Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

By the Power of Metrics - Lean Kanban North America 2015

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Nächste SlideShare
By the power of metrics
By the power of metrics
Wird geladen in …3
×

Hier ansehen

1 von 67 Anzeige

By the Power of Metrics - Lean Kanban North America 2015

Herunterladen, um offline zu lesen

See how metrics can be used with your Kanban System for managing flow, your project and changes.

At least three practices of the Kanban Method imply the use of metrics. Metrics can be powerful tools. Sadly most kanban systems don’t make use of them and miss out on a big chance to make things easier. Metrics can help us with lots of different things we encounter in business like finishing projects on budget and on time, fighting for survival in the market, and continuous change to adapt in this complex world. Learn how metrics can help you and how to choose the right metric for your situation.

See how metrics can be used with your Kanban System for managing flow, your project and changes.

At least three practices of the Kanban Method imply the use of metrics. Metrics can be powerful tools. Sadly most kanban systems don’t make use of them and miss out on a big chance to make things easier. Metrics can help us with lots of different things we encounter in business like finishing projects on budget and on time, fighting for survival in the market, and continuous change to adapt in this complex world. Learn how metrics can help you and how to choose the right metric for your situation.

Anzeige
Anzeige

Weitere Verwandte Inhalte

Diashows für Sie (19)

Ähnlich wie By the Power of Metrics - Lean Kanban North America 2015 (20)

Anzeige

Aktuellste (20)

Anzeige

By the Power of Metrics - Lean Kanban North America 2015

  1. 1. By the Power of Metrics LeanKanban North America 2015 - #LKNA15 Wolfgang Wiedenroth @wwiedenroth
  2. 2. Metrics in the Kanban Practices1.Visualize 2.Limit WIP 3.Manage Flow 4.Make Policies explicit 5.Implement Feedback Loops 6.Improve Collaboratively, Evolve Experimentally 
 (using models/scientific method)
  3. 3. Metrics in Kanban’s 3 Agendas •Sustainability •Service-Oriented •Survivability
  4. 4. Visualization
  5. 5. 20# 25# 30# 35# 40# 45# 50# 55# 60# 65# 70# 75# 80# 85# 90# 95# 100# 105# 110# 115# 1#M ay#2012# 7#M ay#2012# 11#M ay#2012# 17#M ay#2012# 23#M ay#2012# 29#M ay#2012# 4#Jun#2012# 8#Jun#2012# 14#Jun#2012# 20#Jun#2012# 26#Jun#2012# 2#Jul#2012#6#Jul#2012#12#Jul#2012# 18#Jul#2012# 24#Jul#2012# 30#Jul#2012# 3#Aug#2012# 9#Aug#2012# 15#Aug#2012# 21#Aug#2012# 27#Aug#2012# 31#Aug#2012# 6#Sep#2012# 12#Sep#2012# 18#Sep#2012# 24#Sep#2012# 28#Sep#2012# 4#Oct#2012# 10#Oct#2012# 16#Oct#2012# 22#Oct#2012# 26#Oct#2012# 1#Nov#2012# 7#Nov#2012# 13#Nov#2012# 19#Nov#2012# 23#Nov#2012# 29#Nov#2012# 5#Dec#2012# 11#Dec#2012# 17#Dec#2012# 21#Dec#2012# 27#Dec#2012# 2#Jan#2013# 8#Jan#2013# 14#Jan#2013# 18#Jan#2013# 24#Jan#2013# Analyse# Selected# Planning# Planning#Done# Dev# Dev#Done# TesDng# TesDng#Done/Endgame# to#be#released# Released# Cumulative Flow Diagram Work piling up to be analyzed Arrival Rate Departure Rate
  6. 6. 20# 25# 30# 35# 40# 45# 50# 55# 60# 65# 70# 75# 80# 85# 90# 95# 100# 105# 110# 115# 1#M ay#2012# 7#M ay#2012# 11#M ay#2012# 17#M ay#2012# 23#M ay#2012# 29#M ay#2012# 4#Jun#2012# 8#Jun#2012# 14#Jun#2012# 20#Jun#2012# 26#Jun#2012# 2#Jul#2012#6#Jul#2012#12#Jul#2012# 18#Jul#2012# 24#Jul#2012# 30#Jul#2012# 3#Aug#2012# 9#Aug#2012# 15#Aug#2012# 21#Aug#2012# 27#Aug#2012# 31#Aug#2012# 6#Sep#2012# 12#Sep#2012# 18#Sep#2012# 24#Sep#2012# 28#Sep#2012# 4#Oct#2012# 10#Oct#2012# 16#Oct#2012# 22#Oct#2012# 26#Oct#2012# 1#Nov#2012# 7#Nov#2012# 13#Nov#2012# 19#Nov#2012# 23#Nov#2012# 29#Nov#2012# 5#Dec#2012# 11#Dec#2012# 17#Dec#2012# 21#Dec#2012# 27#Dec#2012# 2#Jan#2013# 8#Jan#2013# 14#Jan#2013# 18#Jan#2013# 24#Jan#2013# Analyse# Selected# Planning# Planning#Done# Dev# Dev#Done# TesDng# TesDng#Done/Endgame# to#be#released# Released# Cumulative Flow Diagram Release Cycle is getting shorter Daily Deployments Biweekly Deployments Weekly Deployments
  7. 7. That’s how Flow looks like Cumulative Flow Diagram
  8. 8. That’s the opposite of Flow it’s called Christmas holidays Cumulative Flow Diagram
  9. 9. 0" 2" 4" 6" 8" 10" 12" 14" 16" 18" 20" 1" 2" 3" 4" 5" 6" 7" 8" 9"10"11"12"13"14"15"16"17"18"19"20"21"22"23"24"25"26"27"28"29"30"31"32"33"34"35"36"37"38"39"40"41"42"43"44"45"46"47"48"49"50"51"52"53"54"55"56"57"58"59"60"61"62"63"64"65"66"67"68"69"70" y = No. of Tickets finished with lead time x x = Lead Time in days Average Lead Time Lead Time Distribution Chart
  10. 10. 0" 1" 2" 3" 4" 5" 6" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16" 17" 18" 19" 20" 21" 22" 23" 24" 25" 26" 27" 28" 29" 30" 31" 32" 33" 34" 35" 36" 37" 38" 39" 40" 41" 42" 43" 44" 45" 46" 47" 48" 49" 50" 51" 52" 1" 2" 3" 4" 5" 6" 7" 8" 9" MEDIAN" x = Calendar Weeks y = No. of tickets finished in calendar week x Throughput Mean
  11. 11. Lean Kanban Central Europe
  12. 12. Visualized metrics let you see things faster
  13. 13. Visualized metrics let you identify pattern
  14. 14. Visualized metrics give everyone the same picture and raise awareness
  15. 15. Visualized metrics are great feedback loops
  16. 16. Manage Flow
  17. 17. Demand Capability
  18. 18. Demand Capability Flow = Balance of Demand and Capability
  19. 19. Capability Analysis Demand Analysis How much demand do we have? What are the sources of our demand? Do we have seasonal variance in demand? What are the risk profiles that are attached to different types of work? What skills are required for different types of demand? What are our current lead times? What is our delivery rate? What skills do we have?
  20. 20. What’s our throughput? Mean 0" 1" 2" 3" 4" 5" 6" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16" 17" 18" 19" 20" 21" 22" 23" 24" 25" 26" 27" 28" 29" 30" 31" 32" 33" 34" 35" 36" 37" 38" 39" 40" 41" 42" 43" 44" 45" 46" 47" 48" 49" 50" 51" 52" 1" 2" 3" 4" 5" 6" 7" 8" 9" MEDIAN"
  21. 21. 20# 25# 30# 35# 40# 45# 50# 55# 60# 65# 70# 75# 80# 85# 90# 95# 100# 105# 110# 115# 1#M ay#2012# 7#M ay#2012# 11#M ay#2012# 17#M ay#2012# 23#M ay#2012# 29#M ay#2012# 4#Jun#2012# 8#Jun#2012# 14#Jun#2012# 20#Jun#2012# 26#Jun#2012# 2#Jul#2012#6#Jul#2012#12#Jul#2012# 18#Jul#2012# 24#Jul#2012# 30#Jul#2012# 3#Aug#2012# 9#Aug#2012# 15#Aug#2012# 21#Aug#2012# 27#Aug#2012# 31#Aug#2012# 6#Sep#2012# 12#Sep#2012# 18#Sep#2012# 24#Sep#2012# 28#Sep#2012# 4#Oct#2012# 10#Oct#2012# 16#Oct#2012# 22#Oct#2012# 26#Oct#2012# 1#Nov#2012# 7#Nov#2012# 13#Nov#2012# 19#Nov#2012# 23#Nov#2012# 29#Nov#2012# 5#Dec#2012# 11#Dec#2012# 17#Dec#2012# 21#Dec#2012# 27#Dec#2012# 2#Jan#2013# 8#Jan#2013# 14#Jan#2013# 18#Jan#2013# 24#Jan#2013# Analyse# Selected# Planning# Planning#Done# Dev# Dev#Done# TesDng# TesDng#Done/Endgame# to#be#released# Released# The CFD also helps Departure Rate
  22. 22. How fast can we deliver? 0" 2" 4" 6" 8" 10" 12" 14" 16" 18" 20" 1" 2" 3" 4" 5" 6" 7" 8" 9"10"11"12"13"14"15"16"17"18"19"20"21"22"23"24"25"26"27"28"29"30"31"32"33"34"35"36"37"38"39"40"41"42"43"44"45"46"47"48"49"50"51"52"53"54"55"56"57"58"59"60"61"62"63"64"65"66"67"68"69"70" Mode = most common lead time Median = 50% Average = 11 days 80% of all tickets will finish in x 90% of all tickets will finish in x 98% of all tickets will finish in x Weibull with shape parameter k = 1.5
  23. 23. Features 0" 1" 2" 3" 4" 5" 6" 7" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10"11"12"13"14"15"16"17"18"19"20"21"22"23"24"25"26"27"28"29"30"31"32"33"34"35"36"37"38"39"40"41"42"43"44"45"46"47"48"49"50"51"52"53"54"55"56"57"58"59"60"61"62"63"64"65"66"67"68"69"70"71"72"73"74"75" Different types of work? Bugs 0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16" 17" 18" 19" 20" 21" 22" 23" 24" 25" 26" 27" 28" 29" 30" Expedites 0" 1" 2" 3" 4" 5" 6" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16" 17" 18" 19" 20"
  24. 24. 0" 1" 2" 3" 4" 5" 6" 7" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10"11"12"13"14"15"16"17"18"19"20"21"22"23"24"25"26"27"28"29"30"31"32"33"34"35"36"37"38"39"40"41"42"43"44"45"46"47"48"49"50"51"52"53"54"55"56"57"58"59"60"61"62"63"64"65"66"67"68"69"70"71"72"73"74"75" How fast can we deliver features?
  25. 25. Features Q(p;k, λ) = λ( - ln(1 - p))1/k Number of data points: 59
 Shape parameter (k): 1.54
 Scale parameter (λ): 12.69
 Average: 11.92 0" 1" 2" 3" 4" 5" 6" 7" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10"11"12"13"14"15"16"17"18"19"20"21"22"23"24"25"26"27"28"29"30"31"32"33"34"35"36"37"38"39"40"41"42"43"44"45"46"47"48"49"50"51"52"53"54"55"56"57"58"59"60"61"62"63"64"65"66"67"68"69"70"71"72"73"74"75" How fast can we deliver features?
  26. 26. 0" 1" 2" 3" 4" 5" 6" 7" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10"11"12"13"14"15"16"17"18"19"20"21"22"23"24"25"26"27"28"29"30"31"32"33"34"35"36"37"38"39"40"41"42"43"44"45"46"47"48"49"50"51"52"53"54"55"56"57"58"59"60"61"62"63"64"65"66"67"68"69"70"71"72"73"74"75" How fast can we deliver features? Weibull with shape parameter k = 1.5 Mode = most common lead time Median = 50% Average = 11 days 80% of all tickets will be finished in around 17 days 90% of all tickets will be finished in around 22 days 98% of all tickets will be finished in around 30 days
  27. 27. How fast can we fix bugs? 0" 1" 1" 2" 2" 3" 3" 4" 4" 5" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15"
  28. 28. Bugs Number of data points: 8
 Shape parameter:
 Scale parameter: 
 Average: 3.88 not enough data points, but visualisation gives us an idea of the shape 0" 1" 1" 2" 2" 3" 3" 4" 4" 5" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" How fast can we fix bugs? between 1.25 and 1.50
  29. 29. Forecasting Cards to the rescue k = 0.75 k = 1.25 k = 1.50
  30. 30. Thank you Alexei! Alexei Zheglov
  31. 31. 0" 1" 1" 2" 2" 3" 3" 4" 4" 5" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" How fast can we fix bugs? 98% of bugs 
 are fixed in 12.4 days Weibull with shape parameter k = 1.25
  32. 32. Features are expected to be finished in 17 days with probability of 80% Bugs are expected to be fixed in between 
 3 (average) and 12 days (98%) SLEs you can communicate to your customer
  33. 33. Calculate your project lead time and budget
  34. 34. Average lead time per ticket Average WIP Project Scope (no. of tickets) Average throughput What we need
  35. 35. Using Little’s Law WIP Lead Time Throughput =
  36. 36. Project Lead Time = No. of Tickets Average Lead Time
 Average WIP x450 1.2 15 = 36 weeks Calculate Project Lead Time
  37. 37. Calculate Project Budget Average WIP = Average Lead Time No. of Tickets Delivery date in weeks = 1.2 450 36 = 15 WIP
  38. 38. Be careful! 20% 20%60% Project Scope End Date 2nd leg 1st leg 3rd leg DeliveryRate
  39. 39. Metrics can help you 
 to better understand your demand and capability
  40. 40. Metrics can help you 
 calculate Service Level Expectations (SLEs)
  41. 41. Metrics can help you forecast your projects
  42. 42. Metrics to secure survival
  43. 43. Sustainability Service-Oriented Survivability Kanban’s 3 Agendas
  44. 44. Examlpes of services HR Marketing Customer Care Software Development Change Management Problem Management
  45. 45. Survivability What’s the purpose of the services we provide? What do customers using this service care about?
  46. 46. What do customers using this service care about? Make these your fitness criteria!
  47. 47. Fitness Criteria “Fitness Criteria are metrics that measure things
 customer value when selecting a service again and again.” - Delivery Time
 - Quality
 - Predictiability
 - Safety (conformance to regulatory requirements) David J. Anderson
  48. 48. Make it your core metric you always measure!
  49. 49. Quality Bugs per Week 0 15 30 45 60 31 32 33 34
  50. 50. Predictability SLA Compliance in % 0 25 50 75 100 April May June July 13%10%16% 87%90% 100% 84% Delivered in time SLA not met
  51. 51. Delivery Time 0" 1" 2" 3" 4" 5" 6" 7" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10"11"12"13"14"15"16"17"18"19"20"21"22"23"24"25"26"27"28"29"30"31"32"33"34"35"36"37"38"39"40"41"42"43"44"45"46"47"48"49"50"51"52"53"54"55"56"57"58"59"60"61"62"63"64"65"66"67"68"69"70"71"72"73"74"75" 14 days SLA
  52. 52. Metrics support changes
  53. 53. Metrics for improvements
  54. 54. Metrics for improvements
  55. 55. Metrics for improvements
  56. 56. Metrics can help to distinct between positive and negative changes from an objective point of view
  57. 57. Data helps reducing risk and emotions “gut feeling”Risk Data
  58. 58. Troy Magennis at LKCE13’s speaker dinner "Sometimes, you just have to roll back with your chair to take a second look from the back and make a good guess how the curve will end up."
  59. 59. "We do this only until we have enough data to provide better sample." Troy Magennis at LKCE13’s speaker dinner
  60. 60. Always support change with measurements!
  61. 61. Example metrics to evaluate change WIP limit breach defect rate customer satisfaction employee satisfaction number of blockers time spent on “real quick” work time tickets were blocked time waiting for external suppliers rework time spent on white noise … your fitness criteria
  62. 62. Metrics for improvements Not like that! Keep it simple!
  63. 63. Metrics for improvements Creator Markus Beyer - Thank you!
  64. 64. Regularly check your metrics, whether they have become obsolete!
  65. 65. Wrap up to check if your service is fit for purpose Metrics help you to evaluate your changes to manage your projects to manage Flow
  66. 66. Collect data now! It’s easy as 1-2-3!
  67. 67. Thank you for listening! Wolfgang Wiedenroth
 wolfgang.wiedenroth@it-agile.de
 @wwiedenroth
 www.agilemanic.com

×