,n1m2,
n
2k12mkm
0k0m






 
dwdvduwcosvinse
c
zw
b
yv
a
xu
1u
1n
1 wvu
n
n
000








 

(8.12)
   
 cb,a,z;y,x,Y1 ,n12k,nm2
n
12k2mkm
0k0m






 
dwdvduvsinuosce
c
zw
b
yv
a
xu
1w
1n
1 wvu
n
n
000








 


(8.13)
   
 cb,a,z;y,x,Y1 n12k,,nm2
n
12k2mkm
0k0m






 
dwdvduwsinuosce
c
zw
b
yv
a
xu
1v
1n
1 wvu
n
n
000








 


(8.14)
   
 cb,a,z;y,x,Y1 n12k,nm2,
n
12k2mkm
0k0m






 
dwdvduwsinvosce
c
zw
b
yv
a
xu
1u
1n
1 wvu
n
n
000








 


(8.15)
   
 cb,a,z;y,x,Y1 ,n12k,n1m2
n
12k12mkm
0k0m






 
dwdvduvsinuinse
c
zw
b
yv
a
xu
1w
1n
1 wvu
n
n
000








 


(8.16)
   
 cb,a,z;y,x,Y1 n12k,,n1m2
n
12k12mkm
0k0m






 
dwdvduwsinuinse
c
zw
b
yv
a
xu
1v
1n
1 wvu
n
n
000








 


(8.17)
   
 cb,a,z;y,x,Y1 n12k,n1m2,
n
12k12mkm
0k0m






 
dwdvduwsinvinse
c
zw
b
yv
a
xu
1u
1n
1 wvu
n
n
000








 


(8.18)
A Note on a Three Variables Analogue of Bessel Polynomials
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 3 | Mar. 2014 | 12 |
IX. Triple Generating Functions
The following triple generating functions can easily be obtained by using (3.1):
       
 cb,a,z;y,x,Y nj,nk,nm
n
jkm
0j0k0m








   
 
      

 
1c,1b,1az;y,x,Y
111
1 n,n,n
n (9.1)
       
 cb,a,z;y,x,Y
!j!k!m
nj,nk,nm
n
jkm
0j0k0m









      dwdvduw2Jv2Ju2Je
c
zw
b
yv
a
xu
1 000
wvu
n
000






 

 (9.2)
   
 cb,a,z;y,x,Y1 n2j,n2k,nm2
n
2j2k2mjkm
0j0k0m








dwdvduwoscvoscuosce
c
zw
b
yv
a
xu
1 wvu
n
000






 

 (9.3)
   
 cb,a,z;y,x,Y1 n12j,n12k,n1m2
n
12j12k12mjkm
0j0k0m








dwdvduwinsvinsuinse
c
zw
b
yv
a
xu
1 wvu
n
000






 

 (9.4)
   
 cb,a,z;y,x,Y1 n2j,n12k,n1m2
n
2j12k12mjkm
0j0k0m








dwdvduwoscvinsuinse
c
zw
b
yv
a
xu
1 wvu
n
000






 

 (9.5)
   
 cb,a,z;y,x,Y1 n12j,n2k,nm2
n
12j2k2mjkm
0j0k0m








dwdvduwinsvoscuosce
c
zw
b
yv
a
xu
1 wvu
n
000






 

 (9.6)
X. Bessel Polynomials Of M-Variables
The Bessel polynomials of m-variables
   m21m21
,----,,
n a,----,a,a;x,----,x,xY m21 
can
be defined as follows:
   m21m21
,----,,
n a,----,a,a;x,----,x,xY m21 
   








 


 









i
i
m
0i
i
m
0i
ji
m
0i
rrrrrrn
0r
rrn
0r
rn
0r
n
0r a
x
!r
1nn m211m21
m
21
3
1
21
(10.1)
All the results of this paper can be extended for this m-variable Bessel polynomials. The only
hinderance in their study is the representation of results in hypergeometric functions of m-variables.
A Note on a Three Variables Analogue of Bessel Polynomials
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 3 | Mar. 2014 | 13 |
REFERENCES
[1.] R. P. Agarwal: On Bessel polynomials, Canadian Journal of Mathematics, Vol. 6 (1954), pp. 410 – 415.
[2.] W. A. Al-Salam: On Bessel polynomials, Duke Math. J., Vol. 24 (1957), pp. 529 – 545.
[3.] F.Brafman: A set of generating functions for Bessel polynomials, Proc. Amer. Math Soc., Vol. 4 (1953), pp. 275
– 277.
[4.] J. L. Burchnall: The Bessel polynomials, Canadian Journal of Mathematics, Vol. 3 (1951), pp 62 – 68.
[5.] L. Carlitz: On the Bessel polynomials, Duke Math. Journal, Vol. 24 (1957), pp. 151 – 162.
[6.] S. K. Chatterjea: Some generating functions, Duke Math. Journal, Vol. 32 (1965), pp. 563 – 564.
[7.] D. Dickinson: On Lommel and Bessel polynomials, Proc. Amar. Math. Soc., Vol. 5 (1954), pp. 946 – 956.
[8.] A. Erdelyi et. al: Higher Transcendal Functions, I, McGraw Hill, New York (1953).
[9.] M. T. Eweida: On Bessel polynomials, Math. Zeitsehr., Vol. 74 (1960), pp. 319 – 324.
[10.] E. Grosswald: On some algebraic properties of the Bessel polynomials, Trans. Amer. Math. Soc., Vol. 71 (1951),
pp. 197 – 210.
[11.] M. A. Khan and K. Ahmad: On a two variables analogue of Bessel polynomials, Mathematica Balkanica, New
series Vol. 14, (2000), Fasc. 1 – 2, pp. 65 – 76.
[12.] H. L. Krall: and O. Frink A new class of orthogonal polynomials, the Bessel polynomials, Trans. Amer. Math.
Soc., Vol. 65 (1949), pp. 100 – 115.
[13.] T. R. Prabhakar: Two singular integral equations involving confluent hypergeometric functions, Proc. Camb.
Phil. Soc., Vol. 66 (1969), pp. 71 – 89.
[14.] T. R. Prabhakar: On a set of polynomials suggested by Laguerre polynomials, Pacific Journal of Mathematics,
Vol. 40 (1972), pp. 311 – 317.
[15.] E. D. Rainville: Generating functions for Bessel and related polynomials, Canadian J. Math., Vol. 5 (1953), pp.
104 – 106.
[16.] E. D. Rainville: Special Functions, MacMillan, New York, Reprinted by Chelsea Publ. Co., Bronx – New York
(1971).
[17.] H. M. Srivastava: Some biorthogonal polynomials suggested by the Laguerre polynomials, Pacific J. Math., Vol.
98, No. 1 (1982), pp. 235 – 249.
[18.] H. M. Srivastava and H. L. Masnocha: A treatise on Generating Functions, J. Waley & Sons (Halsted Press), New
York; Ellis Horwood, Chichester (1984).
[19.] L. Toscano: Osservacioni e complementi su particolari polinomiipergeometrici, Le Matematiche, Vol. 10 (1955),
pp. 121 – 133.

Weitere ähnliche Inhalte

Was ist angesagt?

On Coincidence Points in Pseudocompact Tichonov Spaces and Common Fixed Point...
On Coincidence Points in Pseudocompact Tichonov Spaces and Common Fixed Point...On Coincidence Points in Pseudocompact Tichonov Spaces and Common Fixed Point...
On Coincidence Points in Pseudocompact Tichonov Spaces and Common Fixed Point...
inventionjournals
 
7. f4 textbook answer c7 (eng)
7. f4 textbook answer c7 (eng)7. f4 textbook answer c7 (eng)
7. f4 textbook answer c7 (eng)
peanutsyap
 
Ci31360364
Ci31360364Ci31360364
Ci31360364
IJMER
 
Volume of Cylinders
Volume of CylindersVolume of Cylinders
Volume of Cylinders
bujols
 
Potw solution
Potw solutionPotw solution
Potw solution
jwhinsley
 
10.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.1110.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.11
DAVID GIKUNJU
 

Was ist angesagt? (19)

On Coincidence Points in Pseudocompact Tichonov Spaces and Common Fixed Point...
On Coincidence Points in Pseudocompact Tichonov Spaces and Common Fixed Point...On Coincidence Points in Pseudocompact Tichonov Spaces and Common Fixed Point...
On Coincidence Points in Pseudocompact Tichonov Spaces and Common Fixed Point...
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
7. f4 textbook answer c7 (eng)
7. f4 textbook answer c7 (eng)7. f4 textbook answer c7 (eng)
7. f4 textbook answer c7 (eng)
 
VARIATION OF MISMATCH-INDUCED STRESS IN A HETEROSTRUCTURE WITH CHANGING TEMPE...
VARIATION OF MISMATCH-INDUCED STRESS IN A HETEROSTRUCTURE WITH CHANGING TEMPE...VARIATION OF MISMATCH-INDUCED STRESS IN A HETEROSTRUCTURE WITH CHANGING TEMPE...
VARIATION OF MISMATCH-INDUCED STRESS IN A HETEROSTRUCTURE WITH CHANGING TEMPE...
 
Ci31360364
Ci31360364Ci31360364
Ci31360364
 
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
 
On cubic diophantine equation x2+y2 xy=39 z3
On cubic diophantine equation x2+y2 xy=39 z3On cubic diophantine equation x2+y2 xy=39 z3
On cubic diophantine equation x2+y2 xy=39 z3
 
Chapter 12 Application of Gibbs Sampling in Variance Component Estimation and...
Chapter 12 Application of Gibbs Sampling in Variance Component Estimation and...Chapter 12 Application of Gibbs Sampling in Variance Component Estimation and...
Chapter 12 Application of Gibbs Sampling in Variance Component Estimation and...
 
On homogeneous biquadratic diophantineequation x4 y4=17(z2-w2)r2
On homogeneous biquadratic diophantineequation x4 y4=17(z2-w2)r2On homogeneous biquadratic diophantineequation x4 y4=17(z2-w2)r2
On homogeneous biquadratic diophantineequation x4 y4=17(z2-w2)r2
 
Volume of Cylinders
Volume of CylindersVolume of Cylinders
Volume of Cylinders
 
El6303 solu 3 f15 1
El6303 solu 3 f15  1 El6303 solu 3 f15  1
El6303 solu 3 f15 1
 
On Decomposition of gr* - closed set in Topological Spaces
	On Decomposition of gr* - closed set in Topological Spaces	On Decomposition of gr* - closed set in Topological Spaces
On Decomposition of gr* - closed set in Topological Spaces
 
Next Steps in Propositional Horn Contraction
Next Steps in Propositional Horn ContractionNext Steps in Propositional Horn Contraction
Next Steps in Propositional Horn Contraction
 
Potw solution
Potw solutionPotw solution
Potw solution
 
10.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.1110.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.11
 
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.51e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
 
1d. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.4
1d. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.41d. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.4
1d. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.4
 
A common random fixed point theorem for rational ineqality in hilbert space ...
 A common random fixed point theorem for rational ineqality in hilbert space ... A common random fixed point theorem for rational ineqality in hilbert space ...
A common random fixed point theorem for rational ineqality in hilbert space ...
 
CUBIC RESPONSE SURFACE DESIGNS USING BIBD IN FOUR DIMENSIONS
CUBIC RESPONSE SURFACE DESIGNS USING BIBD IN FOUR DIMENSIONS CUBIC RESPONSE SURFACE DESIGNS USING BIBD IN FOUR DIMENSIONS
CUBIC RESPONSE SURFACE DESIGNS USING BIBD IN FOUR DIMENSIONS
 

Andere mochten auch

Dj3211351138
Dj3211351138Dj3211351138
Dj3211351138
IJMER
 
Au32721724
Au32721724Au32721724
Au32721724
IJMER
 
Ax31139148
Ax31139148Ax31139148
Ax31139148
IJMER
 
Di31509513
Di31509513Di31509513
Di31509513
IJMER
 
Bx32903907
Bx32903907Bx32903907
Bx32903907
IJMER
 
Ak32659666
Ak32659666Ak32659666
Ak32659666
IJMER
 
Df31490496
Df31490496Df31490496
Df31490496
IJMER
 

Andere mochten auch (20)

Neural Network Based Optimal Switching Pattern Generation for Multiple Pulse ...
Neural Network Based Optimal Switching Pattern Generation for Multiple Pulse ...Neural Network Based Optimal Switching Pattern Generation for Multiple Pulse ...
Neural Network Based Optimal Switching Pattern Generation for Multiple Pulse ...
 
Dj3211351138
Dj3211351138Dj3211351138
Dj3211351138
 
Nose Tip Detection Using Shape index and Energy Effective for 3d Face Recogni...
Nose Tip Detection Using Shape index and Energy Effective for 3d Face Recogni...Nose Tip Detection Using Shape index and Energy Effective for 3d Face Recogni...
Nose Tip Detection Using Shape index and Energy Effective for 3d Face Recogni...
 
An Approach for Project Scheduling Using PERT/CPM and Petri Nets (PNs) Tools
An Approach for Project Scheduling Using PERT/CPM and Petri Nets (PNs) ToolsAn Approach for Project Scheduling Using PERT/CPM and Petri Nets (PNs) Tools
An Approach for Project Scheduling Using PERT/CPM and Petri Nets (PNs) Tools
 
Data Leakage Detectionusing Distribution Method
Data Leakage Detectionusing Distribution Method Data Leakage Detectionusing Distribution Method
Data Leakage Detectionusing Distribution Method
 
Au32721724
Au32721724Au32721724
Au32721724
 
Ax31139148
Ax31139148Ax31139148
Ax31139148
 
Analysis of Genomic and Proteomic Sequence Using Fir Filter
Analysis of Genomic and Proteomic Sequence Using Fir FilterAnalysis of Genomic and Proteomic Sequence Using Fir Filter
Analysis of Genomic and Proteomic Sequence Using Fir Filter
 
Di31509513
Di31509513Di31509513
Di31509513
 
Minkowski Distance based Feature Selection Algorithm for Effective Intrusion ...
Minkowski Distance based Feature Selection Algorithm for Effective Intrusion ...Minkowski Distance based Feature Selection Algorithm for Effective Intrusion ...
Minkowski Distance based Feature Selection Algorithm for Effective Intrusion ...
 
Design of Image Projection Using Combined Approach for Tracking
Design of Image Projection Using Combined Approach for  TrackingDesign of Image Projection Using Combined Approach for  Tracking
Design of Image Projection Using Combined Approach for Tracking
 
Bx32903907
Bx32903907Bx32903907
Bx32903907
 
Implementation of Six Sigma Using DMAIC Methodology in Small Scale Industries...
Implementation of Six Sigma Using DMAIC Methodology in Small Scale Industries...Implementation of Six Sigma Using DMAIC Methodology in Small Scale Industries...
Implementation of Six Sigma Using DMAIC Methodology in Small Scale Industries...
 
Ak32659666
Ak32659666Ak32659666
Ak32659666
 
An Investigative Review on Thermal Characterization of Hybrid Metal Matrix C...
An Investigative Review on Thermal Characterization of Hybrid  Metal Matrix C...An Investigative Review on Thermal Characterization of Hybrid  Metal Matrix C...
An Investigative Review on Thermal Characterization of Hybrid Metal Matrix C...
 
FPGA Based Power Efficient Chanalizer For Software Defined Radio
FPGA Based Power Efficient Chanalizer For Software Defined RadioFPGA Based Power Efficient Chanalizer For Software Defined Radio
FPGA Based Power Efficient Chanalizer For Software Defined Radio
 
Optimized FIR filter design using Truncated Multiplier Technique
Optimized FIR filter design using Truncated Multiplier TechniqueOptimized FIR filter design using Truncated Multiplier Technique
Optimized FIR filter design using Truncated Multiplier Technique
 
Df31490496
Df31490496Df31490496
Df31490496
 
Effect of SC5D Additive on the Performance and Emission Characteristics of CI...
Effect of SC5D Additive on the Performance and Emission Characteristics of CI...Effect of SC5D Additive on the Performance and Emission Characteristics of CI...
Effect of SC5D Additive on the Performance and Emission Characteristics of CI...
 
Contact Pressure Validation of Steam Turbine Casing for Static Loading Condition
Contact Pressure Validation of Steam Turbine Casing for Static Loading ConditionContact Pressure Validation of Steam Turbine Casing for Static Loading Condition
Contact Pressure Validation of Steam Turbine Casing for Static Loading Condition
 

Ähnlich wie A Note on a Three Variables Analogue of Bessel Polynomials

Bit sat 2008 questions with solutions
Bit sat 2008 questions with solutionsBit sat 2008 questions with solutions
Bit sat 2008 questions with solutions
askiitians
 

Ähnlich wie A Note on a Three Variables Analogue of Bessel Polynomials (20)

Simultaneous Triple Series Equations Involving Konhauser Biorthogonal Polynom...
Simultaneous Triple Series Equations Involving Konhauser Biorthogonal Polynom...Simultaneous Triple Series Equations Involving Konhauser Biorthogonal Polynom...
Simultaneous Triple Series Equations Involving Konhauser Biorthogonal Polynom...
 
On The Number of Representations of a Positive Integer By Certain Binary Quad...
On The Number of Representations of a Positive Integer By Certain Binary Quad...On The Number of Representations of a Positive Integer By Certain Binary Quad...
On The Number of Representations of a Positive Integer By Certain Binary Quad...
 
Wavefront analysis for annular ellipse aperture
Wavefront analysis for annular ellipse apertureWavefront analysis for annular ellipse aperture
Wavefront analysis for annular ellipse aperture
 
Establishment of New Special Deductions from Gauss Divergence Theorem in a Ve...
Establishment of New Special Deductions from Gauss Divergence Theorem in a Ve...Establishment of New Special Deductions from Gauss Divergence Theorem in a Ve...
Establishment of New Special Deductions from Gauss Divergence Theorem in a Ve...
 
C0741113
C0741113C0741113
C0741113
 
The Method of Repeated Application of a Quadrature Formula of Trapezoids and ...
The Method of Repeated Application of a Quadrature Formula of Trapezoids and ...The Method of Repeated Application of a Quadrature Formula of Trapezoids and ...
The Method of Repeated Application of a Quadrature Formula of Trapezoids and ...
 
Geometry Section 4-3
Geometry Section 4-3Geometry Section 4-3
Geometry Section 4-3
 
Structure of unital 3-fields, by S.Duplij, W.Werner
Structure of unital 3-fields, by S.Duplij, W.WernerStructure of unital 3-fields, by S.Duplij, W.Werner
Structure of unital 3-fields, by S.Duplij, W.Werner
 
THREE-ASSOCIATE CLASS PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS IN TWO REP...
THREE-ASSOCIATE CLASS PARTIALLY BALANCED  INCOMPLETE BLOCK DESIGNS IN TWO REP...THREE-ASSOCIATE CLASS PARTIALLY BALANCED  INCOMPLETE BLOCK DESIGNS IN TWO REP...
THREE-ASSOCIATE CLASS PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS IN TWO REP...
 
Geometry Section 4-4 1112
Geometry Section 4-4 1112Geometry Section 4-4 1112
Geometry Section 4-4 1112
 
Geometry Section 2-8
Geometry Section 2-8Geometry Section 2-8
Geometry Section 2-8
 
Bc4103338340
Bc4103338340Bc4103338340
Bc4103338340
 
Know it notebook-chapter3
Know it notebook-chapter3Know it notebook-chapter3
Know it notebook-chapter3
 
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
 
Basics Nuclear Physics concepts
Basics Nuclear Physics conceptsBasics Nuclear Physics concepts
Basics Nuclear Physics concepts
 
The Intersection Axiom of Conditional Probability
The Intersection Axiom of Conditional ProbabilityThe Intersection Axiom of Conditional Probability
The Intersection Axiom of Conditional Probability
 
M. Dimitrijević, Noncommutative models of gauge and gravity theories
M. Dimitrijević, Noncommutative models of gauge and gravity theoriesM. Dimitrijević, Noncommutative models of gauge and gravity theories
M. Dimitrijević, Noncommutative models of gauge and gravity theories
 
Vershinin 2013_about presentations of braid groups and their
Vershinin 2013_about presentations of braid groups and theirVershinin 2013_about presentations of braid groups and their
Vershinin 2013_about presentations of braid groups and their
 
Orthogonal Polynomial
Orthogonal PolynomialOrthogonal Polynomial
Orthogonal Polynomial
 
Bit sat 2008 questions with solutions
Bit sat 2008 questions with solutionsBit sat 2008 questions with solutions
Bit sat 2008 questions with solutions
 

Mehr von IJMER

Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
IJMER
 
Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...
IJMER
 
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded CylindersMaterial Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
IJMER
 

Mehr von IJMER (20)

A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...
 
Developing Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed DelintingDeveloping Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed Delinting
 
Study & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja FibreStudy & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja Fibre
 
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
 
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
 
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
 
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
 
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
 
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works SimulationStatic Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
 
High Speed Effortless Bicycle
High Speed Effortless BicycleHigh Speed Effortless Bicycle
High Speed Effortless Bicycle
 
Integration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise ApplicationsIntegration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise Applications
 
Microcontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation SystemMicrocontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation System
 
On some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological SpacesOn some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological Spaces
 
Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...
 
Natural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine LearningNatural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine Learning
 
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcessEvolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
 
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded CylindersMaterial Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
 
Studies On Energy Conservation And Audit
Studies On Energy Conservation And AuditStudies On Energy Conservation And Audit
Studies On Energy Conservation And Audit
 
An Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDLAn Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDL
 
Discrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One PreyDiscrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One Prey
 

Kürzlich hochgeladen

VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
dharasingh5698
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
amitlee9823
 

Kürzlich hochgeladen (20)

VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 

A Note on a Three Variables Analogue of Bessel Polynomials

  • 1. International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 3 | Mar. 2014 | 1 | A Note on a Three Variables Analogue of Bessel Polynomials Bhagwat Swaroop Sharma I. Introduction In 1949 Krall and Frink [12] initiated a study of simple Bessel polynomial      2 x ;n;1,nF(x)Y o2n (1.1) and generalized Bessel polynomial        b x ;n;1a,nFxb,a,Y o2n (1.2) These polynomials were introduced by them in connection with the solution of the wave equation in spherical coordinates. They are the polynomial solutions of the differential equation. x2 y (x) + (ax + b) y (x) = n (n + a – 1) y (x) (1.3) where n is a positive integer and a and b are arbitrary parameters. These polynomials are orthogonal on the unit circle with respect to the weight function n 0n x 2 )1n( )( i2 1 ),x(               . (1.4) Several authors including Agarwal [1], Al-Salam [2], Brafman [3], Burchnall [4], Carlitz [5], Chatterjea [6], Dickinson [7], Eweida [9], Grosswald [10], Rainville [15] and Toscano [19] have contributed to the study of the Bessel polynomials. Recently in the year 2000, Khan and Ahmad [11] studied two variables analogue y)(x,Y ),( n  of the Bessel polynomials (x)Y )( n  defined by      2 x ;1;n,nF(x)Y o2 )( n (1.5) The aim of the present paper is to introduce a three variables analogue c)b,a,z;y,(x,Y ),,( n  of (1.2) and to obtain certain results involving the three variables Bessel polynomial c)b,a,z;y,(x,Y ),,( n  . II. The Polynomials c)b,a,z;y,(x,Y ),,( n  : The Bessel polynomial of three variables c)b,a,z;y,(x,Y ),,( n  is defined as follows: c)b,a,z;y,(x,Y ),,( n          rsj rsjjsr srn 0j rn 0s n 0r c z b y a x !j!s!r 1n1n1nn                            (2.1) For z = 0, a = b = 2, (2.1) reduces to the two variables analogue y)(x,Y ),( n  of Bessel polynomials (1.5) as given below : y)(x,Yc)2,2,y,0;(x,Y ),( n ),,( n   (2.2) Similarly z)(x,Yb,2)2,z;0,(x,Y ),( n ),,( n   (2.3) Abstract: The present paper deals with a study of a three variables analogue of Bessel polynomials. Certain representations, a Schlafli’s contour integral, a fractional integral, Laplace transformations, some generating functions and double and triple generating functions have been obtained.
  • 2. A Note on a Three Variables Analogue of Bessel Polynomials | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 3 | Mar. 2014 | 2 | z)(y,Y2)2,a,z;y,(0,Y ),( n ),,( n   (2.4) Also for  = – n – 1, and b = c = 2 z)(y,Y2)2,a,z;y,(x,Y ),( n ),,1n( n   (2.5) Similarly, z)(x,Y2)b,2,z;y,(x,Y ),( n ),1n,( n   (2.6) y)(x,Yc)2,2,z;y,(x,Y ),( n )1n,,( n   (2.7) where y)(x,Y ),( n        2 y 2 x !s!r 1n1nn rs rssr rn 0s n 0r                    (2.8) Also, for y = z = 0, a = 2, (2.1) reduces to the Bessel polynomials (x)Y )( n  as given below: (x)Yc)b,2,0,0;(x,Y )( n ),,( n   (2.9) where (x)Y )( n  is defined by (1.5). Similarly (y)Yc)2,a,0;y,(0,Y )( n ),,( n   (2.10) (z)Yc)2,2,z;0,(0,Y )( n ),,( n   (2.11) Also, for  =  = – n – 1, a = 2, we have (x)Yc)b,2,z;y,(x,Y )( n )1n1,n,( n   (2.12) Similarly (y)Yc)2,a,z;y,(x,Y )( n )1n,1,n( n   (2.13) (z)Y2)b,a,z;y,(x,Y )( n )1,n1,n( n   (2.14) III. Integral Representations It is easy to show that the polynomial c)b,a,z;y,(x,Y ),,( n  has the following integral representations:       dwdvdue c zw b yv a xu 1wvu 1n1n1n 1 wvu n nnn 000            = c)b,a,z;y,(x,Y ),,( n  (3.1) For z = 0, a = b = 2, (3.1) reduces to     dvdue 2 yv 2 xu 1vu 1n1n 1 vu n nn 00            = y)(x,Y ),( n  (3.2) a result due to Khan and Ahmad [11]. For y = z = 0,  replaced by a – 2 and a replaced by b, (3.1) becomes     dte b xt 1t n1a 1 xb,a,Y t n n2a 0 n             (3.3) a result due to Agarwal [1].           dzdydxc,b,a;z,y,xYztzysyxrx ,, n 1n1n1nr 0 s 0 t 0               cb,a,t;s,r,Y 111 ntsr nn,n, n nnn 3nnn      (3.4)           dwdvduc,b,a;zwyvu,xYw1wv1vu1u ,, n 111111 1 0 1 0 1 0  
  • 3. A Note on a Three Variables Analogue of Bessel Polynomials | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 3 | Mar. 2014 | 3 |                               c z , b y , a x ;;;:;;:: ;1,n;1,n;1,n:;;::n F(3) (3.5) where F(3) [ ] is in the form of a general triple hypergeometric series F(3) [x, y, z] (cf. Srivastava [18], p. 428).           dwdvduc,b,a;zwyvu),1(xYw1wv1vu1u ,, n 111111 1 0 1 0 1 0                                  c z , b y , a x ;;;:;;:: ;1,n;1,n;1,n:;;::n F(3) (3.6)           dwdvduc,b,a;zw),v1(yu,xYw1wv1vu1u ,, n 111111 1 0 1 0 1 0                                  c z , b y , a x ;;;:;;:: ;1,n;1,n;1,n:;;::n F(3) (3.7)           dwdvduc,b,a);w1(z,yvu,xYw1wv1vu1u ,, n 111111 1 0 1 0 1 0                                  c z , b y , a x ;;;:;;:: ;1,n;1,n;1,n:;;::n F(3) (3.8)           dwdvduc,b,a;zw),v1(y,)u1(xYw1wv1vu1u ,, n 111111 1 0 1 0 1 0                                  c z , b y , a x ;;;:;;:: ;1,n;1,n;1,n:;;::n F(3) (3.9)           dwdvduc,b,a);w1(z,yv,)u1(xYw1wv1vu1u ,, n 111111 1 0 1 0 1 0                                  c z , b y , a x ;;;:;;:: ;1,n;1,n;1,n:;;::n F(3) (3.10)           dwdvduc,b,a);w1(z),v1(y,xuYw1wv1vu1u ,, n 111111 1 0 1 0 1 0                                  c z , b y , a x ;;;:;;:: ;1,n;1,n;1,n:;;::n F(3) (3.11)           dwdvduc,b,a);w1(z),v1(y,)u1(xYw1wv1vu1u ,, n 111111 1 0 1 0 1 0                                  c z , b y , a x ;;;:;;:: ;1,n;1,n;1,n:;;::n F(3) (3.12)           dwdvduc,b,a;zuv,yuw,xvwYw1wv1vu1u ,, n 1111111 0 1 0 1 0                                 c z , b y , a x ;;;:;;:: ;1n1;n1;n:;;::n F(3) (3.13)
  • 4. A Note on a Three Variables Analogue of Bessel Polynomials | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 3 | Mar. 2014 | 4 |          dudvdwc,b,a);v1(zu),u1(yw,)w1(xvYw1wv1vu1u ,, n 111111 1 0 1 0 1 0                                  c z , b y , a x ;;;:;;:: ;,1,n;,1,n;,1,n:;;::n F(3) (3.14) Particular Cases: Some interesting particular cases of the above results are as follows : (i) Taking  =  + 1,  =  + 1,  =  + 1,  =  =  = n in (3.5), we obtain           dwdvduc,b,a;zwyvu,xYw1wv1vu1u ,, n 1n1n1n1 0 1 0 1 0               cb,a,z;y,x,Y 111 n nn,n, n nnn 3     (3.15) which is equivalent to (3.4) (ii) Taking  =  =  = n + 1,  = ,  = ,  =  in (3.5), we get           dwdvduzwyvu,xYw1wv1vu1u ,, n 1n1n1n 1 0 1 0 1 0              zy,x,Y !n 0,0,0 n 1n1n1n 3    (3.16) (iii) Replacing  by  + n + 1 – ,  by  + n + 1 – ,  by  + n + 1 – , and putting  = ,  =  and  =  in (3.5), we get           dwdvduc,b,a;zwyvu,xYw1wv1vu1u ,, n 1n1n1n1 0 1 0 1 0                        cb,a,z;y,x,Y 1n1n1n 1n1n1n ,, n     (3.17) Similar particular cases hold for (3.6), (3.7), (3.8), (3.9), (3.10), (3.11) and (3.12). (iv) For z = 0, a = b = 2, results (3.4), (3.5), (3.6), (3.7) and (3.9) become         dydxy,xYysyxrx , n 1n1nr 0 s 0             sr,Y 11 ntsr nn, n nn 2nnn      (3.18)         dvduyvu,xYv1vu1u , n 1111 1 0 1 0                            2 y , 2 x ;;: ;1,n;1,n:n F 2;2:1 1;1: (3.19)         dvduyvu),1(xYv1vu1u , n 1111 1 0 1 0                             2 y , 2 x ;;: ;1,n;1,n:n F 2;2:1 1;1: (3.20)         dvdu)v1(yu),1(xYv1vu1u , n 1111 1 0 1 0                             2 y , 2 x ;;: ;1,n;1,n:n F 2;2:1 1;1: (3.21)
  • 5. A Note on a Three Variables Analogue of Bessel Polynomials | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 3 | Mar. 2014 | 5 | Results (3.18), (3.19), (3.20) and (3.21) are due to Khan and Ahmad [11]. Also, using the integral (see Erdelyi et al. [8], vol. I, p. 14),     dtetzzsini2 t1z)(0     (3.22) and the fact that     !j!s!r zyxn zyx1 rsj jsr srn 0j rn 0s n 0r n         (3.23) we can easily derive the following integral representations for    cb,a,;zy,x,Y ,, n  :       dwdvdu c zw b yv a xu 1ewvu n wvunnn)0()0()0(                          cb,a,;zy,x,Y1n1n1nsinsinsin1i8 ,, n n   (3.24)         3 1n n1n1n1sinsinsin1      dwdvducb,a,; w cz , v by , u ax Yewvu ,, n wvu1n1n1n 000         n zyx1  (3.25) IV. Schlafli’s Contour Integral It is easy to show that dwdvdu c zw b yv a xu 1ewvu n wvunnn )0()0()0(                          cb,a,;zy,x,Yn1n1n1sinsinsin1i8 ,, n n   (4.1) Proof of (4.1) : We have   dwdvdu c zw b yv a xu 1ewvu i2 1 n wvunnn )0()0()0( 3                     dwdvduewvu i2 1 c z b y a x !j!s!r n wvurnsnjn )0()0()0( 3 rsj jsr srn 0j rn 0s n 0r                                         rnsnjn!j!s!r c z b y a x n rsj jsrsrn 0j rn 0s n 0r                           using Hankel’s formula (see A. Eerdelyi et al. [8], 1.6 (2)).   dtte i2 1 z 1 zt )(0      (4.2) Finally (4.1) follows from (2.1) after using the result     zcosecz1z  (4.3) for z = 0, a = b = 2, (4.1) reduces to dvdu b yv a xu 1evu n wvunn)0()0(                   yx,Yn1n1sinsin4 , n   (4.4) which is due to Khan and Ahmad [11].
  • 6. A Note on a Three Variables Analogue of Bessel Polynomials | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 3 | Mar. 2014 | 6 | V. Fractional Integrals Let L denote the linear space of (equivalent classes of) complex – valued functions f(x) which are Lebesgue – integrable on [0, ],  < . For f(x) L and complex number  with Rl  > 0, the Riemann – Liouville fractional integral of order  is defined as (see Prabhakar [13], p. 72)     dt(t)ftx 1 f(x)I 1x 0      for almost all x  [0, ] (5.1) Using the operator I , Prabhakar [14] obtained the following result for Rl  > 0 and Rl  > –1.         kx;Zx 1kn 1kn kx;ZxI nn     (5.2) where  kx;Zn  is Konhauser’s biorthozonal polynomial. Khan and Ahmad [11] defined a two variable analogue of (5.1) by means of the following relation :              dvduvu,fvyux 1 yx,fI 11y 0 x 0 ,      (5.3) and obtained the following result :     yx,YyxI , n nn,             yx,Y 1n1n 1n1nyx , n nn      (5.4) In an attempt to obtained a result analogous to (5.4) for the polynomial    cb,a,;zy,x,Y ,, n  we first seek a three variable analogue of (5.1). A three variable analogue of I may be defined as                  dwdvduwv,u,fwzvyux 1 zy,x,fI 111z 0 y 0 x 0 ,,      (5.5) Putting      cb,a,z;y,x,Yzyxzy,,xf ,, n nnn   in (5.5), we obtain     cb,a,z;y,x,YzyxI ,, n nnn,,                  cb,a,z;y,x,Y 1n1n1n 1n1n1nzyx ,, n nnn      (5.6) VI. Laplace Transform In the usual notation the Laplace transform is given by        0asRldt,tfes:tfL st 0     (6.1) where f  L (0, R) for every R > 0 and f(t) = 0(eat ), t  . Khan and Ahmad [11] introduced a two variable analogue of (6.1) by means of the relation:      dvduvu,fes,s:vu,fL vsus 00 21 21    (6.2) and established the following results :               21 21 , n 1n1n s,s: vs 2y , us 2x YvuL      n n 2 n 1 2 yx1 1n1nsinsin ss      (6.3) and                21 n 21nn s,s: 2 yvs 2 xus 1vuL
  • 7. A Note on a Three Variables Analogue of Bessel Polynomials | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 3 | Mar. 2014 | 7 |        yx,Y ss 1n1n , n1n 2 1n 1     (6.4) In an attempt to obtain results analogous to (6.3) and (6.4) for    cb,a,z;y,x,Y ,, n  we define a three variable analogue of (6.1) as follows      dwdvduwv,u,fes,s,s:wv,u,fL wsvsus 000 321 321   (6.5) Now, we have               321 321 ,, n 1n1n1n s,s,s:cb,a,; ws cz , vs by , us ax YwvuL         n n 3 n 2 n 1 31n y)x(1 1n1n1nsinsinsin sss1      (6.6) Similarly, we obtain                321 n 321nnn s,s,s: c zws b yvs a xus 1wvuL          cb,a,z;y,x,Y sss 1n1n1n ,, n1n 3 1n 2 1n 1     (6.7) VII. Generating Functions It is easy to derive the following generating functions for    cb,a,z;y,x,Y ,, n  :     111 tn,n,n n n 0n c zt 1 b yt 1 a xt 1ecb,a,z;y,x,Y !n t                        (7.1)    cb,a,z;y,x,Y !n t n,n, n n 0n     a xt4 11 t2 e a xt4 11 c zt2 1 a xt4 11 b yt2 1 a xt4 11 2 a xt4 1 11 2 1                                                   (7.2)    cb,a,z;y,x,Y !n t n,,n n n 0n     b yt4 11 t2 e b yt4 11 c zt2 1 b yt4 11 a xt2 1 b yt4 11 2 b yt4 1 11 2 1                                                   (7.3)    cb,a,z;y,x,Y !n t ,n,n n n 0n    
  • 8. A Note on a Three Variables Analogue of Bessel Polynomials | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 3 | Mar. 2014 | 8 | c zt4 11 t2 11 2 1 e c zt4 11 b yt2 1 c zt4 11 a xt2 1 c zt4 11 2 c zt4 1                                                    (7.4)    cb,a,z;y,x,Y !n t n,n,n2 n n 0n         11 xta at xtac azt 1 xtab ayt 1 a xt 1e                         (7.5)    cb,a,z;y,x,Y !n t n,n2,n n n 0n         11 ytb bt ytbc bzt 1 ytba bxt 1 b yt 1e                         (7.6)    cb,a,z;y,x,Y !n t n2,n,n n n 0n         11 ztc ct ztcb cyt 1 ztca cxt 1 c zt 1e                         (7.7)           1cb,a,z;y,x,Y 1 1 cb,a,z;y,x,Y n,, n nk,, n k 0k        (7.8)           c,1ba,z;y,x,Y 1 1 cb,a,z;y,x,Y ,n, n ,nk, n k 0k        (7.9)           c,b,1az;y,x,Y 1 1 cb,a,z;y,x,Y ,,n n ,,nk n k 0k        (7.10) Using (3.1), we can also derive the following results :      cb,a,z;y,x,Y !k nk,, n k 0k            dwdvduw2Je c zw b yv a xu 1vu 1n1n 1 0 wvu n nn 000             (7.11)      cb,a,z;y,x,Y !k ,nk, n k 0k            dwdvduv2Je c zw b yv a xu 1wu 1n1n 1 0 wvu n nn 000             (7.12)      cb,a,z;y,x,Y !k ,,nk n k 0k            dwdvduu2Je c zw b yv a xu 1wu 1n1n 1 0 wvu n nn 000             (7.13)
  • 9. A Note on a Three Variables Analogue of Bessel Polynomials | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 3 | Mar. 2014 | 9 |      cb,a,z;y,x,Y1 n2k,, n 2kk 0k         dwdvduwosce c zw b yv a xu 1vu 1n1n 1 wvu n nn 000             (7.14)      cb,a,z;y,x,Y1 ,n2k, n k2k 0k         dwdvduvosce c zw b yv a xu 1wu 1n1n 1 wvu n nn 000             (7.15)      cb,a,z;y,x,Y1 ,,n2k n 2kk 0k         dwdvduuosce c zw b yv a xu 1wu 1n1n 1 wvu n nn 000             (7.16)      cb,a,z;y,x,Y1 n12k,, n 12kk 0k         dwdvduwsine c zw b yv a xu 1vu 1n1n 1 wvu n nn 000             (7.17)      cb,a,z;y,x,Y1 ,n12k, n 1k2k 0k         dwdvduvsine c zw b yv a xu 1wu 1n1n 1 wvu n nn 000             (7.18)      cb,a,z;y,x,Y1 ,,n12k n 12kk 0k         dwdvduusine c zw b yv a xu 1wu 1n1n 1 wvu n nn 000             (7.19) VIII. Double Generating Functions The following double generating functions for    cb,a,z;y,x,Y ,, n  can easily be derived by using (3.1)        cb,a,z;y,x,Y ,nk,nm n km 0k0m                c,1b,1a;zy,,xY 11 1 n,n, n     (8.1)        cb,a,z;y,x,Y nk,,nm n km 0k0m                    1cb,,1a;zy,,xY 11 1 n,n, n (8.2)
  • 10. A Note on a Three Variables Analogue of Bessel Polynomials | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 3 | Mar. 2014 | 10 |        cb,a,z;y,x,Y nk,nm, n km 0k0m                    1c,1ba,;zy,,xY 11 1 nn,, n (8.3)        cb,a,z;y,x,Y !k!m ,nk,nm n km 0k0m              dwdvduv2Ju2Je c zw b yv a xu 1w 1n 1 00 wvu n n 000             (8.4)        cb,a,z;y,x,Y !k!m nk,,nm n km 0k0m              dwdvduw2Ju2Je c zw b yv a xu 1v 1n 1 00 wvu n n 000             (8.5)        cb,a,z;y,x,Y !k!m nk,nm, n km 0k0m              dwdvduw2Jv2Je c zw b yv a xu 1u 1n 1 00 wvu n n 000            (8.6)      cb,a,z;y,x,Y1 ,n2k,nm2 n 2k2mkm 0k0m         dwdvduvcosuosce c zw b yv a xu 1w 1n 1 wvu n n 000            (8.7)      cb,a,z;y,x,Y1 n2k,,nm2 n 2k2mkm 0k0m         dwdvduwcosuosce c zw b yv a xu 1v 1n 1 wvu n n 000             (8.8)      cb,a,z;y,x,Y1 n2k,nm2, n 2k2mkm 0k0m         dwdvduwcosvosce c zw b yv a xu 1u 1n 1 wvu n n 000             (8.9)      cb,a,z;y,x,Y1 ,n2k,n1m2 n 2k12mkm 0k0m         dwdvduvcosuinse c zw b yv a xu 1w 1n 1 wvu n n 000             (8.10)      cb,a,z;y,x,Y1 n2k,,n1m2 n 2k12mkm 0k0m      
  • 11. A Note on a Three Variables Analogue of Bessel Polynomials | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 3 | Mar. 2014 | 11 |   dwdvduwcosuinse c zw b yv a xu 1v 1n 1 wvu n n 000            (8.11)      cb,a,z;y,x,Y1 n2k,n1m2, n 2k12mkm 0k0m         dwdvduwcosvinse c zw b yv a xu 1u 1n 1 wvu n n 000            (8.12)      cb,a,z;y,x,Y1 ,n12k,nm2 n 12k2mkm 0k0m         dwdvduvsinuosce c zw b yv a xu 1w 1n 1 wvu n n 000             (8.13)      cb,a,z;y,x,Y1 n12k,,nm2 n 12k2mkm 0k0m         dwdvduwsinuosce c zw b yv a xu 1v 1n 1 wvu n n 000             (8.14)      cb,a,z;y,x,Y1 n12k,nm2, n 12k2mkm 0k0m         dwdvduwsinvosce c zw b yv a xu 1u 1n 1 wvu n n 000             (8.15)      cb,a,z;y,x,Y1 ,n12k,n1m2 n 12k12mkm 0k0m         dwdvduvsinuinse c zw b yv a xu 1w 1n 1 wvu n n 000             (8.16)      cb,a,z;y,x,Y1 n12k,,n1m2 n 12k12mkm 0k0m         dwdvduwsinuinse c zw b yv a xu 1v 1n 1 wvu n n 000             (8.17)      cb,a,z;y,x,Y1 n12k,n1m2, n 12k12mkm 0k0m         dwdvduwsinvinse c zw b yv a xu 1u 1n 1 wvu n n 000             (8.18)
  • 12. A Note on a Three Variables Analogue of Bessel Polynomials | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 3 | Mar. 2014 | 12 | IX. Triple Generating Functions The following triple generating functions can easily be obtained by using (3.1):          cb,a,z;y,x,Y nj,nk,nm n jkm 0j0k0m                         1c,1b,1az;y,x,Y 111 1 n,n,n n (9.1)          cb,a,z;y,x,Y !j!k!m nj,nk,nm n jkm 0j0k0m                dwdvduw2Jv2Ju2Je c zw b yv a xu 1 000 wvu n 000           (9.2)      cb,a,z;y,x,Y1 n2j,n2k,nm2 n 2j2k2mjkm 0j0k0m         dwdvduwoscvoscuosce c zw b yv a xu 1 wvu n 000           (9.3)      cb,a,z;y,x,Y1 n12j,n12k,n1m2 n 12j12k12mjkm 0j0k0m         dwdvduwinsvinsuinse c zw b yv a xu 1 wvu n 000           (9.4)      cb,a,z;y,x,Y1 n2j,n12k,n1m2 n 2j12k12mjkm 0j0k0m         dwdvduwoscvinsuinse c zw b yv a xu 1 wvu n 000           (9.5)      cb,a,z;y,x,Y1 n12j,n2k,nm2 n 12j2k2mjkm 0j0k0m         dwdvduwinsvoscuosce c zw b yv a xu 1 wvu n 000           (9.6) X. Bessel Polynomials Of M-Variables The Bessel polynomials of m-variables    m21m21 ,----,, n a,----,a,a;x,----,x,xY m21  can be defined as follows:    m21m21 ,----,, n a,----,a,a;x,----,x,xY m21                             i i m 0i i m 0i ji m 0i rrrrrrn 0r rrn 0r rn 0r n 0r a x !r 1nn m211m21 m 21 3 1 21 (10.1) All the results of this paper can be extended for this m-variable Bessel polynomials. The only hinderance in their study is the representation of results in hypergeometric functions of m-variables.
  • 13. A Note on a Three Variables Analogue of Bessel Polynomials | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 3 | Mar. 2014 | 13 | REFERENCES [1.] R. P. Agarwal: On Bessel polynomials, Canadian Journal of Mathematics, Vol. 6 (1954), pp. 410 – 415. [2.] W. A. Al-Salam: On Bessel polynomials, Duke Math. J., Vol. 24 (1957), pp. 529 – 545. [3.] F.Brafman: A set of generating functions for Bessel polynomials, Proc. Amer. Math Soc., Vol. 4 (1953), pp. 275 – 277. [4.] J. L. Burchnall: The Bessel polynomials, Canadian Journal of Mathematics, Vol. 3 (1951), pp 62 – 68. [5.] L. Carlitz: On the Bessel polynomials, Duke Math. Journal, Vol. 24 (1957), pp. 151 – 162. [6.] S. K. Chatterjea: Some generating functions, Duke Math. Journal, Vol. 32 (1965), pp. 563 – 564. [7.] D. Dickinson: On Lommel and Bessel polynomials, Proc. Amar. Math. Soc., Vol. 5 (1954), pp. 946 – 956. [8.] A. Erdelyi et. al: Higher Transcendal Functions, I, McGraw Hill, New York (1953). [9.] M. T. Eweida: On Bessel polynomials, Math. Zeitsehr., Vol. 74 (1960), pp. 319 – 324. [10.] E. Grosswald: On some algebraic properties of the Bessel polynomials, Trans. Amer. Math. Soc., Vol. 71 (1951), pp. 197 – 210. [11.] M. A. Khan and K. Ahmad: On a two variables analogue of Bessel polynomials, Mathematica Balkanica, New series Vol. 14, (2000), Fasc. 1 – 2, pp. 65 – 76. [12.] H. L. Krall: and O. Frink A new class of orthogonal polynomials, the Bessel polynomials, Trans. Amer. Math. Soc., Vol. 65 (1949), pp. 100 – 115. [13.] T. R. Prabhakar: Two singular integral equations involving confluent hypergeometric functions, Proc. Camb. Phil. Soc., Vol. 66 (1969), pp. 71 – 89. [14.] T. R. Prabhakar: On a set of polynomials suggested by Laguerre polynomials, Pacific Journal of Mathematics, Vol. 40 (1972), pp. 311 – 317. [15.] E. D. Rainville: Generating functions for Bessel and related polynomials, Canadian J. Math., Vol. 5 (1953), pp. 104 – 106. [16.] E. D. Rainville: Special Functions, MacMillan, New York, Reprinted by Chelsea Publ. Co., Bronx – New York (1971). [17.] H. M. Srivastava: Some biorthogonal polynomials suggested by the Laguerre polynomials, Pacific J. Math., Vol. 98, No. 1 (1982), pp. 235 – 249. [18.] H. M. Srivastava and H. L. Masnocha: A treatise on Generating Functions, J. Waley & Sons (Halsted Press), New York; Ellis Horwood, Chichester (1984). [19.] L. Toscano: Osservacioni e complementi su particolari polinomiipergeometrici, Le Matematiche, Vol. 10 (1955), pp. 121 – 133.