Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.
10MoreLessons
Learned from building real-life Machine Learning Systems
Xavier Amatriain (@xamat) 10/13/2015
Machine Learning
@Quora
Our Mission
“To share and grow the world’s knowledge”
● Millions of questions & answers
● Millions of users
● Thousands of...
Demand
What we care about
Quality
Relevance
Lots of data relations
ML Applications @ Quora
● Answer ranking
● Feed ranking
● Topic recommendations
● User recommendations
● Email digest
● As...
Models
● Logistic Regression
● Elastic Nets
● Gradient Boosted Decision
Trees
● Random Forests
● (Deep) Neural Networks
● ...
10MoreLessons
Learned from implementing real-life ML systems
1.Implicitsignalsbeat
explicitones
(almostalways)
Implicit vs. Explicit
● Many have acknowledged
that implicit feedback is more useful
● Is implicit feedback really always
...
● Implicit data is (usually):
○ More dense, and available for all users
○ Better representative of user behavior vs.
user ...
● However
○ It is not always the case that
direct implicit feedback correlates
well with long-term retention
○ E.g. clickb...
2.YourModelwilllearn
whatyouteachittolearn
Training a model
● Model will learn according to:
○ Training data (e.g. implicit and explicit)
○ Target function (e.g. pro...
Example 2 - Quora’s feed
● Training data = implicit + explicit
● Target function: Value of showing a story to a
user ~ wei...
3.Supervisedvs.plus
UnsupervisedLearning
Supervised/Unsupervised Learning
● Unsupervised learning as dimensionality reduction
● Unsupervised learning as feature en...
Supervised/Unsupervised Learning
● One of the “tricks” in Deep Learning is how it
combines unsupervised/supervised learnin...
4.Everythingisanensemble
Ensembles
● Netflix Prize was won by an ensemble
○ Initially Bellkor was using GDBTs
○ BigChaos introduced ANN-based ensem...
Ensembles & Feature Engineering
● Ensembles are the way to turn any model into a feature!
● E.g. Don’t know if the way to ...
The Master Algorithm?
It definitely is an ensemble!
5.Theoutputofyourmodel
willbetheinputofanotherone
(andotherdesignproblems)
Outputs will be inputs
● Ensembles turn any model into a feature
○ That’s great!
○ That can be a mess!
● Make sure the out...
ML vs Software
● Can you treat your ML infrastructure as you would
your software one?
○ Yes and No
● You should apply best...
6.Thepains&gains
ofFeatureEngineering
Feature Engineering
● Main properties of a well-behaved ML feature
○ Reusable
○ Transformable
○ Interpretable
○ Reliable
●...
Feature Engineering
● Main properties of a well-behaved ML feature
○ Reusable
○ Transformable
○ Interpretable
○ Reliable
●...
Feature Engineering Example - Quora Answer Ranking
What is a good Quora answer?
• truthful
• reusable
• provides explanati...
Feature Engineering Example - Quora Answer Ranking
How are those dimensions translated
into features?
• Features that rela...
7.Thetwofacesofyour
MLinfrastructure
Machine Learning Infrastructure
● Whenever you develop any ML infrastructure, you need to
target two different modes:
○ Mo...
Machine Learning Infrastructure: Experimentation & Production
● Option 1:
○ Favor experimentation and only invest in produ...
Machine Learning Infrastructure: Experimentation & Production
● Option 1:
○ Favor experimentation and only invest in produ...
● Good intermediate options:
○ Have ML “researchers” experiment on iPython Notebooks using
Python tools (scikit-learn, The...
8.Whyyoushouldcareabout
answeringquestions(aboutyourmodel)
Model debuggability
● Value of a model = value it brings to the product
● Product owners/stakeholders have expectations on...
Model debuggability
● E.g. Why am I seeing or not seeing
this on my homepage feed?
9.Youdon’tneedtodistribute
yourMLalgorithm
Distributing ML
● Most of what people do in practice can fit into a multi-
core machine
○ Smart data sampling
○ Offline sc...
Distributing ML
● Example of optimizing computations to fit them into
one machine
○ Spark implementation: 6 hours, 15 mach...
10.Theuntoldstoryof
DataScienceandvs.MLengineering
Data Scientists and ML Engineers
● We all know the definition of a Data Scientist
● Where do Data Scientists fit in an org...
The data-driven ML innovation funnel
Data Research
ML Exploration -
Product Design
AB Testing
Data Scientists and ML Engineers
● Solution:
○ (1) Define different parts of the innovation funnel
■ Part 1. Data research...
Conclusions
● Make sure you teach your model what you
want it to learn
● Ensembles and the combination of
supervised/unsupervised tech...
1.Implicitsignalsbeat explicitones (almostalways)
Nächste SlideShare
Wird geladen in …5
×

1.Implicitsignalsbeat explicitones (almostalways) 10 more lessons learned from building Machine Learning systems

140.035 Aufrufe

Veröffentlicht am

1.Implicitsignalsbeat
explicitones
(almostalways)

  • Visit this site: tinyurl.com/sexinarea and find sex in your area for one night)) You can find me on this site too)
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier
  • Download The Complete Lean Belly Breakthrough Program with Special Discount. ♣♣♣ http://scamcb.com/bkfitness3/pdf
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier
  • Doctor's 2-Minute Ritual For Shocking Daily Belly Fat Loss! Watch This Video ➤➤ https://tinyurl.com/bkfitness4u
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier
  • Do This Simple 2-Minute Ritual To Loss 1 Pound Of Belly Fat Every 72 Hours ●●● http://ishbv.com/bkfitness3/pdf
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier
  • Your opinions matter! get paid for them! click here for more info...■■■ https://tinyurl.com/make2793amonth
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier

×