SlideShare ist ein Scribd-Unternehmen logo
1 von 36
Downloaden Sie, um offline zu lesen
A Multiple-Conclusion Calculus for
    First-Order Gödel Logic

       Arnon Avron       Ori Lahav

            Tel Aviv University


           CSR June 2011
Gödel Logic


     In 1933, Gödel introduced a sequence {Gn } of n-valued
     matrices and used them to show some important
     properties of intuitionistic logic.
     In 1959, Dummett embedded all the Gn s in an
     infinite-valued matrix Gω .
     Gω is equivalent to G[0,1] , a natural matrix for the
     truth-values [0, 1].
     The logic of G[0,1] is called Gödel logic.
     Gödel logic is perhaps the most important intermediate
     logic.
     Nowadays, Gödel logic is also recognized as one of the
     three most basic fuzzy logics.
Many-Valued Semantics




     A structure M consists of:
         Non-empty domain D
         An interpretation I:
              I[c] ∈ D for every constant
              I[f ] ∈ D n → D for every n-ary function
              I[p] ∈ D n → [0, 1] for every n-ary predicate
Many-Valued Semantics




     A structure M consists of:
         Non-empty domain D
         An interpretation I:
              I[c] ∈ D for every constant
              I[f ] ∈ D n → D for every n-ary function
              I[p] ∈ D n → [0, 1] for every n-ary predicate
     An M-evaluation is a function e:
         Assigning an element of D for every free variable
         Naturally extended to all terms (according to I)
Many-Valued Semantics


      •   M   is defined as follows:
          e
                                M
          p(t1 , . . . , tn )   e   = I[p][e[t1 ], . . . , e[tn ]]
               M
          ⊥    e   =0
Many-Valued Semantics


      •   M   is defined as follows:
          e
                                M
          p(t1 , . . . , tn )   e   = I[p][e[t1 ], . . . , e[tn ]]
               M
          ⊥    e   =0
                      M                       M         M
          ψ1 ∨ ψ2     e    = max{ ψ1          e ,    ψ2 e }
          ψ1 ∧     ψ2 M
                      e    = min{            M
                                          ψ1 e ,       M
                                                    ψ2 e }
Many-Valued Semantics


      •   M   is defined as follows:
          e
                                M
          p(t1 , . . . , tn )   e   = I[p][e[t1 ], . . . , e[tn ]]
               M
          ⊥    e   =0
                      M                       M         M
          ψ1 ∨ ψ2     e      = max{ ψ1        e ,    ψ2 e }
          ψ1 ∧     ψ2 M
                      e      = min{          M
                                          ψ1 e ,       M
                                                    ψ2 e }
                         M            1              ψ1 M ≤
                                                         e           ψ2   M
                                                                          e
          ψ1 ⊃ ψ2        e   =               M
                                       ψ2    e      otherwise
Many-Valued Semantics


      •   M   is defined as follows:
          e
                                M
          p(t1 , . . . , tn )   e   = I[p][e[t1 ], . . . , e[tn ]]
               M
          ⊥    e   =0
                      M                       M          M
          ψ1 ∨ ψ2     e      = max{ ψ1        e ,     ψ2 e }
          ψ1 ∧     ψ2 M
                      e      = min{          M
                                          ψ1 e ,        M
                                                     ψ2 e }
                         M            1               ψ1 M ≤
                                                          e          ψ2   M
                                                                          e
          ψ1 ⊃ ψ2        e   =               M
                                       ψ2    e       otherwise
                   M                   M
          ∀xψ      e   = inf{ ψ        e[x:=d]   | d ∈ D}
                   M                     M
          ∃xψ      e   = sup{ ψ          e[x:=d]   | d ∈ D}
Many-Valued Semantics


      •   M   is defined as follows:
          e
                                M
          p(t1 , . . . , tn )   e   = I[p][e[t1 ], . . . , e[tn ]]
               M
          ⊥    e   =0
                      M                       M          M
          ψ1 ∨ ψ2     e      = max{ ψ1        e ,     ψ2 e }
          ψ1 ∧     ψ2 M
                      e      = min{          M
                                          ψ1 e ,        M
                                                     ψ2 e }
                         M            1               ψ1 M ≤
                                                          e          ψ2   M
                                                                          e
          ψ1 ⊃ ψ2        e   =               M
                                       ψ2    e       otherwise
                   M                   M
          ∀xψ      e   = inf{ ψ        e[x:=d]   | d ∈ D}
                   M                     M
          ∃xψ      e   = sup{ ψ          e[x:=d]   | d ∈ D}


     M is a model of a formula if ϕ if ϕ                      M   = 1 for every e
                                                              e
Kripke-Style Semantics




  A frame is a tuple W = W , ≤, D, I, {Iw }w∈W where:
      W - nonempty set of worlds
      ≤ - linear order on W
      D - non-empty (constant) domain
      I - interpretation of constants and functions
Kripke-Style Semantics




  A frame is a tuple W = W , ≤, D, I, {Iw }w∈W where:
      W - nonempty set of worlds
      ≤ - linear order on W
      D - non-empty (constant) domain
      I - interpretation of constants and functions
      Iw - is a predicate interpretation for every w ∈ W :
          Iw [p] ⊆ D n for every n-ary predicate p
          Persistence: Iu [p] ⊆ Iw [p] if u ≤ w
Kripke-Style Semantics



      Satisfaction relation for a frame, a world, and an evaluation
      of the free variables:
          W, w, e   p(t1 , . . . , tn ) iff e[t1 ], . . . , e[tn ] ∈ Iw [p]
          W, w, e   ⊥
Kripke-Style Semantics



      Satisfaction relation for a frame, a world, and an evaluation
      of the free variables:
          W, w, e   p(t1 , . . . , tn ) iff e[t1 ], . . . , e[tn ] ∈ Iw [p]
          W, w, e   ⊥
          W, w, e   ψ1 ∨ ψ2 iff W, w, e ψ1 or W, w, e ψ2
          W, w, e   ψ1 ∧ ψ2 iff W, w, e ψ1 and W, w, e ψ2
Kripke-Style Semantics



      Satisfaction relation for a frame, a world, and an evaluation
      of the free variables:
          W, w, e   p(t1 , . . . , tn ) iff e[t1 ], . . . , e[tn ] ∈ Iw [p]
          W, w, e   ⊥
          W, w, e   ψ1 ∨ ψ2 iff W, w, e ψ1 or W, w, e ψ2
          W, w, e   ψ1 ∧ ψ2 iff W, w, e ψ1 and W, w, e ψ2
          W, w, e   ψ1 ⊃ ψ2 iff for every u ≥ w:
                     W, u, e ψ1 or W, u, e ψ2
Kripke-Style Semantics



      Satisfaction relation for a frame, a world, and an evaluation
      of the free variables:
          W, w, e   p(t1 , . . . , tn ) iff e[t1 ], . . . , e[tn ] ∈ Iw [p]
          W, w, e   ⊥
          W, w, e   ψ1 ∨ ψ2 iff W, w, e ψ1 or W, w, e ψ2
          W, w, e   ψ1 ∧ ψ2 iff W, w, e ψ1 and W, w, e ψ2
          W, w, e   ψ1 ⊃ ψ2 iff for every u ≥ w:
                     W, u, e ψ1 or W, u, e ψ2
          W, w, e   ∀xψ iff W, w, e[x:=d] ψ for every d ∈ D
          W, w, e   ∃xψ iff W, w, e[x:=d] ψ for some d ∈ D
Kripke-Style Semantics



      Satisfaction relation for a frame, a world, and an evaluation
      of the free variables:
          W, w, e   p(t1 , . . . , tn ) iff e[t1 ], . . . , e[tn ] ∈ Iw [p]
          W, w, e   ⊥
          W, w, e   ψ1 ∨ ψ2 iff W, w, e ψ1 or W, w, e ψ2
          W, w, e   ψ1 ∧ ψ2 iff W, w, e ψ1 and W, w, e ψ2
          W, w, e   ψ1 ⊃ ψ2 iff for every u ≥ w:
                     W, u, e ψ1 or W, u, e ψ2
          W, w, e   ∀xψ iff W, w, e[x:=d] ψ for every d ∈ D
          W, w, e   ∃xψ iff W, w, e[x:=d] ψ for some d ∈ D
      W is a model of a formula if ϕ if W, w, e               ϕ for every w
      and e
Proof Theory




     Sonobe 1975 - first cut-free Gentzen-type sequent calculus
     Other calculi have been proposed later by Corsi, Avellone
     et al., Dyckhoff and others
     All of them use some ad-hoc rules of a nonstandard form
     A. 1991 - hypersequent calculus with standard rules: HG
     Extended to first-order Gödel logic by Baaz and Zach in
     2000: HIF
Hypersequents




     A sequent (Gentzen 1934) is an object of the form
     ϕ1 , . . . , ϕn ⇒ ψ1 , . . . , ψm
         Intuition: ϕ1 ∧ . . . ∧ ϕn ⊃ ψ1 ∨ . . . ∨ ψm
         Single-conclusion sequent: m ≤ 1
Hypersequents




     A sequent (Gentzen 1934) is an object of the form
     ϕ1 , . . . , ϕn ⇒ ψ1 , . . . , ψm
         Intuition: ϕ1 ∧ . . . ∧ ϕn ⊃ ψ1 ∨ . . . ∨ ψm
         Single-conclusion sequent: m ≤ 1
     A hypersequent is an object of the form s1 | . . . | sn where
     the si ’s are sequents
         Intuition: s1 ∨ . . . ∨ sn
         Single-conclusion hypersequent consists of
         single-conclusion sequents only
HG Single-Conclusion Hypersequent System
Structural Rules




                                        H
                     ϕ⇒ϕ      (EW )
                                      H|Γ⇒E
                      H|Γ⇒E                     H|Γ⇒
            (IW ⇒)                    (⇒ IW )
                     H | Γ, ψ ⇒ E               H|Γ⇒ψ
HG Single-Conclusion Hypersequent System
Structural Rules




                                           H
                      ϕ⇒ϕ        (EW )
                                         H|Γ⇒E
                        H|Γ⇒E                      H|Γ⇒
            (IW ⇒)                       (⇒ IW )
                       H | Γ, ψ ⇒ E                H|Γ⇒ψ

                           H1 | Γ1 ⇒ ϕ H2 | Γ2 , ϕ ⇒ E
                   (cut)
                                H1 | H2 | Γ1 , Γ2 ⇒ E
HG Single-Conclusion Hypersequent System
Structural Rules




                                                 H
                           ϕ⇒ϕ        (EW )
                                               H|Γ⇒E
                            H|Γ⇒E                         H|Γ⇒
            (IW ⇒)                             (⇒ IW )
                           H | Γ, ψ ⇒ E                   H|Γ⇒ψ

                               H1 | Γ1 ⇒ ϕ H2 | Γ2 , ϕ ⇒ E
                     (cut)
                                    H1 | H2 | Γ1 , Γ2 ⇒ E

                             H1 | Γ1 , Γ1 ⇒ E1 H2 | Γ2 , Γ2 ⇒ E2
                   (com)
                             H1 | H2 | Γ1 , Γ2 ⇒ E1 | Γ2 , Γ1 ⇒ E2
HG Single-Conclusion Hypersequent System
Logical Rules




                         H1 | Γ1 , ψ1 ⇒ E H2 | Γ2 , ψ2 ⇒ E
                (∨ ⇒)
                           H1 | H2 | Γ1 , Γ2 , ψ1 ∨ ψ2 ⇒ E
                    H | Γ ⇒ ψ1                    H | Γ ⇒ ψ2
       (⇒ ∨1 )                        (⇒ ∨2 )
                  H | Γ ⇒ ψ1 ∨ ψ2               H | Γ ⇒ ψ1 ∨ ψ2
HG Single-Conclusion Hypersequent System
Logical Rules




                          H1 | Γ1 , ψ1 ⇒ E H2 | Γ2 , ψ2 ⇒ E
                (∨ ⇒)
                            H1 | H2 | Γ1 , Γ2 , ψ1 ∨ ψ2 ⇒ E
                    H | Γ ⇒ ψ1                      H | Γ ⇒ ψ2
       (⇒ ∨1 )                          (⇒ ∨2 )
                  H | Γ ⇒ ψ1 ∨ ψ2                 H | Γ ⇒ ψ1 ∨ ψ2

                          H1 | Γ1 ⇒ ψ1 H2 | Γ2 , ψ2 ⇒ E
                 (⊃⇒)
                           H1 | H2 | Γ1 , Γ2 , ψ1 ⊃ ψ2 ⇒ E
                                     H | Γ, ψ1 ⇒ ψ2
                        (⇒⊃)
                                    H | Γ ⇒ ψ1 ⊃ ψ2
HIF Single-Conclusion Hypersequent System




                            H | Γ, ϕ{t/x} ⇒ E
                   (∀ ⇒)
                             H | Γ, ∀xϕ ⇒ E

                             H | Γ ⇒ ϕ{y /x}
                    (⇒ ∀)
                              H | Γ ⇒ ∀xϕ

  where y doesn’t occur free in any component of the conclusion.
HIF Single-Conclusion Hypersequent System




                             H | Γ, ϕ{t/x} ⇒ E
                    (∀ ⇒)
                              H | Γ, ∀xϕ ⇒ E

                              H | Γ ⇒ ϕ{y /x}
                     (⇒ ∀)
                               H | Γ ⇒ ∀xϕ

  where y doesn’t occur free in any component of the conclusion.

      similar rules for ∃
Cut-Admissibility


                     H1 | Γ1 ⇒ ϕ H2 | Γ2 , ϕ ⇒ E
             (cut)
                          H1 | H2 | Γ1 , Γ2 ⇒ E
Cut-Admissibility


                       H1 | Γ1 ⇒ ϕ H2 | Γ2 , ϕ ⇒ E
              (cut)
                            H1 | H2 | Γ1 , Γ2 ⇒ E

      One of the most important properties of a (hyper)sequent
      calculus, provides the key for proof-search
      Traditional syntactic cut-admissibility proofs are notoriously
      prone to errors, especially (but certainly not only) in the
      case of hypersequent systems
          the first proof of cut-elimination for HIF was erroneous
      A semantic proof is usually more reliable and easier to
      check
      A semantic proof usually provides also a proof of
      completeness as well as strong cut-admissibility
MCG Multiple-Conclusion Hypersequent System
Structural Rules




                                                 H
                           ϕ⇒ϕ       (EW )
                                               H|Γ⇒∆

                            H|Γ⇒∆                       H|Γ⇒∆
            (IW ⇒)                           (⇒ IW )
                           H | Γ, ψ ⇒ ∆                H | Γ ⇒ ∆, ψ

                            H1 | Γ1 ⇒ ∆1 , ϕ H2 | Γ2 , ϕ ⇒ ∆2
                   (cut)
                                 H1 | H2 | Γ1 , Γ2 ⇒ ∆1 , ∆2

                            H1 | Γ1 , Γ1 ⇒ ∆1 H2 | Γ2 , Γ2 ⇒ ∆2
               (com)
                            H1 | H2 | Γ1 , Γ2 ⇒ ∆1 | Γ2 , Γ1 ⇒ ∆2
MCG Multiple-Conclusion Hypersequent System
Structural Rules




                                                  H
                           ϕ⇒ϕ        (EW )
                                                H|Γ⇒∆

                            H|Γ⇒∆                        H|Γ⇒∆
            (IW ⇒)                            (⇒ IW )
                           H | Γ, ψ ⇒ ∆                 H | Γ ⇒ ∆, ψ

                             H1 | Γ1 ⇒ ∆1 , ϕ H2 | Γ2 , ϕ ⇒ ∆2
                   (cut)
                                  H1 | H2 | Γ1 , Γ2 ⇒ ∆1 , ∆2

                             H1 | Γ1 , Γ1 ⇒ ∆1 H2 | Γ2 , Γ2 ⇒ ∆2
               (com)
                             H1 | H2 | Γ1 , Γ2 ⇒ ∆1 | Γ2 , Γ1 ⇒ ∆2

                                        H | Γ ⇒ ∆1 , ∆2
                           (split)
                                     H | Γ ⇒ ∆1 | Γ ⇒ ∆2
MCG Multiple-Conclusion Hypersequent System
Logical Rules




                H1 | Γ1 ⇒ ∆1 , ψ1 H2 | Γ2 , ψ2 ⇒ ∆2                H | Γ, ψ1 ⇒ ψ2
     (⊃⇒)                                                (⇒⊃)
                H1 | H2 | Γ1 , Γ2 , ψ1 ⊃ ψ2 ⇒ ∆1 , ∆2             H | Γ ⇒ ψ1 ⊃ ψ2

                     H | Γ, ϕ{t/x} ⇒ ∆                  H | Γ ⇒ ∆, ϕ{y /x}
          (∀ ⇒)                                (⇒ ∀)
                      H | Γ, ∀xϕ ⇒ ∆                     H | Γ ⇒ ∆, ∀xϕ
Results



      MCG is strongly sound and complete with respect to the
      Kripke semantics of the standard first-order Gödel logic
Results



      MCG is strongly sound and complete with respect to the
      Kripke semantics of the standard first-order Gödel logic
      MCG admits strong cut-admissibility:
Results



      MCG is strongly sound and complete with respect to the
      Kripke semantics of the standard first-order Gödel logic
      MCG admits strong cut-admissibility:
      for every set H of hypersequents closed under substitution
      and a hypersequent H:
      H H iff there exists a proof of H from H in which the
      cut-formula of every application of the cut rule is in frm[H]
Results



      MCG is strongly sound and complete with respect to the
      Kripke semantics of the standard first-order Gödel logic
      MCG admits strong cut-admissibility:
      for every set H of hypersequents closed under substitution
      and a hypersequent H:
      H H iff there exists a proof of H from H in which the
      cut-formula of every application of the cut rule is in frm[H]


      As a corollary, we obtain the same results for HIF, the
      original single-conclusion calculus
Thank you!

Weitere ähnliche Inhalte

Andere mochten auch

Csr2011 june18 11_30_remila
Csr2011 june18 11_30_remilaCsr2011 june18 11_30_remila
Csr2011 june18 11_30_remila
CSR2011
 
Csr2011 june14 09_30_grigoriev
Csr2011 june14 09_30_grigorievCsr2011 june14 09_30_grigoriev
Csr2011 june14 09_30_grigoriev
CSR2011
 
Csr2011 june18 15_15_bomhoff
Csr2011 june18 15_15_bomhoffCsr2011 june18 15_15_bomhoff
Csr2011 june18 15_15_bomhoff
CSR2011
 
Csr2011 june18 15_15_bomhoff
Csr2011 june18 15_15_bomhoffCsr2011 june18 15_15_bomhoff
Csr2011 june18 15_15_bomhoff
CSR2011
 
Csr2011 june18 12_00_nguyen
Csr2011 june18 12_00_nguyenCsr2011 june18 12_00_nguyen
Csr2011 june18 12_00_nguyen
CSR2011
 
Csr2011 june18 14_00_sudan
Csr2011 june18 14_00_sudanCsr2011 june18 14_00_sudan
Csr2011 june18 14_00_sudan
CSR2011
 

Andere mochten auch (6)

Csr2011 june18 11_30_remila
Csr2011 june18 11_30_remilaCsr2011 june18 11_30_remila
Csr2011 june18 11_30_remila
 
Csr2011 june14 09_30_grigoriev
Csr2011 june14 09_30_grigorievCsr2011 june14 09_30_grigoriev
Csr2011 june14 09_30_grigoriev
 
Csr2011 june18 15_15_bomhoff
Csr2011 june18 15_15_bomhoffCsr2011 june18 15_15_bomhoff
Csr2011 june18 15_15_bomhoff
 
Csr2011 june18 15_15_bomhoff
Csr2011 june18 15_15_bomhoffCsr2011 june18 15_15_bomhoff
Csr2011 june18 15_15_bomhoff
 
Csr2011 june18 12_00_nguyen
Csr2011 june18 12_00_nguyenCsr2011 june18 12_00_nguyen
Csr2011 june18 12_00_nguyen
 
Csr2011 june18 14_00_sudan
Csr2011 june18 14_00_sudanCsr2011 june18 14_00_sudan
Csr2011 june18 14_00_sudan
 

Ähnlich wie Csr2011 june18 15_45_avron

PaperNo23-habibiIJCMS5-8-2014-IJCMS
PaperNo23-habibiIJCMS5-8-2014-IJCMSPaperNo23-habibiIJCMS5-8-2014-IJCMS
PaperNo23-habibiIJCMS5-8-2014-IJCMS
Mezban Habibi
 
Formulario cuantica 2
Formulario cuantica 2Formulario cuantica 2
Formulario cuantica 2
Abraham Prado
 
PaperNo14-Habibi-IJMA-n-Tuples and Chaoticity
PaperNo14-Habibi-IJMA-n-Tuples and ChaoticityPaperNo14-Habibi-IJMA-n-Tuples and Chaoticity
PaperNo14-Habibi-IJMA-n-Tuples and Chaoticity
Mezban Habibi
 
PaperNo17-HabibiMasoudiSafari-IJCMA
PaperNo17-HabibiMasoudiSafari-IJCMAPaperNo17-HabibiMasoudiSafari-IJCMA
PaperNo17-HabibiMasoudiSafari-IJCMA
Mezban Habibi
 
PaperNo20-hoseinihabibiPMS1-4-2014-PMS
PaperNo20-hoseinihabibiPMS1-4-2014-PMSPaperNo20-hoseinihabibiPMS1-4-2014-PMS
PaperNo20-hoseinihabibiPMS1-4-2014-PMS
Mezban Habibi
 
PaperNo16-Habibi-IMF-On Syndetically Hypercyclic Tuples
PaperNo16-Habibi-IMF-On Syndetically Hypercyclic TuplesPaperNo16-Habibi-IMF-On Syndetically Hypercyclic Tuples
PaperNo16-Habibi-IMF-On Syndetically Hypercyclic Tuples
Mezban Habibi
 
PaperNo13-Habibi-IMF
PaperNo13-Habibi-IMFPaperNo13-Habibi-IMF
PaperNo13-Habibi-IMF
Mezban Habibi
 

Ähnlich wie Csr2011 june18 15_45_avron (20)

PaperNo23-habibiIJCMS5-8-2014-IJCMS
PaperNo23-habibiIJCMS5-8-2014-IJCMSPaperNo23-habibiIJCMS5-8-2014-IJCMS
PaperNo23-habibiIJCMS5-8-2014-IJCMS
 
Buckingham's theorem
Buckingham's  theoremBuckingham's  theorem
Buckingham's theorem
 
Arithmetic sequence in elementary and HS
Arithmetic sequence in elementary and HSArithmetic sequence in elementary and HS
Arithmetic sequence in elementary and HS
 
Formulario cuantica 2
Formulario cuantica 2Formulario cuantica 2
Formulario cuantica 2
 
PaperNo14-Habibi-IJMA-n-Tuples and Chaoticity
PaperNo14-Habibi-IJMA-n-Tuples and ChaoticityPaperNo14-Habibi-IJMA-n-Tuples and Chaoticity
PaperNo14-Habibi-IJMA-n-Tuples and Chaoticity
 
PaperNo17-HabibiMasoudiSafari-IJCMA
PaperNo17-HabibiMasoudiSafari-IJCMAPaperNo17-HabibiMasoudiSafari-IJCMA
PaperNo17-HabibiMasoudiSafari-IJCMA
 
Cash Settled Interest Rate Swap Futures
Cash Settled Interest Rate Swap FuturesCash Settled Interest Rate Swap Futures
Cash Settled Interest Rate Swap Futures
 
02 2d systems matrix
02 2d systems matrix02 2d systems matrix
02 2d systems matrix
 
PaperNo20-hoseinihabibiPMS1-4-2014-PMS
PaperNo20-hoseinihabibiPMS1-4-2014-PMSPaperNo20-hoseinihabibiPMS1-4-2014-PMS
PaperNo20-hoseinihabibiPMS1-4-2014-PMS
 
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALESNONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
 
QMC: Operator Splitting Workshop, Stochastic Block-Coordinate Fixed Point Alg...
QMC: Operator Splitting Workshop, Stochastic Block-Coordinate Fixed Point Alg...QMC: Operator Splitting Workshop, Stochastic Block-Coordinate Fixed Point Alg...
QMC: Operator Splitting Workshop, Stochastic Block-Coordinate Fixed Point Alg...
 
Moment closure inference for stochastic kinetic models
Moment closure inference for stochastic kinetic modelsMoment closure inference for stochastic kinetic models
Moment closure inference for stochastic kinetic models
 
PaperNo16-Habibi-IMF-On Syndetically Hypercyclic Tuples
PaperNo16-Habibi-IMF-On Syndetically Hypercyclic TuplesPaperNo16-Habibi-IMF-On Syndetically Hypercyclic Tuples
PaperNo16-Habibi-IMF-On Syndetically Hypercyclic Tuples
 
Physical Chemistry Assignment Help
Physical Chemistry Assignment HelpPhysical Chemistry Assignment Help
Physical Chemistry Assignment Help
 
Extension of Some Common Fixed Point Theorems using Compatible Mappings in Fu...
Extension of Some Common Fixed Point Theorems using Compatible Mappings in Fu...Extension of Some Common Fixed Point Theorems using Compatible Mappings in Fu...
Extension of Some Common Fixed Point Theorems using Compatible Mappings in Fu...
 
Numerical solution of the Schr¨odinger equation
Numerical solution of the Schr¨odinger equationNumerical solution of the Schr¨odinger equation
Numerical solution of the Schr¨odinger equation
 
Valencia 9 (poster)
Valencia 9 (poster)Valencia 9 (poster)
Valencia 9 (poster)
 
research paper publication
research paper publicationresearch paper publication
research paper publication
 
Midsem sol 2013
Midsem sol 2013Midsem sol 2013
Midsem sol 2013
 
PaperNo13-Habibi-IMF
PaperNo13-Habibi-IMFPaperNo13-Habibi-IMF
PaperNo13-Habibi-IMF
 

Mehr von CSR2011

Csr2011 june18 09_30_shpilka
Csr2011 june18 09_30_shpilkaCsr2011 june18 09_30_shpilka
Csr2011 june18 09_30_shpilka
CSR2011
 
Csr2011 june18 11_00_tiskin
Csr2011 june18 11_00_tiskinCsr2011 june18 11_00_tiskin
Csr2011 june18 11_00_tiskin
CSR2011
 
Csr2011 june17 17_00_likhomanov
Csr2011 june17 17_00_likhomanovCsr2011 june17 17_00_likhomanov
Csr2011 june17 17_00_likhomanov
CSR2011
 
Csr2011 june17 16_30_blin
Csr2011 june17 16_30_blinCsr2011 june17 16_30_blin
Csr2011 june17 16_30_blin
CSR2011
 
Csr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhaninCsr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhanin
CSR2011
 
Csr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhaninCsr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhanin
CSR2011
 
Csr2011 june17 12_00_morin
Csr2011 june17 12_00_morinCsr2011 june17 12_00_morin
Csr2011 june17 12_00_morin
CSR2011
 
Csr2011 june17 11_30_vyalyi
Csr2011 june17 11_30_vyalyiCsr2011 june17 11_30_vyalyi
Csr2011 june17 11_30_vyalyi
CSR2011
 
Csr2011 june17 11_00_lonati
Csr2011 june17 11_00_lonatiCsr2011 june17 11_00_lonati
Csr2011 june17 11_00_lonati
CSR2011
 
Csr2011 june17 14_00_bulatov
Csr2011 june17 14_00_bulatovCsr2011 june17 14_00_bulatov
Csr2011 june17 14_00_bulatov
CSR2011
 
Csr2011 june17 15_15_kaminski
Csr2011 june17 15_15_kaminskiCsr2011 june17 15_15_kaminski
Csr2011 june17 15_15_kaminski
CSR2011
 
Csr2011 june17 14_00_bulatov
Csr2011 june17 14_00_bulatovCsr2011 june17 14_00_bulatov
Csr2011 june17 14_00_bulatov
CSR2011
 
Csr2011 june17 12_00_morin
Csr2011 june17 12_00_morinCsr2011 june17 12_00_morin
Csr2011 june17 12_00_morin
CSR2011
 
Csr2011 june17 11_30_vyalyi
Csr2011 june17 11_30_vyalyiCsr2011 june17 11_30_vyalyi
Csr2011 june17 11_30_vyalyi
CSR2011
 
Csr2011 june17 11_00_lonati
Csr2011 june17 11_00_lonatiCsr2011 june17 11_00_lonati
Csr2011 june17 11_00_lonati
CSR2011
 
Csr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhaninCsr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhanin
CSR2011
 
Csr2011 june17 17_00_likhomanov
Csr2011 june17 17_00_likhomanovCsr2011 june17 17_00_likhomanov
Csr2011 june17 17_00_likhomanov
CSR2011
 
Csr2011 june16 17_00_lohrey
Csr2011 june16 17_00_lohreyCsr2011 june16 17_00_lohrey
Csr2011 june16 17_00_lohrey
CSR2011
 
Csr2011 june16 11_30_georgiadis
Csr2011 june16 11_30_georgiadisCsr2011 june16 11_30_georgiadis
Csr2011 june16 11_30_georgiadis
CSR2011
 
Csr2011 june16 16_30_golovach
Csr2011 june16 16_30_golovachCsr2011 june16 16_30_golovach
Csr2011 june16 16_30_golovach
CSR2011
 

Mehr von CSR2011 (20)

Csr2011 june18 09_30_shpilka
Csr2011 june18 09_30_shpilkaCsr2011 june18 09_30_shpilka
Csr2011 june18 09_30_shpilka
 
Csr2011 june18 11_00_tiskin
Csr2011 june18 11_00_tiskinCsr2011 june18 11_00_tiskin
Csr2011 june18 11_00_tiskin
 
Csr2011 june17 17_00_likhomanov
Csr2011 june17 17_00_likhomanovCsr2011 june17 17_00_likhomanov
Csr2011 june17 17_00_likhomanov
 
Csr2011 june17 16_30_blin
Csr2011 june17 16_30_blinCsr2011 june17 16_30_blin
Csr2011 june17 16_30_blin
 
Csr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhaninCsr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhanin
 
Csr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhaninCsr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhanin
 
Csr2011 june17 12_00_morin
Csr2011 june17 12_00_morinCsr2011 june17 12_00_morin
Csr2011 june17 12_00_morin
 
Csr2011 june17 11_30_vyalyi
Csr2011 june17 11_30_vyalyiCsr2011 june17 11_30_vyalyi
Csr2011 june17 11_30_vyalyi
 
Csr2011 june17 11_00_lonati
Csr2011 june17 11_00_lonatiCsr2011 june17 11_00_lonati
Csr2011 june17 11_00_lonati
 
Csr2011 june17 14_00_bulatov
Csr2011 june17 14_00_bulatovCsr2011 june17 14_00_bulatov
Csr2011 june17 14_00_bulatov
 
Csr2011 june17 15_15_kaminski
Csr2011 june17 15_15_kaminskiCsr2011 june17 15_15_kaminski
Csr2011 june17 15_15_kaminski
 
Csr2011 june17 14_00_bulatov
Csr2011 june17 14_00_bulatovCsr2011 june17 14_00_bulatov
Csr2011 june17 14_00_bulatov
 
Csr2011 june17 12_00_morin
Csr2011 june17 12_00_morinCsr2011 june17 12_00_morin
Csr2011 june17 12_00_morin
 
Csr2011 june17 11_30_vyalyi
Csr2011 june17 11_30_vyalyiCsr2011 june17 11_30_vyalyi
Csr2011 june17 11_30_vyalyi
 
Csr2011 june17 11_00_lonati
Csr2011 june17 11_00_lonatiCsr2011 june17 11_00_lonati
Csr2011 june17 11_00_lonati
 
Csr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhaninCsr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhanin
 
Csr2011 june17 17_00_likhomanov
Csr2011 june17 17_00_likhomanovCsr2011 june17 17_00_likhomanov
Csr2011 june17 17_00_likhomanov
 
Csr2011 june16 17_00_lohrey
Csr2011 june16 17_00_lohreyCsr2011 june16 17_00_lohrey
Csr2011 june16 17_00_lohrey
 
Csr2011 june16 11_30_georgiadis
Csr2011 june16 11_30_georgiadisCsr2011 june16 11_30_georgiadis
Csr2011 june16 11_30_georgiadis
 
Csr2011 june16 16_30_golovach
Csr2011 june16 16_30_golovachCsr2011 june16 16_30_golovach
Csr2011 june16 16_30_golovach
 

Kürzlich hochgeladen

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 

Kürzlich hochgeladen (20)

Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptx
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 

Csr2011 june18 15_45_avron

  • 1. A Multiple-Conclusion Calculus for First-Order Gödel Logic Arnon Avron Ori Lahav Tel Aviv University CSR June 2011
  • 2. Gödel Logic In 1933, Gödel introduced a sequence {Gn } of n-valued matrices and used them to show some important properties of intuitionistic logic. In 1959, Dummett embedded all the Gn s in an infinite-valued matrix Gω . Gω is equivalent to G[0,1] , a natural matrix for the truth-values [0, 1]. The logic of G[0,1] is called Gödel logic. Gödel logic is perhaps the most important intermediate logic. Nowadays, Gödel logic is also recognized as one of the three most basic fuzzy logics.
  • 3. Many-Valued Semantics A structure M consists of: Non-empty domain D An interpretation I: I[c] ∈ D for every constant I[f ] ∈ D n → D for every n-ary function I[p] ∈ D n → [0, 1] for every n-ary predicate
  • 4. Many-Valued Semantics A structure M consists of: Non-empty domain D An interpretation I: I[c] ∈ D for every constant I[f ] ∈ D n → D for every n-ary function I[p] ∈ D n → [0, 1] for every n-ary predicate An M-evaluation is a function e: Assigning an element of D for every free variable Naturally extended to all terms (according to I)
  • 5. Many-Valued Semantics • M is defined as follows: e M p(t1 , . . . , tn ) e = I[p][e[t1 ], . . . , e[tn ]] M ⊥ e =0
  • 6. Many-Valued Semantics • M is defined as follows: e M p(t1 , . . . , tn ) e = I[p][e[t1 ], . . . , e[tn ]] M ⊥ e =0 M M M ψ1 ∨ ψ2 e = max{ ψ1 e , ψ2 e } ψ1 ∧ ψ2 M e = min{ M ψ1 e , M ψ2 e }
  • 7. Many-Valued Semantics • M is defined as follows: e M p(t1 , . . . , tn ) e = I[p][e[t1 ], . . . , e[tn ]] M ⊥ e =0 M M M ψ1 ∨ ψ2 e = max{ ψ1 e , ψ2 e } ψ1 ∧ ψ2 M e = min{ M ψ1 e , M ψ2 e } M 1 ψ1 M ≤ e ψ2 M e ψ1 ⊃ ψ2 e = M ψ2 e otherwise
  • 8. Many-Valued Semantics • M is defined as follows: e M p(t1 , . . . , tn ) e = I[p][e[t1 ], . . . , e[tn ]] M ⊥ e =0 M M M ψ1 ∨ ψ2 e = max{ ψ1 e , ψ2 e } ψ1 ∧ ψ2 M e = min{ M ψ1 e , M ψ2 e } M 1 ψ1 M ≤ e ψ2 M e ψ1 ⊃ ψ2 e = M ψ2 e otherwise M M ∀xψ e = inf{ ψ e[x:=d] | d ∈ D} M M ∃xψ e = sup{ ψ e[x:=d] | d ∈ D}
  • 9. Many-Valued Semantics • M is defined as follows: e M p(t1 , . . . , tn ) e = I[p][e[t1 ], . . . , e[tn ]] M ⊥ e =0 M M M ψ1 ∨ ψ2 e = max{ ψ1 e , ψ2 e } ψ1 ∧ ψ2 M e = min{ M ψ1 e , M ψ2 e } M 1 ψ1 M ≤ e ψ2 M e ψ1 ⊃ ψ2 e = M ψ2 e otherwise M M ∀xψ e = inf{ ψ e[x:=d] | d ∈ D} M M ∃xψ e = sup{ ψ e[x:=d] | d ∈ D} M is a model of a formula if ϕ if ϕ M = 1 for every e e
  • 10. Kripke-Style Semantics A frame is a tuple W = W , ≤, D, I, {Iw }w∈W where: W - nonempty set of worlds ≤ - linear order on W D - non-empty (constant) domain I - interpretation of constants and functions
  • 11. Kripke-Style Semantics A frame is a tuple W = W , ≤, D, I, {Iw }w∈W where: W - nonempty set of worlds ≤ - linear order on W D - non-empty (constant) domain I - interpretation of constants and functions Iw - is a predicate interpretation for every w ∈ W : Iw [p] ⊆ D n for every n-ary predicate p Persistence: Iu [p] ⊆ Iw [p] if u ≤ w
  • 12. Kripke-Style Semantics Satisfaction relation for a frame, a world, and an evaluation of the free variables: W, w, e p(t1 , . . . , tn ) iff e[t1 ], . . . , e[tn ] ∈ Iw [p] W, w, e ⊥
  • 13. Kripke-Style Semantics Satisfaction relation for a frame, a world, and an evaluation of the free variables: W, w, e p(t1 , . . . , tn ) iff e[t1 ], . . . , e[tn ] ∈ Iw [p] W, w, e ⊥ W, w, e ψ1 ∨ ψ2 iff W, w, e ψ1 or W, w, e ψ2 W, w, e ψ1 ∧ ψ2 iff W, w, e ψ1 and W, w, e ψ2
  • 14. Kripke-Style Semantics Satisfaction relation for a frame, a world, and an evaluation of the free variables: W, w, e p(t1 , . . . , tn ) iff e[t1 ], . . . , e[tn ] ∈ Iw [p] W, w, e ⊥ W, w, e ψ1 ∨ ψ2 iff W, w, e ψ1 or W, w, e ψ2 W, w, e ψ1 ∧ ψ2 iff W, w, e ψ1 and W, w, e ψ2 W, w, e ψ1 ⊃ ψ2 iff for every u ≥ w: W, u, e ψ1 or W, u, e ψ2
  • 15. Kripke-Style Semantics Satisfaction relation for a frame, a world, and an evaluation of the free variables: W, w, e p(t1 , . . . , tn ) iff e[t1 ], . . . , e[tn ] ∈ Iw [p] W, w, e ⊥ W, w, e ψ1 ∨ ψ2 iff W, w, e ψ1 or W, w, e ψ2 W, w, e ψ1 ∧ ψ2 iff W, w, e ψ1 and W, w, e ψ2 W, w, e ψ1 ⊃ ψ2 iff for every u ≥ w: W, u, e ψ1 or W, u, e ψ2 W, w, e ∀xψ iff W, w, e[x:=d] ψ for every d ∈ D W, w, e ∃xψ iff W, w, e[x:=d] ψ for some d ∈ D
  • 16. Kripke-Style Semantics Satisfaction relation for a frame, a world, and an evaluation of the free variables: W, w, e p(t1 , . . . , tn ) iff e[t1 ], . . . , e[tn ] ∈ Iw [p] W, w, e ⊥ W, w, e ψ1 ∨ ψ2 iff W, w, e ψ1 or W, w, e ψ2 W, w, e ψ1 ∧ ψ2 iff W, w, e ψ1 and W, w, e ψ2 W, w, e ψ1 ⊃ ψ2 iff for every u ≥ w: W, u, e ψ1 or W, u, e ψ2 W, w, e ∀xψ iff W, w, e[x:=d] ψ for every d ∈ D W, w, e ∃xψ iff W, w, e[x:=d] ψ for some d ∈ D W is a model of a formula if ϕ if W, w, e ϕ for every w and e
  • 17. Proof Theory Sonobe 1975 - first cut-free Gentzen-type sequent calculus Other calculi have been proposed later by Corsi, Avellone et al., Dyckhoff and others All of them use some ad-hoc rules of a nonstandard form A. 1991 - hypersequent calculus with standard rules: HG Extended to first-order Gödel logic by Baaz and Zach in 2000: HIF
  • 18. Hypersequents A sequent (Gentzen 1934) is an object of the form ϕ1 , . . . , ϕn ⇒ ψ1 , . . . , ψm Intuition: ϕ1 ∧ . . . ∧ ϕn ⊃ ψ1 ∨ . . . ∨ ψm Single-conclusion sequent: m ≤ 1
  • 19. Hypersequents A sequent (Gentzen 1934) is an object of the form ϕ1 , . . . , ϕn ⇒ ψ1 , . . . , ψm Intuition: ϕ1 ∧ . . . ∧ ϕn ⊃ ψ1 ∨ . . . ∨ ψm Single-conclusion sequent: m ≤ 1 A hypersequent is an object of the form s1 | . . . | sn where the si ’s are sequents Intuition: s1 ∨ . . . ∨ sn Single-conclusion hypersequent consists of single-conclusion sequents only
  • 20. HG Single-Conclusion Hypersequent System Structural Rules H ϕ⇒ϕ (EW ) H|Γ⇒E H|Γ⇒E H|Γ⇒ (IW ⇒) (⇒ IW ) H | Γ, ψ ⇒ E H|Γ⇒ψ
  • 21. HG Single-Conclusion Hypersequent System Structural Rules H ϕ⇒ϕ (EW ) H|Γ⇒E H|Γ⇒E H|Γ⇒ (IW ⇒) (⇒ IW ) H | Γ, ψ ⇒ E H|Γ⇒ψ H1 | Γ1 ⇒ ϕ H2 | Γ2 , ϕ ⇒ E (cut) H1 | H2 | Γ1 , Γ2 ⇒ E
  • 22. HG Single-Conclusion Hypersequent System Structural Rules H ϕ⇒ϕ (EW ) H|Γ⇒E H|Γ⇒E H|Γ⇒ (IW ⇒) (⇒ IW ) H | Γ, ψ ⇒ E H|Γ⇒ψ H1 | Γ1 ⇒ ϕ H2 | Γ2 , ϕ ⇒ E (cut) H1 | H2 | Γ1 , Γ2 ⇒ E H1 | Γ1 , Γ1 ⇒ E1 H2 | Γ2 , Γ2 ⇒ E2 (com) H1 | H2 | Γ1 , Γ2 ⇒ E1 | Γ2 , Γ1 ⇒ E2
  • 23. HG Single-Conclusion Hypersequent System Logical Rules H1 | Γ1 , ψ1 ⇒ E H2 | Γ2 , ψ2 ⇒ E (∨ ⇒) H1 | H2 | Γ1 , Γ2 , ψ1 ∨ ψ2 ⇒ E H | Γ ⇒ ψ1 H | Γ ⇒ ψ2 (⇒ ∨1 ) (⇒ ∨2 ) H | Γ ⇒ ψ1 ∨ ψ2 H | Γ ⇒ ψ1 ∨ ψ2
  • 24. HG Single-Conclusion Hypersequent System Logical Rules H1 | Γ1 , ψ1 ⇒ E H2 | Γ2 , ψ2 ⇒ E (∨ ⇒) H1 | H2 | Γ1 , Γ2 , ψ1 ∨ ψ2 ⇒ E H | Γ ⇒ ψ1 H | Γ ⇒ ψ2 (⇒ ∨1 ) (⇒ ∨2 ) H | Γ ⇒ ψ1 ∨ ψ2 H | Γ ⇒ ψ1 ∨ ψ2 H1 | Γ1 ⇒ ψ1 H2 | Γ2 , ψ2 ⇒ E (⊃⇒) H1 | H2 | Γ1 , Γ2 , ψ1 ⊃ ψ2 ⇒ E H | Γ, ψ1 ⇒ ψ2 (⇒⊃) H | Γ ⇒ ψ1 ⊃ ψ2
  • 25. HIF Single-Conclusion Hypersequent System H | Γ, ϕ{t/x} ⇒ E (∀ ⇒) H | Γ, ∀xϕ ⇒ E H | Γ ⇒ ϕ{y /x} (⇒ ∀) H | Γ ⇒ ∀xϕ where y doesn’t occur free in any component of the conclusion.
  • 26. HIF Single-Conclusion Hypersequent System H | Γ, ϕ{t/x} ⇒ E (∀ ⇒) H | Γ, ∀xϕ ⇒ E H | Γ ⇒ ϕ{y /x} (⇒ ∀) H | Γ ⇒ ∀xϕ where y doesn’t occur free in any component of the conclusion. similar rules for ∃
  • 27. Cut-Admissibility H1 | Γ1 ⇒ ϕ H2 | Γ2 , ϕ ⇒ E (cut) H1 | H2 | Γ1 , Γ2 ⇒ E
  • 28. Cut-Admissibility H1 | Γ1 ⇒ ϕ H2 | Γ2 , ϕ ⇒ E (cut) H1 | H2 | Γ1 , Γ2 ⇒ E One of the most important properties of a (hyper)sequent calculus, provides the key for proof-search Traditional syntactic cut-admissibility proofs are notoriously prone to errors, especially (but certainly not only) in the case of hypersequent systems the first proof of cut-elimination for HIF was erroneous A semantic proof is usually more reliable and easier to check A semantic proof usually provides also a proof of completeness as well as strong cut-admissibility
  • 29. MCG Multiple-Conclusion Hypersequent System Structural Rules H ϕ⇒ϕ (EW ) H|Γ⇒∆ H|Γ⇒∆ H|Γ⇒∆ (IW ⇒) (⇒ IW ) H | Γ, ψ ⇒ ∆ H | Γ ⇒ ∆, ψ H1 | Γ1 ⇒ ∆1 , ϕ H2 | Γ2 , ϕ ⇒ ∆2 (cut) H1 | H2 | Γ1 , Γ2 ⇒ ∆1 , ∆2 H1 | Γ1 , Γ1 ⇒ ∆1 H2 | Γ2 , Γ2 ⇒ ∆2 (com) H1 | H2 | Γ1 , Γ2 ⇒ ∆1 | Γ2 , Γ1 ⇒ ∆2
  • 30. MCG Multiple-Conclusion Hypersequent System Structural Rules H ϕ⇒ϕ (EW ) H|Γ⇒∆ H|Γ⇒∆ H|Γ⇒∆ (IW ⇒) (⇒ IW ) H | Γ, ψ ⇒ ∆ H | Γ ⇒ ∆, ψ H1 | Γ1 ⇒ ∆1 , ϕ H2 | Γ2 , ϕ ⇒ ∆2 (cut) H1 | H2 | Γ1 , Γ2 ⇒ ∆1 , ∆2 H1 | Γ1 , Γ1 ⇒ ∆1 H2 | Γ2 , Γ2 ⇒ ∆2 (com) H1 | H2 | Γ1 , Γ2 ⇒ ∆1 | Γ2 , Γ1 ⇒ ∆2 H | Γ ⇒ ∆1 , ∆2 (split) H | Γ ⇒ ∆1 | Γ ⇒ ∆2
  • 31. MCG Multiple-Conclusion Hypersequent System Logical Rules H1 | Γ1 ⇒ ∆1 , ψ1 H2 | Γ2 , ψ2 ⇒ ∆2 H | Γ, ψ1 ⇒ ψ2 (⊃⇒) (⇒⊃) H1 | H2 | Γ1 , Γ2 , ψ1 ⊃ ψ2 ⇒ ∆1 , ∆2 H | Γ ⇒ ψ1 ⊃ ψ2 H | Γ, ϕ{t/x} ⇒ ∆ H | Γ ⇒ ∆, ϕ{y /x} (∀ ⇒) (⇒ ∀) H | Γ, ∀xϕ ⇒ ∆ H | Γ ⇒ ∆, ∀xϕ
  • 32. Results MCG is strongly sound and complete with respect to the Kripke semantics of the standard first-order Gödel logic
  • 33. Results MCG is strongly sound and complete with respect to the Kripke semantics of the standard first-order Gödel logic MCG admits strong cut-admissibility:
  • 34. Results MCG is strongly sound and complete with respect to the Kripke semantics of the standard first-order Gödel logic MCG admits strong cut-admissibility: for every set H of hypersequents closed under substitution and a hypersequent H: H H iff there exists a proof of H from H in which the cut-formula of every application of the cut rule is in frm[H]
  • 35. Results MCG is strongly sound and complete with respect to the Kripke semantics of the standard first-order Gödel logic MCG admits strong cut-admissibility: for every set H of hypersequents closed under substitution and a hypersequent H: H H iff there exists a proof of H from H in which the cut-formula of every application of the cut rule is in frm[H] As a corollary, we obtain the same results for HIF, the original single-conclusion calculus