SlideShare ist ein Scribd-Unternehmen logo
1 von 57
Downloaden Sie, um offline zu lesen
On Approximating the Smallest Enclosing
Bregman Balls
Frank Nielsen1

Richard Nock2

1 Sony

Computer Science Laboratories, Inc.
Fundamental Research Laboratory
Frank.Nielsen@acm.org
2 University

of Antilles-Guyanne
DSI-GRIMAAG
Richard.Nock@martinique.univ-ag.fr

March 2006

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Smallest Enclosing Balls
Problem
Given S = {s1 , ..., sn }, compute a simplified description, called
the center, that fits well S (i.e., summarizes S).
Two optimization criteria:
M IN AVG Find a center c∗ which minimizes the average
distortion w.r.t S: c∗ = argminc i d(c, si ).
M IN M AX Find a center c∗ which minimizes the maximal
distortion w.r.t S: c∗ = argminc maxi d(c, si ).
Investigated in Applied Mathematics:
Computational geometry (1-center problem),
Computational statistics (1-point estimator),
Machine learning (1-class classification),
F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Smallest Enclosing Balls in Computational Geometry
Distortion measure d(·, ·) is the geometric distance:
Euclidean distance L2 .
c∗ is the circumcenter of S for M IN M AX,
Squared Euclidean distance L2 .
2
c∗ is the centroid of S for M IN AVG (→ k -means),
Euclidean distance L2 .
c∗ is the Fermat-Weber point for M IN AVG.

Centroid
M IN AVG L2
2

Circumcenter
M IN M AX L2

F. Nielsen and R. Nock

Fermat-Weber
M IN AVG L2

On Approximating the Smallest Enclosing Bregman Balls
Core-sets for M IN M AX Ball
˘
→ Introduced by Badoiu and Clarkson [BC’02]
Approximating M IN M AX [BC’02]: ||c − c∗ || ≤ r ∗
A -approximation for the M IN M AX ball can be found in O( dn )
2
time using algorithm BC. [for point/ball sets]
Algorithm BC(S, T )
Input: S = {s1 , s2 , ..., sn }
Output: Circumcenter c such that ||c − c∗ || ≤
Choose at random c ∈ S
for t = 1, 2, ..., T do
Find furthest point
s ← arg maxs ∈S c − s
Update circumcenter
t
1
c ← t+1 c + t+1 s

r∗
√
T

2

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo Algorithm BC: Initialization

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo Algorithm BC: Iteration 1

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo Algorithm BC: Iteration 2

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo Algorithm BC: Iteration 3

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo Algorithm BC: Iteration 4

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo Algorithm BC: Iteration 5

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo Algorithm BC: Iteration 6

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo Algorithm BC: Iteration 7

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo Algorithm BC: Iteration 8

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo Algorithm BC: Iteration 9

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo Algorithm BC: Summary
After 10 iterations, we visualize the ball traces and the core-set.

Ball traces

Core-set

Core-set’s size is independent of the dimension d.
(depends only on 1 )
F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Distortions: Bregman Divergences
Definition
Bregman divergences are parameterized (F ) families of
distortions.
Let F : X −→ R, such that F is strictly convex and differentiable
on int(X ), for a convex domain X ⊆ Rd .
Bregman divergence DF :
DF (x, y) = F (x) − F (y) − x − y,

F

·, ·

:
:

F (y)

.

gradient operator of F
Inner product (dot product)
(→ DF is the tail of a Taylor expansion of F )

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Visualizing F and DF
F (·)

DF (x, y)
x − y,

y

F (y)

x

DF (x, y) = F (x) − F (y) − x − y,

F (y)

.

(→ DF is the tail of a Taylor expansion of F )
F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Bregman Balls
Two Bregman balls:
Bc,r = {x ∈ X : DF ( c , x) ≤ r }, Bc,r = {x ∈ X : DF (x, c ) ≤ r }

Euclidean Ball: Bc,r = {x ∈ X : x − c
(r : squared radius.

L2 :
2

2
2

≤ r } = Bc,r

Bregman divergence F (x) =

d
i=1

xi2 )

Lemma [NN’05]
The smallest enclosing Bregman ball Bc∗ ,r ∗ of S is unique.
Theorem [BMDG’04]
The M IN AVG Ball for Bregman divergences is the centroid .
F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Applying BC for divergences yields poor result

−→ design a tailored algorithm for divergences.

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Bregman BC Algorithm
BBC generalizes BC to Bregman divergences
(analysis in [NN’05]).
Algorithm BBC(S, T )
Choose at random c ∈ S
for t = 1, 2, ..., T do
Furthest point w.r.t. DF
s ← arg maxs ∈S DF (c, s )
Circumcenter update
t
1
c ← −1 t+1 F (c) + t+1
F

F (s)

Observations
BBC(L2 ) is BC.
2
DF (c, x) is convex in c but not necessarily the ball’s
boundary ∂Bc,r
(depends on x given c; see Itakura-Saito ball).
F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Itakura-Saito): Initialization
d

DF (p, q) =

(
i=1

pi
p
− log i − 1), [F (x) = −
qi
qi

F. Nielsen and R. Nock

d

log xi ]
i=1

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Itakura-Saito): Iteration 1

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Itakura-Saito): Iteration 2

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Itakura-Saito): Iteration 3

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Itakura-Saito): Iteration 4

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Itakura-Saito): Iteration 5

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Itakura-Saito): Iteration 6

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Itakura-Saito): Iteration 7

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Itakura-Saito): Iteration 8

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Itakura-Saito): Iteration 9

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC(Itakura-Saito): Summary

n = 100 points (d = 2)

Sampling Ball

All iterations

F. Nielsen and R. Nock

Core-set

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Kullbach-Leibler): Initialization
d

DF (p, q) =
i=1

p
(pi log i − pi + qi ), [F (x) = −
qi

F. Nielsen and R. Nock

d

xi log xi ]
i=1

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Kullbach-Leibler): Iteration 1

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Kullbach-Leibler): Iteration 2

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Kullbach-Leibler): Iteration 3

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Kullbach-Leibler): Iteration 4

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Kullbach-Leibler): Iteration 5

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Kullbach-Leibler): Iteration 6

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Kullbach-Leibler): Iteration 7

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Kullbach-Leibler): Iteration 8

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC (Kullbach-Leibler): Iteration 9

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Demo BBC(Kullbach-Leibler): Summary

n = 100, d = 2.

Sampling Ball

All iterations

F. Nielsen and R. Nock

Core-set

On Approximating the Smallest Enclosing Bregman Balls
Fitting Bregman Balls
For a same dataset (drawn from a 2D Gaussian distribution)
Euclidean ball (L2 ),
2
Itakura-Saito ball,
Kullbach-Leibler ball (as known as Information ball).

Squared Euclidean

Itakura-Saito

F. Nielsen and R. Nock

Kullbach-Leibler

On Approximating the Smallest Enclosing Bregman Balls
BBC: Iteration 1

Squared Euclidean

Itakura-Saito

F. Nielsen and R. Nock

Kullbach-Leibler

On Approximating the Smallest Enclosing Bregman Balls
BBC: Iteration 2

Squared Euclidean

Itakura-Saito

F. Nielsen and R. Nock

Kullbach-Leibler

On Approximating the Smallest Enclosing Bregman Balls
BBC: Iteration 3

Squared Euclidean

Itakura-Saito

F. Nielsen and R. Nock

Kullbach-Leibler

On Approximating the Smallest Enclosing Bregman Balls
BBC: Iteration 4

Squared Euclidean

Itakura-Saito

F. Nielsen and R. Nock

Kullbach-Leibler

On Approximating the Smallest Enclosing Bregman Balls
BBC: Iteration 5

Squared Euclidean

Itakura-Saito

F. Nielsen and R. Nock

Kullbach-Leibler

On Approximating the Smallest Enclosing Bregman Balls
BBC: Iteration 6

Squared Euclidean

Itakura-Saito

F. Nielsen and R. Nock

Kullbach-Leibler

On Approximating the Smallest Enclosing Bregman Balls
BBC: Iteration 7

Squared Euclidean

Itakura-Saito

F. Nielsen and R. Nock

Kullbach-Leibler

On Approximating the Smallest Enclosing Bregman Balls
BBC: Iteration 8

Squared Euclidean

Itakura-Saito

F. Nielsen and R. Nock

Kullbach-Leibler

On Approximating the Smallest Enclosing Bregman Balls
BBC: Iteration 9

Squared Euclidean

Itakura-Saito

F. Nielsen and R. Nock

Kullbach-Leibler

On Approximating the Smallest Enclosing Bregman Balls
BBC: After 10 iterations

Squared Euclidean

Itakura-Saito

F. Nielsen and R. Nock

Kullbach-Leibler

On Approximating the Smallest Enclosing Bregman Balls
Experiments with BBC
Kullbach-Leibler ball, 100 runs
(n = 1000, T = 200 on the plane: d = 2)
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0
0

20

40

60

∗

80 100 120 140 160 180 200

∗

Plain curves (BBC): DF (c ,c)+DF (c,c ) .
2
Dashed curves: Upperbound ||c − c∗ || from [BC’02]:

F. Nielsen and R. Nock

1
T

for L2 .
2

On Approximating the Smallest Enclosing Bregman Balls
Bregman divergences ↔ Functional averages

Bijection (core-sets) [NN’05]
F (s)

DF (c, s)

cj (1 ≤ j ≤ d)

Rd
I

Pd

L2 norm
2
Pd
2
j=1 (cj − sj )

Arithmetic mean
Pm
i=1 αi si,j

(I +,∗ )d
R
/ d-simplex

Pd

Information/Kullbach-Leibler divergence
Pd
j=1 cj log(cj /sj ) − cj + sj

Geometric mean
Qm αi
i=1 si,j

(I +,∗ )d
R

−

Rd
I

sT Cov−1 s
p ∈ N {0, 1}
I

Itakura-Saito divergence
Pd
j=1 (cj /sj ) − log(cj /sj ) − 1
Mahalanobis divergence
(c − s)T Cov−1 (c − s)

Harmonic mean
P
1/ m (αi /si,j )
i=1
Arithmetic mean
Pm
i=1 αi si,j
Weighted power mean

Domain

R d /I +
I
R

2
j=1 sj

d

j=1 sj

Pd
j=1

(1/p)

log sj − sj
log sj

Pd

p
j=1 sj

Pd

p
c
j
j=1 p

(p−1)s

+

p

p
j

p−1

− cj sj

 Pm

i=1



p−1 1/(p−1)

αi si,j

Bregman divergences ↔ Family of exponential distributions
[BMDG’04].

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
References

˘
[BC’02] M. Badoiu and K. L. Clarkson, Core-sets for balls,
Manuscript, 2002.
(M IN M AX core-set and (1 + )-approximation)
[NN’04] F. Nielsen and R. Nock, Approximating Smallest
Enclosing Balls, ICCSA 2004.
(Survey on M IN M AX)
[BMDG’04] A. Banerjee, S. Merugu, I. S. Dhillon, J. Ghosh,
Clustering with Bregman Divergences, SDM 2004.
(Bregman divergences and k-means)
[NN’05] R. Nock and F. Nielsen, Fitting the Smallest
Enclosing Bregman Ball, ECML 2005.
(Bregman Balls)

F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls
Linux R and Windows R codes
Available from our Web pages:
http://www.csl.sony.co.jp/person/nielsen/
BregmanBall/
http://www.univ-ag.fr/∼rnock/BregmanBall/

Command line executable: cluster
-h
-B

display this help
choose Bregman divergence
(0: Itakura-Saito, 1: Euclidean, 2: Kullbach-Leibler (simplex), 3: Kullbach-Leibler (general), 4: Csiszar)

-d
-n
-k
-g

dimension
number of points
number of theoretical clusters
type of clusters
(0: Gaussian, 1: Ring Gaussian, 2: Uniform, 3: Gaussian with small σ, 4: Uniform Bregman)

-S
...

number of runs
...
F. Nielsen and R. Nock

On Approximating the Smallest Enclosing Bregman Balls

Weitere ähnliche Inhalte

Kürzlich hochgeladen

Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...apidays
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...apidays
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodJuan lago vázquez
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native ApplicationsWSO2
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Jeffrey Haguewood
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...apidays
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusZilliz
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxRustici Software
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024The Digital Insurer
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDropbox
 
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Bhuvaneswari Subramani
 
Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityWSO2
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsNanddeep Nachan
 
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot ModelMcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot ModelDeepika Singh
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Victor Rentea
 

Kürzlich hochgeladen (20)

Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
 
Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital Adaptability
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot ModelMcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 

Empfohlen

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by HubspotMarius Sescu
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTExpeed Software
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsPixeldarts
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthThinkNow
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfmarketingartwork
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024Neil Kimberley
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)contently
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024Albert Qian
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsKurio // The Social Media Age(ncy)
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Search Engine Journal
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summarySpeakerHub
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next Tessa Mero
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentLily Ray
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best PracticesVit Horky
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project managementMindGenius
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...RachelPearson36
 

Empfohlen (20)

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPT
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
 
Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 

On Approximating the Smallest Enclosing Bregman Balls

  • 1. On Approximating the Smallest Enclosing Bregman Balls Frank Nielsen1 Richard Nock2 1 Sony Computer Science Laboratories, Inc. Fundamental Research Laboratory Frank.Nielsen@acm.org 2 University of Antilles-Guyanne DSI-GRIMAAG Richard.Nock@martinique.univ-ag.fr March 2006 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 2. Smallest Enclosing Balls Problem Given S = {s1 , ..., sn }, compute a simplified description, called the center, that fits well S (i.e., summarizes S). Two optimization criteria: M IN AVG Find a center c∗ which minimizes the average distortion w.r.t S: c∗ = argminc i d(c, si ). M IN M AX Find a center c∗ which minimizes the maximal distortion w.r.t S: c∗ = argminc maxi d(c, si ). Investigated in Applied Mathematics: Computational geometry (1-center problem), Computational statistics (1-point estimator), Machine learning (1-class classification), F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 3. Smallest Enclosing Balls in Computational Geometry Distortion measure d(·, ·) is the geometric distance: Euclidean distance L2 . c∗ is the circumcenter of S for M IN M AX, Squared Euclidean distance L2 . 2 c∗ is the centroid of S for M IN AVG (→ k -means), Euclidean distance L2 . c∗ is the Fermat-Weber point for M IN AVG. Centroid M IN AVG L2 2 Circumcenter M IN M AX L2 F. Nielsen and R. Nock Fermat-Weber M IN AVG L2 On Approximating the Smallest Enclosing Bregman Balls
  • 4. Core-sets for M IN M AX Ball ˘ → Introduced by Badoiu and Clarkson [BC’02] Approximating M IN M AX [BC’02]: ||c − c∗ || ≤ r ∗ A -approximation for the M IN M AX ball can be found in O( dn ) 2 time using algorithm BC. [for point/ball sets] Algorithm BC(S, T ) Input: S = {s1 , s2 , ..., sn } Output: Circumcenter c such that ||c − c∗ || ≤ Choose at random c ∈ S for t = 1, 2, ..., T do Find furthest point s ← arg maxs ∈S c − s Update circumcenter t 1 c ← t+1 c + t+1 s r∗ √ T 2 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 5. Demo Algorithm BC: Initialization F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 6. Demo Algorithm BC: Iteration 1 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 7. Demo Algorithm BC: Iteration 2 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 8. Demo Algorithm BC: Iteration 3 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 9. Demo Algorithm BC: Iteration 4 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 10. Demo Algorithm BC: Iteration 5 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 11. Demo Algorithm BC: Iteration 6 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 12. Demo Algorithm BC: Iteration 7 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 13. Demo Algorithm BC: Iteration 8 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 14. Demo Algorithm BC: Iteration 9 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 15. Demo Algorithm BC: Summary After 10 iterations, we visualize the ball traces and the core-set. Ball traces Core-set Core-set’s size is independent of the dimension d. (depends only on 1 ) F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 16. Distortions: Bregman Divergences Definition Bregman divergences are parameterized (F ) families of distortions. Let F : X −→ R, such that F is strictly convex and differentiable on int(X ), for a convex domain X ⊆ Rd . Bregman divergence DF : DF (x, y) = F (x) − F (y) − x − y, F ·, · : : F (y) . gradient operator of F Inner product (dot product) (→ DF is the tail of a Taylor expansion of F ) F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 17. Visualizing F and DF F (·) DF (x, y) x − y, y F (y) x DF (x, y) = F (x) − F (y) − x − y, F (y) . (→ DF is the tail of a Taylor expansion of F ) F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 18. Bregman Balls Two Bregman balls: Bc,r = {x ∈ X : DF ( c , x) ≤ r }, Bc,r = {x ∈ X : DF (x, c ) ≤ r } Euclidean Ball: Bc,r = {x ∈ X : x − c (r : squared radius. L2 : 2 2 2 ≤ r } = Bc,r Bregman divergence F (x) = d i=1 xi2 ) Lemma [NN’05] The smallest enclosing Bregman ball Bc∗ ,r ∗ of S is unique. Theorem [BMDG’04] The M IN AVG Ball for Bregman divergences is the centroid . F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 19. Applying BC for divergences yields poor result −→ design a tailored algorithm for divergences. F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 20. Bregman BC Algorithm BBC generalizes BC to Bregman divergences (analysis in [NN’05]). Algorithm BBC(S, T ) Choose at random c ∈ S for t = 1, 2, ..., T do Furthest point w.r.t. DF s ← arg maxs ∈S DF (c, s ) Circumcenter update t 1 c ← −1 t+1 F (c) + t+1 F F (s) Observations BBC(L2 ) is BC. 2 DF (c, x) is convex in c but not necessarily the ball’s boundary ∂Bc,r (depends on x given c; see Itakura-Saito ball). F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 21. Demo BBC (Itakura-Saito): Initialization d DF (p, q) = ( i=1 pi p − log i − 1), [F (x) = − qi qi F. Nielsen and R. Nock d log xi ] i=1 On Approximating the Smallest Enclosing Bregman Balls
  • 22. Demo BBC (Itakura-Saito): Iteration 1 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 23. Demo BBC (Itakura-Saito): Iteration 2 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 24. Demo BBC (Itakura-Saito): Iteration 3 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 25. Demo BBC (Itakura-Saito): Iteration 4 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 26. Demo BBC (Itakura-Saito): Iteration 5 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 27. Demo BBC (Itakura-Saito): Iteration 6 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 28. Demo BBC (Itakura-Saito): Iteration 7 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 29. Demo BBC (Itakura-Saito): Iteration 8 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 30. Demo BBC (Itakura-Saito): Iteration 9 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 31. Demo BBC(Itakura-Saito): Summary n = 100 points (d = 2) Sampling Ball All iterations F. Nielsen and R. Nock Core-set On Approximating the Smallest Enclosing Bregman Balls
  • 32. Demo BBC (Kullbach-Leibler): Initialization d DF (p, q) = i=1 p (pi log i − pi + qi ), [F (x) = − qi F. Nielsen and R. Nock d xi log xi ] i=1 On Approximating the Smallest Enclosing Bregman Balls
  • 33. Demo BBC (Kullbach-Leibler): Iteration 1 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 34. Demo BBC (Kullbach-Leibler): Iteration 2 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 35. Demo BBC (Kullbach-Leibler): Iteration 3 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 36. Demo BBC (Kullbach-Leibler): Iteration 4 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 37. Demo BBC (Kullbach-Leibler): Iteration 5 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 38. Demo BBC (Kullbach-Leibler): Iteration 6 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 39. Demo BBC (Kullbach-Leibler): Iteration 7 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 40. Demo BBC (Kullbach-Leibler): Iteration 8 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 41. Demo BBC (Kullbach-Leibler): Iteration 9 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 42. Demo BBC(Kullbach-Leibler): Summary n = 100, d = 2. Sampling Ball All iterations F. Nielsen and R. Nock Core-set On Approximating the Smallest Enclosing Bregman Balls
  • 43. Fitting Bregman Balls For a same dataset (drawn from a 2D Gaussian distribution) Euclidean ball (L2 ), 2 Itakura-Saito ball, Kullbach-Leibler ball (as known as Information ball). Squared Euclidean Itakura-Saito F. Nielsen and R. Nock Kullbach-Leibler On Approximating the Smallest Enclosing Bregman Balls
  • 44. BBC: Iteration 1 Squared Euclidean Itakura-Saito F. Nielsen and R. Nock Kullbach-Leibler On Approximating the Smallest Enclosing Bregman Balls
  • 45. BBC: Iteration 2 Squared Euclidean Itakura-Saito F. Nielsen and R. Nock Kullbach-Leibler On Approximating the Smallest Enclosing Bregman Balls
  • 46. BBC: Iteration 3 Squared Euclidean Itakura-Saito F. Nielsen and R. Nock Kullbach-Leibler On Approximating the Smallest Enclosing Bregman Balls
  • 47. BBC: Iteration 4 Squared Euclidean Itakura-Saito F. Nielsen and R. Nock Kullbach-Leibler On Approximating the Smallest Enclosing Bregman Balls
  • 48. BBC: Iteration 5 Squared Euclidean Itakura-Saito F. Nielsen and R. Nock Kullbach-Leibler On Approximating the Smallest Enclosing Bregman Balls
  • 49. BBC: Iteration 6 Squared Euclidean Itakura-Saito F. Nielsen and R. Nock Kullbach-Leibler On Approximating the Smallest Enclosing Bregman Balls
  • 50. BBC: Iteration 7 Squared Euclidean Itakura-Saito F. Nielsen and R. Nock Kullbach-Leibler On Approximating the Smallest Enclosing Bregman Balls
  • 51. BBC: Iteration 8 Squared Euclidean Itakura-Saito F. Nielsen and R. Nock Kullbach-Leibler On Approximating the Smallest Enclosing Bregman Balls
  • 52. BBC: Iteration 9 Squared Euclidean Itakura-Saito F. Nielsen and R. Nock Kullbach-Leibler On Approximating the Smallest Enclosing Bregman Balls
  • 53. BBC: After 10 iterations Squared Euclidean Itakura-Saito F. Nielsen and R. Nock Kullbach-Leibler On Approximating the Smallest Enclosing Bregman Balls
  • 54. Experiments with BBC Kullbach-Leibler ball, 100 runs (n = 1000, T = 200 on the plane: d = 2) 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 0 20 40 60 ∗ 80 100 120 140 160 180 200 ∗ Plain curves (BBC): DF (c ,c)+DF (c,c ) . 2 Dashed curves: Upperbound ||c − c∗ || from [BC’02]: F. Nielsen and R. Nock 1 T for L2 . 2 On Approximating the Smallest Enclosing Bregman Balls
  • 55. Bregman divergences ↔ Functional averages Bijection (core-sets) [NN’05] F (s) DF (c, s) cj (1 ≤ j ≤ d) Rd I Pd L2 norm 2 Pd 2 j=1 (cj − sj ) Arithmetic mean Pm i=1 αi si,j (I +,∗ )d R / d-simplex Pd Information/Kullbach-Leibler divergence Pd j=1 cj log(cj /sj ) − cj + sj Geometric mean Qm αi i=1 si,j (I +,∗ )d R − Rd I sT Cov−1 s p ∈ N {0, 1} I Itakura-Saito divergence Pd j=1 (cj /sj ) − log(cj /sj ) − 1 Mahalanobis divergence (c − s)T Cov−1 (c − s) Harmonic mean P 1/ m (αi /si,j ) i=1 Arithmetic mean Pm i=1 αi si,j Weighted power mean Domain R d /I + I R 2 j=1 sj d j=1 sj Pd j=1 (1/p) log sj − sj log sj Pd p j=1 sj Pd p c j j=1 p (p−1)s + p p j p−1 − cj sj Pm i=1 p−1 1/(p−1) αi si,j Bregman divergences ↔ Family of exponential distributions [BMDG’04]. F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 56. References ˘ [BC’02] M. Badoiu and K. L. Clarkson, Core-sets for balls, Manuscript, 2002. (M IN M AX core-set and (1 + )-approximation) [NN’04] F. Nielsen and R. Nock, Approximating Smallest Enclosing Balls, ICCSA 2004. (Survey on M IN M AX) [BMDG’04] A. Banerjee, S. Merugu, I. S. Dhillon, J. Ghosh, Clustering with Bregman Divergences, SDM 2004. (Bregman divergences and k-means) [NN’05] R. Nock and F. Nielsen, Fitting the Smallest Enclosing Bregman Ball, ECML 2005. (Bregman Balls) F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls
  • 57. Linux R and Windows R codes Available from our Web pages: http://www.csl.sony.co.jp/person/nielsen/ BregmanBall/ http://www.univ-ag.fr/∼rnock/BregmanBall/ Command line executable: cluster -h -B display this help choose Bregman divergence (0: Itakura-Saito, 1: Euclidean, 2: Kullbach-Leibler (simplex), 3: Kullbach-Leibler (general), 4: Csiszar) -d -n -k -g dimension number of points number of theoretical clusters type of clusters (0: Gaussian, 1: Ring Gaussian, 2: Uniform, 3: Gaussian with small σ, 4: Uniform Bregman) -S ... number of runs ... F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls