SlideShare a Scribd company logo
1 of 50
Tutorial on Uncertainty, Error analysis and
significant figures .

Prepared by
Lawrence Kok
http://lawrencekok.blogspot.com
Significant figures

Used in measurements

Degree of precision

Show digits believed to be
correct/certain + 1 estimated/uncertain

All reads 80

80
80.0
80.00
80.000

least precise

Certain
23.00

Uncertain
5

23.005g
more precise

Number sf necessary to express a measurement
• Consistent with precision of measurement
• Precise equipment = Measurement more sf
• Last digit always an estimate/uncertain

measurement
15.831g

(15.831 ± 0.001)g
(5 sig figures)
Significant figures

Used in measurements

Degree of precision

Show digits believed to be
correct/certain + 1 estimated/uncertain

All reads 80

80
80.0
80.00
80.000

least precise

Certain
23.00

Uncertain
5

Zeros bet
(significant)
4.109 = 4sf
902 = 3sf
5002.05 = 6sf

measurement
15.831g

23.005g
more precise

(15.831 ± 0.001)g
(5 sig figures)

Rules for significant figures

All non zero digit
(significant)
31.24 = 4 sf
563 = 3 sf
23 = 2sf

Number sf necessary to express a measurement
• Consistent with precision of measurement
• Precise equipment = Measurement more sf
• Last digit always an estimate/uncertain

Zeros after
decimal point
(significant)
4.580 = 4 sf
9.30 = 3sf
86.90000 = 7sf
3.040 = 4sf
67.030 = 5sf

Zero right of decimal point and
following a non zero digit
(significant)
0.00500 = 3sf
0.02450 = 4sf
0.04050 = 4sf
0.50 = 2sf

Deals with precision NOT accuracy!!!!!!!!
Precise measurement doesnt mean, it’s accurate
( instrument may not be accurate)

Zeros to left of digit
(NOT significant)
0.0023 = 2sf
0.000342 = 3sf
0.00003 = 1sf

Zero without decimal
(ambiguous)
80 = may have 1 or 2 sf
500 = may have 1 or 3 sf
Significant figures

Used in measurements

Degree of precision

Show digits believed to be
correct/certain + 1 estimated/uncertain

All reads 80

80
80.0
80.00
80.000

least precise

Certain
23.00

Uncertain
5

Zeros bet
(significant)
4.109 = 4sf
902 = 3sf
5002.05 = 6sf

measurement
15.831g

23.005g
more precise

(15.831 ± 0.001)g
(5 sig figures)

Rules for significant figures

All non zero digit
(significant)
31.24 = 4 sf
563 = 3 sf
23 = 2sf

Number sf necessary to express a measurement
• Consistent with precision of measurement
• Precise equipment = Measurement more sf
• Last digit always an estimate/uncertain

Zeros after
decimal point
(significant)
4.580 = 4 sf
9.30 = 3sf
86.90000 = 7sf
3.040 = 4sf
67.030 = 5sf

Zero right of decimal point and
following a non zero digit
(significant)
0.00500 = 3sf
0.02450 = 4sf
0.04050 = 4sf
0.50 = 2sf

Deals with precision NOT accuracy!!!!!!!!
Precise measurement doesnt mean, it’s accurate
( instrument may not be accurate)

Zeros to left of digit
(NOT significant)
0.0023 = 2sf
0.000342 = 3sf
0.00003 = 1sf

Zero without decimal
(ambiguous)
80 = may have 1 or 2 sf
500 = may have 1 or 3 sf

Click here and here for notes on sig figures
Significant figures
1

22

Smallest division = 0.1

22

Max = 21.63
2

Certain
21.6

Uncertainty = 1/10 of smallest division.
= 1/10 of 0.1
= 1/10 x 0.1 = ±0.01

3

Certain = 21.6

4

Uncertain = 21.62 ±0.01

5

(21.62 ±0.01)

Measurement = Certain digits + 1 uncertain digit

Min = 21.61
Answer = 21.62 (4 sf)
21.6
(certain)

2
(uncertain)
Significant figures
1

22

Smallest division = 0.1

22

Max = 21.63
2

Certain
21.6

Uncertainty = 1/10 of smallest division.
= 1/10 of 0.1
= 1/10 x 0.1 = ±0.01

3

Certain = 21.6

4

Uncertain = 21.62 ±0.01

5

(21.62 ±0.01)

Measurement = Certain digits + 1 uncertain digit

Min = 21.61
Answer = 21.62 (4 sf)
21.6
(certain)

1

Smallest division = 1

2

Uncertainty = 1/10 of smallest division.
= 1/10 of 1
= 1/10 x 1 = ±0.1

3

Certain = 36

4

Uncertain = 36.5 ±0.1

5

Measurement = Certain digits + 1 uncertain digit

2
(uncertain)

Certain
36

Max = 36.6

(36.5 ±0.1)
Min = 36.4
Answer = 36.5 (3 sf)
36.
5
(certain) (uncertain)
Significant figures
1

Smallest division = 10

Max = 47
2

Certain
40

Uncertainty = 1/10 of smallest division.
= 1/10 of 10
= 1/10 x 10 = ±1

3

Certain = 40

4

Uncertain = 46 ±1

5

(46 ±1)

Measurement = Certain digits + 1 uncertain digit

Min = 45
Answer = 46 (2 sf)
4
(certain)

6
(uncertain)
Significant figures
1

Smallest division = 10

Max = 47
2

Certain
40

Uncertainty = 1/10 of smallest division.
= 1/10 of 10
= 1/10 x 10 = ±1

3

Certain = 40

4

Uncertain = 46 ±1

5

(46 ±1)

Measurement = Certain digits + 1 uncertain digit

Min = 45
Answer = 46 (2 sf)
4
(certain)

1

Certain
3.4

Smallest division = 0.1

2

Uncertainty = 1/10 of smallest division.
= 1/10 of 0.1
= 1/10 x 0.1 = ±0.01

3

Certain = 3.4

4

Uncertain = 3.41±0.01

5

Measurement = Certain digits + 1 uncertain digit

6
(uncertain)

Max = 3.42

(3.41 ±0.01)
Min = 3.40
Answer = 3.41 (3sf)
3.4
(certain)

1
(uncertain)
Significant figures
1

Smallest division = 0.05

Max = 0.48

0.1
2

0.2
0.3
0.4
0.5

Certain
0.45

Uncertainty = 1/10 of smallest division.
= 1/10 of 0.05
= 1/10 x 0.05 = ±0.005 (±0.01)

3

Certain = 0.45

4

Uncertain = 0.47 ± 0.01

5

(0.47 ±0.01)

Measurement = Certain digits + 1 uncertain digit

Min = 0.46
Answer = 0.47 (2 sf)
0.4
(certain)

7
(uncertain)
Significant figures
1

Smallest division = 0.05

Max = 0.48

0.1
2

0.2
0.3

Certain
0.45

Uncertainty = 1/10 of smallest division.
= 1/10 of 0.05
= 1/10 x 0.05 = ±0.005 (±0.01)

3

Certain = 0.45

4

Uncertain = 0.47 ± 0.01

5

0.4

(0.47 ±0.01)

Measurement = Certain digits + 1 uncertain digit

Min = 0.46

0.5

Answer = 0.47 (2 sf)
0.4
(certain)

7
(uncertain)

Measurement
1

Smallest division = 0.1

2

Uncertainty = 1/10 of smallest division.
= 1/10 of 0.1
= 1/10 x 0.1 = ±0.01

3

Certain = 5.7

4

Uncertain = 5.72 ± 0.01

(5.72 ±0.01)
Answer = 5.72 (3sf)
5.7
(certain)

2
(uncertain)

1

Smallest division = 1

2

Uncertainty = 1/10 of smallest division.
= 1/10 of 1
= 1/10 x 1 = ±0.1

3

Certain = 3

4

Uncertain = 3.0 ± 0.1

(3.0 ±0.1)
Answer =3.0 (2 sf)
3
0
(certain) (uncertain)
Rules for sig figures addition /subtraction:
• Last digit retained is set by the first doubtful digit.
• Number decimal places be the same as least number of decimal places in any numbers being added/subtracted

23.112233
1.3324
+ 0.25
24.694633

uncertain
least number
decimal places

4.2
2.32
+ 0.6157
7.1357

least number
decimal places

1.367
- 1.34
0.027

uncertain
least number
decimal places

uncertain

4.7832
1.234
+ 2.02
8.0372

12.587
4.25
+ 0.12
16.957

uncertain
least number
decimal places

uncertain
least number
decimal places

2.300 x 103
+ 4.59 x 103
6.890 x 103

least number
decimal places

1247
134.5
450
+ 78
1909.5

68.7
- 68.42
0.28

uncertain

least number
decimal places

least number
decimal places
uncertain

1.0236
- 0.97268
0.05092

7.987
- 0.54
7.447

Convert to same exponent
x 104
476.8

47.68
+ 23.2 x 103

x 103
+ 23.2 x 103
500.0 x 103

least number
decimal places

uncertain

uncertain
least number
decimal places

least number
decimal places
Rules for sig figures addition /subtraction:
• Last digit retained is set by the first doubtful digit.
• Number decimal places be the same as least number of decimal places in any numbers being added/subtracted

23.112233
1.3324
+ 0.25
24.694633

uncertain
least number
decimal places

round down

4.7832
1.234
+ 2.02
8.0372

uncertain
least number
decimal places

round down

1247
134.5
450
+ 78
1909.5

uncertain

least number
decimal places

1.0236
- 0.97268
0.05092

4.2
2.32
+ 0.6157
7.1357

8.04
least number
decimal places
uncertain

round down

round up

0.03

uncertain
least number
decimal places

68.7
- 68.42
0.28

0.0509
least number
decimal places
uncertain

7.987
- 0.54
7.447

uncertain
least number
decimal places

round up

round down

round up

0.3

16.96

7.1
1.367
- 1.34
0.027

1910

12.587
4.25
+ 0.12
16.957

uncertain

round down

round up

24.69

least number
decimal places

uncertain
least number
decimal places

2.300 x 103
+ 4.59 x 103
6.890 x 103

least number
decimal places

7.45
Convert to same exponent
x 104
476.8

47.68
+ 23.2 x 103

x 103
+ 23.2 x 103
500.0 x 103

round up

6.89 x 103

500.0 x 103
5.000 x 105

least number
decimal places
Rules for sig figures - multiplication/division
• Answer contains no more significant figures than the least accurately known number.

12.34
3.22
x 1.8
71.52264

16.235
0.217
x
5
17.614975

923
÷ 20312
0.045441

least sf (2sf)

least sf (1sf)

least sf (3sf)

23.123123
x
1.3344
30.855495

4.52
÷ 6.3578
7.1093775

1300
x 57240
74412000

least sf (5sf)

least sf (3sf)

21.45
x 0.023
0.49335

0.00435
x
4.6
0.02001

least sf (2sf)
Scientific notation

2.8723
x
I.6
4.59568

least sf (2sf)

least sf (2sf)

6305
÷ 0.010
630500

least sf (2sf)

least sf (2sf)

I.3*103
x 5.724*104
7.4412 x 107

Click here for practice notes on sig figures
Rules for sig figures - multiplication/division
• Answer contains no more significant figures than the least accurately known number.

12.34
3.22
x 1.8
71.52264

least sf (2sf)

round up

23.123123
x
1.3344
30.855495

least sf (5sf)

21.45
x 0.023
0.49335

round down

round down

30.855

72
16.235
0.217
x
5
17.614975

least sf (1sf)

round up

4.52
÷ 6.3578
7.1093775

least sf (3sf)

923
÷ 20312
0.045441

least sf (3sf)

round down

0.0454

1300
x 57240
74412000

4.6

0.00435
x
4.6
0.02001

least sf (2sf)

round down

7.11

0.020
least sf (2sf)
Scientific notation

least sf (2sf)

round up

0.49

round up

20

2.8723
x
I.6
4.59568

least sf (2sf)

6305
÷ 0.010
630500

least sf (2sf)

round down

63000

6.3 x 105

I.3*103
x 5.724*104
7.4412 x 107

round down

74000000

7.4 x 107

Click here for practice notes on sig figures
Scientific notation
How many significant figures

Written as
a=1-9

Number too big/small

b = integer

3 sf

Scientific - notation = a ´10b

6,720,000,000

Size sand

= 6.72 ´109
4 sf

0.0000000001254

=1.254 ´10-10
3 sf

Speed of light

300000000

How many significant figures

4.66 x 10 6
4.660 x 10 6

4 sf

4.6600 x 10 6

4660000

3 sf

5 sf

Click here practice scientific notation

Click here practice scientific notation

= 3.00 ´108
Scientific notation
How many significant figures

Written as
a=1-9

Number too big/small

b = integer

3 sf

Scientific - notation = a ´10b

6,720,000,000

Size sand

= 6.72 ´109
4 sf

0.0000000001254

=1.254 ´10-10
3 sf

Speed of light

= 3.00 ´108

300000000

Scientific notation

80
3 ways to write 80

How many significant figures

4.66 x
4660000

10 6

3 sf

4.660 x 10 6

5 sf

80 – 8 x 101 – (1sf)
Digit 8 uncertain
It can be 70 to 90

80.
80. – 8.0 x 101 – (2sf)
Digit 8 is certain
It can be 79 to 81

80.0
80.0 – 8.00 x 101 – (3sf)
Digit 80 is certain
It can be 79.9 or 80.1

4 sf

4.6600 x 10 6

80

90 or 9 x 101
80 or 8 x 101
70 or 7 x 101

81 or 8.1 x 101
80 or 8.0 x 101
79 or 7.9 x 101

80.1 or 8.01 x 101
80.0 or 8.00 x 101
79.9 or 7.99 x 101
More prcise

Click here practice scientific notation

Click here practice scientific notation

✔
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures

Radius, r = 2.15 cm

Volume, V = 4/3πr3
V = 4/3 x π x (2.15)3
= 4/3 x 3.14 x 2.15 x 2.15 x 2.15
= 41.60
round down

41.6

4/3 – constant
π – constant
Their sf is not taken
(not a measurement)
least sf (3sf)
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures

Radius, r = 2.15 cm

Volume, V = 4/3πr3
V = 4/3 x π x (2.15)3
= 4/3 x 3.14 x 2.15 x 2.15 x 2.15
= 41.60

4/3 – constant
π – constant
Their sf is not taken
(not a measurement)

round down

41.6
Recording measurement using
uncertainty of equipment

Radius, r = (2.15 ±0.02) cm

4
Volume = p r 3
3
4
Volume = ´3.14 ´ 2.153 = 41.60
3

least sf (3sf)
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures

Radius, r = 2.15 cm

Volume, V = 4/3πr3
V = 4/3 x π x (2.15)3
= 4/3 x 3.14 x 2.15 x 2.15 x 2.15
= 41.60

4/3 – constant
π – constant
Their sf is not taken
(not a measurement)
least sf (3sf)

round down

41.6
Recording measurement using
uncertainty of equipment

Radius, r = (2.15 ±0.02) cm

Treatment of Uncertainty
Multiplying or dividing measured quantities

4
Volume = p r 3
3

% uncertainty = sum of % uncertainty of individual quantities
Radius, r = (2.15 ±0.02)
%uncertainty radius (%Δr) = 0.02 x 100 = 0.93%
2.15
% uncertainty V = 3 x % uncertainty r
% ΔV = 3 x % Δr
* For measurement raised to power of n, multiply % uncertainty by n
* Constant, pure/counting number has no uncertainty and sf not taken

4
Volume = p r 3
3
4
Volume = ´3.14 ´ 2.153 = 41.60
3
0.02
´100% = 0.93%
2.15
Measurement raised to power of 3,
multiply % uncertainty by 3
%DV = 3´ %Dr
%DV = 3´ 0.93 = 2.79%
Volume = (41.60 ± 2.79%)
%Dr =

AbsoluteDV =

2.79
´ 41.60 =1.16
100

Volume = (41.60 ±1.16)
Volume = (42 ±1)
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures

Radius, r = 3.0 cm

Circumference, C = 2πr
C = 2 x π x (3.0)
= 2 x 3.14 x 3.0
= 18.8495
round up

19

2 – constant
π – constant
Their sf is not taken
(not a measurement)
least sf (2sf)
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures

Radius, r = 3.0 cm

Circumference, C = 2πr
C = 2 x π x (3.0)
= 2 x 3.14 x 3.0
= 18.8495

2 – constant
π – constant
Their sf is not taken
(not a measurement)
least sf (2sf)

round up

19
Recording measurement using
uncertainty of equipment

Radius, r = (3.0 ±0.2) cm

Circumference = 2p r
Circumference = 2´3.14´3.0 =18.8495
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures

Radius, r = 3.0 cm

Circumference, C = 2πr
C = 2 x π x (3.0)
= 2 x 3.14 x 3.0
= 18.8495

2 – constant
π – constant
Their sf is not taken
(not a measurement)
least sf (2sf)

round up

19
Recording measurement using
uncertainty of equipment

Radius, r = (3.0 ±0.2) cm

Treatment of Uncertainty
Multiplying or dividing measured quantities

Circumference = 2p r

% uncertainty = sum of % uncertainty of individual quantities
Radius, r = (3.0 ±0.2)
%uncertainty radius (%Δr) = 0.2 x 100 = 6.67%
3.0
% uncertainty C = % uncertainty r
% ΔC = % Δr
* Constant, pure/counting number has no uncertainty and sf not taken

Circumference = 2p r
Circumference = 2´3.14´3.0 =18.8495

0.2
´100% = 6.67%
3.0
%Dc = %Dr
%Dc = 6.67%
Circumference = (18.8495 ± 6.67%)
%Dr =

AbsoluteDC =

6.67
´18.8495 =1.25
100

Circumference = (18.8495 ±1.25)
Circumference = (19 ±1)
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures

Time, t = 2.25 s

Displacement, s = ½ gt2
s = 1/2 x 9.8 x (2.25)2
= 24.80625

g and ½ – constant
Their sf is not taken
(not a measurement)

least sf (3sf)

round down

24.8

1
Displacement, s = ´ 9.8x(2.25)
2
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures

Time, t = 2.25 s

Displacement, s = ½ gt2
s = 1/2 x 9.8 x (2.25)2
= 24.80625

g and ½ – constant
Their sf is not taken
(not a measurement)

least sf (3sf)

round down

24.8
Recording measurement using
uncertainty of equipment

Time, t = (2.25 ±0.01) cm

1
Displacement, s = ´ 9.8x(2.25)
2

1
Displacement, s = gt 2
2
1
Displacement, s = ´ 9.8x2.25x2.25 = 24.80625
2
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures

Time, t = 2.25 s

Displacement, s = ½ gt2

g and ½ – constant
Their sf is not taken
(not a measurement)

s = 1/2 x 9.8 x (2.25)2
= 24.80625

least sf (3sf)

round down

24.8
Recording measurement using
uncertainty of equipment

Time, t = (2.25 ±0.01) cm

1
Displacement, s = ´ 9.8x(2.25)
2

1
Displacement, s = gt 2
2
1
Displacement, s = ´ 9.8x2.25x2.25 = 24.80625
2

0.01
´100% = 0.4%
2.25
Measurement raised to power of 2,
multiply % uncertainty by 2
%Ds = 2 ´ %Dt
%Ds = 2 ´ 0.4% = 0.8%
Displacement = (24.80 ± 0.8%)
%Dt =

Treatment of Uncertainty
1 2
Multiplying or dividing measured quantities Displacement, s = gt

2

% uncertainty = sum of % uncertainty of individual quantities
Time, t = (2.25 ±0.01)
%uncertainty time (%Δt) = 0.01 x 100 = 0.4%
2.25
% uncertainty s = 2 x % uncertainty t
% Δs = 2 x % Δt
* For measurement raised to power of n, multiply % uncertainty by n

AbsoluteDs =

0.4
´ 24.80 = 0.198
100

Displacement = (24.80 ± 0.198)
Displacement = (24.8 ± 0.2)
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures

Length, I = 1.25 m

L
g

T = 2p

T = 2 x π x √(1.25/9.8)
= 2 x 3.14 x 0.35714
= 2.24399
round down

2.24

least sf (3sf)
2, π and g – constant
Their sf is not taken
(not a measurement)
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures

Length, I = 1.25 m

L
g

T = 2p

least sf (3sf)

T = 2 x π x √(1.25/9.8)
= 2 x 3.14 x 0.35714
= 2.24399
round down

2.24
Recording measurement using
uncertainty of equipment

T = 2p

Length, I = (1.25 ±0.05) m

T = 2p

L
g
1.25
= 2.24
9.8

2, π and g – constant
Their sf is not taken
(not a measurement)
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures

Length, I = 1.25 m

L
g

T = 2p

least sf (3sf)

T = 2 x π x √(1.25/9.8)
= 2 x 3.14 x 0.35714
= 2.24399

2, π and g – constant
Their sf is not taken
(not a measurement)

round down

2.24
Recording measurement using
uncertainty of equipment

T = 2p

Length, I = (1.25 ±0.05) m

T = 2p

L
g
1.25
= 2.24
9.8

0.05
´100% = 4%
1.25
Measurement raised to power of 1/2,
1
%DT = ´ %Dl multiply % uncertainty by 1/2
2
%DT = 2%
T = (2.24 ± 2%)
%Dl =

Treatment of Uncertainty
Multiplying or dividing measured quantities

T = 2p

L
g

% uncertainty = sum of % uncertainty of individual quantities
Length, I = (1.25 ±0.05)
%uncertainty length (%ΔI) = 0.05 x 100 = 4%
1.25
% uncertainty T = ½ x % uncertainty I
% ΔT = ½ x % ΔI
* For measurement raised to power of n, multiply % uncertainty by n

AbsoluteDT =

2
´ 2.24 = 0.044
100

T = (2.24 ± 0.044)
T = (2.24 ± 0.04)
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures

Area, A = I x h

Length, I = 4.52 cm
Height, h = 2.0 cm

4.52
2.0
9.04

x

least sf (2sf)

round down

9.0
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures

Area, A = I x h

Length, I = 4.52 cm
Height, h = 2.0 cm

4.52
2.0
9.04

x

least sf (2sf)

round down

9.0
Recording measurement using
uncertainty of equipment

Length, I = (4.52 ±0.02) cm
Height, h = (2.0 ±0.2)cm3

Area, A = Length,l ´ height, h

Area = 4.52 ´ 2.0 = 9.04
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures

Area, A = I x h

Length, I = 4.52 cm
Height, h = 2.0 cm

4.52
2.0
9.04

x

least sf (2sf)

round down

9.0
Recording measurement using
uncertainty of equipment

Length, I = (4.52 ±0.02) cm
Height, h = (2.0 ±0.2)cm3

Area, A = Length,l ´ height, h

Area = 4.52 ´ 2.0 = 9.04

0.02
´100% = 0.442%
4.52
0.2
%Dh =
´100% = 10%
2.0
%DA = %Dl + %Dh
%DA = 0.442% +10% = 10.442%
Area = (9.04 ±10.442%)
%Dl =

Treatment of Uncertainty
Multiplying or dividing measured quantities

Area, A = Length,l ´height,h

% uncertainty = sum of % uncertainty of individual quantities
Length, l = (4.52 ±0.02)
%uncertainty length (%Δl) = 0.02 x 100 = 0.442%
4.52
Height, h = (2.0 ±0.2)
%uncertainty height (%Δh) = 0.2 x 100 = 10%
2.0
% uncertainty A = % uncertainty length + % uncertainty height
% ΔA =
% ΔI
+
%Δh

AbsoluteDA =

Area = (9.0 ± 0.9)

10.442
´ 9.04 = 0.9
100
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures

Moles, n = Conc x Vol

Conc, c
= 2.00 M
Volume, v = 2.0 dm3

2.00
2.0
4.00

x

least sf (2sf)

round down

4.0
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures

Moles, n = Conc x Vol

Conc, c
= 2.00 M
Volume, v = 2.0 dm3

2.00
2.0
4.00

x

least sf (2sf)

round down

4.0
Recording measurement using
uncertainty of equipment

Conc, c
= (2.00 ±0.02) cm
Volume, v = (2.0 ±0.1)dm3

Mole, n = Conc, c ´Volume, v

Mole = 2.00 ´ 2.0 = 4.00
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures

Moles, n = Conc x Vol

Conc, c
= 2.00 M
Volume, v = 2.0 dm3

2.00
2.0
4.00

x

least sf (2sf)

round down

4.0
Recording measurement using
uncertainty of equipment

Conc, c
= (2.00 ±0.02) cm
Volume, v = (2.0 ±0.1)dm3

Mole, n = Conc, c ´Volume, v

Mole = 2.00 ´ 2.0 = 4.00
0.02
´100% = 1%
2.00
0.1
%Dv =
´100% = 5%
2.0
%Dn = %Dc + %Dv
%Dc =

Treatment of Uncertainty
Multiplying or dividing measured quantities

Mole, n = Conc, c ´Vol, v

% uncertainty = sum of % uncertainty of individual quantities
Conc, c = (2.00 ±0.02)
%uncertainty conc (%Δc) = 0.02 x 100 = 1%
2.00
Volume, v = (2.0 ±0.1)
%uncertainty volume (%Δv) = 0.1 x 100 = 5%
2.0
% uncertainty n = % uncertainty conc + % uncertainty volume
% Δn =
% Δc
+
%Δv

%Dn = 1% + 5% = 6%
Mole = (4.00 ± 6%)
AbsoluteDn =

6
´ 4.00 = 0.24
100

Mole = (4.00 ± 0.24)
Mole = (4.0 ± 0.2)
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures

Mass, m = 482.63g
Volume, v = 258 cm3

Density = Mass
Volume
482.63
÷
258
1.870658
round down

1.87

least sf (3sf)
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures

Mass, m = 482.63g
Volume, v = 258 cm3

Density = Mass
Volume
482.63
÷
258
1.870658

least sf (3sf)

round down

1.87
Recording measurement using
uncertainty of equipment

Mass, m = (482.63 ±1)g
Volume, v = (258 ±5)cm3

Density, D =
Density, D =

Mass
Volume

482.63
=1.870658
258
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures

Mass, m = 482.63g
Volume, v = 258 cm3

Density = Mass
Volume
482.63
÷
258
1.870658

least sf (3sf)

round down

1.87
Recording measurement using
uncertainty of equipment

Mass, m = (482.63 ±1)g
Volume, v = (258 ±5)cm3

Treatment of Uncertainty
Multiplying or dividing measured quantities

Density, D =

Mass
Volume

% uncertainty = sum of % uncertainty of individual quantities
Mass, m = (482.63 ±1)
%uncertainty mass (%Δm) = 1
x 100 = 0.21%
482.63
Volume, V = (258 ±5)
%uncertainty vol (%ΔV) = 5 x 100 = 1.93%
258
% uncertainty density = % uncertainty mass + % uncertainty volume
% ΔD =
% Δm
+
%ΔV

Density, D =
Density, D =

Mass
Volume

482.63
=1.870658
258

1
´100% = 0.21%
482.63
5
%DV =
´100% = 1.93%
258
%DD = %Dm + %DV
%DD = 0.21% +1.93% = 2.14%
Density = (1.87 ± 2.14%)
%Dm =

AbsoluteDD =

2.14
´1.87 = 0.04
100

Density = (1.87 ± 0.04)
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures

Mass water = 2.00 g
ΔTemp
= 2.0 C

Enthalpy, H = mcΔT

x

2.00
4.18
2.0
16.72

c – constant
sf is not taken
(not a measurement)

least sf (2sf)

round up

17
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures

Mass water = 2.00 g
ΔTemp
= 2.0 C

Enthalpy, H = mcΔT

x

2.00
4.18
2.0
16.72

c – constant
sf is not taken
(not a measurement)

least sf (2sf)

round up

17

Recording measurement using
uncertainty of equipment

Enthalpy, H = m ´ c ´ DT

Mass water = (2.00 ±0.02)g
ΔTemp
= (2.0 ±0.4) C

Enthalpy, H = 2.00 ´ 4.18´ 2.0 =16.72
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures

Mass water = 2.00 g
ΔTemp
= 2.0 C

Enthalpy, H = mcΔT

x

2.00
4.18
2.0
16.72

c – constant
sf is not taken
(not a measurement)

least sf (2sf)

round up

17

Recording measurement using
uncertainty of equipment

Mass water = (2.00 ±0.02)g
ΔTemp
= (2.0 ±0.4) C

Treatment of Uncertainty
Multiplying or dividing measured quantities

Enthalpy, H = m ´ c ´ DT
Enthalpy, H = 2.00 ´ 4.18´ 2.0 =16.72

Enthalpy, H = m ´ c ´ DT

% uncertainty = sum of % uncertainty of individual quantities
Mass, m = (2.00 ±0.02)
%uncertainty mass (%Δm) = 0.02 x 100 = 1%
2.00
ΔTemp = (2.0 ±0.4)
%uncertainty temp (%ΔT) = 0.4 x 100 = 20%
2.0
% uncertainty H = % uncertainty mass + % uncertainty temp
% ΔH =
% Δm
+
%ΔT

0.02
´100% = 1%
2.00
0.4
%DT =
´100% = 20%
2.0
%DH = %Dm + %DT
%Dm =

%DH = 1% + 20% = 21%
Enthalpy = (16.72 ± 21%)
AbsoluteDH =

21
´16.72 = 3.51
100

Enthalpy = (16.72 ± 3.51)
Enthalpy = (17 ± 4)
Treatment of uncertainty in measurement

•

Adding or subtracting
Max absolute uncertainty is the SUM of individual uncertainties

Initial mass beaker, M1
= (20.00 ±0.01) g
Final mass beaker + water, M2 = (22.00 ±0.01)g

Initial Temp, T1 = (21.2 ±0.2)C
Final Temp, T2 = (23.2 ±0.2)C

Mass water, m = (M2 –M1)
Absolute uncertainty, Δm = (0.01 + 0.01) = 0.02

Diff Temp ΔT = (T2 –T1)
Absolute uncertainty, ΔT = (0.2 + 0.2) = 0.4

Mass water, m = (22.00 –20.00) = 2.00
Absolute uncertainty, Δm = (0.01 + 0.01) = 0.02
Mass water, m = (2.00 ±0.02)g

Diff Temp ΔT = (23.2 –21.2) = 2.0
Absolute uncertainty, ΔT = (0.2 + 0.2) = 0.4
Diff Temp, ΔT = (2.0 ±0.4)

Mass water, m = (2.00 ±0.02)g

ΔTemp = (2.0 ±0.4) C

Addition/Subtraction/Multiply/Divide

•

Multiplying or dividing
Max %uncertainty is the SUM of individual %uncertainties
Treatment of uncertainty in measurement

•

Adding or subtracting
Max absolute uncertainty is the SUM of individual uncertainties

Initial mass beaker, M1
= (20.00 ±0.01) g
Final mass beaker + water, M2 = (22.00 ±0.01)g

Initial Temp, T1 = (21.2 ±0.2)C
Final Temp, T2 = (23.2 ±0.2)C

Addition/Subtraction/Multiply/Divide

•

Multiplying or dividing
Max %uncertainty is the SUM of individual %uncertainties
Addition/Subtraction
Add absolute uncertainty

Enthalpy, H = (M2-M1) x c x (T2-T1)
Mass water, m = (M2 –M1)
Absolute uncertainty, Δm = (0.01 + 0.01) = 0.02

Diff Temp ΔT = (T2 –T1)
Absolute uncertainty, ΔT = (0.2 + 0.2) = 0.4
Multiplication
Add % uncertainty

Mass water, m = (22.00 –20.00) = 2.00
Absolute uncertainty, Δm = (0.01 + 0.01) = 0.02
Mass water, m = (2.00 ±0.02)g

Mass water, m = (2.00 ±0.02)g

Diff Temp ΔT = (23.2 –21.2) = 2.0
Absolute uncertainty, ΔT = (0.2 + 0.2) = 0.4
Diff Temp, ΔT = (2.0 ±0.4)
ΔTemp = (2.0 ±0.4) C

Enthalpy, H = m ´ c ´ DT
Enthalpy, H = 2.00 ´ 4.18´ 2.0 =16.72
Treatment of uncertainty in measurement

•

Adding or subtracting
Max absolute uncertainty is the SUM of individual uncertainties

Initial mass beaker, M1
= (20.00 ±0.01) g
Final mass beaker + water, M2 = (22.00 ±0.01)g

Addition/Subtraction/Multiply/Divide

•

Multiplying or dividing
Max %uncertainty is the SUM of individual %uncertainties
Addition/Subtraction
Add absolute uncertainty

Initial Temp, T1 = (21.2 ±0.2)C
Final Temp, T2 = (23.2 ±0.2)C

Enthalpy, H = (M2-M1) x c x (T2-T1)
Mass water, m = (M2 –M1)
Absolute uncertainty, Δm = (0.01 + 0.01) = 0.02

Diff Temp ΔT = (T2 –T1)
Absolute uncertainty, ΔT = (0.2 + 0.2) = 0.4
Multiplication
Add % uncertainty

Mass water, m = (22.00 –20.00) = 2.00
Absolute uncertainty, Δm = (0.01 + 0.01) = 0.02
Mass water, m = (2.00 ±0.02)g

Mass water, m = (2.00 ±0.02)g

Treatment of Uncertainty
Multiplying or dividing measured quantities

Diff Temp ΔT = (23.2 –21.2) = 2.0
Absolute uncertainty, ΔT = (0.2 + 0.2) = 0.4
Diff Temp, ΔT = (2.0 ±0.4)
ΔTemp = (2.0 ±0.4) C

Enthalpy, H = m ´ c ´ DT

% uncertainty = sum of % uncertainty of individual quantities
Mass, m = (2.00 ±0.02)
%uncertainty mass (%Δm) = 0.02 x 100 = 1%
2.00
ΔTemp = (2.0 ±0.4)
%uncertainty temp (%ΔT) = 0.4 x 100 = 20%
2.0
% uncertainty H = % uncertainty mass + % uncertainty temp
% ΔH =
% Δm
+
%ΔT

Enthalpy, H = m ´ c ´ DT
Enthalpy, H = 2.00 ´ 4.18´ 2.0 =16.72

0.02
´100% = 1%
2.00
0.4
%DT =
´100% = 20%
2.0
%DH = %Dm + %DT
%Dm =

%DH = 1% + 20% = 21%
Enthalpy = (16.72 ± 21%)
AbsoluteDH =

21
´16.72 = 3.51
100

Enthalpy = (16.72 ± 3.51)
Enthalpy = (17 ± 4)
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures
Volt, v = 2.0 V
Current, I = 3.0A
Time, t = 4.52s

t ´ I2
v1/2
4.52 x 3.0 x 3.0 = 40.68
÷ 1.414
28.769

Energy =

round up

29

least sf (2sf)
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures
Volt, v = 2.0 V
Current, I = 3.0A
Time, t = 4.52s

t ´ I2
v1/2
4.52 x 3.0 x 3.0 = 40.68
÷ 1.414
28.769

Energy =

least sf (2sf)

round up

29
Recording measurement using
uncertainty of equipment
Volt, v = (2.0 ± 0.2)
Current, I = ( 3.0 ± 0.6)
Time, t = (4.52 ± 0.02)

t ´ I2
Energy, E = 1/2
v
4.52(3.0)2
Energy, E =
= 28.638
2.01/2
Significant figures and Uncertainty in measurement

t ´ I2
v1/2
4.52 x 3.0 x 3.0 = 40.68
÷ 1.414
28.769

Energy =

Recording measurement
using significant figures
Volt, v = 2.0 V
Current, I = 3.0A
Time, t = 4.52s

least sf (2sf)

round up

29
Recording measurement using
uncertainty of equipment
Volt, v = (2.0 ± 0.2)
Current, I = ( 3.0 ± 0.6)
Time, t = (4.52 ± 0.02)

Treatment of Uncertainty
Multiplying or dividing measured quantities

Energy, E =

t ´ I2
v1/2

% uncertainty = sum of % uncertainty of individual quantities
Time, t = (4.52 ±0.02)
%uncertainty time (%Δt) = 0.02 x 100 = 0.442%
4.52
Current, I = (3.0 ±0.6)
%uncertainty current (%ΔI) = 0.6 x 100 = 20%
3.0
Volt, v = (2.0±0.2)
%uncertainty volt (%Δv) = 0.2 x 100 = 10%
2.0
% ΔE = % Δt + 2 %ΔI + ½ %ΔV
* For measurement raised to power of n, multiply % uncertainty by n

t ´ I2
Energy, E = 1/2
v
4.52(3.0)2
Energy, E =
= 28.638
2.01/2
0.02
%Dt =
´100% = 0.442%
4.52
0.6
%DI =
´100% = 20%
3.0
0.2
%Dv =
´100% = 10%
2.0

1
%DE = %Dt + 2 ´%I + ´%Dv
2
%DE = (

0.02
0.6
1 0.2
´100% ) + ( 2 ´
´100% ) + ( ´
´100%
4.52
3.0
2 2.0

%DE = 0.442%+ 40%+ 5% = 45.442% = 45%

Energy, E = (28.638± 45%)
AbsoluteDE =

Energy, E = (29 ±13)

45
´ 28.638 =13
100

)
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures
G = (20 )
H = (16 )
Z = (106)

(G + H )
Z
20 + 16 = 36
÷ 106
0.339

Speed, s =

round down

0.34

least sf (2sf)
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures

(G + H )
Z
20 + 16 = 36
÷ 106
0.339

Speed, s =

G = (20 )
H = (16 )
Z = (106)

least sf (2sf)

round down

0.34
Recording measurement using
uncertainty of equipment
G = (20 ± 0.5)
H = (16 ± 0.5)
Z = (106 ± 1.0)

✔

Addition
add absolute uncertainty

G+H = (36 ± 1)
Z = (106 ± 1.0)

Speed, s =

(G + H )
Z

Speed, s =

(20 +16)
= 0.339
106
Significant figures and Uncertainty in measurement
Recording measurement
using significant figures

(G + H )
Z
20 + 16 = 36
÷ 106
0.339

Speed, s =

G = (20 )
H = (16 )
Z = (106)

least sf (2sf)

round down

0.34

Speed, s =

Recording measurement using
uncertainty of equipment
G = (20 ± 0.5)
H = (16 ± 0.5)
Z = (106 ± 1.0)

✔

Addition
add absolute uncertainty

G+H = (36 ± 1)
Z = (106 ± 1.0)

(G + H )
Z

Speed, s =

(20 +16)
= 0.339
106

%D(G + H ) =
Treatment of Uncertainty
Multiplying or dividing measured quantities

(G + H )
Speed, s =
Z

% uncertainty = sum of % uncertainty of individual quantities
(G + H) = (36 ±1)
%uncertainty (G+H) (%ΔG+H) = 1 x 100 = 2.77%
36
Z = (106 ±1.0)
%uncertainty Z (%Δz) = 1.0 x 100 = 0.94%
106
%uncertainty s = %uncertainty(G+H) + %uncertainty(Z)
% Δs = % Δ(G+H)
+
%Δz
*Adding or subtracting
Max absolute uncertainty is the SUM of individual uncertainties

%DZ =

1.0
´100% = 2.77%
36

1.0
´100% = 0.94%
106

%DS = %D(G + H)+%DZ
%DS = 2.77%+ 0.94% = 3.71%

Speed, s = (0.339 ± 3.71%)
AbsoluteDS =

3.71
´ 0.339 = 0.012
100

Speed, s = (0.339 ± 0.012)
ScientificNotation = a ´10
Acknowledgements
Thanks to source of pictures and video used in this presentation
http://crescentok.com/staff/jaskew/isr/tigerchem/econfig/electron4.htm
http://pureinfotech.com/wp-content/uploads/2012/09/periodicTable_20120926101018.png
http://www.wikihow.com/Find-the-Circumference-and-Area-of-a-Circle

Thanks to Creative Commons for excellent contribution on licenses
http://creativecommons.org/licenses/

Prepared by Lawrence Kok
Check out more video tutorials from my site and hope you enjoy this tutorial
http://lawrencekok.blogspot.com

More Related Content

What's hot

Coordination Chemistry, Fundamental Concepts and Theories
Coordination Chemistry, Fundamental Concepts and TheoriesCoordination Chemistry, Fundamental Concepts and Theories
Coordination Chemistry, Fundamental Concepts and TheoriesImtiaz Alam
 
Inner Transition Element by Dr.N.H.Bansod
Inner Transition Element  by Dr.N.H.BansodInner Transition Element  by Dr.N.H.Bansod
Inner Transition Element by Dr.N.H.BansodNitin Bansod
 
Noble-Gas-Ppt-Final.ppt
Noble-Gas-Ppt-Final.pptNoble-Gas-Ppt-Final.ppt
Noble-Gas-Ppt-Final.pptSwapnadip Roy
 
Compounds of metals
Compounds of metalsCompounds of metals
Compounds of metalsMussaOmary3
 
Chemical reaction lesson presentation grade eight
Chemical reaction lesson presentation grade eightChemical reaction lesson presentation grade eight
Chemical reaction lesson presentation grade eightJinan karameh Chayya
 
Statistical ensembles-b.subha
Statistical  ensembles-b.subhaStatistical  ensembles-b.subha
Statistical ensembles-b.subhaMrsBSubhaPhysics
 
The periodic table for grade 9 & 10
The periodic table for grade 9 & 10The periodic table for grade 9 & 10
The periodic table for grade 9 & 10DwijeshDonthy
 
P – block elements 12 Classes
P – block elements 12 ClassesP – block elements 12 Classes
P – block elements 12 ClassesLOURDU ANTHONI
 
Black body radiation.
Black body radiation.Black body radiation.
Black body radiation.Suni Pm
 
DIFFERENT ATOMIC MODELS
DIFFERENT ATOMIC MODELSDIFFERENT ATOMIC MODELS
DIFFERENT ATOMIC MODELSShahn Tee
 
Some basic concept of chemistry 2017
Some basic concept of chemistry 2017Some basic concept of chemistry 2017
Some basic concept of chemistry 2017nysa tutorial
 
C19 metals and their reactivity
C19 metals and their reactivityC19 metals and their reactivity
C19 metals and their reactivityChemrcwss
 
Periodicity
PeriodicityPeriodicity
PeriodicityHoshi94
 
Solid state class 12 CBSE
Solid state class 12 CBSESolid state class 12 CBSE
Solid state class 12 CBSEritik
 
Std 10, Chapter 2-Chemical Reactions
Std 10, Chapter 2-Chemical ReactionsStd 10, Chapter 2-Chemical Reactions
Std 10, Chapter 2-Chemical ReactionsGurudatta Wagh
 

What's hot (20)

Coordination Chemistry, Fundamental Concepts and Theories
Coordination Chemistry, Fundamental Concepts and TheoriesCoordination Chemistry, Fundamental Concepts and Theories
Coordination Chemistry, Fundamental Concepts and Theories
 
Inner Transition Element by Dr.N.H.Bansod
Inner Transition Element  by Dr.N.H.BansodInner Transition Element  by Dr.N.H.Bansod
Inner Transition Element by Dr.N.H.Bansod
 
Noble-Gas-Ppt-Final.ppt
Noble-Gas-Ppt-Final.pptNoble-Gas-Ppt-Final.ppt
Noble-Gas-Ppt-Final.ppt
 
Compounds of metals
Compounds of metalsCompounds of metals
Compounds of metals
 
Redox reaction Group C
Redox reaction Group CRedox reaction Group C
Redox reaction Group C
 
P block elements 1
P block elements 1P block elements 1
P block elements 1
 
Chemical reactions
Chemical reactionsChemical reactions
Chemical reactions
 
Chemical reaction lesson presentation grade eight
Chemical reaction lesson presentation grade eightChemical reaction lesson presentation grade eight
Chemical reaction lesson presentation grade eight
 
Statistical ensembles-b.subha
Statistical  ensembles-b.subhaStatistical  ensembles-b.subha
Statistical ensembles-b.subha
 
The periodic table for grade 9 & 10
The periodic table for grade 9 & 10The periodic table for grade 9 & 10
The periodic table for grade 9 & 10
 
P – block elements 12 Classes
P – block elements 12 ClassesP – block elements 12 Classes
P – block elements 12 Classes
 
Black body radiation.
Black body radiation.Black body radiation.
Black body radiation.
 
DIFFERENT ATOMIC MODELS
DIFFERENT ATOMIC MODELSDIFFERENT ATOMIC MODELS
DIFFERENT ATOMIC MODELS
 
Some basic concept of chemistry 2017
Some basic concept of chemistry 2017Some basic concept of chemistry 2017
Some basic concept of chemistry 2017
 
Dinkars presentation on potochemistry.
Dinkars presentation on potochemistry.Dinkars presentation on potochemistry.
Dinkars presentation on potochemistry.
 
C19 metals and their reactivity
C19 metals and their reactivityC19 metals and their reactivity
C19 metals and their reactivity
 
Periodicity
PeriodicityPeriodicity
Periodicity
 
Air and water
Air and waterAir and water
Air and water
 
Solid state class 12 CBSE
Solid state class 12 CBSESolid state class 12 CBSE
Solid state class 12 CBSE
 
Std 10, Chapter 2-Chemical Reactions
Std 10, Chapter 2-Chemical ReactionsStd 10, Chapter 2-Chemical Reactions
Std 10, Chapter 2-Chemical Reactions
 

Viewers also liked

IB Chemistry on Uncertainty, significant figures and scientific notation
IB Chemistry on Uncertainty, significant figures and scientific notationIB Chemistry on Uncertainty, significant figures and scientific notation
IB Chemistry on Uncertainty, significant figures and scientific notationLawrence kok
 
IB Chemistry on Uncertainty calculation and significant figures
IB Chemistry on Uncertainty calculation and significant figuresIB Chemistry on Uncertainty calculation and significant figures
IB Chemistry on Uncertainty calculation and significant figuresLawrence kok
 
IB Chemistry on Uncertainty, Significant figures and Scientific notation
IB Chemistry on Uncertainty, Significant figures and Scientific notationIB Chemistry on Uncertainty, Significant figures and Scientific notation
IB Chemistry on Uncertainty, Significant figures and Scientific notationLawrence kok
 
11.1 uncertainty in measurement
11.1 uncertainty in measurement11.1 uncertainty in measurement
11.1 uncertainty in measurementPunia Turiman
 
Strategy under uncertainty
Strategy under uncertaintyStrategy under uncertainty
Strategy under uncertaintyMohamed Fahmy
 
IB ESS -How to write a Good Lab report
IB ESS -How to write a Good Lab reportIB ESS -How to write a Good Lab report
IB ESS -How to write a Good Lab reportGURU CHARAN KUMAR
 
Decision making under uncertainty rees presentationa
Decision making under uncertainty rees presentationaDecision making under uncertainty rees presentationa
Decision making under uncertainty rees presentationaOfer Erez
 
Uncertainty Principle and Photography. see mdashf.org/2015/06/08/
Uncertainty Principle and Photography. see mdashf.org/2015/06/08/Uncertainty Principle and Photography. see mdashf.org/2015/06/08/
Uncertainty Principle and Photography. see mdashf.org/2015/06/08/Manmohan Dash
 
Mitosis powerpoint
Mitosis powerpointMitosis powerpoint
Mitosis powerpointfarrellw
 
IB Chemistry on Uncertainty, Error Analysis, Random and Systematic Error
IB Chemistry on Uncertainty, Error Analysis, Random and Systematic ErrorIB Chemistry on Uncertainty, Error Analysis, Random and Systematic Error
IB Chemistry on Uncertainty, Error Analysis, Random and Systematic ErrorLawrence kok
 
IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...
IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...
IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...Lawrence kok
 
IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...
IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...
IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...Lawrence kok
 
Inroduction to Decision Theory and Decision Making Under Certainty
Inroduction to Decision Theory and Decision Making Under CertaintyInroduction to Decision Theory and Decision Making Under Certainty
Inroduction to Decision Theory and Decision Making Under CertaintyAbhi23396
 
Applications of artificial intelligence (AI) models for management decision m...
Applications of artificial intelligence (AI) models for management decision m...Applications of artificial intelligence (AI) models for management decision m...
Applications of artificial intelligence (AI) models for management decision m...The Higher Education Academy
 
Risk And Uncertainty Lecture 2
Risk And Uncertainty Lecture 2Risk And Uncertainty Lecture 2
Risk And Uncertainty Lecture 2Muhammad Ijaz Syed
 
IB Chemistry Serial Dilution, Molarity and Concentration
IB Chemistry Serial Dilution, Molarity and ConcentrationIB Chemistry Serial Dilution, Molarity and Concentration
IB Chemistry Serial Dilution, Molarity and ConcentrationLawrence kok
 
Risk and Uncertainty modeling with application in energy systems
Risk and Uncertainty modeling with application in energy systemsRisk and Uncertainty modeling with application in energy systems
Risk and Uncertainty modeling with application in energy systemsAlireza soroudi
 

Viewers also liked (20)

IB Chemistry on Uncertainty, significant figures and scientific notation
IB Chemistry on Uncertainty, significant figures and scientific notationIB Chemistry on Uncertainty, significant figures and scientific notation
IB Chemistry on Uncertainty, significant figures and scientific notation
 
IB Chemistry on Uncertainty calculation and significant figures
IB Chemistry on Uncertainty calculation and significant figuresIB Chemistry on Uncertainty calculation and significant figures
IB Chemistry on Uncertainty calculation and significant figures
 
IB Chemistry on Uncertainty, Significant figures and Scientific notation
IB Chemistry on Uncertainty, Significant figures and Scientific notationIB Chemistry on Uncertainty, Significant figures and Scientific notation
IB Chemistry on Uncertainty, Significant figures and Scientific notation
 
Iupac nomenclature
Iupac nomenclatureIupac nomenclature
Iupac nomenclature
 
11.1 uncertainty in measurement
11.1 uncertainty in measurement11.1 uncertainty in measurement
11.1 uncertainty in measurement
 
Strategy under uncertainty
Strategy under uncertaintyStrategy under uncertainty
Strategy under uncertainty
 
IB ESS -How to write a Good Lab report
IB ESS -How to write a Good Lab reportIB ESS -How to write a Good Lab report
IB ESS -How to write a Good Lab report
 
Decision making under uncertainty rees presentationa
Decision making under uncertainty rees presentationaDecision making under uncertainty rees presentationa
Decision making under uncertainty rees presentationa
 
Uncertainty Principle and Photography. see mdashf.org/2015/06/08/
Uncertainty Principle and Photography. see mdashf.org/2015/06/08/Uncertainty Principle and Photography. see mdashf.org/2015/06/08/
Uncertainty Principle and Photography. see mdashf.org/2015/06/08/
 
Decision theory
Decision theoryDecision theory
Decision theory
 
Mitosis powerpoint
Mitosis powerpointMitosis powerpoint
Mitosis powerpoint
 
IB Chemistry on Uncertainty, Error Analysis, Random and Systematic Error
IB Chemistry on Uncertainty, Error Analysis, Random and Systematic ErrorIB Chemistry on Uncertainty, Error Analysis, Random and Systematic Error
IB Chemistry on Uncertainty, Error Analysis, Random and Systematic Error
 
IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...
IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...
IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...
 
IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...
IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...
IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...
 
Inroduction to Decision Theory and Decision Making Under Certainty
Inroduction to Decision Theory and Decision Making Under CertaintyInroduction to Decision Theory and Decision Making Under Certainty
Inroduction to Decision Theory and Decision Making Under Certainty
 
Applications of artificial intelligence (AI) models for management decision m...
Applications of artificial intelligence (AI) models for management decision m...Applications of artificial intelligence (AI) models for management decision m...
Applications of artificial intelligence (AI) models for management decision m...
 
Risk And Uncertainty Lecture 2
Risk And Uncertainty Lecture 2Risk And Uncertainty Lecture 2
Risk And Uncertainty Lecture 2
 
IB Chemistry Serial Dilution, Molarity and Concentration
IB Chemistry Serial Dilution, Molarity and ConcentrationIB Chemistry Serial Dilution, Molarity and Concentration
IB Chemistry Serial Dilution, Molarity and Concentration
 
Risk and Uncertainty modeling with application in energy systems
Risk and Uncertainty modeling with application in energy systemsRisk and Uncertainty modeling with application in energy systems
Risk and Uncertainty modeling with application in energy systems
 
Digitos significativos
Digitos significativosDigitos significativos
Digitos significativos
 

Similar to IB Chemistry on Uncertainty Calculation and significant figures

Chapter 1 standard form
Chapter 1 standard formChapter 1 standard form
Chapter 1 standard formlarasati06
 
06 significant figures
06 significant figures06 significant figures
06 significant figuresFidelfo Moral
 
Significant numbers in calculations fall 2014
Significant numbers in calculations fall 2014Significant numbers in calculations fall 2014
Significant numbers in calculations fall 2014mantlfin
 
Mean, Variance and standard deviation.pptx
Mean, Variance and standard deviation.pptxMean, Variance and standard deviation.pptx
Mean, Variance and standard deviation.pptxJakeGad
 
Grade 9 Uo-L4-Scientific No & Sig Dig
Grade 9 Uo-L4-Scientific No & Sig DigGrade 9 Uo-L4-Scientific No & Sig Dig
Grade 9 Uo-L4-Scientific No & Sig Diggruszecki1
 
PP_6a_Significant_Figures.ppt
PP_6a_Significant_Figures.pptPP_6a_Significant_Figures.ppt
PP_6a_Significant_Figures.pptOMPRAKASHGURJAR10
 
Chapter 2.3 : Using Scientific Method
Chapter 2.3 : Using Scientific MethodChapter 2.3 : Using Scientific Method
Chapter 2.3 : Using Scientific MethodChris Foltz
 
Chapter 3 notes chemistry
Chapter 3 notes chemistryChapter 3 notes chemistry
Chapter 3 notes chemistryKendon Smith
 
general chemistry ch1
general  chemistry ch1general  chemistry ch1
general chemistry ch1muhannad amer
 
Significant Figures
Significant FiguresSignificant Figures
Significant Figurescrespiryan
 
Foundation revision notes
Foundation revision notesFoundation revision notes
Foundation revision noteskeshmaths
 

Similar to IB Chemistry on Uncertainty Calculation and significant figures (20)

Decimals
DecimalsDecimals
Decimals
 
Sig Fig
Sig FigSig Fig
Sig Fig
 
Chapter 1 standard form
Chapter 1 standard formChapter 1 standard form
Chapter 1 standard form
 
Quantity and unit
Quantity and unitQuantity and unit
Quantity and unit
 
06 significant figures
06 significant figures06 significant figures
06 significant figures
 
Significant numbers in calculations fall 2014
Significant numbers in calculations fall 2014Significant numbers in calculations fall 2014
Significant numbers in calculations fall 2014
 
Mean, Variance and standard deviation.pptx
Mean, Variance and standard deviation.pptxMean, Variance and standard deviation.pptx
Mean, Variance and standard deviation.pptx
 
Grade 9 Uo-L4-Scientific No & Sig Dig
Grade 9 Uo-L4-Scientific No & Sig DigGrade 9 Uo-L4-Scientific No & Sig Dig
Grade 9 Uo-L4-Scientific No & Sig Dig
 
131 1-31-2011
131 1-31-2011131 1-31-2011
131 1-31-2011
 
Chapter 03
Chapter 03Chapter 03
Chapter 03
 
PP_6a_Significant_Figures.ppt
PP_6a_Significant_Figures.pptPP_6a_Significant_Figures.ppt
PP_6a_Significant_Figures.ppt
 
Sig figs.ppt
Sig figs.pptSig figs.ppt
Sig figs.ppt
 
Chapter 2.3 : Using Scientific Method
Chapter 2.3 : Using Scientific MethodChapter 2.3 : Using Scientific Method
Chapter 2.3 : Using Scientific Method
 
Sig figs (1)
Sig figs (1)Sig figs (1)
Sig figs (1)
 
Chapter 3 notes chemistry
Chapter 3 notes chemistryChapter 3 notes chemistry
Chapter 3 notes chemistry
 
general chemistry ch1
general  chemistry ch1general  chemistry ch1
general chemistry ch1
 
Significant Figures
Significant FiguresSignificant Figures
Significant Figures
 
Examen estadistica
Examen estadisticaExamen estadistica
Examen estadistica
 
Foundation revision notes
Foundation revision notesFoundation revision notes
Foundation revision notes
 
decimals-mixed-questions.ppt
decimals-mixed-questions.pptdecimals-mixed-questions.ppt
decimals-mixed-questions.ppt
 

More from Lawrence kok

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...Lawrence kok
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...Lawrence kok
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...Lawrence kok
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...Lawrence kok
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...Lawrence kok
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...Lawrence kok
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...Lawrence kok
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...Lawrence kok
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...Lawrence kok
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...Lawrence kok
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...Lawrence kok
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...Lawrence kok
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...Lawrence kok
 

More from Lawrence kok (20)

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
 

Recently uploaded

Exploring Gemini AI and Integration with MuleSoft | MuleSoft Mysore Meetup #45
Exploring Gemini AI and Integration with MuleSoft | MuleSoft Mysore Meetup #45Exploring Gemini AI and Integration with MuleSoft | MuleSoft Mysore Meetup #45
Exploring Gemini AI and Integration with MuleSoft | MuleSoft Mysore Meetup #45MysoreMuleSoftMeetup
 
Major project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategiesMajor project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategiesAmanpreetKaur157993
 
Stl Algorithms in C++ jjjjjjjjjjjjjjjjjj
Stl Algorithms in C++ jjjjjjjjjjjjjjjjjjStl Algorithms in C++ jjjjjjjjjjjjjjjjjj
Stl Algorithms in C++ jjjjjjjjjjjjjjjjjjMohammed Sikander
 
How to Analyse Profit of a Sales Order in Odoo 17
How to Analyse Profit of a Sales Order in Odoo 17How to Analyse Profit of a Sales Order in Odoo 17
How to Analyse Profit of a Sales Order in Odoo 17Celine George
 
8 Tips for Effective Working Capital Management
8 Tips for Effective Working Capital Management8 Tips for Effective Working Capital Management
8 Tips for Effective Working Capital ManagementMBA Assignment Experts
 
How to Manage Closest Location in Odoo 17 Inventory
How to Manage Closest Location in Odoo 17 InventoryHow to Manage Closest Location in Odoo 17 Inventory
How to Manage Closest Location in Odoo 17 InventoryCeline George
 
SPLICE Working Group: Reusable Code Examples
SPLICE Working Group:Reusable Code ExamplesSPLICE Working Group:Reusable Code Examples
SPLICE Working Group: Reusable Code ExamplesPeter Brusilovsky
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽中 央社
 
MOOD STABLIZERS DRUGS.pptx
MOOD     STABLIZERS           DRUGS.pptxMOOD     STABLIZERS           DRUGS.pptx
MOOD STABLIZERS DRUGS.pptxPoojaSen20
 
The Story of Village Palampur Class 9 Free Study Material PDF
The Story of Village Palampur Class 9 Free Study Material PDFThe Story of Village Palampur Class 9 Free Study Material PDF
The Story of Village Palampur Class 9 Free Study Material PDFVivekanand Anglo Vedic Academy
 
Spring gala 2024 photo slideshow - Celebrating School-Community Partnerships
Spring gala 2024 photo slideshow - Celebrating School-Community PartnershipsSpring gala 2024 photo slideshow - Celebrating School-Community Partnerships
Spring gala 2024 photo slideshow - Celebrating School-Community Partnershipsexpandedwebsite
 
diagnosting testing bsc 2nd sem.pptx....
diagnosting testing bsc 2nd sem.pptx....diagnosting testing bsc 2nd sem.pptx....
diagnosting testing bsc 2nd sem.pptx....Ritu480198
 
Championnat de France de Tennis de table/
Championnat de France de Tennis de table/Championnat de France de Tennis de table/
Championnat de France de Tennis de table/siemaillard
 
An overview of the various scriptures in Hinduism
An overview of the various scriptures in HinduismAn overview of the various scriptures in Hinduism
An overview of the various scriptures in HinduismDabee Kamal
 
MSc Ag Genetics & Plant Breeding: Insights from Previous Year JNKVV Entrance ...
MSc Ag Genetics & Plant Breeding: Insights from Previous Year JNKVV Entrance ...MSc Ag Genetics & Plant Breeding: Insights from Previous Year JNKVV Entrance ...
MSc Ag Genetics & Plant Breeding: Insights from Previous Year JNKVV Entrance ...Krashi Coaching
 
The basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptxThe basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptxheathfieldcps1
 
SURVEY I created for uni project research
SURVEY I created for uni project researchSURVEY I created for uni project research
SURVEY I created for uni project researchCaitlinCummins3
 
The Liver & Gallbladder (Anatomy & Physiology).pptx
The Liver &  Gallbladder (Anatomy & Physiology).pptxThe Liver &  Gallbladder (Anatomy & Physiology).pptx
The Liver & Gallbladder (Anatomy & Physiology).pptxVishal Singh
 
demyelinated disorder: multiple sclerosis.pptx
demyelinated disorder: multiple sclerosis.pptxdemyelinated disorder: multiple sclerosis.pptx
demyelinated disorder: multiple sclerosis.pptxMohamed Rizk Khodair
 
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...Nguyen Thanh Tu Collection
 

Recently uploaded (20)

Exploring Gemini AI and Integration with MuleSoft | MuleSoft Mysore Meetup #45
Exploring Gemini AI and Integration with MuleSoft | MuleSoft Mysore Meetup #45Exploring Gemini AI and Integration with MuleSoft | MuleSoft Mysore Meetup #45
Exploring Gemini AI and Integration with MuleSoft | MuleSoft Mysore Meetup #45
 
Major project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategiesMajor project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategies
 
Stl Algorithms in C++ jjjjjjjjjjjjjjjjjj
Stl Algorithms in C++ jjjjjjjjjjjjjjjjjjStl Algorithms in C++ jjjjjjjjjjjjjjjjjj
Stl Algorithms in C++ jjjjjjjjjjjjjjjjjj
 
How to Analyse Profit of a Sales Order in Odoo 17
How to Analyse Profit of a Sales Order in Odoo 17How to Analyse Profit of a Sales Order in Odoo 17
How to Analyse Profit of a Sales Order in Odoo 17
 
8 Tips for Effective Working Capital Management
8 Tips for Effective Working Capital Management8 Tips for Effective Working Capital Management
8 Tips for Effective Working Capital Management
 
How to Manage Closest Location in Odoo 17 Inventory
How to Manage Closest Location in Odoo 17 InventoryHow to Manage Closest Location in Odoo 17 Inventory
How to Manage Closest Location in Odoo 17 Inventory
 
SPLICE Working Group: Reusable Code Examples
SPLICE Working Group:Reusable Code ExamplesSPLICE Working Group:Reusable Code Examples
SPLICE Working Group: Reusable Code Examples
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
 
MOOD STABLIZERS DRUGS.pptx
MOOD     STABLIZERS           DRUGS.pptxMOOD     STABLIZERS           DRUGS.pptx
MOOD STABLIZERS DRUGS.pptx
 
The Story of Village Palampur Class 9 Free Study Material PDF
The Story of Village Palampur Class 9 Free Study Material PDFThe Story of Village Palampur Class 9 Free Study Material PDF
The Story of Village Palampur Class 9 Free Study Material PDF
 
Spring gala 2024 photo slideshow - Celebrating School-Community Partnerships
Spring gala 2024 photo slideshow - Celebrating School-Community PartnershipsSpring gala 2024 photo slideshow - Celebrating School-Community Partnerships
Spring gala 2024 photo slideshow - Celebrating School-Community Partnerships
 
diagnosting testing bsc 2nd sem.pptx....
diagnosting testing bsc 2nd sem.pptx....diagnosting testing bsc 2nd sem.pptx....
diagnosting testing bsc 2nd sem.pptx....
 
Championnat de France de Tennis de table/
Championnat de France de Tennis de table/Championnat de France de Tennis de table/
Championnat de France de Tennis de table/
 
An overview of the various scriptures in Hinduism
An overview of the various scriptures in HinduismAn overview of the various scriptures in Hinduism
An overview of the various scriptures in Hinduism
 
MSc Ag Genetics & Plant Breeding: Insights from Previous Year JNKVV Entrance ...
MSc Ag Genetics & Plant Breeding: Insights from Previous Year JNKVV Entrance ...MSc Ag Genetics & Plant Breeding: Insights from Previous Year JNKVV Entrance ...
MSc Ag Genetics & Plant Breeding: Insights from Previous Year JNKVV Entrance ...
 
The basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptxThe basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptx
 
SURVEY I created for uni project research
SURVEY I created for uni project researchSURVEY I created for uni project research
SURVEY I created for uni project research
 
The Liver & Gallbladder (Anatomy & Physiology).pptx
The Liver &  Gallbladder (Anatomy & Physiology).pptxThe Liver &  Gallbladder (Anatomy & Physiology).pptx
The Liver & Gallbladder (Anatomy & Physiology).pptx
 
demyelinated disorder: multiple sclerosis.pptx
demyelinated disorder: multiple sclerosis.pptxdemyelinated disorder: multiple sclerosis.pptx
demyelinated disorder: multiple sclerosis.pptx
 
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
 

IB Chemistry on Uncertainty Calculation and significant figures

  • 1. Tutorial on Uncertainty, Error analysis and significant figures . Prepared by Lawrence Kok http://lawrencekok.blogspot.com
  • 2. Significant figures Used in measurements Degree of precision Show digits believed to be correct/certain + 1 estimated/uncertain All reads 80 80 80.0 80.00 80.000 least precise Certain 23.00 Uncertain 5 23.005g more precise Number sf necessary to express a measurement • Consistent with precision of measurement • Precise equipment = Measurement more sf • Last digit always an estimate/uncertain measurement 15.831g (15.831 ± 0.001)g (5 sig figures)
  • 3. Significant figures Used in measurements Degree of precision Show digits believed to be correct/certain + 1 estimated/uncertain All reads 80 80 80.0 80.00 80.000 least precise Certain 23.00 Uncertain 5 Zeros bet (significant) 4.109 = 4sf 902 = 3sf 5002.05 = 6sf measurement 15.831g 23.005g more precise (15.831 ± 0.001)g (5 sig figures) Rules for significant figures All non zero digit (significant) 31.24 = 4 sf 563 = 3 sf 23 = 2sf Number sf necessary to express a measurement • Consistent with precision of measurement • Precise equipment = Measurement more sf • Last digit always an estimate/uncertain Zeros after decimal point (significant) 4.580 = 4 sf 9.30 = 3sf 86.90000 = 7sf 3.040 = 4sf 67.030 = 5sf Zero right of decimal point and following a non zero digit (significant) 0.00500 = 3sf 0.02450 = 4sf 0.04050 = 4sf 0.50 = 2sf Deals with precision NOT accuracy!!!!!!!! Precise measurement doesnt mean, it’s accurate ( instrument may not be accurate) Zeros to left of digit (NOT significant) 0.0023 = 2sf 0.000342 = 3sf 0.00003 = 1sf Zero without decimal (ambiguous) 80 = may have 1 or 2 sf 500 = may have 1 or 3 sf
  • 4. Significant figures Used in measurements Degree of precision Show digits believed to be correct/certain + 1 estimated/uncertain All reads 80 80 80.0 80.00 80.000 least precise Certain 23.00 Uncertain 5 Zeros bet (significant) 4.109 = 4sf 902 = 3sf 5002.05 = 6sf measurement 15.831g 23.005g more precise (15.831 ± 0.001)g (5 sig figures) Rules for significant figures All non zero digit (significant) 31.24 = 4 sf 563 = 3 sf 23 = 2sf Number sf necessary to express a measurement • Consistent with precision of measurement • Precise equipment = Measurement more sf • Last digit always an estimate/uncertain Zeros after decimal point (significant) 4.580 = 4 sf 9.30 = 3sf 86.90000 = 7sf 3.040 = 4sf 67.030 = 5sf Zero right of decimal point and following a non zero digit (significant) 0.00500 = 3sf 0.02450 = 4sf 0.04050 = 4sf 0.50 = 2sf Deals with precision NOT accuracy!!!!!!!! Precise measurement doesnt mean, it’s accurate ( instrument may not be accurate) Zeros to left of digit (NOT significant) 0.0023 = 2sf 0.000342 = 3sf 0.00003 = 1sf Zero without decimal (ambiguous) 80 = may have 1 or 2 sf 500 = may have 1 or 3 sf Click here and here for notes on sig figures
  • 5. Significant figures 1 22 Smallest division = 0.1 22 Max = 21.63 2 Certain 21.6 Uncertainty = 1/10 of smallest division. = 1/10 of 0.1 = 1/10 x 0.1 = ±0.01 3 Certain = 21.6 4 Uncertain = 21.62 ±0.01 5 (21.62 ±0.01) Measurement = Certain digits + 1 uncertain digit Min = 21.61 Answer = 21.62 (4 sf) 21.6 (certain) 2 (uncertain)
  • 6. Significant figures 1 22 Smallest division = 0.1 22 Max = 21.63 2 Certain 21.6 Uncertainty = 1/10 of smallest division. = 1/10 of 0.1 = 1/10 x 0.1 = ±0.01 3 Certain = 21.6 4 Uncertain = 21.62 ±0.01 5 (21.62 ±0.01) Measurement = Certain digits + 1 uncertain digit Min = 21.61 Answer = 21.62 (4 sf) 21.6 (certain) 1 Smallest division = 1 2 Uncertainty = 1/10 of smallest division. = 1/10 of 1 = 1/10 x 1 = ±0.1 3 Certain = 36 4 Uncertain = 36.5 ±0.1 5 Measurement = Certain digits + 1 uncertain digit 2 (uncertain) Certain 36 Max = 36.6 (36.5 ±0.1) Min = 36.4 Answer = 36.5 (3 sf) 36. 5 (certain) (uncertain)
  • 7. Significant figures 1 Smallest division = 10 Max = 47 2 Certain 40 Uncertainty = 1/10 of smallest division. = 1/10 of 10 = 1/10 x 10 = ±1 3 Certain = 40 4 Uncertain = 46 ±1 5 (46 ±1) Measurement = Certain digits + 1 uncertain digit Min = 45 Answer = 46 (2 sf) 4 (certain) 6 (uncertain)
  • 8. Significant figures 1 Smallest division = 10 Max = 47 2 Certain 40 Uncertainty = 1/10 of smallest division. = 1/10 of 10 = 1/10 x 10 = ±1 3 Certain = 40 4 Uncertain = 46 ±1 5 (46 ±1) Measurement = Certain digits + 1 uncertain digit Min = 45 Answer = 46 (2 sf) 4 (certain) 1 Certain 3.4 Smallest division = 0.1 2 Uncertainty = 1/10 of smallest division. = 1/10 of 0.1 = 1/10 x 0.1 = ±0.01 3 Certain = 3.4 4 Uncertain = 3.41±0.01 5 Measurement = Certain digits + 1 uncertain digit 6 (uncertain) Max = 3.42 (3.41 ±0.01) Min = 3.40 Answer = 3.41 (3sf) 3.4 (certain) 1 (uncertain)
  • 9. Significant figures 1 Smallest division = 0.05 Max = 0.48 0.1 2 0.2 0.3 0.4 0.5 Certain 0.45 Uncertainty = 1/10 of smallest division. = 1/10 of 0.05 = 1/10 x 0.05 = ±0.005 (±0.01) 3 Certain = 0.45 4 Uncertain = 0.47 ± 0.01 5 (0.47 ±0.01) Measurement = Certain digits + 1 uncertain digit Min = 0.46 Answer = 0.47 (2 sf) 0.4 (certain) 7 (uncertain)
  • 10. Significant figures 1 Smallest division = 0.05 Max = 0.48 0.1 2 0.2 0.3 Certain 0.45 Uncertainty = 1/10 of smallest division. = 1/10 of 0.05 = 1/10 x 0.05 = ±0.005 (±0.01) 3 Certain = 0.45 4 Uncertain = 0.47 ± 0.01 5 0.4 (0.47 ±0.01) Measurement = Certain digits + 1 uncertain digit Min = 0.46 0.5 Answer = 0.47 (2 sf) 0.4 (certain) 7 (uncertain) Measurement 1 Smallest division = 0.1 2 Uncertainty = 1/10 of smallest division. = 1/10 of 0.1 = 1/10 x 0.1 = ±0.01 3 Certain = 5.7 4 Uncertain = 5.72 ± 0.01 (5.72 ±0.01) Answer = 5.72 (3sf) 5.7 (certain) 2 (uncertain) 1 Smallest division = 1 2 Uncertainty = 1/10 of smallest division. = 1/10 of 1 = 1/10 x 1 = ±0.1 3 Certain = 3 4 Uncertain = 3.0 ± 0.1 (3.0 ±0.1) Answer =3.0 (2 sf) 3 0 (certain) (uncertain)
  • 11. Rules for sig figures addition /subtraction: • Last digit retained is set by the first doubtful digit. • Number decimal places be the same as least number of decimal places in any numbers being added/subtracted 23.112233 1.3324 + 0.25 24.694633 uncertain least number decimal places 4.2 2.32 + 0.6157 7.1357 least number decimal places 1.367 - 1.34 0.027 uncertain least number decimal places uncertain 4.7832 1.234 + 2.02 8.0372 12.587 4.25 + 0.12 16.957 uncertain least number decimal places uncertain least number decimal places 2.300 x 103 + 4.59 x 103 6.890 x 103 least number decimal places 1247 134.5 450 + 78 1909.5 68.7 - 68.42 0.28 uncertain least number decimal places least number decimal places uncertain 1.0236 - 0.97268 0.05092 7.987 - 0.54 7.447 Convert to same exponent x 104 476.8 47.68 + 23.2 x 103 x 103 + 23.2 x 103 500.0 x 103 least number decimal places uncertain uncertain least number decimal places least number decimal places
  • 12. Rules for sig figures addition /subtraction: • Last digit retained is set by the first doubtful digit. • Number decimal places be the same as least number of decimal places in any numbers being added/subtracted 23.112233 1.3324 + 0.25 24.694633 uncertain least number decimal places round down 4.7832 1.234 + 2.02 8.0372 uncertain least number decimal places round down 1247 134.5 450 + 78 1909.5 uncertain least number decimal places 1.0236 - 0.97268 0.05092 4.2 2.32 + 0.6157 7.1357 8.04 least number decimal places uncertain round down round up 0.03 uncertain least number decimal places 68.7 - 68.42 0.28 0.0509 least number decimal places uncertain 7.987 - 0.54 7.447 uncertain least number decimal places round up round down round up 0.3 16.96 7.1 1.367 - 1.34 0.027 1910 12.587 4.25 + 0.12 16.957 uncertain round down round up 24.69 least number decimal places uncertain least number decimal places 2.300 x 103 + 4.59 x 103 6.890 x 103 least number decimal places 7.45 Convert to same exponent x 104 476.8 47.68 + 23.2 x 103 x 103 + 23.2 x 103 500.0 x 103 round up 6.89 x 103 500.0 x 103 5.000 x 105 least number decimal places
  • 13. Rules for sig figures - multiplication/division • Answer contains no more significant figures than the least accurately known number. 12.34 3.22 x 1.8 71.52264 16.235 0.217 x 5 17.614975 923 ÷ 20312 0.045441 least sf (2sf) least sf (1sf) least sf (3sf) 23.123123 x 1.3344 30.855495 4.52 ÷ 6.3578 7.1093775 1300 x 57240 74412000 least sf (5sf) least sf (3sf) 21.45 x 0.023 0.49335 0.00435 x 4.6 0.02001 least sf (2sf) Scientific notation 2.8723 x I.6 4.59568 least sf (2sf) least sf (2sf) 6305 ÷ 0.010 630500 least sf (2sf) least sf (2sf) I.3*103 x 5.724*104 7.4412 x 107 Click here for practice notes on sig figures
  • 14. Rules for sig figures - multiplication/division • Answer contains no more significant figures than the least accurately known number. 12.34 3.22 x 1.8 71.52264 least sf (2sf) round up 23.123123 x 1.3344 30.855495 least sf (5sf) 21.45 x 0.023 0.49335 round down round down 30.855 72 16.235 0.217 x 5 17.614975 least sf (1sf) round up 4.52 ÷ 6.3578 7.1093775 least sf (3sf) 923 ÷ 20312 0.045441 least sf (3sf) round down 0.0454 1300 x 57240 74412000 4.6 0.00435 x 4.6 0.02001 least sf (2sf) round down 7.11 0.020 least sf (2sf) Scientific notation least sf (2sf) round up 0.49 round up 20 2.8723 x I.6 4.59568 least sf (2sf) 6305 ÷ 0.010 630500 least sf (2sf) round down 63000 6.3 x 105 I.3*103 x 5.724*104 7.4412 x 107 round down 74000000 7.4 x 107 Click here for practice notes on sig figures
  • 15. Scientific notation How many significant figures Written as a=1-9 Number too big/small b = integer 3 sf Scientific - notation = a ´10b 6,720,000,000 Size sand = 6.72 ´109 4 sf 0.0000000001254 =1.254 ´10-10 3 sf Speed of light 300000000 How many significant figures 4.66 x 10 6 4.660 x 10 6 4 sf 4.6600 x 10 6 4660000 3 sf 5 sf Click here practice scientific notation Click here practice scientific notation = 3.00 ´108
  • 16. Scientific notation How many significant figures Written as a=1-9 Number too big/small b = integer 3 sf Scientific - notation = a ´10b 6,720,000,000 Size sand = 6.72 ´109 4 sf 0.0000000001254 =1.254 ´10-10 3 sf Speed of light = 3.00 ´108 300000000 Scientific notation 80 3 ways to write 80 How many significant figures 4.66 x 4660000 10 6 3 sf 4.660 x 10 6 5 sf 80 – 8 x 101 – (1sf) Digit 8 uncertain It can be 70 to 90 80. 80. – 8.0 x 101 – (2sf) Digit 8 is certain It can be 79 to 81 80.0 80.0 – 8.00 x 101 – (3sf) Digit 80 is certain It can be 79.9 or 80.1 4 sf 4.6600 x 10 6 80 90 or 9 x 101 80 or 8 x 101 70 or 7 x 101 81 or 8.1 x 101 80 or 8.0 x 101 79 or 7.9 x 101 80.1 or 8.01 x 101 80.0 or 8.00 x 101 79.9 or 7.99 x 101 More prcise Click here practice scientific notation Click here practice scientific notation ✔
  • 17. Significant figures and Uncertainty in measurement Recording measurement using significant figures Radius, r = 2.15 cm Volume, V = 4/3πr3 V = 4/3 x π x (2.15)3 = 4/3 x 3.14 x 2.15 x 2.15 x 2.15 = 41.60 round down 41.6 4/3 – constant π – constant Their sf is not taken (not a measurement) least sf (3sf)
  • 18. Significant figures and Uncertainty in measurement Recording measurement using significant figures Radius, r = 2.15 cm Volume, V = 4/3πr3 V = 4/3 x π x (2.15)3 = 4/3 x 3.14 x 2.15 x 2.15 x 2.15 = 41.60 4/3 – constant π – constant Their sf is not taken (not a measurement) round down 41.6 Recording measurement using uncertainty of equipment Radius, r = (2.15 ±0.02) cm 4 Volume = p r 3 3 4 Volume = ´3.14 ´ 2.153 = 41.60 3 least sf (3sf)
  • 19. Significant figures and Uncertainty in measurement Recording measurement using significant figures Radius, r = 2.15 cm Volume, V = 4/3πr3 V = 4/3 x π x (2.15)3 = 4/3 x 3.14 x 2.15 x 2.15 x 2.15 = 41.60 4/3 – constant π – constant Their sf is not taken (not a measurement) least sf (3sf) round down 41.6 Recording measurement using uncertainty of equipment Radius, r = (2.15 ±0.02) cm Treatment of Uncertainty Multiplying or dividing measured quantities 4 Volume = p r 3 3 % uncertainty = sum of % uncertainty of individual quantities Radius, r = (2.15 ±0.02) %uncertainty radius (%Δr) = 0.02 x 100 = 0.93% 2.15 % uncertainty V = 3 x % uncertainty r % ΔV = 3 x % Δr * For measurement raised to power of n, multiply % uncertainty by n * Constant, pure/counting number has no uncertainty and sf not taken 4 Volume = p r 3 3 4 Volume = ´3.14 ´ 2.153 = 41.60 3 0.02 ´100% = 0.93% 2.15 Measurement raised to power of 3, multiply % uncertainty by 3 %DV = 3´ %Dr %DV = 3´ 0.93 = 2.79% Volume = (41.60 ± 2.79%) %Dr = AbsoluteDV = 2.79 ´ 41.60 =1.16 100 Volume = (41.60 ±1.16) Volume = (42 ±1)
  • 20. Significant figures and Uncertainty in measurement Recording measurement using significant figures Radius, r = 3.0 cm Circumference, C = 2πr C = 2 x π x (3.0) = 2 x 3.14 x 3.0 = 18.8495 round up 19 2 – constant π – constant Their sf is not taken (not a measurement) least sf (2sf)
  • 21. Significant figures and Uncertainty in measurement Recording measurement using significant figures Radius, r = 3.0 cm Circumference, C = 2πr C = 2 x π x (3.0) = 2 x 3.14 x 3.0 = 18.8495 2 – constant π – constant Their sf is not taken (not a measurement) least sf (2sf) round up 19 Recording measurement using uncertainty of equipment Radius, r = (3.0 ±0.2) cm Circumference = 2p r Circumference = 2´3.14´3.0 =18.8495
  • 22. Significant figures and Uncertainty in measurement Recording measurement using significant figures Radius, r = 3.0 cm Circumference, C = 2πr C = 2 x π x (3.0) = 2 x 3.14 x 3.0 = 18.8495 2 – constant π – constant Their sf is not taken (not a measurement) least sf (2sf) round up 19 Recording measurement using uncertainty of equipment Radius, r = (3.0 ±0.2) cm Treatment of Uncertainty Multiplying or dividing measured quantities Circumference = 2p r % uncertainty = sum of % uncertainty of individual quantities Radius, r = (3.0 ±0.2) %uncertainty radius (%Δr) = 0.2 x 100 = 6.67% 3.0 % uncertainty C = % uncertainty r % ΔC = % Δr * Constant, pure/counting number has no uncertainty and sf not taken Circumference = 2p r Circumference = 2´3.14´3.0 =18.8495 0.2 ´100% = 6.67% 3.0 %Dc = %Dr %Dc = 6.67% Circumference = (18.8495 ± 6.67%) %Dr = AbsoluteDC = 6.67 ´18.8495 =1.25 100 Circumference = (18.8495 ±1.25) Circumference = (19 ±1)
  • 23. Significant figures and Uncertainty in measurement Recording measurement using significant figures Time, t = 2.25 s Displacement, s = ½ gt2 s = 1/2 x 9.8 x (2.25)2 = 24.80625 g and ½ – constant Their sf is not taken (not a measurement) least sf (3sf) round down 24.8 1 Displacement, s = ´ 9.8x(2.25) 2
  • 24. Significant figures and Uncertainty in measurement Recording measurement using significant figures Time, t = 2.25 s Displacement, s = ½ gt2 s = 1/2 x 9.8 x (2.25)2 = 24.80625 g and ½ – constant Their sf is not taken (not a measurement) least sf (3sf) round down 24.8 Recording measurement using uncertainty of equipment Time, t = (2.25 ±0.01) cm 1 Displacement, s = ´ 9.8x(2.25) 2 1 Displacement, s = gt 2 2 1 Displacement, s = ´ 9.8x2.25x2.25 = 24.80625 2
  • 25. Significant figures and Uncertainty in measurement Recording measurement using significant figures Time, t = 2.25 s Displacement, s = ½ gt2 g and ½ – constant Their sf is not taken (not a measurement) s = 1/2 x 9.8 x (2.25)2 = 24.80625 least sf (3sf) round down 24.8 Recording measurement using uncertainty of equipment Time, t = (2.25 ±0.01) cm 1 Displacement, s = ´ 9.8x(2.25) 2 1 Displacement, s = gt 2 2 1 Displacement, s = ´ 9.8x2.25x2.25 = 24.80625 2 0.01 ´100% = 0.4% 2.25 Measurement raised to power of 2, multiply % uncertainty by 2 %Ds = 2 ´ %Dt %Ds = 2 ´ 0.4% = 0.8% Displacement = (24.80 ± 0.8%) %Dt = Treatment of Uncertainty 1 2 Multiplying or dividing measured quantities Displacement, s = gt 2 % uncertainty = sum of % uncertainty of individual quantities Time, t = (2.25 ±0.01) %uncertainty time (%Δt) = 0.01 x 100 = 0.4% 2.25 % uncertainty s = 2 x % uncertainty t % Δs = 2 x % Δt * For measurement raised to power of n, multiply % uncertainty by n AbsoluteDs = 0.4 ´ 24.80 = 0.198 100 Displacement = (24.80 ± 0.198) Displacement = (24.8 ± 0.2)
  • 26. Significant figures and Uncertainty in measurement Recording measurement using significant figures Length, I = 1.25 m L g T = 2p T = 2 x π x √(1.25/9.8) = 2 x 3.14 x 0.35714 = 2.24399 round down 2.24 least sf (3sf) 2, π and g – constant Their sf is not taken (not a measurement)
  • 27. Significant figures and Uncertainty in measurement Recording measurement using significant figures Length, I = 1.25 m L g T = 2p least sf (3sf) T = 2 x π x √(1.25/9.8) = 2 x 3.14 x 0.35714 = 2.24399 round down 2.24 Recording measurement using uncertainty of equipment T = 2p Length, I = (1.25 ±0.05) m T = 2p L g 1.25 = 2.24 9.8 2, π and g – constant Their sf is not taken (not a measurement)
  • 28. Significant figures and Uncertainty in measurement Recording measurement using significant figures Length, I = 1.25 m L g T = 2p least sf (3sf) T = 2 x π x √(1.25/9.8) = 2 x 3.14 x 0.35714 = 2.24399 2, π and g – constant Their sf is not taken (not a measurement) round down 2.24 Recording measurement using uncertainty of equipment T = 2p Length, I = (1.25 ±0.05) m T = 2p L g 1.25 = 2.24 9.8 0.05 ´100% = 4% 1.25 Measurement raised to power of 1/2, 1 %DT = ´ %Dl multiply % uncertainty by 1/2 2 %DT = 2% T = (2.24 ± 2%) %Dl = Treatment of Uncertainty Multiplying or dividing measured quantities T = 2p L g % uncertainty = sum of % uncertainty of individual quantities Length, I = (1.25 ±0.05) %uncertainty length (%ΔI) = 0.05 x 100 = 4% 1.25 % uncertainty T = ½ x % uncertainty I % ΔT = ½ x % ΔI * For measurement raised to power of n, multiply % uncertainty by n AbsoluteDT = 2 ´ 2.24 = 0.044 100 T = (2.24 ± 0.044) T = (2.24 ± 0.04)
  • 29. Significant figures and Uncertainty in measurement Recording measurement using significant figures Area, A = I x h Length, I = 4.52 cm Height, h = 2.0 cm 4.52 2.0 9.04 x least sf (2sf) round down 9.0
  • 30. Significant figures and Uncertainty in measurement Recording measurement using significant figures Area, A = I x h Length, I = 4.52 cm Height, h = 2.0 cm 4.52 2.0 9.04 x least sf (2sf) round down 9.0 Recording measurement using uncertainty of equipment Length, I = (4.52 ±0.02) cm Height, h = (2.0 ±0.2)cm3 Area, A = Length,l ´ height, h Area = 4.52 ´ 2.0 = 9.04
  • 31. Significant figures and Uncertainty in measurement Recording measurement using significant figures Area, A = I x h Length, I = 4.52 cm Height, h = 2.0 cm 4.52 2.0 9.04 x least sf (2sf) round down 9.0 Recording measurement using uncertainty of equipment Length, I = (4.52 ±0.02) cm Height, h = (2.0 ±0.2)cm3 Area, A = Length,l ´ height, h Area = 4.52 ´ 2.0 = 9.04 0.02 ´100% = 0.442% 4.52 0.2 %Dh = ´100% = 10% 2.0 %DA = %Dl + %Dh %DA = 0.442% +10% = 10.442% Area = (9.04 ±10.442%) %Dl = Treatment of Uncertainty Multiplying or dividing measured quantities Area, A = Length,l ´height,h % uncertainty = sum of % uncertainty of individual quantities Length, l = (4.52 ±0.02) %uncertainty length (%Δl) = 0.02 x 100 = 0.442% 4.52 Height, h = (2.0 ±0.2) %uncertainty height (%Δh) = 0.2 x 100 = 10% 2.0 % uncertainty A = % uncertainty length + % uncertainty height % ΔA = % ΔI + %Δh AbsoluteDA = Area = (9.0 ± 0.9) 10.442 ´ 9.04 = 0.9 100
  • 32. Significant figures and Uncertainty in measurement Recording measurement using significant figures Moles, n = Conc x Vol Conc, c = 2.00 M Volume, v = 2.0 dm3 2.00 2.0 4.00 x least sf (2sf) round down 4.0
  • 33. Significant figures and Uncertainty in measurement Recording measurement using significant figures Moles, n = Conc x Vol Conc, c = 2.00 M Volume, v = 2.0 dm3 2.00 2.0 4.00 x least sf (2sf) round down 4.0 Recording measurement using uncertainty of equipment Conc, c = (2.00 ±0.02) cm Volume, v = (2.0 ±0.1)dm3 Mole, n = Conc, c ´Volume, v Mole = 2.00 ´ 2.0 = 4.00
  • 34. Significant figures and Uncertainty in measurement Recording measurement using significant figures Moles, n = Conc x Vol Conc, c = 2.00 M Volume, v = 2.0 dm3 2.00 2.0 4.00 x least sf (2sf) round down 4.0 Recording measurement using uncertainty of equipment Conc, c = (2.00 ±0.02) cm Volume, v = (2.0 ±0.1)dm3 Mole, n = Conc, c ´Volume, v Mole = 2.00 ´ 2.0 = 4.00 0.02 ´100% = 1% 2.00 0.1 %Dv = ´100% = 5% 2.0 %Dn = %Dc + %Dv %Dc = Treatment of Uncertainty Multiplying or dividing measured quantities Mole, n = Conc, c ´Vol, v % uncertainty = sum of % uncertainty of individual quantities Conc, c = (2.00 ±0.02) %uncertainty conc (%Δc) = 0.02 x 100 = 1% 2.00 Volume, v = (2.0 ±0.1) %uncertainty volume (%Δv) = 0.1 x 100 = 5% 2.0 % uncertainty n = % uncertainty conc + % uncertainty volume % Δn = % Δc + %Δv %Dn = 1% + 5% = 6% Mole = (4.00 ± 6%) AbsoluteDn = 6 ´ 4.00 = 0.24 100 Mole = (4.00 ± 0.24) Mole = (4.0 ± 0.2)
  • 35. Significant figures and Uncertainty in measurement Recording measurement using significant figures Mass, m = 482.63g Volume, v = 258 cm3 Density = Mass Volume 482.63 ÷ 258 1.870658 round down 1.87 least sf (3sf)
  • 36. Significant figures and Uncertainty in measurement Recording measurement using significant figures Mass, m = 482.63g Volume, v = 258 cm3 Density = Mass Volume 482.63 ÷ 258 1.870658 least sf (3sf) round down 1.87 Recording measurement using uncertainty of equipment Mass, m = (482.63 ±1)g Volume, v = (258 ±5)cm3 Density, D = Density, D = Mass Volume 482.63 =1.870658 258
  • 37. Significant figures and Uncertainty in measurement Recording measurement using significant figures Mass, m = 482.63g Volume, v = 258 cm3 Density = Mass Volume 482.63 ÷ 258 1.870658 least sf (3sf) round down 1.87 Recording measurement using uncertainty of equipment Mass, m = (482.63 ±1)g Volume, v = (258 ±5)cm3 Treatment of Uncertainty Multiplying or dividing measured quantities Density, D = Mass Volume % uncertainty = sum of % uncertainty of individual quantities Mass, m = (482.63 ±1) %uncertainty mass (%Δm) = 1 x 100 = 0.21% 482.63 Volume, V = (258 ±5) %uncertainty vol (%ΔV) = 5 x 100 = 1.93% 258 % uncertainty density = % uncertainty mass + % uncertainty volume % ΔD = % Δm + %ΔV Density, D = Density, D = Mass Volume 482.63 =1.870658 258 1 ´100% = 0.21% 482.63 5 %DV = ´100% = 1.93% 258 %DD = %Dm + %DV %DD = 0.21% +1.93% = 2.14% Density = (1.87 ± 2.14%) %Dm = AbsoluteDD = 2.14 ´1.87 = 0.04 100 Density = (1.87 ± 0.04)
  • 38. Significant figures and Uncertainty in measurement Recording measurement using significant figures Mass water = 2.00 g ΔTemp = 2.0 C Enthalpy, H = mcΔT x 2.00 4.18 2.0 16.72 c – constant sf is not taken (not a measurement) least sf (2sf) round up 17
  • 39. Significant figures and Uncertainty in measurement Recording measurement using significant figures Mass water = 2.00 g ΔTemp = 2.0 C Enthalpy, H = mcΔT x 2.00 4.18 2.0 16.72 c – constant sf is not taken (not a measurement) least sf (2sf) round up 17 Recording measurement using uncertainty of equipment Enthalpy, H = m ´ c ´ DT Mass water = (2.00 ±0.02)g ΔTemp = (2.0 ±0.4) C Enthalpy, H = 2.00 ´ 4.18´ 2.0 =16.72
  • 40. Significant figures and Uncertainty in measurement Recording measurement using significant figures Mass water = 2.00 g ΔTemp = 2.0 C Enthalpy, H = mcΔT x 2.00 4.18 2.0 16.72 c – constant sf is not taken (not a measurement) least sf (2sf) round up 17 Recording measurement using uncertainty of equipment Mass water = (2.00 ±0.02)g ΔTemp = (2.0 ±0.4) C Treatment of Uncertainty Multiplying or dividing measured quantities Enthalpy, H = m ´ c ´ DT Enthalpy, H = 2.00 ´ 4.18´ 2.0 =16.72 Enthalpy, H = m ´ c ´ DT % uncertainty = sum of % uncertainty of individual quantities Mass, m = (2.00 ±0.02) %uncertainty mass (%Δm) = 0.02 x 100 = 1% 2.00 ΔTemp = (2.0 ±0.4) %uncertainty temp (%ΔT) = 0.4 x 100 = 20% 2.0 % uncertainty H = % uncertainty mass + % uncertainty temp % ΔH = % Δm + %ΔT 0.02 ´100% = 1% 2.00 0.4 %DT = ´100% = 20% 2.0 %DH = %Dm + %DT %Dm = %DH = 1% + 20% = 21% Enthalpy = (16.72 ± 21%) AbsoluteDH = 21 ´16.72 = 3.51 100 Enthalpy = (16.72 ± 3.51) Enthalpy = (17 ± 4)
  • 41. Treatment of uncertainty in measurement • Adding or subtracting Max absolute uncertainty is the SUM of individual uncertainties Initial mass beaker, M1 = (20.00 ±0.01) g Final mass beaker + water, M2 = (22.00 ±0.01)g Initial Temp, T1 = (21.2 ±0.2)C Final Temp, T2 = (23.2 ±0.2)C Mass water, m = (M2 –M1) Absolute uncertainty, Δm = (0.01 + 0.01) = 0.02 Diff Temp ΔT = (T2 –T1) Absolute uncertainty, ΔT = (0.2 + 0.2) = 0.4 Mass water, m = (22.00 –20.00) = 2.00 Absolute uncertainty, Δm = (0.01 + 0.01) = 0.02 Mass water, m = (2.00 ±0.02)g Diff Temp ΔT = (23.2 –21.2) = 2.0 Absolute uncertainty, ΔT = (0.2 + 0.2) = 0.4 Diff Temp, ΔT = (2.0 ±0.4) Mass water, m = (2.00 ±0.02)g ΔTemp = (2.0 ±0.4) C Addition/Subtraction/Multiply/Divide • Multiplying or dividing Max %uncertainty is the SUM of individual %uncertainties
  • 42. Treatment of uncertainty in measurement • Adding or subtracting Max absolute uncertainty is the SUM of individual uncertainties Initial mass beaker, M1 = (20.00 ±0.01) g Final mass beaker + water, M2 = (22.00 ±0.01)g Initial Temp, T1 = (21.2 ±0.2)C Final Temp, T2 = (23.2 ±0.2)C Addition/Subtraction/Multiply/Divide • Multiplying or dividing Max %uncertainty is the SUM of individual %uncertainties Addition/Subtraction Add absolute uncertainty Enthalpy, H = (M2-M1) x c x (T2-T1) Mass water, m = (M2 –M1) Absolute uncertainty, Δm = (0.01 + 0.01) = 0.02 Diff Temp ΔT = (T2 –T1) Absolute uncertainty, ΔT = (0.2 + 0.2) = 0.4 Multiplication Add % uncertainty Mass water, m = (22.00 –20.00) = 2.00 Absolute uncertainty, Δm = (0.01 + 0.01) = 0.02 Mass water, m = (2.00 ±0.02)g Mass water, m = (2.00 ±0.02)g Diff Temp ΔT = (23.2 –21.2) = 2.0 Absolute uncertainty, ΔT = (0.2 + 0.2) = 0.4 Diff Temp, ΔT = (2.0 ±0.4) ΔTemp = (2.0 ±0.4) C Enthalpy, H = m ´ c ´ DT Enthalpy, H = 2.00 ´ 4.18´ 2.0 =16.72
  • 43. Treatment of uncertainty in measurement • Adding or subtracting Max absolute uncertainty is the SUM of individual uncertainties Initial mass beaker, M1 = (20.00 ±0.01) g Final mass beaker + water, M2 = (22.00 ±0.01)g Addition/Subtraction/Multiply/Divide • Multiplying or dividing Max %uncertainty is the SUM of individual %uncertainties Addition/Subtraction Add absolute uncertainty Initial Temp, T1 = (21.2 ±0.2)C Final Temp, T2 = (23.2 ±0.2)C Enthalpy, H = (M2-M1) x c x (T2-T1) Mass water, m = (M2 –M1) Absolute uncertainty, Δm = (0.01 + 0.01) = 0.02 Diff Temp ΔT = (T2 –T1) Absolute uncertainty, ΔT = (0.2 + 0.2) = 0.4 Multiplication Add % uncertainty Mass water, m = (22.00 –20.00) = 2.00 Absolute uncertainty, Δm = (0.01 + 0.01) = 0.02 Mass water, m = (2.00 ±0.02)g Mass water, m = (2.00 ±0.02)g Treatment of Uncertainty Multiplying or dividing measured quantities Diff Temp ΔT = (23.2 –21.2) = 2.0 Absolute uncertainty, ΔT = (0.2 + 0.2) = 0.4 Diff Temp, ΔT = (2.0 ±0.4) ΔTemp = (2.0 ±0.4) C Enthalpy, H = m ´ c ´ DT % uncertainty = sum of % uncertainty of individual quantities Mass, m = (2.00 ±0.02) %uncertainty mass (%Δm) = 0.02 x 100 = 1% 2.00 ΔTemp = (2.0 ±0.4) %uncertainty temp (%ΔT) = 0.4 x 100 = 20% 2.0 % uncertainty H = % uncertainty mass + % uncertainty temp % ΔH = % Δm + %ΔT Enthalpy, H = m ´ c ´ DT Enthalpy, H = 2.00 ´ 4.18´ 2.0 =16.72 0.02 ´100% = 1% 2.00 0.4 %DT = ´100% = 20% 2.0 %DH = %Dm + %DT %Dm = %DH = 1% + 20% = 21% Enthalpy = (16.72 ± 21%) AbsoluteDH = 21 ´16.72 = 3.51 100 Enthalpy = (16.72 ± 3.51) Enthalpy = (17 ± 4)
  • 44. Significant figures and Uncertainty in measurement Recording measurement using significant figures Volt, v = 2.0 V Current, I = 3.0A Time, t = 4.52s t ´ I2 v1/2 4.52 x 3.0 x 3.0 = 40.68 ÷ 1.414 28.769 Energy = round up 29 least sf (2sf)
  • 45. Significant figures and Uncertainty in measurement Recording measurement using significant figures Volt, v = 2.0 V Current, I = 3.0A Time, t = 4.52s t ´ I2 v1/2 4.52 x 3.0 x 3.0 = 40.68 ÷ 1.414 28.769 Energy = least sf (2sf) round up 29 Recording measurement using uncertainty of equipment Volt, v = (2.0 ± 0.2) Current, I = ( 3.0 ± 0.6) Time, t = (4.52 ± 0.02) t ´ I2 Energy, E = 1/2 v 4.52(3.0)2 Energy, E = = 28.638 2.01/2
  • 46. Significant figures and Uncertainty in measurement t ´ I2 v1/2 4.52 x 3.0 x 3.0 = 40.68 ÷ 1.414 28.769 Energy = Recording measurement using significant figures Volt, v = 2.0 V Current, I = 3.0A Time, t = 4.52s least sf (2sf) round up 29 Recording measurement using uncertainty of equipment Volt, v = (2.0 ± 0.2) Current, I = ( 3.0 ± 0.6) Time, t = (4.52 ± 0.02) Treatment of Uncertainty Multiplying or dividing measured quantities Energy, E = t ´ I2 v1/2 % uncertainty = sum of % uncertainty of individual quantities Time, t = (4.52 ±0.02) %uncertainty time (%Δt) = 0.02 x 100 = 0.442% 4.52 Current, I = (3.0 ±0.6) %uncertainty current (%ΔI) = 0.6 x 100 = 20% 3.0 Volt, v = (2.0±0.2) %uncertainty volt (%Δv) = 0.2 x 100 = 10% 2.0 % ΔE = % Δt + 2 %ΔI + ½ %ΔV * For measurement raised to power of n, multiply % uncertainty by n t ´ I2 Energy, E = 1/2 v 4.52(3.0)2 Energy, E = = 28.638 2.01/2 0.02 %Dt = ´100% = 0.442% 4.52 0.6 %DI = ´100% = 20% 3.0 0.2 %Dv = ´100% = 10% 2.0 1 %DE = %Dt + 2 ´%I + ´%Dv 2 %DE = ( 0.02 0.6 1 0.2 ´100% ) + ( 2 ´ ´100% ) + ( ´ ´100% 4.52 3.0 2 2.0 %DE = 0.442%+ 40%+ 5% = 45.442% = 45% Energy, E = (28.638± 45%) AbsoluteDE = Energy, E = (29 ±13) 45 ´ 28.638 =13 100 )
  • 47. Significant figures and Uncertainty in measurement Recording measurement using significant figures G = (20 ) H = (16 ) Z = (106) (G + H ) Z 20 + 16 = 36 ÷ 106 0.339 Speed, s = round down 0.34 least sf (2sf)
  • 48. Significant figures and Uncertainty in measurement Recording measurement using significant figures (G + H ) Z 20 + 16 = 36 ÷ 106 0.339 Speed, s = G = (20 ) H = (16 ) Z = (106) least sf (2sf) round down 0.34 Recording measurement using uncertainty of equipment G = (20 ± 0.5) H = (16 ± 0.5) Z = (106 ± 1.0) ✔ Addition add absolute uncertainty G+H = (36 ± 1) Z = (106 ± 1.0) Speed, s = (G + H ) Z Speed, s = (20 +16) = 0.339 106
  • 49. Significant figures and Uncertainty in measurement Recording measurement using significant figures (G + H ) Z 20 + 16 = 36 ÷ 106 0.339 Speed, s = G = (20 ) H = (16 ) Z = (106) least sf (2sf) round down 0.34 Speed, s = Recording measurement using uncertainty of equipment G = (20 ± 0.5) H = (16 ± 0.5) Z = (106 ± 1.0) ✔ Addition add absolute uncertainty G+H = (36 ± 1) Z = (106 ± 1.0) (G + H ) Z Speed, s = (20 +16) = 0.339 106 %D(G + H ) = Treatment of Uncertainty Multiplying or dividing measured quantities (G + H ) Speed, s = Z % uncertainty = sum of % uncertainty of individual quantities (G + H) = (36 ±1) %uncertainty (G+H) (%ΔG+H) = 1 x 100 = 2.77% 36 Z = (106 ±1.0) %uncertainty Z (%Δz) = 1.0 x 100 = 0.94% 106 %uncertainty s = %uncertainty(G+H) + %uncertainty(Z) % Δs = % Δ(G+H) + %Δz *Adding or subtracting Max absolute uncertainty is the SUM of individual uncertainties %DZ = 1.0 ´100% = 2.77% 36 1.0 ´100% = 0.94% 106 %DS = %D(G + H)+%DZ %DS = 2.77%+ 0.94% = 3.71% Speed, s = (0.339 ± 3.71%) AbsoluteDS = 3.71 ´ 0.339 = 0.012 100 Speed, s = (0.339 ± 0.012) ScientificNotation = a ´10
  • 50. Acknowledgements Thanks to source of pictures and video used in this presentation http://crescentok.com/staff/jaskew/isr/tigerchem/econfig/electron4.htm http://pureinfotech.com/wp-content/uploads/2012/09/periodicTable_20120926101018.png http://www.wikihow.com/Find-the-Circumference-and-Area-of-a-Circle Thanks to Creative Commons for excellent contribution on licenses http://creativecommons.org/licenses/ Prepared by Lawrence Kok Check out more video tutorials from my site and hope you enjoy this tutorial http://lawrencekok.blogspot.com