SlideShare a Scribd company logo
1 of 32
Download to read offline
Graph partitioning and eigen polynomials of
Laplacian matrices of Roach-type graphs
Yoshihiro Mizoguchi
Institute of Mathematics for Industry,
Kyushu University  
ym@imi.kyushu-u.ac.jp
Algebraic Graph Theory,
Spectral Graph Theory and Related Topics
5th Jan. 2013 at Nagoya University
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 1 / 32
Table of contents
...1 Introduction
...2 Chebyshev polynomials
...3 Tridiagonal matrices
...4 Laplacian Matrix
...5 Mcut, Lcut and spectral clustering
...6 Conclusion
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 2 / 32
Biogeography-Based Optimization (1)
Let Ps be the probability that the habitat contains exactly S species. We
can arrange ˙Ps equations into the single matrix equation


˙P0
˙P1
˙P2
...
˙Pn−1
˙Pn


=


−(λ0 + µ0) µ1 0 · · · 0
λ0 −(λ1 + µ1) µ2
...
...
...
...
...
...
...
...
... λn−2 −(λn−1 + µn−1) µn
0 . . . 0 λn−1 −(λn + µn)




P0
P1
P2
...
Pn−1
Pn


where λs and µs are the immigration and emigration rates when there are
S species in the habitat.
Generally λ0 > λ1 > · · · > λn and µ0 < µ1 < · · · < µn hold and we
assume λs = n−s
n and µs = s
n in this talk.
[Sim08] D.Simon, Biogeography-Based Optimization,
IEEE Trans. on evolutionary computation, 2008.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 3 / 32
Biogeography-Based Optimization (2)
.
Theorem
..
......
The (n + 1) eigenvalues of the biogeography matrix
A =


−1 1/n 0 · · · 0
n/n −1 2/n
...
...
...
...
...
...
...
...
... 2/n −1 n/n
0 . . . 0 1/n −1


are {0, −2/n, −4/n, . . . , −2}.
[IS11] B.Igelnik, D. Simon, The eigenvalues of a tridiagonal matrix in
biogeography, Appl. Mathematics and Computation, 2011.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 4 / 32
Heat equation (Crank-Nicolson method) (1)
ut = uxx x ∈ [0, 1] and t > 0
with initial and Dirichlet boundary condition given by:
u(x, 0) = f(x), u(0, t) = g(t) and u(1, t) = h(t)
The finite difference discretization can be expressed as:
Aun+1
= Bun
+ c
where
A =


1 + α −r/2 0
−r/2 1 + r −r/2
...
...
...
−r/2 1 + r −r/2
0 −r/2 1 + α


Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 5 / 32
Heat equation (Crank-Nicolson method) (2)
and
B =


1 − β r/2 0
r/2 1 − r r/2
...
...
...
r/2 1 − r r/2
0 r/2 1 − β


.
We note un = (un
1
, un
2
, . . . , un
m)T. The parapmeters α and β are given by:
α = β = 3r/2 for the implicit boundary conditions;
α = r and β = 2r for the explicit boundary conditions
The iteration matrix M(r) = A−1B controls the stability of the numerical
method to compute Aun+1 = Bun + c.
[CM10] J.A. Cuminato, S. McKee, A note on the eigenvalues of a special
class of matrices, J. of Computational and Applied Mathematics, 2010.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 6 / 32
Tridiagonal Matrix (1)
An =


−α + b c 0 0 · · · 0 0
a b c 0 · · · 0 0
0 a b c · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · b c
0 0 0 0 · · · a −β + b


n×n
.
Theorem
..
......
Suppose α = β =
√
ac 0. Then the eigenvalues λk of An are given by
λk = b + 2
√
ac cos
kπ
n
and the corresponding eigenvectors u(k) = (u(k)
j
)
are given by u(k)
j
= ρj−1
sin
k(2j − 1)π
2n
for k = 1, 2, · · · , n − 1 and
u(n)
j
= (−ρ)j−1 where ρ =
√
a/c.
[Yue05] W-C. Yueh, Eigenvalues of several tridiagonal matrices, Applied
Mathematics E-Notes, 2005.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 7 / 32
Tridiagonal Matrix (2)
Consider the n × n matrix C = (min{ai − b, aj − b})i,j=1,...,n.
.
Proposition
..
......
For a > 0 and a b, the tridiagonal matrix of order n
Tn =


1 + a
a−b
−1
−1 2 −1
...
...
...
−1 2 −1
−1 1


is the inverse of (1/a)C.
[dF07] C.M. da Fonseca, On the eigenvalues of some tridiagonal matrices,
J. of Computational and Applied Mathematics, 2007.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 8 / 32
Chebyshev polynomials
For n ∈ N and x ∈ R, we define functions Tn(x) and Un(x) as follows.
T0(x) = 1, T1(x) = x,
U0(x) = 1, U1(x) = 2x,
Tn+1(x) = 2xTn(x) − Tn−1(x), and
Un+1(x) = 2xUn(x) − Un−1(x).
We note cos nθ = Tn(cos θ), and sin(n + 1)θ = Un(cos θ) sin θ for θ ∈ R.
.
Proposition
..
......
Let x = cos θ. Then
Tn(x) = 0 ⇔ x = cos(
(2k + 1)π
2n
) (k = 0, · · · , n − 1).
Un(x) = 0 ⇔ x = cos(
kπ
n + 1
) (k = 1, · · · , n).
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 9 / 32
Tridiagonal matrix An(a, b)
We define a n × n matrix An(a, b) as follows:
An(a, b) =


a b 0 · · · · · · · · · 0
b a b 0
...
0 b a b 0
...
...
...
...
...
...
...
...
... 0 b a b 0
... 0 b a b
0 · · · · · · · · · 0 b a


.
We put |A0(a, 1)| = 1, then |An(a, 1)| = a|An−1(a, 1)| − |An−2(a, 1)|,
|A1(a, 1)| = a and An(a, b) = bn
· An (a/b, 1).
.
Proposition
..
......
|An(a, b)| = bn
·
sin(n + 1)θ
sin θ
where cos θ =
a
2b
.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 10 / 32
Tridiagonal matrix Bn and Cn (1)
Let n ≥ 3.
Bn(a0, b0, a, b) =


a0 b0 0 · · · 0
b0
0 An−1(a, b)
...
0


Cn(a, b, a0, b0) =


0
An−1(a, b)
...
0
b0
0 · · · 0 b0 a0


We note that
|Bn(a0, b0, a, b)| = a0|An−1(a, b)| − b2
0
|An−2(a, b)|, and
||Cn(a, b, a0, b0)|| = |a0|An−1(a, b)| − b2
0
|An−2(a, b)||.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 11 / 32
Tridiagonal matrix Bn and Cn (2)
We define functions
gn(β) = 2 sin((n + 1)β) + sin nβ − sin((n − 1)β), and
hn(β) = 2 sin((n + 1)β) − sin nβ − sin((n − 1)β)
before introducing the next Lemma.
.
Proposition
..
......
Let n ≥ 3.
Bn(λ − 1,
1
√
2
, λ − 1,
1
2
) =
1
2n−1
cos nα, (λ = 1 + cos α),
Cn(η −
2
3
,
1
3
, η −
1
2
,
1
√
6
) =
1
2 · 3n · sin β
gn(β), (η =
2
3
(1 + cos β)),
Cn(µ −
4
3
,
1
3
, µ −
3
2
,
1
√
6
) =
1
2 · 3n · sin β
hn(β), (µ =
2
3
(2 + cos β)).
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 12 / 32
Tridiagonal matrix Qn(a0, b0, a, b)
Let n ≥ 4. We define n × n matrix Qn(a0, b0, a, b) as follows:
Qn(a0, b0, a, b) =


a0 b0 0 · · · 0
b0
...
0 An−2(a, b) 0
... b0
0 · · · 0 b0 a0


We note that
|Qn(a0, b0, a, b)| = a0|Cn−1(a, b, a0, b0)| − b2
0
|Cn−2(a, b, a0, b0)|.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 13 / 32
Laplacian matrix of a graph
.
Definition (Weighted normalized Laplacian)
..
......
The weighted normalized Laplacian L(G) = (ℓij) is defined as
ℓij =



1 −
wj j
dj
if i = j,
−
wi j
√
didj
if vi and vj are adjacent and i j,
0 otherwise.
The adjacency matrix A(P5) and the normalized Laplacian matrix L(P5) of
a path graph P5.
A(P5) =


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0


L(P5) =


1 − 1
√
2
0 0 0
− 1
√
2
1 −1
2
0 0
0 −1
2
1 −1
2
0
0 0 −1
2
1 − 1
√
2
0 0 0 − 1
√
2
1


Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 14 / 32
Characteristic polynomial of L(Pn)
.
Proposition
..
......
Let n ≥ 4.
|λIn − L(Pn)| = −
(
1
2
)n−2
(sin α sin((n − 1)α))
where λ = 1 + cos α. That is λ = 1 − cos(
kπ
n − 1
) (k = 0, . . . , n − 1).
We note
L(Pn) = Qn

1, −
1
√
2
, 1, −
1
2

 , and
λIn − L(Pn) = Qn

λ − 1,
1
√
2
, λ − 1,
1
2

 .
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 15 / 32
Characteristic polynomial of L(Pn,k) (1)
Let n ≥ 3 and k ≥ 3. Then
L(Pn,k) =


Bn(1, − 1
√
2
, 1, −1
2
) Xn,k
Xt
n,k
Ck(2
3
, −1
3
, 1
2
, − 1
√
6
)


where Xn,k is the n × k matrix defined by
Xn,k =


0 · · · · · · 0
...
...
0 0
...
− 1
√
6
0 · · · 0


.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 16 / 32
Characteristic polynomial of L(Pn,k) (2)
.
Proposition
..
......
Let
pn,k(λ) =
1
2n3k sin β
(gk(β) cos(nα)) − gk−1(β) cos((n − 1)α)).
Then
λIn+k − L(Pn,k) = pn,k(λ),
where λ = 1 + cos α and λ =
2
3
(1 + cos β).
λIn+k − L(Pn,k) =
Bn(λ − 1, 1
√
2
, λ − 1, 1
2
) Xn,k
Xt
n,k
Ck(λ − 2
3
, 1
3
, λ − 1
2
, 1
√
6
)
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 17 / 32
Characteristic polynomial of L(Rn,k) (1)
1 2 3 4 5 6
7 8 9 10 11 12
Let n ≥ 3 and k ≥ 3. Then L(Rn,k) =


Bn(1, − 1
√
2
, 1, −1
2
) Xn,k O O
Xt
n,k
Ck(1, −1
3
, 1, − 1
√
6
) O Ck(−1
3
, 0, −1
2
, 0)
O O Bn(1, − 1
√
2
, 1, −1
2
) Xn,k
O Ck(−1
3
, 0, −1
2
, 0) Xt
n,k
Ck(1, −1
3
, 1, − 1
√
6
)


.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 18 / 32
Characteristic polynomial of L(Rn,k) (2)
.
Proposition
..
......
Let n ≥ 3, k ≥ 3 and
pn,k(λ) =
1
2n3k sin β
(gk(β) cos(nα)) − gk−1(β) cos((n − 1)α)), and
qn,k(λ) =
1
2n3k sin γ
(hk(γ) cos(nα) − hk−1(γ) cos((n − 1)α)). Then
|λIn+k − L(Rn,k)| = pn,k(λ) · qn,k(λ).
where λ = 1 + cos α =
2
3
(1 + cos β) =
2
3
(2 + cos γ).
λIn+k − L(Rn,k) =
Bn(λ − 1, 1
√
2
, λ − 1, 1
2
) Xn,k
Xt
n,k
Ck(λ − 2
3
, 1
3
, λ − 1
2
, 1
√
6
)
×
Bn(λ − 1, 1
√
2
, λ − 1, 1
2
) Xn,k
Xt
n,k
Ck(λ − 4
3
, 1
3
, λ − 3
2
, 1
√
6
)
= pn,k(λ) × qn,k(λ).
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 19 / 32
Bn(λ − 1, 1
√
2
, λ − 1, 1
2
) (Calculation)
Let λ = 1 + cos α. Then we have
Bn(λ − 1,
1
√
2
, λ − 1,
1
2
) = (λ − 1) An−1(λ − 1,
1
2
) −
1
2
An−2(λ − 1,
1
2
)
= (λ − 1)
(
1
2
)n−1
sin nα
sin α
−
1
2
(
1
2
)n−2
sin(n − 1)α
sin α
=
(
1
2
)n−1
·
1
sin α
((λ − 1) sin nα − sin(n − 1)α)
=
(
1
2
)n−1
·
1
sin α
(cos α sin nα − sin(nα − α))
=
(
1
2
)n−1
·
1
sin α
(cos nα sin α)
=
(
1
2
)n−1
cos nα.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 20 / 32
Bn(λ − 1, 1
√
2
, λ − 1, 1
2
) (Mathematica)
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 21 / 32
Cn(η − 2
3
, 1
3
, η − 1
2
, 1
√
6
) (Calculation)
Let η =
2
3
(1 + cos β) and gn(β) = 2 sin(n + 1)β + sin nβ − sin(n − 1)β. Then we have
Cn(η −
2
3
,
1
3
, η −
1
2
,
1
√
6
) =
(
η −
1
2
)
An−1
(
η −
2
3
,
1
3
)
−
1
6
An−2
(
η −
2
3
,
1
3
)
=
(
1
3
)n−1 ((
η −
1
2
)
sin nβ
sin β
−
1
2
sin(n − 1)β
sin β
)
=
(
1
3
)n−1 ((
1
6
+
2
3
cos β
)
sin nβ
sin β
−
1
2
sin(n − 1)β
sin β
)
=
(
1
3
)n−1
1
6 sin β
(sin nβ + 4 cos β sin nβ − 3 sin(nβ − β))
=
(
1
3
)n−1
1
6 sin β
(2 sin(n + 1)β + sin nβ − sin(n − 1)β)
=
(
1
3
)n
1
2 sin β
gn(β).
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 22 / 32
Cn(η − 2
3
, 1
3
, η − 1
2
, 1
√
6
) (Mathematica)
Some manual computations for gn(θ) (× sin).
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 23 / 32
pn,k(λ) (Mathematica)
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 24 / 32
qn,k(λ) (Mathematica)
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 25 / 32
Minimum Normalized Cut Mcut(G)
.
Definition (Normalized cut)
..
......
Let G = (V, E) be a connected graph. Let A, B ⊂ V, A ∅, B ∅ and
A ∩ B = ∅. Then the normalized cut Ncut(A, B) of G is defined by
Ncut(A, B) = cut(A, B)
(
1
vol(A)
+
1
vol(B)
)
.
.
Definition (Mcut(G))
..
......
Let G = (V, E) be a connected graph. The Mcut(G) is defined by
Mcut(G) = min{Mcut j(G) | j = 1, 2, . . . }.
Where,
Mcut j(G) = min{Ncut(A, V  A) | cut(A, V  A) = j, A ⊂ V}.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 26 / 32
Mcut(R6,3)
G0 (even) G1 (odd)
1 2 3 4 5 6
7 8 9 10 11 12
1 2 3 4 5 6
7 8 9 10 11 12
Ncut(A0, B0) = 2 × (
1
16
+
1
10
) =
13
40
= 0.325
Ncut(A1, B1) = 3 × (
1
13
+
1
13
) =
6
13
≈ 0.462
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 27 / 32
Spectral Clustering
.
Definition (Lcut(G))
..
......
Let G = (V, E) be a connected graph, λ2 the second smallest eigenvalue
of L(G), U2 = ((U2)i) (1 ≤ i ≤ |V|) a second eigenvector of L(G) with λ2.
We assume that λ2 is simple. Then Lcut(G) is defined as
Lcut(G) = Ncut(V+
(U2) ∪ V0
(U2), V−
(U2)).
1
2
3
4
5
6
7
1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21 22
Lcut(G) = Mcut(G) Lcut(R4,7) = Mcut(R4,7)
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
Mcut(R6,4) Lcut(R6,4)
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 28 / 32
Roach Graph Observation
.
Proposition
..
......
Let Rn,k be a roach-type graph. If Lcut(Rn,k) = Mcut(Rn,k) then a second
eigen vector of L(Rn,k) is an even vector.
.
Proposition
..
......
Let R2k,k be a roach-type graph, P2k,k a weighted path and P4k a path
graph.
1. λ2(L(P4k)) = 1 − π
4k−1
.
2. λ2(L(R2k,k)) < λ2(L(P4k)).
3. λ2(L(P4k)) < λ2(L(P2k,k)).
4. A second eigenvector of L(R2k,k) is an odd vector.
5. Mcut(R2k,k) < Lcut(R2k,k).
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 29 / 32
Conclusion
We give followings in this talks:
Tridiagonal matrices, Laplacian of graphs and spectral clustering
method.
Concrete formulae of characteristic polynomials of tridiagonal
matrices.
Mathematica computations for characteristic polynomials.
Concrete formulae of eigen-polynomials of (P2k,k) and L(R2k,k).
Proof of Lcut does not always give an optimal cut.
We are not able to decide the simpleness of the second eigenvalue for
Pn,k and Rn,k.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 30 / 32
Reference I
A. Behn, K. R. Driessel, and I. R. Hentzel.
The eigen-problem for some special near-toeplitz centro-skew
tridiagonal matrices.
arXiv:1101.5788v1 [math.SP], Jan 2011.
H-W. Chang, S-E. Liu, and R. Burridge.
Exact eigensystems for some matrices arising from discretizations.
Linear Algebra and its Applications, 430:999–1006, 2009.
J. A. Cuminato and S. McKee.
A note on the eigenvalues of a special class of matrices.
Journal of Computational and Applied Mathematics, 234:2724–2731,
2010.
C. M. da Fonseca.
On the eigenvalues of some tridiagonal matrices.
Journal of Computational and Applied Mathematics, 200:283–286,
2007.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 31 / 32
Reference II
B. Igelnik and D. Simon.
The eigenvalues of a tridiagonal matrix in biogeography.
Applied Mathematics and Computation, 218:195–201, 2011.
S. Kouachi.
Eigenvalues and eigenvectors of tridiagonal matrices.
Electronic Journal of Linear Algebra, 15:115–133, 2006.
D. Simon.
Biogeography-based optimization.
IEEE Transactions on Evolutionary Computation, 12(6):702–713,
2008.
W. Yueh.
Eigenvalues of several tridiagonal matrices.
Applied Mathematics E-Notes, 5:66–74, 2005.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 32 / 32

More Related Content

What's hot

Stochastic Gradient MCMC
Stochastic Gradient MCMCStochastic Gradient MCMC
Stochastic Gradient MCMCKenta Oono
 
Coq Tutorial
Coq TutorialCoq Tutorial
Coq Tutorialtmiya
 
研究室内PRML勉強会 8章1節
研究室内PRML勉強会 8章1節研究室内PRML勉強会 8章1節
研究室内PRML勉強会 8章1節Koji Matsuda
 
ベイズ深層学習5章 ニューラルネットワークのベイズ推論 Bayesian deep learning
ベイズ深層学習5章 ニューラルネットワークのベイズ推論 Bayesian deep learningベイズ深層学習5章 ニューラルネットワークのベイズ推論 Bayesian deep learning
ベイズ深層学習5章 ニューラルネットワークのベイズ推論 Bayesian deep learningssuserca2822
 
カーネル法:正定値カーネルの理論
カーネル法:正定値カーネルの理論カーネル法:正定値カーネルの理論
カーネル法:正定値カーネルの理論Daiki Tanaka
 
PRML EP法 10.7 10.7.2
PRML EP法 10.7 10.7.2 PRML EP法 10.7 10.7.2
PRML EP法 10.7 10.7.2 tmtm otm
 
クラシックな機械学習の入門 4. 学習データと予測性能
クラシックな機械学習の入門  4.   学習データと予測性能クラシックな機械学習の入門  4.   学習データと予測性能
クラシックな機械学習の入門 4. 学習データと予測性能Hiroshi Nakagawa
 
ロジスティック回帰入門
ロジスティック回帰入門ロジスティック回帰入門
ロジスティック回帰入門y-uti
 
パターン認識と機械学習 (PRML) 第1章-「多項式曲線フィッティング」「確率論」
パターン認識と機械学習 (PRML) 第1章-「多項式曲線フィッティング」「確率論」パターン認識と機械学習 (PRML) 第1章-「多項式曲線フィッティング」「確率論」
パターン認識と機械学習 (PRML) 第1章-「多項式曲線フィッティング」「確率論」Koichi Hamada
 
NTICは何を計算しているのか
NTICは何を計算しているのかNTICは何を計算しているのか
NTICは何を計算しているのかMasatoshi Yoshida
 
(DL hacks輪読)Bayesian Neural Network
(DL hacks輪読)Bayesian Neural Network(DL hacks輪読)Bayesian Neural Network
(DL hacks輪読)Bayesian Neural NetworkMasahiro Suzuki
 
並列化と実行時コード生成を用いた正規表現マッチングの高速化
並列化と実行時コード生成を用いた正規表現マッチングの高速化並列化と実行時コード生成を用いた正規表現マッチングの高速化
並列化と実行時コード生成を用いた正規表現マッチングの高速化Ryoma Sin'ya
 
「アクティブビジョンと フリストン自由エネルギー原理」@北大20170111
「アクティブビジョンと フリストン自由エネルギー原理」@北大20170111「アクティブビジョンと フリストン自由エネルギー原理」@北大20170111
「アクティブビジョンと フリストン自由エネルギー原理」@北大20170111Masatoshi Yoshida
 
Lifted-ElGamal暗号を用いた任意関数演算の二者間秘密計算プロトコルのmaliciousモデルにおける効率化
Lifted-ElGamal暗号を用いた任意関数演算の二者間秘密計算プロトコルのmaliciousモデルにおける効率化Lifted-ElGamal暗号を用いた任意関数演算の二者間秘密計算プロトコルのmaliciousモデルにおける効率化
Lifted-ElGamal暗号を用いた任意関数演算の二者間秘密計算プロトコルのmaliciousモデルにおける効率化MITSUNARI Shigeo
 
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...Preferred Networks
 
On the Convergence of Adam and Beyond
On the Convergence of Adam and BeyondOn the Convergence of Adam and Beyond
On the Convergence of Adam and Beyondharmonylab
 
数学で解き明かす深層学習の原理
数学で解き明かす深層学習の原理数学で解き明かす深層学習の原理
数学で解き明かす深層学習の原理Taiji Suzuki
 
パターン認識 第10章 決定木
パターン認識 第10章 決定木 パターン認識 第10章 決定木
パターン認識 第10章 決定木 Miyoshi Yuya
 

What's hot (20)

Stochastic Gradient MCMC
Stochastic Gradient MCMCStochastic Gradient MCMC
Stochastic Gradient MCMC
 
Coq Tutorial
Coq TutorialCoq Tutorial
Coq Tutorial
 
研究室内PRML勉強会 8章1節
研究室内PRML勉強会 8章1節研究室内PRML勉強会 8章1節
研究室内PRML勉強会 8章1節
 
Jokyokai
JokyokaiJokyokai
Jokyokai
 
大規模凸最適化問題に対する勾配法
大規模凸最適化問題に対する勾配法大規模凸最適化問題に対する勾配法
大規模凸最適化問題に対する勾配法
 
ベイズ深層学習5章 ニューラルネットワークのベイズ推論 Bayesian deep learning
ベイズ深層学習5章 ニューラルネットワークのベイズ推論 Bayesian deep learningベイズ深層学習5章 ニューラルネットワークのベイズ推論 Bayesian deep learning
ベイズ深層学習5章 ニューラルネットワークのベイズ推論 Bayesian deep learning
 
カーネル法:正定値カーネルの理論
カーネル法:正定値カーネルの理論カーネル法:正定値カーネルの理論
カーネル法:正定値カーネルの理論
 
PRML EP法 10.7 10.7.2
PRML EP法 10.7 10.7.2 PRML EP法 10.7 10.7.2
PRML EP法 10.7 10.7.2
 
クラシックな機械学習の入門 4. 学習データと予測性能
クラシックな機械学習の入門  4.   学習データと予測性能クラシックな機械学習の入門  4.   学習データと予測性能
クラシックな機械学習の入門 4. 学習データと予測性能
 
ロジスティック回帰入門
ロジスティック回帰入門ロジスティック回帰入門
ロジスティック回帰入門
 
パターン認識と機械学習 (PRML) 第1章-「多項式曲線フィッティング」「確率論」
パターン認識と機械学習 (PRML) 第1章-「多項式曲線フィッティング」「確率論」パターン認識と機械学習 (PRML) 第1章-「多項式曲線フィッティング」「確率論」
パターン認識と機械学習 (PRML) 第1章-「多項式曲線フィッティング」「確率論」
 
NTICは何を計算しているのか
NTICは何を計算しているのかNTICは何を計算しているのか
NTICは何を計算しているのか
 
(DL hacks輪読)Bayesian Neural Network
(DL hacks輪読)Bayesian Neural Network(DL hacks輪読)Bayesian Neural Network
(DL hacks輪読)Bayesian Neural Network
 
並列化と実行時コード生成を用いた正規表現マッチングの高速化
並列化と実行時コード生成を用いた正規表現マッチングの高速化並列化と実行時コード生成を用いた正規表現マッチングの高速化
並列化と実行時コード生成を用いた正規表現マッチングの高速化
 
「アクティブビジョンと フリストン自由エネルギー原理」@北大20170111
「アクティブビジョンと フリストン自由エネルギー原理」@北大20170111「アクティブビジョンと フリストン自由エネルギー原理」@北大20170111
「アクティブビジョンと フリストン自由エネルギー原理」@北大20170111
 
Lifted-ElGamal暗号を用いた任意関数演算の二者間秘密計算プロトコルのmaliciousモデルにおける効率化
Lifted-ElGamal暗号を用いた任意関数演算の二者間秘密計算プロトコルのmaliciousモデルにおける効率化Lifted-ElGamal暗号を用いた任意関数演算の二者間秘密計算プロトコルのmaliciousモデルにおける効率化
Lifted-ElGamal暗号を用いた任意関数演算の二者間秘密計算プロトコルのmaliciousモデルにおける効率化
 
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
 
On the Convergence of Adam and Beyond
On the Convergence of Adam and BeyondOn the Convergence of Adam and Beyond
On the Convergence of Adam and Beyond
 
数学で解き明かす深層学習の原理
数学で解き明かす深層学習の原理数学で解き明かす深層学習の原理
数学で解き明かす深層学習の原理
 
パターン認識 第10章 決定木
パターン認識 第10章 決定木 パターン認識 第10章 決定木
パターン認識 第10章 決定木
 

Similar to Graph partitioning and characteristic polynomials of Laplacian matrics of Roach-type graphs

dhirota_hone_corrected
dhirota_hone_correcteddhirota_hone_corrected
dhirota_hone_correctedAndy Hone
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisVjekoslavKovac1
 
H function and a problem related to a string
H function and a problem related to a stringH function and a problem related to a string
H function and a problem related to a stringAlexander Decker
 
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...IOSR Journals
 
1- Matrices and their Applications.pdf
1- Matrices and their Applications.pdf1- Matrices and their Applications.pdf
1- Matrices and their Applications.pdfd00a7ece
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manualamnahnura
 
Classification of Uq(sl2)-module algebra structures on the quantum plane
Classification of Uq(sl2)-module algebra structures on the quantum planeClassification of Uq(sl2)-module algebra structures on the quantum plane
Classification of Uq(sl2)-module algebra structures on the quantum planeSteven Duplij (Stepan Douplii)
 
ON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICESON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICESmathsjournal
 
ON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICESON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICESmathsjournal
 
ON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICESON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICESmathsjournal
 
ON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICESON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICESmathsjournal
 
Hermite integrators and 2-parameter subgroup of Riordan group
Hermite integrators and 2-parameter subgroup of Riordan groupHermite integrators and 2-parameter subgroup of Riordan group
Hermite integrators and 2-parameter subgroup of Riordan groupKeigo Nitadori
 
A note on variational inference for the univariate Gaussian
A note on variational inference for the univariate GaussianA note on variational inference for the univariate Gaussian
A note on variational inference for the univariate GaussianTomonari Masada
 
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...inventionjournals
 
The Multivariate Gaussian Probability Distribution
The Multivariate Gaussian Probability DistributionThe Multivariate Gaussian Probability Distribution
The Multivariate Gaussian Probability DistributionPedro222284
 
Some Common Fixed Point Theorems for Multivalued Mappings in Two Metric Spaces
Some Common Fixed Point Theorems for Multivalued Mappings in Two Metric SpacesSome Common Fixed Point Theorems for Multivalued Mappings in Two Metric Spaces
Some Common Fixed Point Theorems for Multivalued Mappings in Two Metric SpacesIJMER
 

Similar to Graph partitioning and characteristic polynomials of Laplacian matrics of Roach-type graphs (20)

dhirota_hone_corrected
dhirota_hone_correcteddhirota_hone_corrected
dhirota_hone_corrected
 
hone_durham
hone_durhamhone_durham
hone_durham
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysis
 
H function and a problem related to a string
H function and a problem related to a stringH function and a problem related to a string
H function and a problem related to a string
 
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
 
MUMS Opening Workshop - Panel Discussion: Facts About Some Statisitcal Models...
MUMS Opening Workshop - Panel Discussion: Facts About Some Statisitcal Models...MUMS Opening Workshop - Panel Discussion: Facts About Some Statisitcal Models...
MUMS Opening Workshop - Panel Discussion: Facts About Some Statisitcal Models...
 
1- Matrices and their Applications.pdf
1- Matrices and their Applications.pdf1- Matrices and their Applications.pdf
1- Matrices and their Applications.pdf
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
 
Classification of Uq(sl2)-module algebra structures on the quantum plane
Classification of Uq(sl2)-module algebra structures on the quantum planeClassification of Uq(sl2)-module algebra structures on the quantum plane
Classification of Uq(sl2)-module algebra structures on the quantum plane
 
lec4.ppt
lec4.pptlec4.ppt
lec4.ppt
 
ON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICESON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICES
 
ON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICESON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICES
 
ON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICESON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICES
 
ON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICESON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICES
 
Hermite integrators and 2-parameter subgroup of Riordan group
Hermite integrators and 2-parameter subgroup of Riordan groupHermite integrators and 2-parameter subgroup of Riordan group
Hermite integrators and 2-parameter subgroup of Riordan group
 
A note on variational inference for the univariate Gaussian
A note on variational inference for the univariate GaussianA note on variational inference for the univariate Gaussian
A note on variational inference for the univariate Gaussian
 
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
 
The Multivariate Gaussian Probability Distribution
The Multivariate Gaussian Probability DistributionThe Multivariate Gaussian Probability Distribution
The Multivariate Gaussian Probability Distribution
 
Some Common Fixed Point Theorems for Multivalued Mappings in Two Metric Spaces
Some Common Fixed Point Theorems for Multivalued Mappings in Two Metric SpacesSome Common Fixed Point Theorems for Multivalued Mappings in Two Metric Spaces
Some Common Fixed Point Theorems for Multivalued Mappings in Two Metric Spaces
 
lec25.ppt
lec25.pptlec25.ppt
lec25.ppt
 

More from Yoshihiro Mizoguchi

DockerでCoq インストール
DockerでCoq インストールDockerでCoq インストール
DockerでCoq インストールYoshihiro Mizoguchi
 
Homebrewによるソフトウェアの実装 (3)
Homebrewによるソフトウェアの実装 (3)Homebrewによるソフトウェアの実装 (3)
Homebrewによるソフトウェアの実装 (3)Yoshihiro Mizoguchi
 
Homebrewによるソフトウェアの実装 (2)
Homebrewによるソフトウェアの実装 (2)Homebrewによるソフトウェアの実装 (2)
Homebrewによるソフトウェアの実装 (2)Yoshihiro Mizoguchi
 
Homebrewによるソフトウェアの実装(1)
Homebrewによるソフトウェアの実装(1)Homebrewによるソフトウェアの実装(1)
Homebrewによるソフトウェアの実装(1)Yoshihiro Mizoguchi
 
Symbolic Computations in Conformal Geometric Algebra for Three Dimensional O...
Symbolic Computations in Conformal Geometric Algebra for Three Dimensional  O...Symbolic Computations in Conformal Geometric Algebra for Three Dimensional  O...
Symbolic Computations in Conformal Geometric Algebra for Three Dimensional O...Yoshihiro Mizoguchi
 
数式処理ソフトMathematicaで数学の問題を解く
数式処理ソフトMathematicaで数学の問題を解く数式処理ソフトMathematicaで数学の問題を解く
数式処理ソフトMathematicaで数学の問題を解くYoshihiro Mizoguchi
 
Verification of a brick wang tiling algorithm
Verification of a brick wang tiling algorithmVerification of a brick wang tiling algorithm
Verification of a brick wang tiling algorithmYoshihiro Mizoguchi
 
A Coq Library for the Theory of Relational Calculus
A Coq Library for the Theory of Relational CalculusA Coq Library for the Theory of Relational Calculus
A Coq Library for the Theory of Relational CalculusYoshihiro Mizoguchi
 
Algebras for programming languages
Algebras for programming languagesAlgebras for programming languages
Algebras for programming languagesYoshihiro Mizoguchi
 
定理証明支援系Coqについて
定理証明支援系Coqについて定理証明支援系Coqについて
定理証明支援系CoqについてYoshihiro Mizoguchi
 
Coq関係計算ライブラリの開発と写像の性質の証明
Coq関係計算ライブラリの開発と写像の性質の証明Coq関係計算ライブラリの開発と写像の性質の証明
Coq関係計算ライブラリの開発と写像の性質の証明Yoshihiro Mizoguchi
 
Mac bookでwebサーバーを起動する方法
Mac bookでwebサーバーを起動する方法Mac bookでwebサーバーを起動する方法
Mac bookでwebサーバーを起動する方法Yoshihiro Mizoguchi
 
有限オートマトンとスティッカー系に関するCoqによる形式証明について
有限オートマトンとスティッカー系に関するCoqによる形式証明について有限オートマトンとスティッカー系に関するCoqによる形式証明について
有限オートマトンとスティッカー系に関するCoqによる形式証明についてYoshihiro Mizoguchi
 
複素数・四元数と図形の回転
複素数・四元数と図形の回転複素数・四元数と図形の回転
複素数・四元数と図形の回転Yoshihiro Mizoguchi
 
グラフデータ構造と5色定理
グラフデータ構造と5色定理グラフデータ構造と5色定理
グラフデータ構造と5色定理Yoshihiro Mizoguchi
 
圏論のモナドとHaskellのモナド
圏論のモナドとHaskellのモナド圏論のモナドとHaskellのモナド
圏論のモナドとHaskellのモナドYoshihiro Mizoguchi
 

More from Yoshihiro Mizoguchi (20)

DockerでCoq インストール
DockerでCoq インストールDockerでCoq インストール
DockerでCoq インストール
 
Homebrewによるソフトウェアの実装 (3)
Homebrewによるソフトウェアの実装 (3)Homebrewによるソフトウェアの実装 (3)
Homebrewによるソフトウェアの実装 (3)
 
Homebrewによるソフトウェアの実装 (2)
Homebrewによるソフトウェアの実装 (2)Homebrewによるソフトウェアの実装 (2)
Homebrewによるソフトウェアの実装 (2)
 
Homebrewによるソフトウェアの実装(1)
Homebrewによるソフトウェアの実装(1)Homebrewによるソフトウェアの実装(1)
Homebrewによるソフトウェアの実装(1)
 
Amazon AWSの使い方
Amazon AWSの使い方Amazon AWSの使い方
Amazon AWSの使い方
 
ShareLaTeXの使い方
ShareLaTeXの使い方ShareLaTeXの使い方
ShareLaTeXの使い方
 
Symbolic Computations in Conformal Geometric Algebra for Three Dimensional O...
Symbolic Computations in Conformal Geometric Algebra for Three Dimensional  O...Symbolic Computations in Conformal Geometric Algebra for Three Dimensional  O...
Symbolic Computations in Conformal Geometric Algebra for Three Dimensional O...
 
数式処理ソフトMathematicaで数学の問題を解く
数式処理ソフトMathematicaで数学の問題を解く数式処理ソフトMathematicaで数学の問題を解く
数式処理ソフトMathematicaで数学の問題を解く
 
Verification of a brick wang tiling algorithm
Verification of a brick wang tiling algorithmVerification of a brick wang tiling algorithm
Verification of a brick wang tiling algorithm
 
A Coq Library for the Theory of Relational Calculus
A Coq Library for the Theory of Relational CalculusA Coq Library for the Theory of Relational Calculus
A Coq Library for the Theory of Relational Calculus
 
Algebras for programming languages
Algebras for programming languagesAlgebras for programming languages
Algebras for programming languages
 
定理証明支援系Coqについて
定理証明支援系Coqについて定理証明支援系Coqについて
定理証明支援系Coqについて
 
Coq関係計算ライブラリの開発と写像の性質の証明
Coq関係計算ライブラリの開発と写像の性質の証明Coq関係計算ライブラリの開発と写像の性質の証明
Coq関係計算ライブラリの開発と写像の性質の証明
 
Coqチュートリアル
CoqチュートリアルCoqチュートリアル
Coqチュートリアル
 
Mac bookでwebサーバーを起動する方法
Mac bookでwebサーバーを起動する方法Mac bookでwebサーバーを起動する方法
Mac bookでwebサーバーを起動する方法
 
有限オートマトンとスティッカー系に関するCoqによる形式証明について
有限オートマトンとスティッカー系に関するCoqによる形式証明について有限オートマトンとスティッカー系に関するCoqによる形式証明について
有限オートマトンとスティッカー系に関するCoqによる形式証明について
 
計算可能実数とは
計算可能実数とは計算可能実数とは
計算可能実数とは
 
複素数・四元数と図形の回転
複素数・四元数と図形の回転複素数・四元数と図形の回転
複素数・四元数と図形の回転
 
グラフデータ構造と5色定理
グラフデータ構造と5色定理グラフデータ構造と5色定理
グラフデータ構造と5色定理
 
圏論のモナドとHaskellのモナド
圏論のモナドとHaskellのモナド圏論のモナドとHaskellのモナド
圏論のモナドとHaskellのモナド
 

Recently uploaded

Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseAnaAcapella
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsKarakKing
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...Nguyen Thanh Tu Collection
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxmarlenawright1
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxAmanpreet Kaur
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jisc
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structuredhanjurrannsibayan2
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024Elizabeth Walsh
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 

Recently uploaded (20)

Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 

Graph partitioning and characteristic polynomials of Laplacian matrics of Roach-type graphs

  • 1. Graph partitioning and eigen polynomials of Laplacian matrices of Roach-type graphs Yoshihiro Mizoguchi Institute of Mathematics for Industry, Kyushu University   ym@imi.kyushu-u.ac.jp Algebraic Graph Theory, Spectral Graph Theory and Related Topics 5th Jan. 2013 at Nagoya University Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 1 / 32
  • 2. Table of contents ...1 Introduction ...2 Chebyshev polynomials ...3 Tridiagonal matrices ...4 Laplacian Matrix ...5 Mcut, Lcut and spectral clustering ...6 Conclusion Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 2 / 32
  • 3. Biogeography-Based Optimization (1) Let Ps be the probability that the habitat contains exactly S species. We can arrange ˙Ps equations into the single matrix equation   ˙P0 ˙P1 ˙P2 ... ˙Pn−1 ˙Pn   =   −(λ0 + µ0) µ1 0 · · · 0 λ0 −(λ1 + µ1) µ2 ... ... ... ... ... ... ... ... ... λn−2 −(λn−1 + µn−1) µn 0 . . . 0 λn−1 −(λn + µn)     P0 P1 P2 ... Pn−1 Pn   where λs and µs are the immigration and emigration rates when there are S species in the habitat. Generally λ0 > λ1 > · · · > λn and µ0 < µ1 < · · · < µn hold and we assume λs = n−s n and µs = s n in this talk. [Sim08] D.Simon, Biogeography-Based Optimization, IEEE Trans. on evolutionary computation, 2008. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 3 / 32
  • 4. Biogeography-Based Optimization (2) . Theorem .. ...... The (n + 1) eigenvalues of the biogeography matrix A =   −1 1/n 0 · · · 0 n/n −1 2/n ... ... ... ... ... ... ... ... ... 2/n −1 n/n 0 . . . 0 1/n −1   are {0, −2/n, −4/n, . . . , −2}. [IS11] B.Igelnik, D. Simon, The eigenvalues of a tridiagonal matrix in biogeography, Appl. Mathematics and Computation, 2011. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 4 / 32
  • 5. Heat equation (Crank-Nicolson method) (1) ut = uxx x ∈ [0, 1] and t > 0 with initial and Dirichlet boundary condition given by: u(x, 0) = f(x), u(0, t) = g(t) and u(1, t) = h(t) The finite difference discretization can be expressed as: Aun+1 = Bun + c where A =   1 + α −r/2 0 −r/2 1 + r −r/2 ... ... ... −r/2 1 + r −r/2 0 −r/2 1 + α   Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 5 / 32
  • 6. Heat equation (Crank-Nicolson method) (2) and B =   1 − β r/2 0 r/2 1 − r r/2 ... ... ... r/2 1 − r r/2 0 r/2 1 − β   . We note un = (un 1 , un 2 , . . . , un m)T. The parapmeters α and β are given by: α = β = 3r/2 for the implicit boundary conditions; α = r and β = 2r for the explicit boundary conditions The iteration matrix M(r) = A−1B controls the stability of the numerical method to compute Aun+1 = Bun + c. [CM10] J.A. Cuminato, S. McKee, A note on the eigenvalues of a special class of matrices, J. of Computational and Applied Mathematics, 2010. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 6 / 32
  • 7. Tridiagonal Matrix (1) An =   −α + b c 0 0 · · · 0 0 a b c 0 · · · 0 0 0 a b c · · · 0 0 · · · · · · · · · · · · · · · · · · · · · 0 0 0 0 · · · b c 0 0 0 0 · · · a −β + b   n×n . Theorem .. ...... Suppose α = β = √ ac 0. Then the eigenvalues λk of An are given by λk = b + 2 √ ac cos kπ n and the corresponding eigenvectors u(k) = (u(k) j ) are given by u(k) j = ρj−1 sin k(2j − 1)π 2n for k = 1, 2, · · · , n − 1 and u(n) j = (−ρ)j−1 where ρ = √ a/c. [Yue05] W-C. Yueh, Eigenvalues of several tridiagonal matrices, Applied Mathematics E-Notes, 2005. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 7 / 32
  • 8. Tridiagonal Matrix (2) Consider the n × n matrix C = (min{ai − b, aj − b})i,j=1,...,n. . Proposition .. ...... For a > 0 and a b, the tridiagonal matrix of order n Tn =   1 + a a−b −1 −1 2 −1 ... ... ... −1 2 −1 −1 1   is the inverse of (1/a)C. [dF07] C.M. da Fonseca, On the eigenvalues of some tridiagonal matrices, J. of Computational and Applied Mathematics, 2007. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 8 / 32
  • 9. Chebyshev polynomials For n ∈ N and x ∈ R, we define functions Tn(x) and Un(x) as follows. T0(x) = 1, T1(x) = x, U0(x) = 1, U1(x) = 2x, Tn+1(x) = 2xTn(x) − Tn−1(x), and Un+1(x) = 2xUn(x) − Un−1(x). We note cos nθ = Tn(cos θ), and sin(n + 1)θ = Un(cos θ) sin θ for θ ∈ R. . Proposition .. ...... Let x = cos θ. Then Tn(x) = 0 ⇔ x = cos( (2k + 1)π 2n ) (k = 0, · · · , n − 1). Un(x) = 0 ⇔ x = cos( kπ n + 1 ) (k = 1, · · · , n). Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 9 / 32
  • 10. Tridiagonal matrix An(a, b) We define a n × n matrix An(a, b) as follows: An(a, b) =   a b 0 · · · · · · · · · 0 b a b 0 ... 0 b a b 0 ... ... ... ... ... ... ... ... ... 0 b a b 0 ... 0 b a b 0 · · · · · · · · · 0 b a   . We put |A0(a, 1)| = 1, then |An(a, 1)| = a|An−1(a, 1)| − |An−2(a, 1)|, |A1(a, 1)| = a and An(a, b) = bn · An (a/b, 1). . Proposition .. ...... |An(a, b)| = bn · sin(n + 1)θ sin θ where cos θ = a 2b . Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 10 / 32
  • 11. Tridiagonal matrix Bn and Cn (1) Let n ≥ 3. Bn(a0, b0, a, b) =   a0 b0 0 · · · 0 b0 0 An−1(a, b) ... 0   Cn(a, b, a0, b0) =   0 An−1(a, b) ... 0 b0 0 · · · 0 b0 a0   We note that |Bn(a0, b0, a, b)| = a0|An−1(a, b)| − b2 0 |An−2(a, b)|, and ||Cn(a, b, a0, b0)|| = |a0|An−1(a, b)| − b2 0 |An−2(a, b)||. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 11 / 32
  • 12. Tridiagonal matrix Bn and Cn (2) We define functions gn(β) = 2 sin((n + 1)β) + sin nβ − sin((n − 1)β), and hn(β) = 2 sin((n + 1)β) − sin nβ − sin((n − 1)β) before introducing the next Lemma. . Proposition .. ...... Let n ≥ 3. Bn(λ − 1, 1 √ 2 , λ − 1, 1 2 ) = 1 2n−1 cos nα, (λ = 1 + cos α), Cn(η − 2 3 , 1 3 , η − 1 2 , 1 √ 6 ) = 1 2 · 3n · sin β gn(β), (η = 2 3 (1 + cos β)), Cn(µ − 4 3 , 1 3 , µ − 3 2 , 1 √ 6 ) = 1 2 · 3n · sin β hn(β), (µ = 2 3 (2 + cos β)). Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 12 / 32
  • 13. Tridiagonal matrix Qn(a0, b0, a, b) Let n ≥ 4. We define n × n matrix Qn(a0, b0, a, b) as follows: Qn(a0, b0, a, b) =   a0 b0 0 · · · 0 b0 ... 0 An−2(a, b) 0 ... b0 0 · · · 0 b0 a0   We note that |Qn(a0, b0, a, b)| = a0|Cn−1(a, b, a0, b0)| − b2 0 |Cn−2(a, b, a0, b0)|. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 13 / 32
  • 14. Laplacian matrix of a graph . Definition (Weighted normalized Laplacian) .. ...... The weighted normalized Laplacian L(G) = (ℓij) is defined as ℓij =    1 − wj j dj if i = j, − wi j √ didj if vi and vj are adjacent and i j, 0 otherwise. The adjacency matrix A(P5) and the normalized Laplacian matrix L(P5) of a path graph P5. A(P5) =   0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0   L(P5) =   1 − 1 √ 2 0 0 0 − 1 √ 2 1 −1 2 0 0 0 −1 2 1 −1 2 0 0 0 −1 2 1 − 1 √ 2 0 0 0 − 1 √ 2 1   Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 14 / 32
  • 15. Characteristic polynomial of L(Pn) . Proposition .. ...... Let n ≥ 4. |λIn − L(Pn)| = − ( 1 2 )n−2 (sin α sin((n − 1)α)) where λ = 1 + cos α. That is λ = 1 − cos( kπ n − 1 ) (k = 0, . . . , n − 1). We note L(Pn) = Qn  1, − 1 √ 2 , 1, − 1 2   , and λIn − L(Pn) = Qn  λ − 1, 1 √ 2 , λ − 1, 1 2   . Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 15 / 32
  • 16. Characteristic polynomial of L(Pn,k) (1) Let n ≥ 3 and k ≥ 3. Then L(Pn,k) =   Bn(1, − 1 √ 2 , 1, −1 2 ) Xn,k Xt n,k Ck(2 3 , −1 3 , 1 2 , − 1 √ 6 )   where Xn,k is the n × k matrix defined by Xn,k =   0 · · · · · · 0 ... ... 0 0 ... − 1 √ 6 0 · · · 0   . Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 16 / 32
  • 17. Characteristic polynomial of L(Pn,k) (2) . Proposition .. ...... Let pn,k(λ) = 1 2n3k sin β (gk(β) cos(nα)) − gk−1(β) cos((n − 1)α)). Then λIn+k − L(Pn,k) = pn,k(λ), where λ = 1 + cos α and λ = 2 3 (1 + cos β). λIn+k − L(Pn,k) = Bn(λ − 1, 1 √ 2 , λ − 1, 1 2 ) Xn,k Xt n,k Ck(λ − 2 3 , 1 3 , λ − 1 2 , 1 √ 6 ) Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 17 / 32
  • 18. Characteristic polynomial of L(Rn,k) (1) 1 2 3 4 5 6 7 8 9 10 11 12 Let n ≥ 3 and k ≥ 3. Then L(Rn,k) =   Bn(1, − 1 √ 2 , 1, −1 2 ) Xn,k O O Xt n,k Ck(1, −1 3 , 1, − 1 √ 6 ) O Ck(−1 3 , 0, −1 2 , 0) O O Bn(1, − 1 √ 2 , 1, −1 2 ) Xn,k O Ck(−1 3 , 0, −1 2 , 0) Xt n,k Ck(1, −1 3 , 1, − 1 √ 6 )   . Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 18 / 32
  • 19. Characteristic polynomial of L(Rn,k) (2) . Proposition .. ...... Let n ≥ 3, k ≥ 3 and pn,k(λ) = 1 2n3k sin β (gk(β) cos(nα)) − gk−1(β) cos((n − 1)α)), and qn,k(λ) = 1 2n3k sin γ (hk(γ) cos(nα) − hk−1(γ) cos((n − 1)α)). Then |λIn+k − L(Rn,k)| = pn,k(λ) · qn,k(λ). where λ = 1 + cos α = 2 3 (1 + cos β) = 2 3 (2 + cos γ). λIn+k − L(Rn,k) = Bn(λ − 1, 1 √ 2 , λ − 1, 1 2 ) Xn,k Xt n,k Ck(λ − 2 3 , 1 3 , λ − 1 2 , 1 √ 6 ) × Bn(λ − 1, 1 √ 2 , λ − 1, 1 2 ) Xn,k Xt n,k Ck(λ − 4 3 , 1 3 , λ − 3 2 , 1 √ 6 ) = pn,k(λ) × qn,k(λ). Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 19 / 32
  • 20. Bn(λ − 1, 1 √ 2 , λ − 1, 1 2 ) (Calculation) Let λ = 1 + cos α. Then we have Bn(λ − 1, 1 √ 2 , λ − 1, 1 2 ) = (λ − 1) An−1(λ − 1, 1 2 ) − 1 2 An−2(λ − 1, 1 2 ) = (λ − 1) ( 1 2 )n−1 sin nα sin α − 1 2 ( 1 2 )n−2 sin(n − 1)α sin α = ( 1 2 )n−1 · 1 sin α ((λ − 1) sin nα − sin(n − 1)α) = ( 1 2 )n−1 · 1 sin α (cos α sin nα − sin(nα − α)) = ( 1 2 )n−1 · 1 sin α (cos nα sin α) = ( 1 2 )n−1 cos nα. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 20 / 32
  • 21. Bn(λ − 1, 1 √ 2 , λ − 1, 1 2 ) (Mathematica) Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 21 / 32
  • 22. Cn(η − 2 3 , 1 3 , η − 1 2 , 1 √ 6 ) (Calculation) Let η = 2 3 (1 + cos β) and gn(β) = 2 sin(n + 1)β + sin nβ − sin(n − 1)β. Then we have Cn(η − 2 3 , 1 3 , η − 1 2 , 1 √ 6 ) = ( η − 1 2 ) An−1 ( η − 2 3 , 1 3 ) − 1 6 An−2 ( η − 2 3 , 1 3 ) = ( 1 3 )n−1 (( η − 1 2 ) sin nβ sin β − 1 2 sin(n − 1)β sin β ) = ( 1 3 )n−1 (( 1 6 + 2 3 cos β ) sin nβ sin β − 1 2 sin(n − 1)β sin β ) = ( 1 3 )n−1 1 6 sin β (sin nβ + 4 cos β sin nβ − 3 sin(nβ − β)) = ( 1 3 )n−1 1 6 sin β (2 sin(n + 1)β + sin nβ − sin(n − 1)β) = ( 1 3 )n 1 2 sin β gn(β). Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 22 / 32
  • 23. Cn(η − 2 3 , 1 3 , η − 1 2 , 1 √ 6 ) (Mathematica) Some manual computations for gn(θ) (× sin). Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 23 / 32
  • 24. pn,k(λ) (Mathematica) Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 24 / 32
  • 25. qn,k(λ) (Mathematica) Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 25 / 32
  • 26. Minimum Normalized Cut Mcut(G) . Definition (Normalized cut) .. ...... Let G = (V, E) be a connected graph. Let A, B ⊂ V, A ∅, B ∅ and A ∩ B = ∅. Then the normalized cut Ncut(A, B) of G is defined by Ncut(A, B) = cut(A, B) ( 1 vol(A) + 1 vol(B) ) . . Definition (Mcut(G)) .. ...... Let G = (V, E) be a connected graph. The Mcut(G) is defined by Mcut(G) = min{Mcut j(G) | j = 1, 2, . . . }. Where, Mcut j(G) = min{Ncut(A, V A) | cut(A, V A) = j, A ⊂ V}. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 26 / 32
  • 27. Mcut(R6,3) G0 (even) G1 (odd) 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 Ncut(A0, B0) = 2 × ( 1 16 + 1 10 ) = 13 40 = 0.325 Ncut(A1, B1) = 3 × ( 1 13 + 1 13 ) = 6 13 ≈ 0.462 Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 27 / 32
  • 28. Spectral Clustering . Definition (Lcut(G)) .. ...... Let G = (V, E) be a connected graph, λ2 the second smallest eigenvalue of L(G), U2 = ((U2)i) (1 ≤ i ≤ |V|) a second eigenvector of L(G) with λ2. We assume that λ2 is simple. Then Lcut(G) is defined as Lcut(G) = Ncut(V+ (U2) ∪ V0 (U2), V− (U2)). 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Lcut(G) = Mcut(G) Lcut(R4,7) = Mcut(R4,7) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mcut(R6,4) Lcut(R6,4) Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 28 / 32
  • 29. Roach Graph Observation . Proposition .. ...... Let Rn,k be a roach-type graph. If Lcut(Rn,k) = Mcut(Rn,k) then a second eigen vector of L(Rn,k) is an even vector. . Proposition .. ...... Let R2k,k be a roach-type graph, P2k,k a weighted path and P4k a path graph. 1. λ2(L(P4k)) = 1 − π 4k−1 . 2. λ2(L(R2k,k)) < λ2(L(P4k)). 3. λ2(L(P4k)) < λ2(L(P2k,k)). 4. A second eigenvector of L(R2k,k) is an odd vector. 5. Mcut(R2k,k) < Lcut(R2k,k). Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 29 / 32
  • 30. Conclusion We give followings in this talks: Tridiagonal matrices, Laplacian of graphs and spectral clustering method. Concrete formulae of characteristic polynomials of tridiagonal matrices. Mathematica computations for characteristic polynomials. Concrete formulae of eigen-polynomials of (P2k,k) and L(R2k,k). Proof of Lcut does not always give an optimal cut. We are not able to decide the simpleness of the second eigenvalue for Pn,k and Rn,k. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 30 / 32
  • 31. Reference I A. Behn, K. R. Driessel, and I. R. Hentzel. The eigen-problem for some special near-toeplitz centro-skew tridiagonal matrices. arXiv:1101.5788v1 [math.SP], Jan 2011. H-W. Chang, S-E. Liu, and R. Burridge. Exact eigensystems for some matrices arising from discretizations. Linear Algebra and its Applications, 430:999–1006, 2009. J. A. Cuminato and S. McKee. A note on the eigenvalues of a special class of matrices. Journal of Computational and Applied Mathematics, 234:2724–2731, 2010. C. M. da Fonseca. On the eigenvalues of some tridiagonal matrices. Journal of Computational and Applied Mathematics, 200:283–286, 2007. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 31 / 32
  • 32. Reference II B. Igelnik and D. Simon. The eigenvalues of a tridiagonal matrix in biogeography. Applied Mathematics and Computation, 218:195–201, 2011. S. Kouachi. Eigenvalues and eigenvectors of tridiagonal matrices. Electronic Journal of Linear Algebra, 15:115–133, 2006. D. Simon. Biogeography-based optimization. IEEE Transactions on Evolutionary Computation, 12(6):702–713, 2008. W. Yueh. Eigenvalues of several tridiagonal matrices. Applied Mathematics E-Notes, 5:66–74, 2005. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 32 / 32